1
|
Ashraf A, Pal RK, Hassan MI. Crystal structure of thymidine kinase from the multi-drug resistant col strain of Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141071. [PMID: 40189173 DOI: 10.1016/j.bbapap.2025.141071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Thymidine kinase (TK) is a key enzyme in the salvage pathway of thymidine that produces thymidine monophosphate. TK enzyme activity is tightly coupled to the cell cycle, exhibiting marked fluctuations in expression and activity. We report the crystal structure of TK from the Staphylococcus aureus col strain (Sa-TK), which has emerged as a promising therapeutic target. The overall structure of Sa-TK closely resembles that of human TK. The lasso region in the structure shows an open conformation due to the absence of a natural substrate. The phosphate donor site is bound with sulfate ions from the crystallization conditions. The P-loop is visible, but the complete P-β hairpin cannot be traced due to the flexibility of this region. Sa-TK assembles as a tetramer with unique inter-subunit interactions involving salt bridges between charged residues. Glu136 and Arg184, as well as Arg154 and Glu102 from each of the subunits, have β-sheet interactions that form salt bridges. The catalytically active site residue Glu89 is conserved, which is essential for enzyme activity. Sa-TK lacks a longer C-terminal sequence involved in mitotic regulation through proteolytic degradation, a feature that is likely absent in Sa-TK. The crystal structure of Sa-TK offers detailed insights into its structural and functional properties, highlighting its conserved nature and emphasizing the challenge of developing selective inhibitors that do not affect host TK. This detailed structural information presents a valuable opportunity for the rational design of novel antibacterial agents specifically targeting Sa-TK, offering a promising avenue for combating S. aureus infections.
Collapse
Affiliation(s)
- Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ravi Kant Pal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Eberhardt J, Forli S. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. J Chem Theory Comput 2023; 19:2535-2556. [PMID: 37094087 PMCID: PMC10732097 DOI: 10.1021/acs.jctc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Water desolvation is one of the key components of the free energy of binding of small molecules to their receptors. Thus, understanding the energetic balance of solvation and desolvation resulting from individual water molecules can be crucial when estimating ligand binding, especially when evaluating different molecules and poses as done in High-Throughput Virtual Screening (HTVS). Over the most recent decades, several methods were developed to tackle this problem, ranging from fast approximate methods (usually empirical functions using either discrete atom-atom pairwise interactions or continuum solvent models) to more computationally expensive and accurate ones, mostly based on Molecular Dynamics (MD) simulations, such as Grid Inhomogeneous Solvation Theory (GIST) or Double Decoupling. On one hand, MD-based methods are prohibitive to use in HTVS to estimate the role of waters on the fly for each ligand. On the other hand, fast and approximate methods show an unsatisfactory level of accuracy, with low agreement with results obtained with the more expensive methods. Here we introduce WaterKit, a new grid-based sampling method with explicit water molecules to calculate thermodynamic properties using the GIST method. Our results show that the discrete placement of water molecules is successful in reproducing the position of crystallographic waters with very high accuracy, as well as providing thermodynamic estimates with accuracy comparable to more expensive MD simulations. Unlike these methods, WaterKit can be used to analyze specific regions on the protein surface, (such as the binding site of a receptor), without having to hydrate and simulate the whole receptor structure. The results show the feasibility of a general and fast method to compute thermodynamic properties of water molecules, making it well-suited to be integrated in high-throughput pipelines such as molecular docking.
Collapse
Affiliation(s)
- Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Scardino V, Di Filippo JI, Cavasotto CN. How good are AlphaFold models for docking-based virtual screening? iScience 2023; 26:105920. [PMID: 36686396 PMCID: PMC9852548 DOI: 10.1016/j.isci.2022.105920] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
A crucial component in structure-based drug discovery is the availability of high-quality three-dimensional structures of the protein target. Whenever experimental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based protein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corresponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking programs and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement strategies might be key to increase the chances of success.
Collapse
Affiliation(s)
- Valeria Scardino
- Meton AI, Inc, Wilmington, DE 19801, USA
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Juan I. Di Filippo
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina
- Computational Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar, Buenos Aires, Argentina
| | - Claudio N. Cavasotto
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina
- Computational Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, and Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
4
|
Jia S, Yang S, Ji H, Peng S, Chen K, He Z, Zhou X. Systematic investigation of bioorthogonal cellular DNA metabolic labeling in a photo-controlled manner. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Guterres H, Im W. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:2189-2198. [PMID: 32227880 DOI: 10.1021/acs.jcim.0c00057] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structure-based virtual screening relies on classical scoring functions that often fail to reliably discriminate binders from nonbinders. In this work, we present a high-throughput protein-ligand complex molecular dynamics (MD) simulation that uses the output from AutoDock Vina to improve docking results in distinguishing active from decoy ligands in a directory of useful decoy-enhanced (DUD-E) dataset. MD trajectories are processed by evaluating ligand-binding stability using root-mean-square deviations. We select 56 protein targets (of 7 different protein classes) and 560 ligands (280 actives, 280 decoys) and show 22% improvement in ROC AUC (area under the curve, receiver operating characteristics curve), from an initial value of 0.68 (AutoDock Vina) to a final value of 0.83. The MD simulation demonstrates a robust performance across all seven different protein classes. In addition, some predicted ligand-binding modes are moderately refined during MD simulations. These results systematically validate the reliability of a physics-based approach to evaluate protein-ligand binding interactions.
Collapse
Affiliation(s)
- Hugo Guterres
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| |
Collapse
|
6
|
Jagiello K, Makurat S, Pereć S, Rak J, Puzyn T. Molecular features of thymidine analogues governing the activity of human thymidine kinase. Struct Chem 2018. [DOI: 10.1007/s11224-018-1124-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Valente M, Timm J, Castillo-Acosta VM, Ruiz-Pérez LM, Balzarini T, Nettleship JE, Bird LE, Rada H, Wilson KS, González-Pacanowska D. Cell cycle regulation and novel structural features of thymidine kinase, an essential enzyme in Trypanosoma brucei. Mol Microbiol 2016; 102:365-385. [PMID: 27426054 DOI: 10.1111/mmi.13467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 11/28/2022]
Abstract
Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ-phosphate of ATP to 2'-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C-terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine-derived nucleotides. In addition, we report the X-ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design.
Collapse
Affiliation(s)
- Maria Valente
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jennifer Timm
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Luis M Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tom Balzarini
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Joanne E Nettleship
- The Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Louise E Bird
- The Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Heather Rada
- The Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
8
|
Structural and Kinetic Characterization of Thymidine Kinase from Leishmania major. PLoS Negl Trop Dis 2015; 9:e0003781. [PMID: 25978379 PMCID: PMC4433323 DOI: 10.1371/journal.pntd.0003781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/23/2015] [Indexed: 01/17/2023] Open
Abstract
Leishmania spp. is a protozoan parasite and the causative agent of leishmaniasis. Thymidine kinase (TK) catalyses the transfer of the γ-phosphate of ATP to 2’-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). L. major Type II TK (LmTK) has been previously shown to be important for infectivity of the parasite and therefore has potential as a drug target for anti-leishmanial therapy. In this study, we determined the enzymatic properties and the 3D structures of holo forms of the enzyme. LmTK efficiently phosphorylates dThd and dUrd and has high structural homology to TKs from other species. However, it significantly differs in its kinetic properties from Trypanosoma brucei TK since purines are not substrates of the enzyme and dNTPs such as dUTP inhibit LmTK. The enzyme had Km and kcat values for dThd of 1.1 μM and 2.62 s-1 and exhibits cooperative binding for ATP. Additionally, we show that the anti-retroviral prodrug zidovudine (3-azido-3-deoxythymidine, AZT) and 5’-modified dUrd can be readily phosphorylated by LmTK. The production of recombinant enzyme at a level suitable for structural studies was achieved by the construction of C-terminal truncated versions of the enzyme and the use of a baculoviral expression system. The structures of the catalytic core of LmTK in complex with dThd, the negative feedback regulator dTTP and the bi-substrate analogue AP5dT, were determined to 2.74, 3.00 and 2.40 Å, respectively, and provide the structural basis for exclusion of purines and dNTP inhibition. The results will aid the process of rational drug design with LmTK as a potential target for anti-leishmanial drugs. The DNA within the genome of an organism encodes all the information, firstly for reproduction and secondly for translation into proteins—the workhorses of a biological cell. Proteins carry out a host of essential biological activities within the cell. A full understanding of a protein now requires determination of a wide range of its properties in solution in the cell and in vitro in solution, but in addition, its 3D structure usually determined by X-ray crystallography. Leishmania species are a family of protozoan parasites of humans and the causative agent of leishmaniasis, a major health concern in the developing world. Selective inhibition of key enzymes in these parasites is a key route for combating these diseases. We have focused our work on thymidine kinase, an important enzyme from Leishmania major, and a potential target for the development of new drugs. We have carried out kinetic studies of the enzyme’s activity in solution and determined its 3D crystal structure, enabling rational drug design.
Collapse
|
9
|
Slot Christiansen L, Munch-Petersen B, Knecht W. Non-Viral Deoxyribonucleoside Kinases--Diversity and Practical Use. J Genet Genomics 2015; 42:235-48. [PMID: 26059771 DOI: 10.1016/j.jgg.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/30/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of great medical interest. However, during the last 20 years, research on dNKs has gone into non-mammalian organisms. In this review, we focus on non-viral dNKs, in particular their diversity and their practical applications. The diversity of this enzyme family in different organisms has proven to be valuable in studying the evolution of enzymes. Some of these newly discovered enzymes have been useful in numerous practical applications in medicine and biotechnology, and have contributed to our understanding of the structural basis of nucleoside and nucleoside analogue activation.
Collapse
Affiliation(s)
| | - Birgitte Munch-Petersen
- Department of Biology, Lund University, Lund 22362, Sweden; Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; Lund Protein Production Platform, Lund University, Lund 22362, Sweden.
| |
Collapse
|
10
|
Li P, Shi P, Lai C, Li J, Zheng Y, Xiong Y, Zhang L, Tian C. Solution NMR of MPS-1 reveals a random coil cytosolic domain structure. PLoS One 2014; 9:e111035. [PMID: 25347290 PMCID: PMC4210162 DOI: 10.1371/journal.pone.0111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/23/2014] [Indexed: 12/02/2022] Open
Abstract
Caenorhabditis elegans MPS1 is a single transmembrane helical auxiliary subunit that co-localizes with the voltage-gated potassium channel KVS1 in the nematode nervous system. MPS-1 shares high homology with KCNE (potassium voltage-gated channel subfamily E member) auxiliary subunits, and its cytosolic domain was reported to have a serine/threonine kinase activity that modulates KVS1 channel function via phosphorylation. In this study, NMR spectroscopy indicated that the full length and truncated MPS-1 cytosolic domain (134–256) in the presence or absence of n-dodecylphosphocholine detergent micelles adopted a highly flexible random coil secondary structure. In contrast, protein kinases usually adopt a stable folded conformation in order to implement substrate recognition and phosphoryl transfer. The highly flexible random coil secondary structure suggests that MPS-1 in the free state is unstructured but may require a substrate or binding partner to adopt stable structure required for serine/threonine kinase activity.
Collapse
Affiliation(s)
- Pan Li
- Hefei National Laboratory of Microscale Physical Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Pan Shi
- High Magnetic Field Laboratory, Hefei institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Chaohua Lai
- Hefei National Laboratory of Microscale Physical Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Juan Li
- Hefei National Laboratory of Microscale Physical Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yuanyuan Zheng
- Hefei National Laboratory of Microscale Physical Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Ying Xiong
- Hefei National Laboratory of Microscale Physical Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Longhua Zhang
- Hefei National Laboratory of Microscale Physical Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
- * E-mail: (CT); (LZ)
| | - Changlin Tian
- Hefei National Laboratory of Microscale Physical Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
- High Magnetic Field Laboratory, Hefei institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- * E-mail: (CT); (LZ)
| |
Collapse
|
11
|
Abstract
The compound class of 3-carboranyl thymidine analogues (3CTAs) are boron delivery agents for boron neutron capture therapy (BNCT), a binary treatment modality for cancer. Presumably, these compounds accumulate selectively in tumor cells via intracellular trapping, which is mediated by hTK1. Favorable in vivo biodistribution profiles of 3CTAs led to promising results in preclinical BNCT of rats with intracerebral brain tumors. This review presents an overview on the design, synthesis, and biological evaluation of first- and second-generation 3CTAs. Boronated nucleosides developed prior to 3CTAs for BNCT and non-boronated N3-substituted thymidine conjugates for other areas of cancer therapy and imaging are also described. In addition, basic features of carborane clusters, which are used as boron moieties in the design and synthesis of 3CTAs, and the biological and structural features of TK1-like enzymes, which are the molecular targets of 3CTAs, are discussed.
Collapse
|
12
|
Agarwal HK, McElroy CA, Sjuvarsson E, Eriksson S, Darby MV, Tjarks W. Synthesis of N3-substituted carboranyl thymidine bioconjugates and their evaluation as substrates of recombinant human thymidine kinase 1. Eur J Med Chem 2012; 60:456-68. [PMID: 23318906 DOI: 10.1016/j.ejmech.2012.11.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 11/29/2012] [Indexed: 01/19/2023]
Abstract
Four different libraries of overall twenty three N3-substituted thymidine (dThd) analogues, including eleven 3-carboranyl thymidine analogues (3CTAs), were synthesized. The latter are potential agents for Boron Neutron Capture Therapy (BNCT) of cancer. Linker between the dThd scaffold and the m-carborane cluster at the N3-position of the 3CTAs contained amidinyl-(3e and 3f), guanidyl-(7e-7g), tetrazolylmethyl-(9b1/2-9d1/2), or tetrazolyl groups (11b1/2-11d1/2) to improve human thymidine kinase 1 (hTK1) substrate characteristics and water solubilities compared with 1st generation 3CTAs, such as N5 and N5-2OH. The amidinyl- and guanidyl-type N3-substitued dThd analogues (3a-3f and 7a-7g) had hTK1 phosphorylation rates of <30% relative to that of dThd, the endogenous hTK1 substrate, whereas the tetrazolyl-type N3-substitued dThd analogues (9a, 9b1/2-9d1/2 and 11a, 11b1/2-11d1/2) had relative phosphorylation rates (rPRs) of >40%. Compounds 9a, 9b1/2-9d1/2 and 11a, 11b1/2-11d1/2 were subjected to in-depth enzyme kinetics studies and the obtained rk(cat)/K(m) (k(cat)/K(m) relative to that of dThd) ranged from 2.5 to 26%. The tetrazolyl-type N3-substitued dThd analogues 9b1/2 and 11d1/2 were the best substrates of hTK1 with rPRs of 52.4% and 42.5% and rk(cat)/K(m) values of 14.9% and 19.7% respectively. In comparison, the rPR and rk(cat)/K(m) values of N5-2OH in this specific study were 41.5% and 10.8%, respectively. Compounds 3e and 3f were >1900 and >1500 times, respectively, better soluble in PBS (pH 7.4) than N5-2OH whereas solubilities for 9b1/2-9d1/2 and 11b1/2-11d1/2 were only 1.3-13 times better.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Topalis D, Pradère U, Roy V, Caillat C, Azzouzi A, Broggi J, Snoeck R, Andrei G, Lin J, Eriksson S, Alexandre JAC, El-Amri C, Deville-Bonne D, Meyer P, Balzarini J, Agrofoglio LA. Novel Antiviral C5-Substituted Pyrimidine Acyclic Nucleoside Phosphonates Selected as Human Thymidylate Kinase Substrates. J Med Chem 2010; 54:222-32. [DOI: 10.1021/jm1011462] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dimitri Topalis
- Groupe d’Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France
| | - Ugo Pradère
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| | - Christophe Caillat
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique UPR 3082, 91198 Gif-sur-Yvette Cedex, France
| | - Ahmed Azzouzi
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| | - Julie Broggi
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| | - Robert Snoeck
- REGA Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Graciela Andrei
- REGA Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jay Lin
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Box 575, Biomedical Center, S-751 24 Uppsala, Sweden
| | - Staffan Eriksson
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Box 575, Biomedical Center, S-751 24 Uppsala, Sweden
| | - Julie A. C. Alexandre
- Groupe d’Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France
| | - Chahrazade El-Amri
- Groupe d’Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France
| | - Dominique Deville-Bonne
- Groupe d’Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France
| | - Philippe Meyer
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique UPR 3082, 91198 Gif-sur-Yvette Cedex, France
| | - Jan Balzarini
- REGA Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Luigi A. Agrofoglio
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| |
Collapse
|
14
|
Wang L, Hames C, Schmidl SR, Stülke J. Upregulation of thymidine kinase activity compensates for loss of thymidylate synthase activity in Mycoplasma pneumoniae. Mol Microbiol 2010; 77:1502-11. [DOI: 10.1111/j.1365-2958.2010.07298.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zander J, Hartenfeller M, Hähnke V, Proschak E, Besier S, Wichelhaus T, Schneider G. Multistep Virtual Screening for Rapid and Efficient Identification of Non-Nucleoside Bacterial Thymidine Kinase Inhibitors. Chemistry 2010; 16:9630-7. [DOI: 10.1002/chem.201001347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Lin J, Roy V, Wang L, You L, Agrofoglio LA, Deville-Bonne D, McBrayer TR, Coats SJ, Schinazi RF, Eriksson S. 3'-(1,2,3-Triazol-1-yl)-3'-deoxythymidine analogs as substrates for human and Ureaplasma parvum thymidine kinase for structure-activity investigations. Bioorg Med Chem 2010; 18:3261-9. [PMID: 20378362 PMCID: PMC7744269 DOI: 10.1016/j.bmc.2010.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/04/2010] [Accepted: 03/11/2010] [Indexed: 11/23/2022]
Abstract
The pathogenic mycoplasma Ureaplasma parvum (Up) causes opportunistic infections and relies on salvage of nucleosides for DNA synthesis and Up thymidine kinase (UpTK) provides the necessary thymidine nucleotides. The anti-HIV compound 3 -azido-3'-deoxythymidine (AZT) is a good substrate for TK. Methods for a rapid and efficient synthesis of new 3'-alpha-[1,2,3]triazol-3'-deoxythymidine analogs from AZT under Huisgen conditions are described. Thirteen 3'-analogues were tested with human cytosolic thymidine kinase (hTK1) and UpTK. The new analogs showed higher efficiencies (K(m)/V(max) values) in all cases with UpTK than with hTK1. Still, hTK1 was preferentially inhibited by 9 out of 10 tested analogs. Structural models of UpTK and hTK1 were constructed and used to explain the kinetic results. Two different binding modes of the nucleosides within the active sites of both enzymes were suggested with one predominating in the bacterial enzyme and the other in hTK1. These results will aid future development of anti-mycoplasma nucleosides.
Collapse
Affiliation(s)
- Jay Lin
- Dpt. Anatomy, Physiology and Biochemistry, Veterinary Medical Biochemistry, Swedish University Agricultural Sciences, Uppsala, Sweden
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, CNRS UMR 6005, Université d’Orléans, 45067 Orléans Cedex 2, France
| | - Liya Wang
- Dpt. Anatomy, Physiology and Biochemistry, Veterinary Medical Biochemistry, Swedish University Agricultural Sciences, Uppsala, Sweden
| | - Li You
- Institut de Chimie Organique et Analytique, CNRS UMR 6005, Université d’Orléans, 45067 Orléans Cedex 2, France
| | - Luigi A. Agrofoglio
- Institut de Chimie Organique et Analytique, CNRS UMR 6005, Université d’Orléans, 45067 Orléans Cedex 2, France
| | - Dominique Deville-Bonne
- Laboratoire d’ Enzymologie Moléculaire et Fonctionnelle, Université Pierre et Marie Curie, Paris, France
| | - Tamara R. McBrayer
- Center for AIDS Research, Lab. Biochem. Pharmacol., Dpt. Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, GA 30033, USA
- RFS Pharma, LLC, 1860 Montreal Road, Tucker, GA 30084, USA
| | | | - Raymond F. Schinazi
- Center for AIDS Research, Lab. Biochem. Pharmacol., Dpt. Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Staffan Eriksson
- Dpt. Anatomy, Physiology and Biochemistry, Veterinary Medical Biochemistry, Swedish University Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Lundin D, Torrents E, Poole AM, Sjöberg BM. RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank. BMC Genomics 2009; 10:589. [PMID: 19995434 PMCID: PMC2795772 DOI: 10.1186/1471-2164-10-589] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/08/2009] [Indexed: 11/10/2022] Open
Abstract
Background Ribonucleotide reductases (RNRs) catalyse the only known de novo pathway for deoxyribonucleotide synthesis, and are therefore essential to DNA-based life. While ribonucleotide reduction has a single evolutionary origin, significant differences between RNRs nevertheless exist, notably in cofactor requirements, subunit composition and allosteric regulation. These differences result in distinct operational constraints (anaerobicity, iron/oxygen dependence and cobalamin dependence), and form the basis for the classification of RNRs into three classes. Description In RNRdb (Ribonucleotide Reductase database), we have collated and curated all known RNR protein sequences with the aim of providing a resource for exploration of RNR diversity and distribution. By comparing expert manual annotations with annotations stored in Genbank, we find that significant inaccuracies exist in larger databases. To our surprise, only 23% of protein sequences included in RNRdb are correctly annotated across the key attributes of class, role and function, with 17% being incorrectly annotated across all three categories. This illustrates the utility of specialist databases for applications where a high degree of annotation accuracy may be important. The database houses information on annotation, distribution and diversity of RNRs, and links to solved RNR structures, and can be searched through a BLAST interface. RNRdb is accessible through a public web interface at http://rnrdb.molbio.su.se. Conclusion RNRdb is a specialist database that provides a reliable annotation and classification resource for RNR proteins, as well as a tool to explore distribution patterns of RNR classes. The recent expansion in available genome sequence data have provided us with a picture of RNR distribution that is more complex than believed only a few years ago; our database indicates that RNRs of all three classes are found across all three cellular domains. Moreover, we find a number of organisms that encode all three classes.
Collapse
Affiliation(s)
- Daniel Lundin
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden.
| | | | | | | |
Collapse
|
18
|
Jarchow-Choy SK, Sjuvarsson E, Sintim HO, Eriksson S, Kool ET. Nonpolar nucleoside mimics as active substrates for human thymidine kinases. J Am Chem Soc 2009; 131:5488-94. [PMID: 20560637 PMCID: PMC2891540 DOI: 10.1021/ja808244t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe the use of nonpolar nucleoside analogues of systematically varied size and shape to probe the mechanisms by which the two human thymidine kinases (TK1 and TK2) recognize and phosphorylate their substrate, thymidine. Comparison of polar thymidine with a nonpolar isostere, 2,4-difluorotoluene deoxyriboside, as substrates for the two enzymes establishes that TK1 requires electrostatic complementarity to recognize the thymine base with high efficiency. Conversely, TK2 does not and phosphorylates the hydrophobic shape mimic with efficiency nearly the same as the natural substrate. To test the response to nucleobase size, thymidine-like analogues were systematically varied by replacing the 2,4 substituents on toluene with hydrogen and the halogen series (H, F, Cl, Br, I). Both enzymes showed a distinct preference for substrates having the natural size. To examine the shape preference, we prepared four mono- and difluorotoluene deoxyribosides with varying positions of substitutions. While TK1 did not accept these nonpolar analogues as substrates, TK2 did show varying levels of phosphorylation of the shape-varied set. This latter enzyme preferred toluene nucleoside analogues having steric projections at the 2 and 4 positions, as is found in thymine, and strongly disfavored substitution at the 3-position. Steady-state kinetics measurements showed that the 4-fluoro compound (7) had an apparent V(max)/K(m) value within 14-fold of the natural substrate, and the 2,4-difluoro compound (1), which is the closest isostere of thymidine, had a value within 2.5-fold. The results establish that nucleoside recognition mechanisms for the two classes of enzymes are very different. On the basis of these data, nonpolar nucleosides are likely to be active in the nucleotide salvage pathway in human cells, suggesting new designs for future bioactive molecules.
Collapse
Affiliation(s)
| | | | - Herman O. Sintim
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | | | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
19
|
Munch-Petersen B. Reversible tetramerization of human TK1 to the high catalytic efficient form is induced by pyrophosphate, in addition to tripolyphosphates, or high enzyme concentration. FEBS J 2008; 276:571-80. [DOI: 10.1111/j.1742-4658.2008.06804.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Segura-Peña D, Lichter J, Trani M, Konrad M, Lavie A, Lutz S. Quaternary structure change as a mechanism for the regulation of thymidine kinase 1-like enzymes. Structure 2007; 15:1555-66. [PMID: 18073106 PMCID: PMC2180243 DOI: 10.1016/j.str.2007.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/21/2022]
Abstract
The human cytosolic thymidine kinase (TK) and structurally related TKs in prokaryotes play a crucial role in the synthesis and regulation of the cellular thymidine triphosphate pool. We report the crystal structures of the TK homotetramer from Thermotoga maritima in four different states: its apo-form, a binary complex with thymidine, as well as the ternary structures with the two substrates (thymidine/AppNHp) and the reaction products (TMP/ADP). In combination with fluorescence spectroscopy and mutagenesis experiments, our results demonstrate that ATP binding is linked to a substantial reorganization of the enzyme quaternary structure, leading to a transition from a closed, inactive conformation to an open, catalytic state. We hypothesize that these structural changes are relevant to enzyme function in situ as part of the catalytic cycle and serve an important role in regulating enzyme activity by amplifying the effects of feedback inhibitor binding.
Collapse
Affiliation(s)
- Dario Segura-Peña
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago IL 60607
| | - Joseph Lichter
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322
| | - Manuela Trani
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322
| | - Manfred Konrad
- Max-Planck-Institute for Biophysical Chemistry, D-37070, Göttingen, Germany
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago IL 60607
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322
| |
Collapse
|
21
|
Segura-Peña D, Lutz S, Monnerjahn C, Konrad M, Lavie A. Binding of ATP to TK1-like enzymes is associated with a conformational change in the quaternary structure. J Mol Biol 2007; 369:129-41. [PMID: 17407781 PMCID: PMC1899836 DOI: 10.1016/j.jmb.2007.02.104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/30/2007] [Accepted: 02/21/2007] [Indexed: 11/28/2022]
Abstract
Human thymidine kinase 1 (hTK1) and structurally related TKs from other organisms catalyze the initial phosphorylation step in the thymidine salvage pathway. Though ATP is known to be the preferred phosphoryl donor for TK1-like enzymes, its exact binding mode and effect on the oligomeric state has not been analyzed. Here we report the structures of hTK1 and of the Thermotoga maritima thymidine kinase (TmTK) in complex with the bisubstrate inhibitor TP4A. The TmTK-TP4A structure reveals that the adenosine moiety of ATP binds at the subunit interface of the homotetrameric enzyme and that the majority of the ATP-enzyme interactions occur between the phosphate groups and the P-loop. In the hTK1 structure the adenosine group of TP4A exhibited no electron density. This difference between hTK1 and TmTK is rationalized by a difference in the conformation of their quaternary structure. A more open conformation, as seen in the TmTK-TP4A complex structure, is required to provide space for the adenosine moiety. Our analysis supports the formation of an analogous open conformation in hTK1 upon ATP binding.
Collapse
Affiliation(s)
- Dario Segura-Peña
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
22
|
Tjarks W, Tiwari R, Byun Y, Narayanasamy S, Barth RF. Carboranyl thymidine analogues for neutron capture therapy. Chem Commun (Camb) 2007:4978-91. [DOI: 10.1039/b707257k] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Kosinska U, Carnrot C, Sandrini MPB, Clausen AR, Wang L, Piskur J, Eriksson S, Eklund H. Structural studies of thymidine kinases from Bacillus anthracis and Bacillus cereus provide insights into quaternary structure and conformational changes upon substrate binding. FEBS J 2006; 274:727-37. [PMID: 17288553 DOI: 10.1111/j.1742-4658.2006.05617.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidine kinase (TK) is the key enzyme in salvaging thymidine to produce thymidine monophosphate. Owing to its ability to phosphorylate nucleoside analogue prodrugs, TK has gained attention as a rate-limiting drug activator. We describe the structures of two bacterial TKs, one from the pathogen Bacillus anthracis in complex with the substrate dT, and the second from the food-poison-associated Bacillus cereus in complex with the feedback inhibitor dTTP. Interestingly, in contrast with previous structures of TK in complex with dTTP, in this study dTTP occupies the phosphate donor site and not the phosphate acceptor site. This results in several conformational changes compared with TK structures described previously. One of the differences is the way tetramers are formed. Unlike B. anthracis TK, B. cereus TK shows a loose tetramer. Moreover, the lasso-domain is in open conformation in B. cereus TK without any substrate in the active site, whereas in B. anthracis TK the loop conformation is closed and thymidine occupies the active site. Another conformational difference lies within a region of 20 residues that we refer to as phosphate-binding beta-hairpin. The phosphate-binding beta-hairpin seems to be a flexible region of the enzyme which becomes ordered upon formation of hydrogen bonds to the alpha-phosphate of the phosphate donor, dTTP. In addition to descriptions of the different conformations that TK may adopt during the course of reaction, the oligomeric state of the enzyme is investigated.
Collapse
Affiliation(s)
- Urszula Kosinska
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Structure of vaccinia virus thymidine kinase in complex with dTTP: insights for drug design. BMC STRUCTURAL BIOLOGY 2006; 6:22. [PMID: 17062140 PMCID: PMC1636055 DOI: 10.1186/1472-6807-6-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Background Development of countermeasures to bioterrorist threats such as those posed by the smallpox virus (variola), include vaccination and drug development. Selective activation of nucleoside analogues by virus-encoded thymidine (dThd) kinases (TK) represents one of the most successful strategies for antiviral chemotherapy as demonstrated for anti-herpes drugs. Vaccinia virus TK is a close orthologue of variola TK but also shares a relatively high sequence identity to human type 2 TK (hTK), thus achieving drug selectivity relative to the host enzyme is challenging. Results In order to identify any differences compared to hTK that may be exploitable in drug design, we have determined the crystal structure of VVTK, in complex with thymidine 5'-triphosphate (dTTP). Although most of the active site residues are conserved between hTK and VVTK, we observe a difference in conformation of residues Asp-43 and Arg-45. The equivalent residues in hTK hydrogen bond to dTTP, whereas in subunit D of VVTK, Asp-43 and Arg-45 adopt a different conformation preventing interaction with this nucleotide. Asp-43 and Arg-45 are present in a flexible loop, which is disordered in subunits A, B and C. The observed difference in conformation and flexibility may also explain the ability of VVTK to phosphorylate (South)-methanocarbathymine whereas, in contrast, no substrate activity with hTK is reported for this compound. Conclusion The difference in conformation for Asp-43 and Arg-45 could thus be used in drug design to generate VVTK/Variola TK-selective nucleoside analogue substrates and/or inhibitors that have lower affinity for hTK.
Collapse
|
25
|
Byun Y, Thirumamagal BTS, Yang W, Eriksson S, Barth RF, Tjarks W. Preparation and biological evaluation of 10B-enriched 3-[5-{2-(2,3-dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH), a new boron delivery agent for boron neutron capture therapy of brain tumors. J Med Chem 2006; 49:5513-23. [PMID: 16942024 DOI: 10.1021/jm060413w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-[5-{2-(2,3-Dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (compound 1, N5-2OH) belongs to a novel class of boron delivery agents for neutron capture therapy, which was designated 3-carboranylthymidine analogue (3CTAs). Two shorter and more convenient synthetic routes were developed for the synthesis of 1 in the 10B-enriched form, which is necessary for its preclinical and clinical evaluation in neutron irradiation studies. For more insight on structure-activity relationships, various stereochemical and geometrical isomers of 1 were synthesized and their specificities as substrate for human thymidine kinase 1 (hTK1) were evaluated. A computational model for the binding of various isomers of 1 to the active site of hTK1 was developed. Preliminary studies carried out in F98 glioma bearing rats that had received a 10B-enriched form of 1 followed by neutron irradiation demonstrated a significant prolongation in survival times compared to control animals, suggesting that further studies are warranted to evaluate the therapeutic potential of 1.
Collapse
Affiliation(s)
- Youngjoo Byun
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Narayanasamy S, Thirumamagal BTS, Johnsamuel J, Byun Y, Al-Madhoun AS, Usova E, Cosquer GY, Yan J, Bandyopadhyaya AK, Tiwari R, Eriksson S, Tjarks W. Hydrophilically enhanced 3-carboranyl thymidine analogues (3CTAs) for boron neutron capture therapy (BNCT) of cancer. Bioorg Med Chem 2006; 14:6886-6899. [PMID: 16831554 DOI: 10.1016/j.bmc.2006.06.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 11/30/2022]
Abstract
Five novel 3-carboranyl thymidine analogues (3CTAs) were designed and synthesized for boron neutron capture therapy (BNCT) of cancer. Phosphorylation of all five 3CTAs was catalyzed by recombinant human thymidine kinase (hTK1) using adenosine triphosphate (ATP) as the phosphate donor. The obtained phosphorylation rates ranged from 4% to 64.5% relative to that of thymidine. The compound with the most favorable hTK1 binding properties had a k(cat)/K(M) value of 57.4% relative to that of thymidine and an IC(50) of inhibition of thymidine phosphorylation by hTK1 of 92 microM. Among the five synthesized 3CTAs, this agent had also the overall most favorable physicochemical properties. Therefore, it may have the potential to replace N5-2OH, the current lead 3CTA, in preclinical studies. An in silico model for the binding of this compound to hTK1 was developed.
Collapse
|
27
|
Bandyopadhyaya AK, Tiwari R, Tjarks W. Comparative molecular field analysis and comparative molecular similarity indices analysis of boron-containing human thymidine kinase 1 substrates. Bioorg Med Chem 2006; 14:6924-32. [PMID: 16828556 DOI: 10.1016/j.bmc.2006.06.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
Three-dimensional quantitative structure-activity relationship (3D-QSAR) using CoMFA and CoMSIA techniques was applied to evaluate 56 pyrimidine nucleosides as substrates of human thymidine kinase 1 (hTK1), 27 of them containing a carborane substituent either at the 3-, 5-, or 3'-position of the 2'-deoxyuridine scaffold. This is the first report describing 3D-QSAR studies of compounds containing boron atoms. Both CoMFA and CoMSIA models were derived from a training set of 47 molecules and the predictive capacity of the CoMSIA model was successfully validated by accurately calculating known phosphorylation rates of both boronated and non-boron hTK1 substrates that were not included in the training set. The optimal CoMSIA model provided the following values: q(2) 0.622, r(2) 0.983, s 0.165, and F 187.5. Contour maps obtained from the CoMSIA model were in agreement with the experimentally determined biological data.
Collapse
Affiliation(s)
- Achintya K Bandyopadhyaya
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
28
|
Carnrot C, Vogel SR, Byun Y, Wang L, Tjarks W, Eriksson S, Phipps AJ. Evaluation of Bacillus anthracis thymidine kinase as a potential target for the development of antibacterial nucleoside analogs. Biol Chem 2006; 387:1575-81. [PMID: 17132103 DOI: 10.1515/bc.2006.196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacillus anthracis, which causes anthrax, has attracted attention because of its potential use as a biological weapon. The risk of multidrug resistance against B. anthracis increases the need for antibiotics with new molecular targets. Nucleoside analogs are well-known antiviral and anticancer prodrugs, and thymidine kinase catalyzes the rate-limiting step in the activation of pyrimidine nucleoside analogs used in chemotherapy. The thymidine kinase gene from B. anthracis Sterne strain (34F2) (Ba-TK) was cloned and expressed in E. coli, and the product was purified and characterized regarding its substrate specificity. Ba-TK phosphorylated pyrimidine nucleosides and all natural nucleoside triphosphates served as phosphate donors. Size exclusion chromatography indicated a dimeric form of Ba-TK, regardless of the presence of ATP. Thymidine was the most efficient substrate with a low K(m) value (0.6 microM) and a V(max) of 3.3 micromol dTMP mg(-1) min(-1), but deoxyuridine (K(m)=4.2 microM, V(max)=4.1 micromol dUMP mg(-1) min(-1)) was also a good substrate. Several pyrimidine analogs were also tested and analogs with 5-position modifications showed higher activities compared to analogs with 3'- and N3-position modifications. Deoxyuridine analogs were the most potent inhibitors of B. anthracis growth in vitro. These results may be used to guide future development of nucleoside analogs against B. anthracis.
Collapse
Affiliation(s)
- Cecilia Carnrot
- Department of Molecular Biosciences, The Swedish University of Agricultural Biosciences, Biomedical Center, P.O. Box 575, S-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|