1
|
Upadhyay A, Joshi V. Proteasome Activators and Ageing: Restoring Proteostasis Using Small Molecules. Subcell Biochem 2024; 107:21-41. [PMID: 39693018 DOI: 10.1007/978-3-031-66768-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is an inevitable phenomenon that remains under control of a plethora of signalling pathways and regulatory mechanisms. Slowing of cellular homeostasis and repair pathways, declining genomic and proteomic integrity, and deficient stress regulatory machinery may cause accumulating damage triggering initiation of pathways leading to ageing-associated changes. Multiple genetic studies in small laboratory organisms focused on the manipulation of proteasomal activities have shown promising results in delaying the age-related decline and improving the lifespan. In addition, a number of studies indicate a prominent role of small molecule-based proteasome activators showing positive results in ameliorating the stress conditions, protecting degenerating neurons, restoring cognitive functions, and extending life span of organisms. In this chapter, we provide a brief overview of the multi-enzyme proteasome complex, its structure, subunit composition and variety of cellular functions. We also highlight the strategies applied in the past to modulate the protein degradation efficiency of proteasome and their impact on rebalancing the proteostasis defects. Finally, we provide a descriptive account of proteasome activation mechanisms and small molecule-based strategies to improve the overall organismal health and delay the development of age-associated pathologies.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, India.
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Bicev RN, de Souza Degenhardt MF, de Oliveira CLP, da Silva ER, Degrouard J, Tresset G, Ronsein GE, Demasi M, da Cunha FM. Glucose restriction in Saccharomyces cerevisiae modulates the phosphorylation pattern of the 20S proteasome and increases its activity. Sci Rep 2023; 13:19383. [PMID: 37938622 PMCID: PMC10632367 DOI: 10.1038/s41598-023-46614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Caloric restriction is known to extend the lifespan and/or improve diverse physiological parameters in a vast array of organisms. In the yeast Saccharomyces cerevisiae, caloric restriction is performed by reducing the glucose concentration in the culture medium, a condition previously associated with increased chronological lifespan and 20S proteasome activity in cell extracts, which was not due to increased proteasome amounts in restricted cells. Herein, we sought to investigate the mechanisms through which glucose restriction improved proteasome activity and whether these activity changes were associated with modifications in the particle conformation. We show that glucose restriction increases the ability of 20S proteasomes, isolated from Saccharomyces cerevisiae cells, to degrade model substrates and whole proteins. In addition, threonine 55 and/or serine 56 of the α5-subunit, were/was consistently found to be phosphorylated in proteasomes isolated from glucose restricted cells, which may be involved in the increased proteolysis capacity of proteasomes from restricted cells. We were not able to observe changes in the gate opening nor in the spatial conformation in 20S proteasome particles isolated from glucose restricted cells, suggesting that the changes in activity were not accompanied by large conformational alterations in the 20S proteasome but involved allosteric activation of proteasome catalytic site.
Collapse
Affiliation(s)
- Renata Naporano Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | - Emerson Rodrigo da Silva
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marilene Demasi
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, SP, Brasil.
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
3
|
Chakraborty S, Sircar E, Mishra A, Choudhuri A, Dutta S, Bhattacharyya C, Chakraborty S, Bhaumik T, Si S, Rao S, Sarma A, Ray A, Sachin K, Sengupta R. De-glutathionylases: The resilient underdogs to keep neurodegeneration at bay. Biochem Biophys Res Commun 2023; 653:83-92. [PMID: 36863212 DOI: 10.1016/j.bbrc.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Proteins become S-glutathionylated as a result of the derivatization of their cysteine thiols with the thiolate anion derivative of glutathione; this process is frequently linked to diseases and protein misbehavior. Along with the other well-known oxidative modifications like S-nitrosylation, S-glutathionylation has quickly emerged as a major contributor to a number of diseases, with a focus on neurodegeneration. The immense clinical significance of S-glutathionylation in cell signaling and the genesis of diseases are progressively coming to light with advanced research, which is also creating new opportunities for prompt diagnostics that utilize this phenomenon. In-depth investigation in recent years has revealed other significant deglutathionylases in addition to glutaredoxin, necessitating the hunt for their specific substrates. The precise catalytic mechanisms of these enzymes must also be understood, along with how the intracellular environment affects their impact on protein conformation and function. These insights must then be extrapolated to the understanding of neurodegeneration and the introduction of novel and clever therapeutic approaches to clinics. Clarifying the importance of the functional overlap of glutaredoxin and other deglutathionylases and examining their complementary functions as defense systems in the face of stress are essential prerequisites for predicting and promoting cell survival under high oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Esha Sircar
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India; Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Souhridhra Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Somsundar Si
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Suhasini Rao
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Anish Sarma
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Anirban Ray
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, 248016, Jolly Grant, Dehradun, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
4
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Kalinina E, Novichkova M. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation. Molecules 2021; 26:molecules26020435. [PMID: 33467703 PMCID: PMC7838997 DOI: 10.3390/molecules26020435] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
S-glutathionylation and S-nitrosylation are reversible post-translational modifications on the cysteine thiol groups of proteins, which occur in cells under physiological conditions and oxidative/nitrosative stress both spontaneously and enzymatically. They are important for the regulation of the functional activity of proteins and intracellular processes. Connecting link and “switch” functions between S-glutathionylation and S-nitrosylation may be performed by GSNO, the generation of which depends on the GSH content, the GSH/GSSG ratio, and the cellular redox state. An important role in the regulation of these processes is played by Trx family enzymes (Trx, Grx, PDI), the activity of which is determined by the cellular redox status and depends on the GSH/GSSG ratio. In this review, we analyze data concerning the role of GSH/GSSG in the modulation of S-glutathionylation and S-nitrosylation and their relationship for the maintenance of cell viability.
Collapse
|
6
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
7
|
A massively parallel barcoded sequencing pipeline enables generation of the first ORFeome and interactome map for rice. Proc Natl Acad Sci U S A 2020; 117:11836-11842. [PMID: 32398372 DOI: 10.1073/pnas.1918068117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.
Collapse
|
8
|
Barinova KV, Serebryakova MV, Eldarov MA, Kulikova AA, Mitkevich VA, Muronetz VI, Schmalhausen EV. S-glutathionylation of human glyceraldehyde-3-phosphate dehydrogenase and possible role of Cys152-Cys156 disulfide bridge in the active site of the protein. Biochim Biophys Acta Gen Subj 2020; 1864:129560. [PMID: 32061786 DOI: 10.1016/j.bbagen.2020.129560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND We previously showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is S-glutathionylated in the presence of H2O2 and GSH. S-glutathionylation was shown to result in the formation of a disulfide bridge in the active site of the protein. In the present work, the possible biological significance of the disulfide bridge was investigated. METHODS Human recombinant GAPDH with the mutation C156S (hGAPDH_C156S) was obtained to prevent the formation of the disulfide bridge. Properties of S-glutathionylated hGAPDH_C156S were studied in comparison with those of the wild-type protein hGAPDH. RESULTS S-glutathionylation of hGAPDH and hGAPDH_C156S results in the reversible inactivation of the proteins. In both cases, the modification results in corresponding mixed disulfides between the catalytic Cys152 and GSH. In the case of hGAPDH, the mixed disulfide breaks down yielding Cys152-Cys156 disulfide bridge in the active site. In hGAPDH_C156S, the mixed disulfide is stable. Differential scanning calorimetry method showed that S-glutathionylation leads to destabilization of hGAPDH molecule, but does not affect significantly hGAPDH_C156S. Reactivation of S-glutathionylated hGAPDH in the presence of GSH and glutaredoxin 1 is approximately two-fold more efficient compared to that of hGAPDH_C156S. CONCLUSIONS S-glutathionylation induces the formation of Cys152-Cys156 disulfide bond in the active site of hGAPDH, which results in structural changes of the protein molecule. Cys156 is important for reactivation of S-glutathionylated GAPDH by glutaredoxin 1. GENERAL SIGNIFICANCE The described mechanism may be important for interaction between GAPDH and other proteins and ligands, involved in cell signaling.
Collapse
Affiliation(s)
- K V Barinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow 119071, Russia
| | - A A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russia
| | - V A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russia
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
9
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
11
|
Lévy E, El Banna N, Baïlle D, Heneman-Masurel A, Truchet S, Rezaei H, Huang ME, Béringue V, Martin D, Vernis L. Causative Links between Protein Aggregation and Oxidative Stress: A Review. Int J Mol Sci 2019; 20:ijms20163896. [PMID: 31405050 PMCID: PMC6719959 DOI: 10.3390/ijms20163896] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
Compelling evidence supports a tight link between oxidative stress and protein aggregation processes, which are noticeably involved in the development of proteinopathies, such as Alzheimer’s disease, Parkinson’s disease, and prion disease. The literature is tremendously rich in studies that establish a functional link between both processes, revealing that oxidative stress can be either causative, or consecutive, to protein aggregation. Because oxidative stress monitoring is highly challenging and may often lead to artefactual results, cutting-edge technical tools have been developed recently in the redox field, improving the ability to measure oxidative perturbations in biological systems. This review aims at providing an update of the previously known functional links between oxidative stress and protein aggregation, thereby revisiting the long-established relationship between both processes.
Collapse
Affiliation(s)
- Elise Lévy
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Nadine El Banna
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Amélie Heneman-Masurel
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Sandrine Truchet
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Human Rezaei
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Vincent Béringue
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Davy Martin
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
12
|
Kors S, Geijtenbeek K, Reits E, Schipper-Krom S. Regulation of Proteasome Activity by (Post-)transcriptional Mechanisms. Front Mol Biosci 2019; 6:48. [PMID: 31380390 PMCID: PMC6646590 DOI: 10.3389/fmolb.2019.00048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Intracellular protein synthesis, folding, and degradation are tightly controlled processes to ensure proper protein homeostasis. The proteasome is responsible for the degradation of the majority of intracellular proteins, which are often targeted for degradation via polyubiquitination. However, the degradation rate of proteins is also affected by the capacity of proteasomes to recognize and degrade these substrate proteins. This capacity is regulated by a variety of proteasome modulations including (1) changes in complex composition, (2) post-translational modifications, and (3) altered transcription of proteasomal subunits and activators. Various diseases are linked to proteasome modulation and altered proteasome function. A better understanding of these modulations may offer new perspectives for therapeutic intervention. Here we present an overview of these three proteasome modulating mechanisms to give better insight into the diversity of proteasomes.
Collapse
Affiliation(s)
- Suzan Kors
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Leme JMM, Ohara E, Santiago VF, Barros MH, Netto LES, Pimenta DC, Mariano DOC, Oliveira CLP, Bicev RN, Barreto-Chaves MLM, Lino CA, Demasi M. Mutations of Cys and Ser residues in the α5-subunit of the 20S proteasome from Saccharomyces cerevisiae affects gating and chronological lifespan. Arch Biochem Biophys 2019; 666:63-72. [PMID: 30940569 DOI: 10.1016/j.abb.2019.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
Abstract
In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the α5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (α5-C76S or α5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that α5-C76S or α5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random α5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., α-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the α5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the α5-subunit, and consequently impacts the lifespan of yeast.
Collapse
Affiliation(s)
- Janaína M M Leme
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Department of Genetics and Evolutive Biology, IB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Erina Ohara
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Verônica F Santiago
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Mario H Barros
- Department of Microbiology, ICB-Universidade de São Paulo, São Paulo-SP, Brazil
| | - Luis E S Netto
- Department of Genetics and Evolutive Biology, IB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil
| | - Douglas O C Mariano
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil
| | | | - Renata N Bicev
- Department of Experimental Physics, IF- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Maria L M Barreto-Chaves
- Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Caroline A Lino
- Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil.
| |
Collapse
|
14
|
Abstract
Silva investigates how ribosomal protein complexes are regulated by K63 ubiquitination.
Collapse
|
15
|
Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T. Proteostasis, oxidative stress and aging. Redox Biol 2017; 13:550-567. [PMID: 28763764 PMCID: PMC5536880 DOI: 10.1016/j.redox.2017.07.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/21/2022] Open
Abstract
The production of reactive species is an inevitable by-product of metabolism and thus, life itself. Since reactive species are able to damage cellular structures, especially proteins, as the most abundant macromolecule of mammalian cells, systems are necessary which regulate and preserve a functional cellular protein pool, in a process termed “proteostasis”. Not only the mammalian protein pool is subject of a constant turnover, organelles are also degraded and rebuild. The most important systems for these removal processes are the “ubiquitin-proteasomal system” (UPS), the central proteolytic machinery of mammalian cells, mainly responsible for proteostasis, as well as the “autophagy-lysosomal system”, which mediates the turnover of organelles and large aggregates. Many age-related pathologies and the aging process itself are accompanied by a dysregulation of UPS, autophagy and the cross-talk between both systems. This review will describe the sources and effects of oxidative stress, preservation of cellular protein- and organelle-homeostasis and the effects of aging on proteostasis in mammalian cells.
Collapse
Affiliation(s)
- Ioanna Korovila
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Martín Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
16
|
Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Saccharomyces cerevisiae under basal and stress conditions. Biochem J 2017; 474:1175-1193. [PMID: 28167699 DOI: 10.1042/bcj20160927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
The potential biological consequences of oxidative stress and changes in glutathione levels include the oxidation of susceptible protein thiols and reversible covalent binding of glutathione to the -SH groups of proteins by S-glutathionylation. Mitochondria are central to the response to oxidative stress and redox signaling. It is therefore crucial to explore the adaptive response to changes in thiol-dependent redox status in these organelles. We optimized the purification protocol of glutathionylated proteins in the yeast Saccharomyces cerevisiae and present a detailed proteomic analysis of the targets of protein glutathionylation in cells undergoing constitutive metabolism and after exposure to various stress conditions. This work establishes the physiological importance of the glutathionylation process in S. cerevisiae under basal conditions and provides evidence for an atypical and unexpected cellular distribution of the process between the cytosol and mitochondria. In addition, our data indicate that each oxidative condition (diamide, GSSG, H2O2, or the presence of iron) elicits an adaptive metabolic response affecting specific mitochondrial metabolic pathways, mainly involved in the energetic maintenance of the cells. The correlation of protein modifications with intracellular glutathione levels suggests that protein deglutathionylation may play a role in protecting mitochondria from oxidative stress. This work provides further insights into the diversity of proteins undergoing glutathionylation and the role of this post-translational modification as a regulatory process in the adaptive response of the cell.
Collapse
|
17
|
Hirano H, Kimura Y, Kimura A. Biological significance of co- and post-translational modifications of the yeast 26S proteasome. J Proteomics 2015; 134:37-46. [PMID: 26642761 DOI: 10.1016/j.jprot.2015.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023]
Abstract
UNLABELLED In yeast (Saccharomyces cerevisiae), co- and post-translational modifications of the 26S proteasome, a large protein complex, were comprehensively detected by proteomic techniques, and their functions were investigated. The presence, number, site, and state of co- and post-translational modifications of the 26S proteasome differ considerably among yeast, human, and mouse. The roles of phosphorylation, N(α)-acetylation, N(α)-myristoylation, N(α)-methylation, and N-terminal truncation in the yeast 26S proteasome were investigated. Although there is only one modification site for either N(α)-acetylation, N(α)-myristoylation, or N(α)-methylation, these modifications play an important role in the functions of the yeast proteasome. In contrast, there are many phosphorylation sites in the yeast 26S proteasome. However, the phosphorylation patterns might be a few, suggesting that tiny modifications exert considerable effects on the function of the proteasome. BIOLOGICAL SIGNIFICANCE Protein co- and post-translational modifications produce different protein species which often have different functions. The yeast 26S proteasome, a large protein complex, consisting of many subunits has a number of co- and post-translational modification sites. This review describes the effects of the modifications on the function of the protein complex. This article is part of a Special Issue entitled: Protein species. Guest Editors: Peter Jungblut, Hartmut Schlüter and Bernd Thiede.
Collapse
Affiliation(s)
- Hisashi Hirano
- Yokohama City University, Advanced Medical Research Center, Japan.
| | - Yayoi Kimura
- Yokohama City University, Advanced Medical Research Center, Japan
| | - Ayuko Kimura
- Yokohama City University, Advanced Medical Research Center, Japan
| |
Collapse
|
18
|
Chen YJ, Lu CT, Huang KY, Wu HY, Chen YJ, Lee TY. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity. PLoS One 2015; 10:e0118752. [PMID: 25849935 PMCID: PMC4388702 DOI: 10.1371/journal.pone.0118752] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 01/06/2015] [Indexed: 01/13/2023] Open
Abstract
S-glutathionylation, the covalent attachment of a glutathione (GSH) to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA). TwoSampleLogo presents that positively charged amino acids flanking the S-glutathionylated cysteine may influence the formation of S-glutathionylation in closed three-dimensional environment. A statistical method is further applied to iteratively detect the conserved substrate motifs with statistical significance. Support vector machine (SVM) is then applied to generate predictive model considering the substrate motifs. According to five-fold cross-validation, the SVMs trained with substrate motifs could achieve an enhanced sensitivity, specificity, and accuracy, and provides a promising performance in an independent test set. The effectiveness of the proposed method is demonstrated by the correct identification of previously reported S-glutathionylation sites of mouse thioredoxin (TXN) and human protein tyrosine phosphatase 1b (PTP1B). Finally, the constructed models are adopted to implement an effective web-based tool, named GSHSite (http://csb.cse.yzu.edu.tw/GSHSite/), for identifying uncharacterized GSH substrate sites on the protein sequences.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Tsung Lu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Hsin-Yi Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (TYL); (YJC)
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
- Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, Taiwan
- * E-mail: (TYL); (YJC)
| |
Collapse
|
19
|
Abstract
The debut of the proteasome inhibitor bortezomib (Btz; Velcade®) radically and immediately improved the treatment of multiple myeloma (MM), an incurable malignancy of the plasma cell. Therapeutic resistance is unavoidable, however, and represents a major obstacle to maximizing the clinical potential of the drug. To address this challenge, studies have been conducted to uncover the molecular mechanisms driving Btz resistance and to discover new targeted therapeutic strategies and combinations that restore Btz activity. This review discusses the literature describing molecular adaptations that confer Btz resistance with a primary disease focus on MM. Also discussed are the most recent advances in therapeutic strategies that overcome resistance, approaches that include redox-modulating agents, murine double minute 2 inhibitors, therapeutic monoclonal antibodies, and new epigenetic-targeted drugs like bromodomain and extra terminal domain inhibitors.
Collapse
Affiliation(s)
- Nathan G Dolloff
- Department of Cellular and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
20
|
Ben-Nissan G, Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 2014; 4:862-84. [PMID: 25250704 PMCID: PMC4192676 DOI: 10.3390/biom4030862] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
21
|
20S proteasome activity is modified via S-glutathionylation based on intracellular redox status of the yeast Saccharomyces cerevisiae: implications for the degradation of oxidized proteins. Arch Biochem Biophys 2014; 557:65-71. [PMID: 24813691 DOI: 10.1016/j.abb.2014.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/11/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
Protein S-glutathionylation is a post-translational modification that controls many cellular pathways. Recently, we demonstrated that the α5-subunit of the 20S proteasome is S-glutathionylated in yeast cells grown to the stationary phase in rich medium containing glucose, stimulating 20S core gate opening and increasing the degradation of oxidized proteins. In the present study, we evaluated the correlation between proteasomal S-glutathionylation and the intracellular redox status. The redox status was controlled by growing yeast cells in distinct carbon sources which induced respiratory (glycerol/ethanol) or fermentative (glucose) metabolism. Cells grown under glycerol/ethanol displayed higher reductive power when compared to cells grown under glucose. When purified from cells grown in glucose, 20S proteasome α5-subunit exhibited an intense anti-glutathione labeling. A higher frequency of the open catalytic chamber gate was observed in the S-glutathionylated preparations as demonstrated by transmission electron microscopy. Therefore, cells that had been grown in glucose displayed an increased ability to degrade oxidized proteins. The results of the present study suggest that 20S proteasomal S-glutathionylation is a relevant adaptive response to oxidative stress that is capable to sense the intracellular redox environment, leading to the removal of oxidized proteins via a process that is not dependent upon ubiquitylation and ATP consumption.
Collapse
|
22
|
Furdui CM, Poole LB. Chemical approaches to detect and analyze protein sulfenic acids. MASS SPECTROMETRY REVIEWS 2014; 33:126-46. [PMID: 24105931 PMCID: PMC3946320 DOI: 10.1002/mas.21384] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Orchestration of many processes relying on intracellular signal transduction is recognized to require the generation of hydrogen peroxide as a second messenger, yet relatively few molecular details of how this oxidant acts to regulate protein function are currently understood. This review describes emerging chemical tools and approaches that can be applied to study protein oxidation in biological systems, with a particular emphasis on a key player in protein redox regulation, cysteine sulfenic acid. While sulfenic acids (within purified proteins or simple mixtures) are detectable by physical approaches like X-ray crystallography, nuclear magnetic resonance and mass spectrometry, the propensity of these moieties to undergo further modification in complex biological systems has necessitated the development of chemical probes, reporter groups and analytical approaches to allow for their selective detection and quantification. Provided is an overview of techniques that are currently available for the study of sulfenic acids, and some of the biologically meaningful data that have been collected using such approaches.
Collapse
Affiliation(s)
- Cristina M. Furdui
- Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Correspondence to: Leslie B. Poole, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157; ; telephone: 336-716-6711
| |
Collapse
|
23
|
Demasi M, Netto LE, Silva GM, Hand A, de Oliveira CL, Bicev RN, Gozzo F, Barros MH, Leme JM, Ohara E. Redox regulation of the proteasome via S-glutathionylation. Redox Biol 2013; 2:44-51. [PMID: 24396728 PMCID: PMC3881202 DOI: 10.1016/j.redox.2013.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
The proteasome is a multimeric and multicatalytic intracellular protease responsible for the degradation of proteins involved in cell cycle control, various signaling processes, antigen presentation, and control of protein synthesis. The central catalytic complex of the proteasome is called the 20S core particle. The majority of these are flanked on one or both sides by regulatory units. Most common among these units is the 19S regulatory unit. When coupled to the 19S unit, the complex is termed the asymmetric or symmetric 26S proteasome depending on whether one or both sides are coupled to the 19S unit, respectively. The 26S proteasome recognizes poly-ubiquitinylated substrates targeted for proteolysis. Targeted proteins interact with the 19S unit where they are deubiquitinylated, unfolded, and translocated to the 20S catalytic chamber for degradation. The 26S proteasome is responsible for the degradation of major proteins involved in the regulation of the cellular cycle, antigen presentation and control of protein synthesis. Alternatively, the proteasome is also active when dissociated from regulatory units. This free pool of 20S proteasome is described in yeast to mammalian cells. The free 20S proteasome degrades proteins by a process independent of poly-ubiquitinylation and ATP consumption. Oxidatively modified proteins and other substrates are degraded in this manner. The 20S proteasome comprises two central heptamers (β-rings) where the catalytic sites are located and two external heptamers (α-rings) that are responsible for proteasomal gating. Because the 20S proteasome lacks regulatory units, it is unclear what mechanisms regulate the gating of α-rings between open and closed forms. In the present review, we discuss 20S proteasomal gating modulation through a redox mechanism, namely, S-glutathionylation of cysteine residues located in the α-rings, and the consequence of this post-translational modification on 20S proteasomal function.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
| | - Luis E.S. Netto
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo M. Silva
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adrian Hand
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Renata N. Bicev
- Departamento de Física Experimental, IF-Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabio Gozzo
- Instituto de Química, UNICAMP, Campinas, SP, Brazil
| | - Mario H. Barros
- Departamento de Microbiologia, ICB-Universidade de São Paulo, São Paulo, SP, Brazil
| | - Janaina M.M. Leme
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erina Ohara
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
24
|
García-Giménez JL, Seco-Cervera M, Aguado C, Romá-Mateo C, Dasí F, Priego S, Markovic J, Knecht E, Sanz P, Pallardó FV. Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells. Free Radic Biol Med 2013; 65:347-359. [PMID: 23850970 DOI: 10.1016/j.freeradbiomed.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
Thioredoxin 1 (Trx1) is a key regulator of cellular redox balance and participates in cellular signaling events. Recent evidence from yeast indicates that members of the Trx family interact with the 20S proteasome, indicating redox regulation of proteasome activity. However, there is little information about the interrelationship of Trx proteins with the proteasome system in mammalian cells, especially in the nucleus. Here, we have investigated this relationship under various cellular conditions in mammalian cells. We show that Trx1 levels and its subcellular localization (cytosol, endoplasmic reticulum, and nucleus) depend on proteasome activity during the cell cycle in NIH3T3 fibroblasts and under stress conditions, when proteasomes are inhibited. In addition, we also studied in these cells how the main cellular antioxidant systems are stimulated when proteasome activity is inhibited. Finally, we describe a reduction in Trx1 levels in Lafora disease fibroblasts and demonstrate that the nuclear colocalization of Trx1 with 20S proteasomes in laforin-deficient cells is altered compared with control cells. Our results indicate a close relationship between Trx1 and the 20S nuclear proteasome and give a new perspective to the study of diseases or physiopathological conditions in which defects in the proteasome system are associated with oxidative stress.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Marta Seco-Cervera
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Romá-Mateo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francisco Dasí
- Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Sonia Priego
- Research Core Facility, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Jelena Markovic
- Research Core Facility, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Erwin Knecht
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Pascual Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
25
|
Abstract
Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.
Collapse
|
26
|
Malvezzi A, Higa PM, Amaral ATD, Silva GM, Gozzo FC, Ferro ES, Castro LM, de Rezende L, Monteiro G, Demasi M. The cysteine-rich protein thimet oligopeptidase as a model of the structural requirements for S-glutathiolation and oxidative oligomerization. PLoS One 2012; 7:e39408. [PMID: 22761783 PMCID: PMC3382611 DOI: 10.1371/journal.pone.0039408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022] Open
Abstract
Thimet oligopeptidase (EP24.15) is a cysteine-rich metallopeptidase containing fifteen Cys residues and no intra-protein disulfide bonds. Previous work on this enzyme revealed that the oxidative oligomerization of EP24.15 is triggered by S-glutathiolation at physiological GSSG levels (10-50 µM) via a mechanism based on thiol-disulfide exchange. In the present work, our aim was to identify EP24.15 Cys residues that are prone to S-glutathiolation and to determine which structural features in the cysteinyl bulk are responsible for the formation of mixed disulfides through the reaction with GSSG and, in this particular case, the Cys residues within EP24.15 that favor either S-glutathiolation or inter-protein thiol-disulfide exchange. These studies were conducted by in silico structural analyses and simulations as well as site-specific mutation. S-glutathiolation was determined by mass spectrometric analyses and western blotting with anti-glutathione antibody. The results indicated that the stabilization of a thiolate sulfhydryl and the solvent accessibility of the cysteines are necessary for S-thiolation. The Solvent Access Surface analysis of the Cys residues prone to glutathione modification showed that the S-glutathiolated Cys residues are located inside pockets where the sulfur atom comes into contact with the solvent and that the positively charged amino acids are directed toward these Cys residues. The simulation of a covalent glutathione docking onto the same Cys residues allowed for perfect glutathione posing. A mutation of the Arg residue 263 that forms a saline bridge to the Cys residue 175 significantly decreased the overall S-glutathiolation and oligomerization of EP24.15. The present results show for the first time the structural requirements for protein S-glutathiolation by GSSG and are consistent with our previous hypothesis that EP24.15 oligomerization is dependent on the electron transfer from specific protonated Cys residues of one molecule to previously S-glutathionylated Cys residues of another one.
Collapse
Affiliation(s)
- Alberto Malvezzi
- Instituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Patrícia M. Higa
- Instituto Butantan, São Paulo-SP, Brazil
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo-SP, Brazil
| | | | | | - Fabio C. Gozzo
- Instituto de Química, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Emer S. Ferro
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Leandro M. Castro
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo-SP, Brazil
| | | | - Gisele Monteiro
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil
| | | |
Collapse
|
27
|
Silva GM, Netto LES, Simões V, Santos LFA, Gozzo FC, Demasi MAA, Oliveira CLP, Bicev RN, Klitzke CF, Sogayar MC, Demasi M. Redox control of 20S proteasome gating. Antioxid Redox Signal 2012; 16:1183-94. [PMID: 22229461 PMCID: PMC3324812 DOI: 10.1089/ars.2011.4210] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The proteasome is the primary contributor in intracellular proteolysis. Oxidized or unstructured proteins can be degraded via a ubiquitin- and ATP-independent process by the free 20S proteasome (20SPT). The mechanism by which these proteins enter the catalytic chamber is not understood thus far, although the 20SPT gating conformation is considered to be an important barrier to allowing proteins free entrance. We have previously shown that S-glutathiolation of the 20SPT is a post-translational modification affecting the proteasomal activities. AIMS The goal of this work was to investigate the mechanism that regulates 20SPT activity, which includes the identification of the Cys residues prone to S-glutathiolation. RESULTS Modulation of 20SPT activity by proteasome gating is at least partially due to the S-glutathiolation of specific Cys residues. The gate was open when the 20SPT was S-glutathiolated, whereas following treatment with high concentrations of dithiothreitol, the gate was closed. S-glutathiolated 20SPT was more effective at degrading both oxidized and partially unfolded proteins than its reduced form. Only 2 out of 28 Cys were observed to be S-glutathiolated in the proteasomal α5 subunit of yeast cells grown to the stationary phase in glucose-containing medium. INNOVATION We demonstrate a redox post-translational regulatory mechanism controlling 20SPT activity. CONCLUSION S-glutathiolation is a post-translational modification that triggers gate opening and thereby activates the proteolytic activities of free 20SPT. This process appears to be an important regulatory mechanism to intensify the removal of oxidized or unstructured proteins in stressful situations by a process independent of ubiquitination and ATP consumption. Antioxid. Redox Signal. 16, 1183-1194.
Collapse
Affiliation(s)
- Gustavo M Silva
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pastore A, Piemonte F. S-Glutathionylation signaling in cell biology: progress and prospects. Eur J Pharm Sci 2012; 46:279-92. [PMID: 22484331 DOI: 10.1016/j.ejps.2012.03.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/18/2022]
Abstract
S-Glutathionylation is a mechanism of signal transduction by which cells respond effectively and reversibly to redox inputs. The glutathionylation regulates most cellular pathways. It is involved in oxidative cellular response to insult by modulating the transcription factor Nrf2 and inducing the expression of antioxidant genes (ARE); it contributes to cell survival through nuclear translocation of NFkB and activation of survival genes, and to cell death by modulating the activity of caspase 3. It is involved in mitotic spindle formation during cell division by binding cytoskeletal proteins thus contributing to cell proliferation and differentiation. Glutathionylation also interfaces with the mechanism of phosphorylation by modulating several kinases (PKA, CK) and phosphatases (PP2A, PTEN), thus allowing a cross talk between the two processes of signal transduction. Also, skeletal RyR1 channels responsible of muscle excitation-contraction coupling appear to be sensitive to glutathionylation. Members of the ryanodine receptor super family, responsible for Ca(2) release from endoplasmic reticulum stores, contain sulfhydryl groups that function as a redox "switch", which either induces or inhibits Ca(2) release. Finally, but very importantly, glutathionylation of proteins may also act on cell metabolism by modulating enzymes involved in glycosylation, in the Krebs cycle and in mitochondrial oxidative phosphorylation. In this review, we propose a greater role for glutathionylation in cell biology: not only a cellular response to oxidative stress, but an elegant and sensitive mechanism able to respond even to subtle changes in redox balance in the different cellular compartments. Given the wide spectrum of redox-sensitive proteins, we discuss the possibility that different pathways light up by glutathionylation under various pathological conditions. The feature of reversibility of this process also makes it prone to develop targeted drug therapies and monitor the pharmacological effectiveness once identified the sensor proteins involved.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
29
|
Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-Petersen R. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxid Redox Signal 2011; 15:2265-99. [PMID: 21314436 DOI: 10.1089/ars.2010.3590] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In their natural environments, cells are regularly exposed to oxidizing conditions that may lead to protein misfolding. If such misfolded proteins are allowed to linger, they may form insoluble aggregates and pose a serious threat to the cell. Accumulation of misfolded, oxidatively damaged proteins is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and disease.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5,Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
30
|
Hill BG, Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. J Mol Cell Cardiol 2011; 52:559-67. [PMID: 21784079 DOI: 10.1016/j.yjmcc.2011.07.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Bradford G Hill
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
31
|
Differential gene expression analysis of Paracoccidioides brasiliensis during keratinocyte infection. J Med Microbiol 2011; 60:269-280. [DOI: 10.1099/jmm.0.022467-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, one of the most important systemic fungal diseases in Latin America. This initiates in lung tissue and can subsequently disseminate to other tissues. Clinical manifestations range from localized forms to disseminated disease that can progress to lethality, probably depending on the relationships among the virulence of the fungus, the immune response and the ability to interact with the surface structures and invade epithelial cells and mononuclear cells of the host. It is generally regarded as a multifocal disease, with oral lesions as the prominent feature. The aim of this study was to evaluate P. brasiliensis yeast infection in normal oral keratinocytes (NOKs). The differential expression of mRNAs and proteins was also determined when the fungus was placed in contact with the cell in order to characterize differentially expressed genes and proteins during P. brasiliensis infection. After contact with NOKs, the fungus appeared to induce alterations in the cells, which showed cellular extensions and cavitations, probably resulting from changes in the actin cytoskeleton seen at 5 and 8 h after infection. Levels of protein expression were higher after reisolation of the fungus from infected NOK culture compared with culture of the fungus in medium. The analysis identified transcripts related to 19 proteins involved in different biological processes. Transcripts were found with multiple functions including induction of cytokines, protein metabolism, alternative carbon metabolism, zinc transport and the stress response during contact with NOKs. The proteins found suggested that the yeast was in a stress situation, as indicated by the presence of RDS1. Nevertheless, the yeast seemed to be proliferating and metabolically active, as shown by the presence of a proteasome, short-chain acetylator, glucosamine-6-phosphate isomerase and ADP/ATP carrier transcripts. Additionally, metabolic pathways may have been activated in order to eliminate toxic substances from the cell as a zinc transporter was detected, which is a potential target for the development of future drugs.
Collapse
|
32
|
Kettenhofen NJ, Wood MJ. Formation, reactivity, and detection of protein sulfenic acids. Chem Res Toxicol 2010; 23:1633-46. [PMID: 20845928 DOI: 10.1021/tx100237w] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has become clear in recent decades that the post-translational modification of protein cysteine residues is a crucial regulatory event in biology. Evidence supports the reversible oxidation of cysteine thiol groups as a mechanism of redox-based signal transduction, while the accumulation of proteins with irreversible thiol oxidations is a hallmark of stress-induced cellular damage. The initial formation of cysteine-sulfenic acid (SOH) derivatives, along with the reactive properties of this functional group, serves as a crossroads whereby the local redox environment may dictate the progression of either regulatory or pathological outcomes. Protein-SOH are established as transient intermediates in the formation of more stable cysteine oxidation products both under basal conditions and in response to several redox-active extrinsic compounds. This review details both direct and multistep chemical routes proposed to generate protein-SOH, the spectrum of secondary reactions that may follow their initial formation and the arsenal of experimental tools available for their detection. Pioneering studies that have provided a framework for our current understanding of protein-SOH as well as state-of-the-art proteomic strategies designed for global assessments of this post-translational modification are highlighted.
Collapse
Affiliation(s)
- Nicholas J Kettenhofen
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
33
|
Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010. [PMID: 20050630 DOI: 10.1021/bi.9020378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H(2)O(2) best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H(2)O(2), provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H(2)O(2) to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H(2)O(2) is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California, 5200 North Lake Road, Merced, California 95344, USA.
| | | | | |
Collapse
|
34
|
Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010; 49:835-42. [PMID: 20050630 DOI: 10.1021/bi9020378] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H(2)O(2) best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H(2)O(2), provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H(2)O(2) to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H(2)O(2) is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California, 5200 North Lake Road, Merced, California 95344, USA.
| | | | | |
Collapse
|
35
|
Abat JK, Deswal R. Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 2009; 9:4368-80. [PMID: 19655309 DOI: 10.1002/pmic.200800985] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO), a new addition to plant hormones, affects numerous processes in planta. It is produced as a part of stress response, but its signaling is poorly understood. S-nitrosylation, a PTM, is currently the most investigated modification of NO. Recent studies indicate significant modulation of metabolome by S-nitrosylation, as the identified targets span major metabolic pathways and regulatory proteins. Identification of S-nitrosylation targets is necessary to understand NO signaling. By combining biotin switch technique and MS, 20 S-nitrosylated proteins including four novel ones were identified from Brassica juncea. Further, to know if the abiotic stress-induced NO evolution contributes to S-nitrosothiols (SNO), the cellular NO reservoirs, SNO content was measured by Saville method. Low temperature (LT)-stress resulted in highest (1.4-fold) SNO formation followed by drought, high temperature and salinity. LT induced differentially nitrosylated proteins were identified as photosynthetic, plant defense related, glycolytic and signaling associated. Interestingly, both the subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) showed an increase as well as a decrease in nitrosylation by LT. Inactivation of Rubisco carboxylase by LT is well documented but the mechanism is not known. Here, we show that LT-induced S-nitrosylation is responsible for significant ( approximately 40%) inactivation of Rubisco. This in turn could explain cold stress-induced photosynthetic inhibition.
Collapse
Affiliation(s)
- Jasmeet Kaur Abat
- Plant Molecular Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, New Delhi, India
| | | |
Collapse
|
36
|
Tarrago L, Laugier E, Zaffagnini M, Marchand C, Le Maréchal P, Rouhier N, Lemaire SD, Rey P. Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins. J Biol Chem 2009; 284:18963-71. [PMID: 19457862 DOI: 10.1074/jbc.m109.015487] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR.
Collapse
Affiliation(s)
- Lionel Tarrago
- Commissariat à l'Energie Atomique (Cadarache, France), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gallogly MM, Starke DW, Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 2009; 11:1059-81. [PMID: 19119916 PMCID: PMC2842129 DOI: 10.1089/ars.2008.2291] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glutaredoxins are small, heat-stable proteins that exhibit a characteristic thioredoxin fold and a CXXC/S active-site motif. A variety of glutathione (GSH)-dependent catalytic activities have been attributed to the glutaredoxins, including reduction of ribonucleotide reductase, arsenate, and dehydroascorbate; assembly of iron sulfur cluster complexes; and protein glutathionylation and deglutathionylation. Catalysis of reversible protein glutathionylation by glutaredoxins has been implicated in regulation of redox signal transduction and sulfhydryl homeostasis in numerous contexts in health and disease. This forum review is presented in two parts. Part I is focused primarily on the mechanism of the deglutathionylation reaction catalyzed by prototypical dithiol glutaredoxins, especially human Grx1 and Grx2. Grx-catalyzed protein deglutathionylation proceeds by a nucleophilic, double-displacement mechanism in which rate enhancement is attributed to special reactivity of the low pK(a) cysteine at its active site, and to increased nucleophilicity of the second substrate, GSH. Glutaredoxins (and Grx domains) have been identified in most organisms, and many exhibit deglutathionylation or other activities or both. Further characterization according to glutathionyl selectivity, physiological substrates, and intracellular roles may lead to subclassification of this family of enzymes. Part II presents potential mechanisms for in vivo regulation of Grx activity, providing avenues for future studies.
Collapse
Affiliation(s)
- Molly M Gallogly
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | |
Collapse
|
38
|
Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 2009; 34:85-96. [PMID: 19135374 DOI: 10.1016/j.tibs.2008.11.002] [Citation(s) in RCA: 474] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 01/25/2023]
Abstract
S-Glutathionylation is the specific post-translational modification of protein cysteine residues by the addition of the tripeptide glutathione, the most abundant and important low-molecular-mass thiol within most cell types. Protein S-glutathionylation is promoted by oxidative or nitrosative stress but also occurs in unstressed cells. It can serve to regulate a variety of cellular processes by modulating protein function and to prevent irreversible oxidation of protein thiols. Recent findings support an essential role for S-glutathionylation in the control of cell-signalling pathways associated with viral infections and with tumour necrosis factor-(-induced apoptosis. Glyceraldehyde-3-phosphate dehydrogenase has recently been implicated in the regulation of endothelin-1 synthesis by a novel, S-glutathionylation-based mechanism involving messenger RNA stability. Moreover, recent studies have identified S-glutathionylation as a redox signalling mechanism in plants.
Collapse
|