1
|
Lanceleur R, Gémin MP, Blier AL, Meslier L, Réveillon D, Amzil Z, Ternon E, Thomas OP, Fessard V. Toxic responses of metabolites produced by Ostreopsis cf. ovata on a panel of cell types. Toxicon 2024; 240:107631. [PMID: 38331106 DOI: 10.1016/j.toxicon.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Blooms of the dinoflagellate Ostreopsis cf. ovata are regularly associated with human intoxications that are attributed to ovatoxins (OVTXs), the main toxic compounds produced by this organism and close analogs to palytoxin (PlTX). Unlike for PlTX, information on OVTXs'toxicity are scarce due to the absence of commercial standards. Extracts from two cultures of Mediterranean strains of O. cf. ovata (MCCV54 and MCCV55), two fractions containing or not OVTXs (prepared from the MCCV54 extract) and OVTX-a and -d (isolated from the MCCV55 extract) were generated. These chemical samples and PlTX were tested on a panel of cell types from several organs and tissues (skin, intestine, lung, liver and nervous system). The MCCV55 extract, containing a 2-fold higher amount of OVTXs than MCCV54 extract, was shown to be more cytotoxic on all the cell lines and more prone to increase interleukin-8 (IL-8) release in keratinocytes. The fraction containing OVTXs was also cytotoxic on the cell lines tested but induced IL-8 release only in liver cells. Unexpectedly, the cell lines tested showed the same sensitivity to the fraction that does not contain OVTXs. With this fraction, a pro-inflammatory effect was shown both in lung and liver cells. The level of cytotoxicity was similar for OVTX-a and -d, except on intestinal and skin cells where a weak difference of toxicity was observed. Among the 3 toxins, only PlTX induced a pro-inflammatory effect mostly on keratinocytes. These results suggest that the ubiquitous Na+/K+ ATPase target of PlTX is likely shared with OVTX-a and -d, although the differences in pro-inflammatory effect must be explained by other mechanisms.
Collapse
Affiliation(s)
- Rachelle Lanceleur
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35 306, France
| | | | - Anne-Louise Blier
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35 306, France
| | - Lisa Meslier
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35 306, France
| | | | - Zouher Amzil
- IFREMER, PHYTOX, METALG Laboratory, 44000, Nantes, France
| | - Eva Ternon
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, UMR 7093, BP 28, 06230, Villefranche-sur-Mer, France; Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560, Valbonne, France
| | - Olivier P Thomas
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, H91TK33, Galway, Ireland
| | - Valérie Fessard
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35 306, France.
| |
Collapse
|
2
|
Gémin MP, Lanceleur R, Meslier L, Hervé F, Réveillon D, Amzil Z, Ternon E, Thomas OP, Fessard V. Toxicity of palytoxin, purified ovatoxin-a, ovatoxin-d and extracts of Ostreopsis cf. ovata on the Caco-2 intestinal barrier model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103909. [PMID: 35718322 DOI: 10.1016/j.etap.2022.103909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Human intoxications in the Mediterranean Sea have been linked to blooms of the dinoflagellate Ostreopsis cf. ovata, producer of palytoxin (PlTX)-like toxins called ovatoxins (OVTXs). Exposure routes include only inhalation and contact, although PlTX-poisoning by seafood has been described in tropical regions. To address the impact of OVTXs on the intestinal barrier, dinoflagellate extracts, purified OVTX-a and -d and PlTX were tested on differentiated Caco-2 cells. Viability, inflammatory response and barrier integrity were recorded after 24 h treatment. OVTX-a and -d were not cytotoxic up to 20 ng/mL but increased IL-8 release, although to a lesser extent compared to PlTX. While PlTX and OVTX-a (at 0.5 and 5 ng/mL respectively) affected intestinal barrier integrity, OVTX-d up to 5 ng/mL did not. Overall, OVTX-d was shown to be less toxic than OVTX-a and PlTX. Therefore, oral exposure to OVTX-a and -d could provoked lower acute toxicity than PlTX.
Collapse
Affiliation(s)
| | - Rachelle Lanceleur
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35306, France
| | - Lisa Meslier
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35306, France
| | | | | | - Zouher Amzil
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France
| | - Eva Ternon
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, UMR 709, BP 28, F-06230 Villefranche-sur-Mer, France
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | - Valérie Fessard
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35306, France.
| |
Collapse
|
3
|
Stack T, Liu Y, Frey M, Bobbala S, Vincent M, Scott E. Enhancing subcutaneous injection and target tissue accumulation of nanoparticles via co-administration with macropinocytosis inhibitory nanoparticles (MiNP). NANOSCALE HORIZONS 2021; 6:393-400. [PMID: 33884386 PMCID: PMC8127988 DOI: 10.1039/d0nh00679c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A significant barrier to the application of nanoparticles for precision medicine is the mononuclear phagocyte system (MPS), a diverse population of phagocytic cells primarily located within the liver, spleen and lymph nodes. The majority of nanoparticles are indiscriminately cleared by the MPS via macropinocytosis before reaching their intended targets, resulting in side effects and decreased efficacy. Here, we demonstrate that the biodistribution and desired tissue accumulation of targeted nanoparticles can be significantly enhanced by co-injection with polymeric micelles containing the actin depolymerizing agent latrunculin A. These macropinocytosis inhibitory nanoparticles (MiNP) were found to selectively inhibit non-specific uptake of a second "effector" nanoparticle in vitro without impeding receptor-mediated endocytosis. In tumor bearing mice, co-injection with MiNP in a single multi-nanoparticle formulation significantly increased the accumulation of folate-receptor targeted nanoparticles within tumors. Furthermore, subcutaneous co-administration with MiNP allowed effector nanoparticles to achieve serum levels that rivaled a standard intravenous injection. This effect was only observed if the effector nanoparticles were injected within 24 h following MiNP administration, indicating a temporary avoidance of MPS cells. Co-injection with MiNP therefore allows reversible evasion of the MPS for targeted nanoparticles and presents a previously unexplored method of modulating and improving nanoparticle biodistribution following subcutaneous administration.
Collapse
Affiliation(s)
- Trevor Stack
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Molly Frey
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Michael Vincent
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Evan Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
4
|
Varela AT, Neves RAF, Nascimento SM, Oliveira PJ, Pardal MA, Rodrigues ET, Moreno AJ. Exposure to marine benthic dinoflagellate toxins may lead to mitochondrial dysfunction. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108937. [PMID: 33171298 DOI: 10.1016/j.cbpc.2020.108937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
Even though marine dinoflagellates are important primary producers, many toxic species may alter the natural equilibrium of aquatic ecosystems and even generate human intoxication incidents, as they are the major causative agents of harmful algal blooms. In order to deepen the knowledge regarding benthic dinoflagellate adverse effects, the present study aims to clarify the influence of Gambierdiscus excentricus strain UNR-08, Ostreopsis cf. ovata strain UNR-03 and Prorocentrum lima strain UNR-01 crude extracts on rat mitochondrial energetic function and permeability transition pore (mPTP) induction. Our results, expressed in number of dinoflagellate cell toxic compounds tested in a milligram of mitochondrial protein, revealed that 934 cells mg prot-1 of G. excentricus, and 7143 cells mg prot-1 of both O. cf. ovata and P. lima negatively affect mitochondrial function, including by decreasing ATP synthesis-related membrane potential variations. Moreover, considerably much lower concentrations of dinoflagellate extracts (117 cells mg prot-1 of G. excentricus, 1429 cells mg prot-1 of O. cf. ovata and 714 cells mg prot-1 of P. lima) produced mPTP-induced swelling in Ca2+-loaded isolated mitochondria. The present study clearly demonstrates the toxicity of G. excentricus, O. cf. ovata and P. lima extracts at the mitochondrial level, which may lead to mitochondrial failure and consequent cell toxicity, and that G. excentricus always provide much more severe effects than O. cf. ovata and P. lima.
Collapse
Affiliation(s)
- Ana T Varela
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Raquel A F Neves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur 458-314B, 22290-240 Rio de Janeiro, Brazil.
| | - Silvia M Nascimento
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur 458-314B, 22290-240 Rio de Janeiro, Brazil.
| | - Paulo J Oliveira
- Centre for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
| | - Miguel A Pardal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Elsa T Rodrigues
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - António J Moreno
- Centre for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
5
|
Yu Q, Zhang B, Zhang YM, Liu YH, Liu Y. Actin Cytoskeleton-Disrupting and Magnetic Field-Responsive Multivalent Supramolecular Assemblies for Efficient Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13709-13717. [PMID: 32118400 DOI: 10.1021/acsami.0c01762] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actin cytoskeleton disruption is a promising and intriguing anticancer strategy, but their efficiency is frequently compromised by severe side effects of the actin cytoskeleton-disrupting agents. In this study, we constructed the biocompatible actin cytoskeleton-targeting multivalent supramolecular assemblies that specifically target and disrupt the tumor actin cytoskeleton for cancer therapy. The assemblies were composed of β-cyclodextrin-grafted hyaluronic acid (HACD) and iron oxide magnetic nanoparticles (MNPs) grafted by an actin-binding peptide (ABP) and adamantane (Ada)-modified polylysine. Owing to the multivalent binding between cyclodextrin and Ada, HACD, and peptide-grafted MNPs (MNP-ABP-Ada) could self-assemble to form MNP-ABP-Ada⊂HACD nanofibers in a geomagnetism-dependent manner. Furthermore, the presence of ABP rendered the assemblies to efficiently target the actin cytoskeleton. Interestingly, with the acid of a low-frequency alternating magnetic field (200 Hz), the actin cytoskeleton-targeting nanofibers could induce severe actin disruption, leading to a remarkable cell cycle arrest and drastic cell death of tumor cells both in vitro and in vivo, but showed no obvious toxicity to normal cells. The actin cytoskeleton-targeting/disrupting supramolecular assembly implies an excellent strategy for realizing efficient cancer therapy.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bing Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Hu B, Zhou R, Li Z, Ouyang S, Li Z, Hu W, Wang L, Jiao B. Study of the binding mechanism of aptamer to palytoxin by docking and molecular simulation. Sci Rep 2019; 9:15494. [PMID: 31664144 PMCID: PMC6820544 DOI: 10.1038/s41598-019-52066-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
This paper provides a feasible model for molecular structure analysis and interaction mechanism of aptamer and micromolecule. In this study, modeling and dynamic simulation of ssDNA aptamer (P-18S2) and target (Palytoxin, PTX) were performed separately. Then, the complex structure between DNA and PTX was predicted, and docking results showed that PTX could combine steadily at the groove’s top of DNA model by strong hydrogen-bonds and electrostatic interaction. Thus, we truncated and optimized P-18S2 by simulating. At the same time, we also confirmed the reliability of simulation results by experiments. With the experimental and computational results, the study provided a more reasonable interpretation for the high affinity and specific binding of P-18S2 and PTX, which laid the foundation for further optimization and development of aptamers in molecular diagnostics and therapeutic applications.
Collapse
Affiliation(s)
- Bo Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Rong Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhengang Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Shengqun Ouyang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China
| | - Zhen Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China
| | - Wei Hu
- Chengdu FenDi Technology Co., Ltd, Chengdu, 610041, China
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China.
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Second Military Medical University, Shanghai, 200433, China. .,Marine Biological Institute, College of Marine Military Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Zhao L, Huang Y, Dong Y, Han X, Wang S, Liang X. Aptamers and Aptasensors for Highly Specific Recognition and Sensitive Detection of Marine Biotoxins: Recent Advances and Perspectives. Toxins (Basel) 2018; 10:E427. [PMID: 30366456 PMCID: PMC6265707 DOI: 10.3390/toxins10110427] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/13/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Marine biotoxins distribute widely, have high toxicity, and can be easily accumulated in water or seafood, exposing a serious threat to consumer health. Achieving specific and sensitive detection is the most effective way to prevent emergent issues caused by marine biotoxins; however, the previous detection methods cannot meet the requirements because of ethical or technical drawbacks. Aptamers, a kind of novel recognition element with high affinity and specificity, can be used to fabricate various aptasensors (aptamer-based biosensors) for sensitive and rapid detection. In recent years, an increasing number of aptamers and aptasensors have greatly promoted the development of marine biotoxins detection. In this review, we summarized the recent aptamer-related advances for marine biotoxins detection and discussed their perspectives. Firstly, we summarized the sequences, selection methods, affinity, secondary structures, and the ion conditions of all aptamers to provide a database-like information; secondly, we summarized the reported aptasensors for marine biotoxins, including principles, detection sensitivity, linear detection range, etc.; thirdly, on the basis of the existing reports and our own research experience, we forecast the development prospects of aptamers and aptasensors for marine biotoxins detection. We hope this review not only provides a comprehensive summary of aptamer selection and aptasensor development for marine biotoxins, but also arouses a broad readership amongst academic researchers and industrial chemists.
Collapse
Affiliation(s)
- Lianhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yunfei Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xutiange Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| |
Collapse
|
8
|
Wood P, Alexis A, Reynolds T, Blohm E. Aerosolized palytoxin toxicity during home marine aquarium maintenance. TOXICOLOGY COMMUNICATIONS 2018. [DOI: 10.1080/24734306.2018.1480994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Paige Wood
- Larner College of Medicine, University of Vermont, Burlington, VT, U.S.A
| | - Anel Alexis
- Department of Emergency Medicine, Champlain Valley Physicians Hospital, Plattsburgh, NY, U.S.A
| | - Toussaint Reynolds
- Department of Emergency Medicine, Champlain Valley Physicians Hospital, Plattsburgh, NY, U.S.A
| | - Eike Blohm
- Division of Emergency Medicine, Department of Surgery, University of Vermont, Burlington, VT, U.S.A
| |
Collapse
|
9
|
Assunção J, Guedes AC, Malcata FX. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar Drugs 2017; 15:E393. [PMID: 29261163 PMCID: PMC5742853 DOI: 10.3390/md15120393] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga) dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds are well-recognized for their biological features, with great potential for use as pharmaceutical therapies and biological research probes. Unfortunately, provision of those compounds is still far from sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive research has permitted a number of advances in the field. This paper accordingly reviews the characteristics of some of the most important biotoxins (and other bioactive substances) produced by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining to dinoflagellate production, from bench to large scale-with an emphasis on material published since the latest review available on the subject. Such advances encompass improvements in nutrient formulation and light supply as major operational conditions; they have permitted adaptation of classical designs, and aided the development of novel configurations for dinoflagellate growth-even though shearing-related issues remain a major challenge.
Collapse
Affiliation(s)
- Joana Assunção
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| | - A Catarina Guedes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, P-4450-208 Matosinhos, Portugal.
| | - F Xavier Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| |
Collapse
|
10
|
|
11
|
Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin. Biosens Bioelectron 2016; 89:952-958. [PMID: 27816587 DOI: 10.1016/j.bios.2016.09.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes.
Collapse
|
12
|
Chaudhry NL, Przybek J, Hamilton A, Carley F. Unique case of palytoxin-related keratitis. Clin Exp Ophthalmol 2016; 44:853-854. [DOI: 10.1111/ceo.12768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 04/26/2016] [Indexed: 11/27/2022]
|
13
|
Patocka J, Gupta RC, Wu QH, Kuca K. Toxic potential of palytoxin. ACTA ACUST UNITED AC 2015; 35:773-780. [DOI: 10.1007/s11596-015-1506-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 07/06/2015] [Indexed: 01/07/2023]
|
14
|
Carelli-Alinovi C, Tellone E, Russo AM, Ficarra S, Pirolli D, Galtieri A, Giardina B, Misiti F. NO Metabolites Levels in Human Red Blood Cells are Affected by Palytoxin, an Inhibitor of Na(+)/K(+)-ATPase Pump. Open Biochem J 2014; 8:68-73. [PMID: 25246985 PMCID: PMC4157343 DOI: 10.2174/1874091x01408010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/22/2022] Open
Abstract
Palytoxin (PTX), a marine toxin, represents an increasing hazard for human health. Despite its high toxicity for biological systems, the mechanisms triggered by PTX, are not well understood. The high affinity of PTX for erythrocyte Na(+)/K(+)-ATPase pump is largely known, and it indicates PTX as a sensitive tool to characterize the signal transducer role for Na(+)/K(+)-ATPase pump. Previously, it has been reported that in red blood cells (RBC), probably via a signal transduction generated by the formation of a PTX-Na(+)/K(+)-ATPase complex, PTX alters band 3 functions and glucose metabolism. The present study addresses the question of which other signaling pathways are regulated by Na(+)/K(+)-ATPase in RBC. Here it has been evidenced that PTX following its interaction with Na(+)/K(+)-ATPase pump, alters RBC morphology and this event is correlated to decreases by 30% in nitrites and nitrates levels, known as markers of plasma membrane eNOS activity. Orthovanadate (OV), an antagonist of PTX binding to Na(+)/K(+)-ATPase pump, was able to reverse the effects elicited by PTX. Finally, current investigation firstly suggests that Na(+)/K(+)-ATPase pump, following its interaction with PTX, triggers a signal transduction involved in NO metabolism regulation.
Collapse
Affiliation(s)
- Cristiana Carelli-Alinovi
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy
| | - Ester Tellone
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Anna Maria Russo
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Davide Pirolli
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy
| | - Antonio Galtieri
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Bruno Giardina
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy ; Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council (CNR), L.go F. Vito n.1, 00168 Rome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 03043 Cassino (FR), Italy
| |
Collapse
|
15
|
Wu ML, Yang CC, Deng JF, Wang KY. Hyperkalemia, hyperphosphatemia, acute kidney injury, and fatal dysrhythmias after consumption of palytoxin-contaminated goldspot herring. Ann Emerg Med 2014; 64:633-6. [PMID: 24997564 DOI: 10.1016/j.annemergmed.2014.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/20/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Severe electrolyte disturbances caused by fish poisoning are rarely reported in the literature. We present an unusual outbreak of palytoxin poisoning associated with the consumption of Goldspot herring (Herklotsichthys quadrimaculatus). Four family members became ill after eating 2 species of marine fish. The presenting symptoms and signs included bitter taste, oral numbness, nausea, vomiting, abdominal pain, and hypertension, which were followed by myalgia, limb numbness, sensorimotor polyneuropathy, and abnormal cold and warm sensations. The index case manifested hyperkalemia, hyperphosphatemia, and acute kidney injury, and developed severe cardiac dysrhythmias. He died 21 hours postingestion. Palytoxin and related compounds were identified by liquid chromatography tandem mass spectrometry in one of the leftover fish. Palytoxin poisoning is rarely reported and is difficult to diagnose in the absence of laboratory confirmation. Palytoxin poisoning should be considered in patients who manifest hyperkalemia and hyperphosphatemia after the consumption of marine fish, and timely laboratory analysis should be sought.
Collapse
Affiliation(s)
- Ming-Ling Wu
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Chang Yang
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jou-Fang Deng
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Kuo-Yen Wang
- Taitung Hospital, Ministry of Health and Welfare, Taitung, Taiwan
| |
Collapse
|
16
|
In vivo and in vitro effects of 42-hydroxy-palytoxin on mouse skeletal muscle: structural and functional impairment. Toxicol Lett 2013; 225:285-93. [PMID: 24378260 DOI: 10.1016/j.toxlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022]
Abstract
Palytoxins (PLTXs) are known seafood contaminants and their entrance into the food chain raises concern about possible effects on human health. The increasing number of analogs being identified in edible marine organisms complicates the estimation of the real hazard associated with the presence of PLTX-like compounds. So far, 42-OH-PLTX is one of the few congeners available, and the study of its toxicity represents an important step toward a better comprehension of the mechanism of action of this family of compounds. From this perspective, the aim of this work was to investigate the in vivo and in vitro effect of 42-OH-PLTX on skeletal muscle, one of the most sensitive targets for PLTXs. Our results demonstrate that 42-OH-PLTX causes damage at the skeletal muscle level with a cytotoxic potency similar to that of PLTX. 42-OH-PLTX induces cytotoxicity and cell swelling in a Na(+)-dependent manner similar to the parent compound. However, the limited Ca(2+)-dependence of the toxic insult induced by 42-OH-PLTX suggests a specific mechanism of action for this analog. Our results also suggest an impaired response to the physiological agonist acetylcholine and altered cell elasticity.
Collapse
|
17
|
Bernasconi M, Berger D, Tamm M, Stolz D. Aquarism: an innocent leisure activity? Palytoxin-induced acute pneumonitis. ACTA ACUST UNITED AC 2012; 84:436-9. [PMID: 22760076 DOI: 10.1159/000338789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/26/2012] [Indexed: 11/19/2022]
Affiliation(s)
- M Bernasconi
- Clinic for Pulmonary Medicine and Respiratory Cell Research, University Hospital of Basel, Petersgraben 4, Basel, Switzerland.
| | | | | | | |
Collapse
|
18
|
Crinelli R, Carloni E, Giacomini E, Penna A, Dominici S, Battocchi C, Ciminiello P, Dell'Aversano C, Fattorusso E, Forino M, Tartaglione L, Magnani M. Palytoxin and an Ostreopsis toxin extract increase the levels of mRNAs encoding inflammation-related proteins in human macrophages via p38 MAPK and NF-κB. PLoS One 2012; 7:e38139. [PMID: 22675515 PMCID: PMC3365899 DOI: 10.1371/journal.pone.0038139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/02/2012] [Indexed: 12/11/2022] Open
Abstract
Background Palytoxin and, likely, its analogues produced by the dinoflagellate genus Ostreopsis, represent a class of non-proteinaceous compounds displaying high toxicity in animals. Owing to the wide distribution and the poisonous effects of these toxins in humans, their chemistry and mechanism of action have generated a growing scientific interest. Depending on the exposure route, palytoxin and its Ostreopsis analogues may cause several adverse effects on human health, including acute inflammatory reactions which seem more typical of cutaneous and inhalation contact. These observations have led us to hypothesize that these toxins may activate pro-inflammatory signalling cascades. Methodology and Principal Findings Here we demonstrate that palytoxin and a semi-purified Ostreopsis cf. ovata toxin extract obtained from a cultured strain isolated in the NW Adriatic Sea and containing a putative palytoxin and all the ovatoxins so far known – including the recently identified ovatoxin-f – significantly increase the levels of mRNAs encoding inflammation-related proteins in immune cells, i.e. monocyte-derived human macrophages, as assessed by Real-Time PCR analysis. Western immunoblot and electrophoretic mobility shift assays revealed that nuclear transcription factor -κB (NF-κB) is activated in cells exposed to toxins in coincidence with reduced levels of the inhibitory protein IκB-α. Moreover, Mitogen-Activated Protein Kinases (MAPK) were phosphorylated in response to palytoxin, as also reported by others, and to the Ostreopsis toxin extract, as shown here for the first time. By using specific chemical inhibitors, the involvement of NF-κB and p38 MAPK in the toxin-induced transcription and accumulation of Cycloxigenase-2, Tumor Necrosis Factor-α, and Interleukin-8 transcripts has been demonstrated. Conclusions and Significance The identification of specific molecular targets of palytoxin and its Ostreopsis analogues, besides contributing to expand the still limited knowledge of the intracellular signalling cascades affected by these toxins, may have important implications in setting up focused pharmacological interventions, replacing currently used symptomatic treatments.
Collapse
Affiliation(s)
- Rita Crinelli
- Section of Biochemistry and Molecular Biology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ficarra S, Russo A, Stefanizzi F, Mileto M, Barreca D, Bellocco E, Laganà G, Leuzzi U, Giardina B, Galtieri A, Tellone E. Palytoxin Induces Functional Changes of Anion Transport in Red Blood Cells: Metabolic Impact. J Membr Biol 2011; 242:31-9. [DOI: 10.1007/s00232-011-9374-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
20
|
Louzao MC, Ares IR, Cagide E, Espiña B, Vilariño N, Alfonso A, Vieytes MR, Botana LM. Palytoxins and cytoskeleton: An overview. Toxicon 2011; 57:460-9. [DOI: 10.1016/j.toxicon.2010.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 11/30/2022]
|
21
|
Ramos V, Vasconcelos V. Palytoxin and analogs: biological and ecological effects. Mar Drugs 2010; 8:2021-37. [PMID: 20714422 PMCID: PMC2920541 DOI: 10.3390/md8072021] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/14/2010] [Accepted: 06/29/2010] [Indexed: 11/16/2022] Open
Abstract
Palytoxin (PTX) is a potent marine toxin that was originally found in soft corals from tropical areas of the Pacific Ocean. Soon after, its occurrence was observed in numerous other marine organisms from the same ecological region. More recently, several analogs of PTX were discovered, remarkably all from species of the dinoflagellate genus Ostreopsis. Since these dinoflagellates are also found in other tropical and even in temperate regions, the formerly unsuspected broad distribution of these toxins was revealed. Toxicological studies with these compounds shows repeatedly low LD50 values in different mammals, revealing an acute toxic effect on several organs, as demonstrated by different routes of exposure. Bioassays tested for some marine invertebrates and evidences from environmental populations exposed to the toxins also give indications of the high impact that these compounds may have on natural food webs. The recognition of its wide distribution coupled with the poisoning effects that these toxins can have on animals and especially on humans have concerned the scientific community. In this paper, we review the current knowledge on the effects of PTX and its analogs on different organisms, exposing the impact that these toxins may have in coastal ecosystems.
Collapse
Affiliation(s)
- Vítor Ramos
- Marine and Environmental Research Center–CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; E-Mail:
| | - Vítor Vasconcelos
- Marine and Environmental Research Center–CIIMAR/CIMAR, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal; E-Mail:
- Faculty of Sciences, Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
- * Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351 223401814; Fax: +351 223390608
| |
Collapse
|
22
|
Abstract
Five major human toxic syndromes caused by the consumption of shellfish contaminated by algal toxins are presented. The increased risks to humans of shellfish toxicity from the prevalence of harmful algal blooms (HABs) may be a consequence of large-scale ecological changes from anthropogenic activities, especially increased eutrophication, marine transport and aquaculture, and global climate change. Improvements in toxin detection methods and increased toxin surveillance programmes are positive developments in limiting human exposure to shellfish toxins.
Collapse
|
23
|
Impact of marine drugs on cytoskeleton-mediated reproductive events. Mar Drugs 2010; 8:881-915. [PMID: 20479959 PMCID: PMC2866467 DOI: 10.3390/md8040881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/02/2010] [Accepted: 03/23/2010] [Indexed: 12/30/2022] Open
Abstract
Marine organisms represent an important source of novel bioactive compounds, often showing unique modes of action. Such drugs may be useful tools to study complex processes such as reproduction; which is characterized by many crucial steps that start at gamete maturation and activation and virtually end at the first developmental stages. During these processes cytoskeletal elements such as microfilaments and microtubules play a key-role. In this review we describe: (i) the involvement of such structures in both cellular and in vitro processes; (ii) the toxins that target the cytoskeletal elements and dynamics; (iii) the main steps of reproduction and the marine drugs that interfere with these cytoskeleton-mediated processes. We show that marine drugs, acting on microfilaments and microtubules, exert a wide range of impacts on reproductive events including sperm maturation and motility, oocyte maturation, fertilization, and early embryo development.
Collapse
|
24
|
Targets and effects of yessotoxin, okadaic acid and palytoxin: a differential review. Mar Drugs 2010; 8:658-77. [PMID: 20411120 PMCID: PMC2857362 DOI: 10.3390/md8030658] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 01/14/2023] Open
Abstract
In this review, we focus on processes, organs and systems targeted by the marine toxins yessotoxin (YTX), okadaic acid (OA) and palytoxin (PTX). The effects of YTX and their basis are analyzed from data collected in the mollusc Mytilus galloprovincialis, the annelid Enchytraeus crypticus, Swiss CD1 mice and invertebrate and vertebrate cell cultures. OA and PTX, two toxins with a better established mode of action, are analyzed with regard to their effects on development. The amphibian Xenopus laevis is used as a model, and the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) as the experimental protocol.
Collapse
|
25
|
Louzao MC, Espiña B, Cagide E, Ares IR, Alfonso A, Vieytes MR, Botana LM. Cytotoxic effect of palytoxin on mussel. Toxicon 2010; 56:842-7. [PMID: 20206198 DOI: 10.1016/j.toxicon.2010.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/05/2010] [Accepted: 02/22/2010] [Indexed: 12/01/2022]
Abstract
Palytoxin is a large and complex polyhydroxylated molecule with potent neurotoxic activity. Dinoflagellates from the Ostreopsis genera were demonstrated to be producers of this compound and analogues. Even though initially palytoxin appearance was restricted to tropical areas, the recent occurrence of Ostreopsis outbreaks in Mediterranean Sea point to a worldwide dissemination probably related to climatic change. Those dinoflagellates can bioaccumulate in shellfish, especially in filter-feeding mollusks and have been involved in damaging effects in seafood or human toxic outbreaks. The present study describes palytoxins effect on metabolic activity of mantle and hepatopancreas cells from the mussel Mytilus galloprovincialis Lmk. Our results indicate that palytoxin is highly cytotoxic to mussel cells; unlike it happens with other toxins more common in European coasts such as okadaic acid and azaspiracid. These findings have a special significance for the marine environment and aquiculture since they are evidence for the ability of palytoxin to affect the integrity of bivalve mollusks that are not adapted to the presence of this toxin.
Collapse
Affiliation(s)
- M Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 27:165-237. [DOI: 10.1039/b906091j] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Seemann P, Gernert C, Schmitt S, Mebs D, Hentschel U. Detection of hemolytic bacteria from Palythoa caribaeorum (Cnidaria, Zoantharia) using a novel palytoxin-screening assay. Antonie van Leeuwenhoek 2009; 96:405-11. [PMID: 19504172 DOI: 10.1007/s10482-009-9353-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/19/2009] [Indexed: 02/07/2023]
Abstract
Palytoxin (PTX), one of the most potent and chemically complex marine toxins, is predominantly found in zoanthid corals and sporadically in dinoflagellates. Its biosynthesis and metabolic pathways are largely unknown. However, the widespread occurrence of the toxin in phylogenetically distinct marine organisms is consistent with its production by microorganisms and subsequent accumulation in the food chain. To investigate a possible microbial origin, bacteria from two zoanthid corals (Palythoa caribaeorum, Zoanthus pulchellus) and one sponge (Neofibularia nolitangere) were isolated. More than 250 bacteria were screened for hemolysis using a newly developed PTX-screening assay of which 7% showed PTX-like hemolytic activity. 16S rRNA gene sequencing revealed that these bacterial isolates belonged to strains of Bacillus cereus group (n = 11) as well as the genera Brevibacterium (n = 4) and Acinetobacter (n = 2). The results indicate the presence of Na+/K+-ATPase toxins and possibly PTX in hemolytic bacteria from P. caribaeorum.
Collapse
Affiliation(s)
- Petra Seemann
- Zentrum der Rechtsmedizin, University of Frankfurt, Kennedyallee 104, 60596 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
28
|
|