1
|
Chen M, Jin J, Bi H, Zhang Y, Sun M, Li X, Wang Y. Advances in the study of NMDA receptors in depression pathogenesis and the antidepressant efficacy of their antagonists. Asian J Psychiatr 2025; 108:104502. [PMID: 40300235 DOI: 10.1016/j.ajp.2025.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025]
Abstract
N-methyl-D-aspartate receptors (NMDA receptors) play a crucial role as ionotropic glutamate receptors in regulating neuroplasticity, learning, memory, and a range of psychiatric disorders. Studies indicate that dysfunction of NMDA receptors is a key pathological mechanism in depression, where abnormal activation can result in neuronal excitotoxicity, excessive extracellular calcium ion accumulation, and disrupted neuroplasticity. As a non-competitive NMDA receptor antagonist, ketamine quickly relieves depressive symptoms by decreasing the activity of extracellular NMDA receptors and activating the mTOR signaling pathway. The treatment can improve severe depression and suicide thoughts within hours, but its potential for hallucinations, dissociative symptoms, and dependency restricts its broader application. Esketamine has demonstrated improvements in both side effects and efficacy and has received FDA approval, while other compounds with NMDA receptor modulating functions, such as memantine and rapastinel, are also showing potential in exploration. Future studies should concentrate on the molecular mechanisms of NMDA receptors, aiming to develop safer and more effective medications, and refine treatment strategies to offer personalized choices and longer-lasting efficacy for the treatment of depression.
Collapse
Affiliation(s)
- Mingrui Chen
- Department of Psychiatry, The First Hospital of China Medical University, China
| | - Jingyan Jin
- Department of Psychiatry, The First Hospital of China Medical University, China
| | - Hongsheng Bi
- Department of Psychiatry, The First Hospital of China Medical University, China; The third hospital of Daqing, Psychiatric Ward No. 9, China
| | - Yihan Zhang
- Department of Psychiatry, The First Hospital of China Medical University, China
| | - Mingyuan Sun
- Department of Psychiatry, The First Hospital of China Medical University, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, China.
| | - Yan Wang
- Center for Psychological Development, China Medical University, China.
| |
Collapse
|
2
|
Yuksel B, Sen Z, Unal G. Ketamine differentially affects implicit and explicit memory processes in rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06720-8. [PMID: 39589435 DOI: 10.1007/s00213-024-06720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
RATIONALE Ketamine, a non-competitive NMDA receptor antagonist, produces antidepressant effects at subanesthetic doses. The therapeutic effect, however, is often accompanied by cognitive side effects, including memory impairments. Yet, the specific effects of ketamine on different processes of implicit and explicit memory remain to be elucidated. OBJECTIVES We examined the effect of an antidepressant dose of ketamine (10 mg/kg, IP) on the encoding, retrieval, and modulation processes of fear memory and spatial memory in adult Wistar rats. METHODS Ketamine was administered before the fear acquisition, retrieval, or extinction procedures in a Pavlovian fear conditioning task. In another set of experiments, it was administered before the training, probe trial, or reversal training phases of the Morris Water Maze (MWM). RESULTS The antidepressant dose of ketamine partially impaired fear extinction when administered before the acquisition or retrieval. In contrast, it facilitated memory modulation and decreased the escape latency in the first day of reversal training in the MWM when administered before the training or reversal training sessions. Encoding or retrieval performance in either type of memory was not affected. CONCLUSIONS These findings show that ketamine does not impair the acquisition or retrieval processes of cued fear or spatial memory; but exerts differential effects on memory modulation of these implicit and explicit memory paradigms, by disrupting fear extinction and facilitating reversal spatial learning.
Collapse
Affiliation(s)
- Bahar Yuksel
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, 34342, Turkey
| | - Zeynep Sen
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, 34342, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, 34342, Turkey.
| |
Collapse
|
3
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
4
|
Zaccarelli-Magalhães J, Abreu GR, Fukushima AR, Pantaleon LP, Ribeiro BB, Munhoz C, Manes M, de Lima MA, Miglioli J, Flório JC, Lebrun I, Ricci EL, Spinosa HS. Ketamine causes poor maternal care in rats with postpartum depression and leads to few behavioral and neurochemical alterations on male offspring. Behav Brain Res 2024; 459:114799. [PMID: 38065224 DOI: 10.1016/j.bbr.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023]
Abstract
Ketamine is an anesthetic drug that also has antidepressant properties, with quick action. Despite the great number of studies showing its effectiveness as a treatment for major depression, there is little information about its effects on postpartum depression, as pharmacological treatments bring risks to the health of both mother and child. Thus, this study aimed to evaluate the effects of prolonged treatment with subanesthetic doses of ketamine in a rat model of postpartum depression. Female dams were induced to postpartum depression by the maternal separation model from lactating day (LD) 2-12. They were divided into four groups: one control and three experimental groups, which were treated with different doses of ketamine (5, 10 or 20 mg/kg) from LD 2-21 i.p. Maternal studies were conducted from LD5 to LD21 and the offspring studies from postnatal day 2 through 90. Ketamine causes poor maternal care, with few neurochemical alterations. However, the highest dose used in this study had an antidepressant effect. Regarding the male offspring, indirect exposure to ketamine through breast milk caused few behavioral changes during infancy, but they were not permanent, as they faded in adulthood. Nevertheless, this exposure was able to cause alterations in their monoaminergic neurotransmission systems that were found in both infancy and adulthood periods.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Gabriel R Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - André R Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Lorena P Pantaleon
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Beatriz B Ribeiro
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Camila Munhoz
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Marianna Manes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Mayara A de Lima
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Júlia Miglioli
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Jorge C Flório
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Esther L Ricci
- School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Helenice S Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| |
Collapse
|
5
|
Pavlova I, Ruda-Kucerova J. Brain metabolic derangements examined using 1H MRS and their (in)consistency among different rodent models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110808. [PMID: 37301420 DOI: 10.1016/j.pnpbp.2023.110808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Major depressive disorder (MDD) is underlined by neurochemical changes in the brain. Proton magnetic resonance spectroscopy (1H MRS) is a useful tool for their examination as it provides information about the levels of metabolites. This review summarises the current knowledge of 1H MRS findings from rodent models of MDD, assesses the results from both a biological and a technical perspective, and identifies the main sources of bias. From a technical point of view, bias-introducing factors are the diversity of the measured volumes and their positioning in the brain, the data processing, and the metabolite concentration expression. The biological variables are strain, sex, and species, as well as the model itself, and in vivo vs. ex vivo exploration. This review identified some consistency in the 1H MRS findings in the models of MDD: lower levels of glutamine, glutamate + glutamine, and higher levels of myo-inositol and taurine in most of the brain regions of MDD models. This may suggest changes in regional metabolism, neuronal dysregulation, inflammation, and a compensatory effect reaction in the MDD rodent models.
Collapse
Affiliation(s)
- Iveta Pavlova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 00 Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic.
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
6
|
Ledesma-Corvi S, Jornet-Plaza J, García-Fuster MJ. Aromatase inhibition and ketamine in rats: sex-differences in antidepressant-like efficacy. Biol Sex Differ 2023; 14:73. [PMID: 37876000 PMCID: PMC10599051 DOI: 10.1186/s13293-023-00560-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Ketamine has been recently approved to treat resistant depression; however preclinical studies showed sex differences in its efficacy. Sex steroids, such as estrogens and testosterone, both in the periphery and locally in the brain, are regarded as important modulators of these sex differences. Therefore, the present study evaluated how inhibiting the biosynthesis of estrogens with letrozole (an aromatase inhibitor) could affect the observed sex differences in ketamine's antidepressant-like-response. METHODS We performed several consecutive studies in adult Sprague-Dawley rats to evaluate potential sex differences in the antidepressant-like effects of ketamine (5 mg/kg, 7 days, i.p.), letrozole (1 mg/kg, 8 days, i.p.) and their combination (letrozole pre-treatment 3 h before ketamine). Acute and repeated antidepressant-like responses were ascertained in a series of behavioral tests (forced-swim, novelty-suppressed feeding, two-bottle choice for sucrose preference). RESULTS The main results proved clear sex differences in the antidepressant-like response induced by ketamine, which was observed following a repeated paradigm in adult male rats, but rendered inefficacious in female rats. Moreover, decreasing estrogens production with letrozole induced on itself an antidepressant-like response in female rats, while also increased ketamine's response in male rats (i.e., quicker response observed after only a single dose). Interestingly, both the antidepressant-like effects induced by ketamine in male rats or letrozole in female rats persisted over time up to 65 days post-treatment, suggesting long-term sex-directed benefits for these drugs. CONCLUSIONS The present results demonstrated a sex-specific role for aromatase inhibition with letrozole in the antidepressant-like response induced by ketamine in male rats. Moreover, letrozole itself presented as a potential antidepressant for females with persistent effects over time. Clearly, the production of estrogens is key in modulating, in a sex-specific manner, affective-like responses and thus deserve further studies.
Collapse
Affiliation(s)
- Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jordi Jornet-Plaza
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
- Department of Medicine, University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
7
|
Contó MB, Pautassi RM, Camarini R. Rewarding and Antidepressant Properties of Ketamine and Ethanol: Effects on the Brain-Derived Neurotrophic Factor and TrkB and p75 NTR Receptors. Neuroscience 2022; 493:1-14. [PMID: 35469972 DOI: 10.1016/j.neuroscience.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
There is a high level of comorbidity between depression and alcohol use disorder. Subanesthetic doses of ketamine induce short-acting and enduring antidepressant effects after a single or a few administrations. Considering such comorbidity, we assessed, in Swiss male mice, if ketamine-induced antidepressant-like effects would alter ethanol's rewarding effects; and, if ethanol pretreatment would alter the rewarding and antidepressant effects of ketamine. The role of the brain-derived neurotrophic factor (BDNF) and its high and low affinity receptors TrkB and p75NTR, respectively, in both reward and depression-related behaviors is well established. The present study assessed, in outbred Swiss male mice, the expression of these proteins in the prefrontal cortex and hippocampus. Ketamine did not alter the development of ethanol-induced conditioned place preference (CPP), yet ethanol inhibited the expression of CPP induced by 50 mg/kg ketamine. The antidepressant action of 50 mg/kg ketamine was attenuated after repeated treatment (i.e., developed tolerance), an effect blocked by ethanol preexposure; ethanol also inhibited the antidepressant effect of 30 mg/kg ketamine. Ketamine (50 mg/kg) and Ethanol-Ketamine (50 mg/kg) groups showed lower levels of 145 kDa TrkB in the hippocampus than Saline-treated group. Ethanol-Ketamine (50 mg/kg) decreased the hippocampal expression of p75NTR compared to Saline-Saline and Saline-Ethanol groups. Ketamine (50 mg/kg) induced hippocampal downregulation of 145 kDa TrkB may contribute to ketamine-induced antidepressant tolerance. Likewise, a relationship between low hippocampal levels of p75NTR in the Ethanol-Ketamine (50 mg/kg) and ketamine-induced CPP blockade may be considered. The findings underscore potential ethanol-ketamine interactions likely to undermine ketamine putative antidepressant effects.
Collapse
Affiliation(s)
- Marcos Brandão Contó
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brasil.
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba C.P. 5000 Argentina
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brasil.
| |
Collapse
|
8
|
Yavi M, Lee H, Henter ID, Park LT, Zarate CA. Ketamine treatment for depression: a review. DISCOVER MENTAL HEALTH 2022; 2:9. [PMID: 35509843 PMCID: PMC9010394 DOI: 10.1007/s44192-022-00012-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
This manuscript reviews the clinical evidence regarding single-dose intravenous (IV) administration of the novel glutamatergic modulator racemic (R,S)-ketamine (hereafter referred to as ketamine) as well as its S-enantiomer, intranasal esketamine, for the treatment of major depressive disorder (MDD). Initial studies found that a single subanesthetic-dose IV ketamine infusion rapidly (within one day) improved depressive symptoms in individuals with MDD and bipolar depression, with antidepressant effects lasting three to seven days. In 2019, esketamine received FDA approval as an adjunctive treatment for treatment-resistant depression (TRD) in adults. Esketamine was approved under a risk evaluation and mitigation strategy (REMS) that requires administration under medical supervision. Both ketamine and esketamine are currently viable treatment options for TRD that offer the possibility of rapid symptom improvement. The manuscript also reviews ketamine's use in other psychiatric diagnoses-including suicidality, obsessive-compulsive disorder, post-traumatic stress disorder, substance abuse, and social anxiety disorder-and its potential adverse effects. Despite limited data, side effects for antidepressant-dose ketamine-including dissociative symptoms, hypertension, and confusion/agitation-appear to be tolerable and limited to around the time of treatment. Relatively little is known about ketamine's longer-term effects, including increased risks of abuse and/or dependence. Attempts to prolong ketamine's effects with combined therapy or a repeat-dose strategy are also reviewed, as are current guidelines for its clinical use. In addition to presenting a novel and valuable treatment option, studying ketamine also has the potential to transform our understanding of the mechanisms underlying mood disorders and the development of novel therapeutics.
Collapse
Affiliation(s)
- Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| | - Holim Lee
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| | - Lawrence T. Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health [NIMH-NIH], 10 Center Dr, Room 7-5545, Bethesda, MD 20814 USA
| |
Collapse
|
9
|
Kang MJY, Hawken E, Vazquez GH. The Mechanisms Behind Rapid Antidepressant Effects of Ketamine: A Systematic Review With a Focus on Molecular Neuroplasticity. Front Psychiatry 2022; 13:860882. [PMID: 35546951 PMCID: PMC9082546 DOI: 10.3389/fpsyt.2022.860882] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
The mechanism of action underlying ketamine's rapid antidepressant effects in patients with depression, both suffering from major depressive disorder (MDD) and bipolar disorder (BD), including treatment resistant depression (TRD), remains unclear. Of the many speculated routes that ketamine may act through, restoring deficits in neuroplasticity may be the most parsimonious mechanism in both human patients and preclinical models of depression. Here, we conducted a literature search using PubMed for any reports of ketamine inducing neuroplasticity relevant to depression, to identify cellular and molecular events, relevant to neuroplasticity, immediately observed with rapid mood improvements in humans or antidepressant-like effects in animals. After screening reports using our inclusion/exclusion criteria, 139 publications with data from cell cultures, animal models, and patients with BD or MDD were included (registered on PROSPERO, ID: CRD42019123346). We found accumulating evidence to support that ketamine induces an increase in molecules involved in modulating neuroplasticity, and that these changes are paired with rapid antidepressant effects. Molecules or complexes of high interest include glutamate, AMPA receptors (AMPAR), mTOR, BDNF/TrkB, VGF, eEF2K, p70S6K, GSK-3, IGF2, Erk, and microRNAs. In summary, these studies suggest a robust relationship between improvements in mood, and ketamine-induced increases in molecular neuroplasticity, particularly regarding intracellular signaling molecules.
Collapse
Affiliation(s)
- Melody J Y Kang
- Center of Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Emily Hawken
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| | - Gustavo Hector Vazquez
- Center of Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
10
|
Fan JF, Tang ZH, Wang SY, Lei S, Zhang B, Tian SW. Ketamine enhances novel object recognition memory reconsolidation via the BDNF/TrkB pathway in mice. Physiol Behav 2021; 242:113626. [PMID: 34673052 DOI: 10.1016/j.physbeh.2021.113626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
In addition to the antidepressant properties of ketamine at subanesthetic doses, studies have revealed ketamine's influence on memory acquisition, consolidation, and reconsolidation. The effects of acute low-dose ketamine administration on conditioned memory have been investigated extensively in rodents through conditioned fear memory and morphine-induced conditioned place preference. In contrast to conditioned memory, the novel object recognition (NOR) task assesses the natural format of memory by exploiting the rodents' natural preference for novelty. Acute low-dose ketamine administration impairs NOR acquisition and consolidation, but its influence on reconsolidation remains unclear. We investigated the issue as well as the involvement of BDNF/TrkB pathway in this process by administering ketamine (i.p., 10 mg/kg, immediately or 6 h after reactivation, or without reactivation) and ANA-12 (i.p., 0.5 mg/kg, 5 min after ketamine/vehicle administration). ANA-12 is a selective antagonist for the BDNF TrkB receptor. Ketamine administration, immediately after (rather than without) reactivation, significantly increased the NOR preference index, thus suggesting an enhanced memory reconsolidation rather than consolidation. Ketamine exerted no significant effect when administered 6 h after reactivation, thereby suggesting 6 h to be an effective time window. ANA-12 administration significantly reduced the ketamine-induced NOR preference index increase, thus suggesting that the blockage of ketamine improves NOR reconsolidation. However, this blockage had no significant effect on the ketamine-induced hippocampal BDNF level increase. In conclusion, acute low-dose ketamine administration improves NOR memory reconsolidation by increasing hippocampal BDNF levels and subsequent BDNF binding to the TrkB receptor.
Collapse
Affiliation(s)
- Jian-Feng Fan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, 541199, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China
| | - Zhen-Hui Tang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, 541199, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China
| | - Shi-Yi Wang
- Pharmacy School of Guilin Medical University, Guilin Medical University, Guilin Guangxi, 541199, China
| | - Si Lei
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China
| | - Bo Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, 541199, China; School of Public Health, Guilin Medical University, Guilin Guangxi, 541199, China.
| | - Shao-Wen Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, 541199, China; School of Public Health, Guilin Medical University, Guilin Guangxi, 541199, China; Pharmacy School of Guilin Medical University, Guilin Medical University, Guilin Guangxi, 541199, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China.
| |
Collapse
|
11
|
Ponton E, Turecki G, Nagy C. Sex Differences in the Behavioral, Molecular, and Structural Effects of Ketamine Treatment in Depression. Int J Neuropsychopharmacol 2021; 25:75-84. [PMID: 34894233 PMCID: PMC8756094 DOI: 10.1093/ijnp/pyab082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric illness that manifests in sex-influenced ways. Men and women may experience depression differently and also respond to various antidepressant treatments in sex-influenced ways. Ketamine, which is now being used as a rapid-acting antidepressant, is likely the same. To date, the majority of studies investigating treatment outcomes in MDD do not disaggregate the findings in males and females, and this is also true for ketamine. This review aims to highlight that gap by exploring pre-clinical data-at a behavioral, molecular, and structural level-and recent clinical trials. Sex hormones, particularly estrogen and progesterone, influence the response at all levels examined, and sex is therefore a critical factor to examine when looking at ketamine response. Taken together, the data show females are more sensitive to ketamine than males, and it might be possible to monitor the phase of the menstrual cycle to mitigate some risks associated with the use of ketamine for females with MDD. Based on the studies reviewed in this article, we suggest that ketamine should be administered adhering to sex-specific considerations.
Collapse
Affiliation(s)
- Ethan Ponton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Correspondence: Corina Nagy, PhD, 6875 LaSalle Blvd, Verdun, Québec, Canada H4H 1R3 ()
| |
Collapse
|
12
|
Gupta PR, Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides 2021; 86:102127. [PMID: 33607407 DOI: 10.1016/j.npep.2021.102127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Anxiety is a neurological disorder that is characterized by excessive, persistent, and unreasonable worry about everyday things like family, work, money, and relationships. The current therapy used for the treatment has many disadvantages like higher cost, severe adverse reactions, and has suboptimal efficiency. There is a need to look for more innovative approaches for the treatment of anxiety disorder which overcomes the disadvantages of conventional treatment. Recent findings suggest a strong correlation of glutamate with anxiety. Some promising drugs which have a novel mechanism for anxiolytic action are currently under clinical development for generalized anxiety disorder, social anxiety disorder, panic disorder, obsessive-compulsive disorder, or post-traumatic stress disorder. Similarly, an interrelation of oxytocin with neuropeptide S or glutamate or vasopressin can also be considered for further evaluation for the development of new drugs for anxiety treatment. Anxiolytic drug development is a multi-target approach, with the idea of more efficiently equilibrating perturbed circuits. This review focuses on targeting unconventional targets like the glutamate system, voltage-gated ion channels, and neuropeptides system either alone or in combination for the treatment of anxiety disorder.
Collapse
Affiliation(s)
- Priti Ramakant Gupta
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Kedar Prabhavalkar
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
13
|
Intra-prefrontal cyclosporine potentiates ketamine-induced fear extinction in rats. Exp Brain Res 2021; 239:1401-1415. [PMID: 33666692 DOI: 10.1007/s00221-021-06050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Several brain regions, including the medial prefrontal cortex (mPFC), are important in the process of fear extinction learning. Ketamine is a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, which is shown to play a role in extinction modulation. Ketamine and calcineurin (CN), an intracellular protein phosphatase, have several common targets in the cells. Therefore, in the present study, our aim is to investigate the possible role of calcineurin in the mPFC on the enhancing effects of ketamine in fear extinction. First, different doses of a CN inhibitor, cyclosporine-A (CsA), were micro-injected into the infralimbic (IL) region of the mPFC prior to extinction training in a classical conditioning model in rats. Next, sub-effective doses of CsA (Intra-mPFC) and ketamine (i.p.) were co-administered in another cohort of rats to find their possible interactions. Enzymatic activity of calcineurin was measured in the IL-mPFC following drug administration. We used the elevated plus-maze (EPM) and open field (OF) test for further behavioral assessments. The results showed that CsA can enhance the extinction of conditioned fear and inhibit the enzyme CN at a dose of 20 nM. The combination of sub-effective doses of CsA (5 nM) and ketamine (10 mg/kg) could again enhance the extinction of fear and reduce CN activity in the region. Our results propose that inhibition of CN in the IL-mPFC is involved in the extinction of fear and ketamine enhancement of extinction is probably mediated by reducing CN activity in this part of the brain.
Collapse
|
14
|
Weston RG, Fitzgerald PJ, Watson BO. Repeated Dosing of Ketamine in the Forced Swim Test: Are Multiple Shots Better Than One? Front Psychiatry 2021; 12:659052. [PMID: 34045982 PMCID: PMC8144297 DOI: 10.3389/fpsyt.2021.659052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
The anesthetic drug ketamine has been successfully repurposed as an antidepressant in human subjects. This represents a breakthrough for clinical psychopharmacology, because unlike monoaminergic antidepressants, ketamine has rapid onset, including in Major Depressive Disorder (MDD) that is resistant to conventional pharmacotherapy. This rapid therapeutic onset suggests a unique mechanism of action, which continues to be investigated in reverse translational studies in rodents. A large fraction of rodent and human studies of ketamine have focused on the effects of only a single administration of ketamine, which presents a problem because MDD is typically a persistent illness that may require ongoing treatment with this drug to prevent relapse. Here we review behavioral studies in rodents that used repeated dosing of ketamine in the forced swim test (FST), with an eye toward eventual mechanistic studies. A subset of these studies carried out additional experiments with only a single injection of ketamine for comparison, and several studies used chronic psychosocial stress, where stress is a known causative factor in some cases of MDD. We find that repeated ketamine can in some cases paradoxically produce increases in immobility in the FST, especially at high doses such as 50 or 100 mg/kg. Several studies however provide evidence that repeated dosing is more effective than a single dose at decreasing immobility, including behavioral effects that last longer. Collectively, this growing literature suggests that repeated dosing of ketamine has prominent depression-related effects in rodents, and further investigation may help optimize the use of this drug in humans experiencing MDD.
Collapse
Affiliation(s)
- Ridge G Weston
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Yao Y, Wang X, Gao J. LncRNA KCNQ1OT1 Sponges miR-206 to Ameliorate Neural Injury Induced by Anesthesia via Up-Regulating BDNF. Drug Des Devel Ther 2020; 14:4789-4800. [PMID: 33204065 PMCID: PMC7667201 DOI: 10.2147/dddt.s256319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Widely used in anesthesia, ketamine is reported to induce neurotoxicity in patients. This study aimed to investigate the molecular regulatory mechanism of long non-coding RNA (lncRNA) KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in ameliorating ketamine-induced neural injury. MATERIALS AND METHODS Sprague-Dawley rats were intraperitoneally injected with ketamine to induce neuronal injury. PC-12 cells treated with ketamine were used as the cell model. Ketamine-induced aberrant expression of KCNQ1OT1, miR-206 and brain-derived neurotrophic factor (BDNF) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of KCNQ1OT1 and miR-206 on ketamine-induced neural injury in PC-12 cells were then examined by MTT and LDH assay. The regulatory relationships between KCNQ1OT1 and miR-206, and miR-206 and BDNF were detected by dual-luciferase reporter assay. RESULTS Ketamine induced the apoptosis of neurons of the hippocampus in rats, and the apoptosis of PC-12 cells, accompanied by down-regulation of KCNQ1OT1 and BDNF expressions, and up-regulation of miR-206 expression. Overexpression of KCNQ1OT1 enhanced the resistance to apoptosis of PC-12 cells and significantly ameliorated ketamine-induced nerve injury, while transfection of miR-206 had opposite effects. Mechanistically, KCNQ1OT1 could target miR-206 and reduce its expression level, in turn indirectly increase the expression level of BDNF, and play a protective role in neural injury. CONCLUSION KCNQ1OT1/miR-206/BDNF axis is demonstrated to be an important regulatory mechanism in regulating ketamine-induced neural injury. Our study helps to clarify the mechanism by which ketamine exerts its toxicological effects and provides clues for the neuroprotection during anesthesia.
Collapse
Affiliation(s)
- Yao Yao
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang441021, Hubei, People’s Republic of China
| | - Xuesong Wang
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang441021, Hubei, People’s Republic of China
| | - Jin Gao
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang441021, Hubei, People’s Republic of China
| |
Collapse
|
16
|
Franco D, Zamudio J, Blevins KM, Núñez-Larios EA, Ricoy UM, Iñiguez SD, Zavala AR. Early-life ketamine exposure attenuates the preference for ethanol in adolescent Sprague-Dawley rats. Behav Brain Res 2020; 389:112626. [PMID: 32361040 DOI: 10.1016/j.bbr.2020.112626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/02/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023]
Abstract
Ketamine, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, produces quick and effective antidepressant results in depressed juvenile and adult individuals. The long-term consequences of using ketamine in juvenile populations are not well known, particularly as it affects vulnerability to drugs of abuse later in life, given that ketamine is also a drug of abuse. Thus, the current study examined whether early-life ketamine administration produces long-term changes in the sensitivity to the rewarding effects of ethanol, as measured using the conditioned place preference (CPP) paradigm. On postnatal day (PD) 21, juvenile male and female rats were pretreated with ketamine (0.0 or 20 mg/kg) for 10 consecutive days (i.e., PD 21-30) and then evaluated for ethanol-induced CPP (0.0, 0.125, 0.5, or 2.0 g/kg) from PD 32-39. Results revealed that early-life ketamine administration attenuated the rewarding properties of ethanol in male rats, as ketamine pretreated rats failed to exhibit ethanol-induced CPP at any dose compared to saline pretreated rats, which showed an increased preference towards the ethanol-paired compartment in a dose-dependent manner. In females, ethanol-induced CPP was generally less robust compared to males, but ketamine pretreatment resulted in a rightward shift in the dose-response curve, given that ketamine pretreated rats needed a higher dose of ethanol compared to saline pretreated rats to exhibit ethanol-induced CPP. When considered together, the findings suggest that early use of ketamine does not appear to enhance the vulnerability to ethanol later in life, but in contrast, it may attenuate the rewarding effects of ethanol.
Collapse
Affiliation(s)
- Daniela Franco
- Department of Psychology, California State University, Long Beach, Long Beach, CA, USA
| | - Jennifer Zamudio
- Department of Psychology, California State University, Long Beach, Long Beach, CA, USA
| | - Kennedy M Blevins
- Department of Psychology, California State University, Long Beach, Long Beach, CA, USA
| | - Eric A Núñez-Larios
- Department of Psychology, California State University, Long Beach, Long Beach, CA, USA
| | - Ulises M Ricoy
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Arturo R Zavala
- Department of Psychology, California State University, Long Beach, Long Beach, CA, USA.
| |
Collapse
|
17
|
Kokane SS, Armant RJ, Bolaños-Guzmán CA, Perrotti LI. Overlap in the neural circuitry and molecular mechanisms underlying ketamine abuse and its use as an antidepressant. Behav Brain Res 2020; 384:112548. [PMID: 32061748 PMCID: PMC7469509 DOI: 10.1016/j.bbr.2020.112548] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/18/2020] [Accepted: 02/07/2020] [Indexed: 02/09/2023]
Abstract
Ketamine, a dissociative anesthetic and psychedelic compound, has revolutionized the field of psychopharmacology by showing robust, and rapid-acting antidepressant activity in patients suffering from major depressive disorder (MDD), suicidal tendencies, and treatment-resistant depression (TRD). Ketamine's efficacy, however, is transient, and patients must return to the clinic for repeated treatment as they experience relapse. This is cause for concern because ketamine is known for its abuse liability, and repeated exposure to drugs of abuse often leads to drug abuse/dependence. Though the mechanism(s) underlying its antidepressant activity is an area of current intense research, both clinical and preclinical evidence shows that ketamine's effects are mediated, at least in part, by molecular adaptations resulting in long-lasting synaptic changes in mesolimbic brain regions known to regulate natural and drug reward. This review outlines our limited knowledge of ketamine's neurobiological and biochemical underpinnings mediating its antidepressant effects and correlates them to its abuse potential. Depression and addiction share overlapping neural circuitry and molecular mechanisms, and though speculative, repeated use of ketamine for the treatment of depression could lead to the development of substance use disorder/addiction, and thus should be tempered with caution. There is much that remains to be known about the long-term effects of ketamine, and our lack of understanding of neurobiological mechanisms underlying its antidepressant effects is a clear limiting factor that needs to be addressed systematically before using repeated ketamine in the treatment of depressed patients.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Psychology, The University of Texas at Arlington, United States
| | - Ross J Armant
- Department of Psychology, The University of Texas at Arlington, United States
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX 77840, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, United States.
| |
Collapse
|
18
|
Polis AJ, Fitzgerald PJ, Hale PJ, Watson BO. Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res 2019; 376:112153. [PMID: 31419519 PMCID: PMC6783386 DOI: 10.1016/j.bbr.2019.112153] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Discovering that the anesthetic drug ketamine has rapidly acting antidepressant effects in many individuals with major depression is one of the most important findings in clinical psychopharmacology in recent decades. The initial report of these effects in human subjects was based on a foundation of rodent preclinical studies carried out in the 1990s, and subsequent investigation has included both further studies in individuals with depression, as well as reverse translational experiments in animal models, especially rodents. While there is general agreement in the rodent literature that ketamine has rapidly-acting, and generally sustained, antidepressant-like properties, there are also points of contention across studies, including the precise mechanism of action of this drug. In this review, we briefly summarize prominent yet variable findings regarding the mechanism of action. We also discuss a combination of similarities and variances in the rodent literature in the antidepressant-like effects of ketamine as a function of dose, species and strain, test, stressor, and presumably sex of the experimenter. We then present previously unpublished mouse strain comparison data suggesting that subanesthetic ketamine does not have robust antidepressant-like properties in unstressed animals, and may actually promote depression-like behavior, in contrast to widely reported findings. We conclude that the data best support the notion of ketamine action principally via NMDA receptor antagonism, transiently boosting glutamatergic (and possibly other) signaling in diverse brain circuits. We also suggest that future studies should address in greater detail the extent to which antidepressant-like properties of this drug are stress-sensitive, in an effort to better model major depression present in humans.
Collapse
Affiliation(s)
- Andrew J Polis
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Paul J Fitzgerald
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Pho J Hale
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Brendon O Watson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America.
| |
Collapse
|
19
|
Zaccarelli-Magalhães J, Fukushima AR, Moreira N, Manes M, de Abreu GR, Ricci EL, Waziry PAF, Spinosa HDS. Preclinical toxicological study of prolonged exposure to ketamine as an antidepressant. Pharmacol Rep 2019; 72:24-35. [PMID: 32016837 DOI: 10.1007/s43440-019-00014-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Depression is one of the most common mentally debilitating diseases in the world. Ketamine has been recently identified as a potential novel antidepressant. Further animal model evaluations of the use of ketamine as an antidepressant are necessary to determine safety parameters for clinical use. Therefore, the objective of this study was to perform toxicological tests of prolonged treatment using three different doses of ketamine in adult male rats. METHODS The animals were divided into four groups: three treated with 5, 10 or 20 mg/kg of ketamine and a control group treated with saline solution. Intraperitoneal route of treatment was administered daily for 3 weeks. Body weight, water and food intake were measured once a week, as well as evaluation of the functional observational battery, which includes methodic monitoring of motor activity, motor coordination, behavioral changes, and sensory/motor reflex responses. Upon completion of treatment period, all animals were euthanized by decapitation followed by immediate collection of samples, which included brain structures and blood for neurochemical, hematological and biochemical analyses. RESULTS Rats treated with the highest tested dosage (20 mg/kg) of ketamine had lower weight gain in the 1st and 2nd weeks of treatment and all experimental groups had measurable alterations in the serotoninergic system. CONCLUSIONS Our data indicate that the alterations observed are minor and due to a predicted mechanism of action, which implies that ketamine is a promising drug for repurposing as an antidepressant.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil.
| | - André Rinaldi Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Natalia Moreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Marianna Manes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Gabriel Ramos de Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Esther Lopes Ricci
- Health Science Institute, Presbiterian Mackenzie University, Rua Da Consolação, 930, São Paulo, 01302-907, Brazil
- School of Health Science IGESP, Rua da Consolação, 1025, São Paulo, 01301-000, Brazil
| | - Paula A Faria Waziry
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Drive, Fort Lauderdale, FL, 33328, USA
| | - Helenice de Souza Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| |
Collapse
|
20
|
Dhangar RR, Kale PP, Kadu PK, Prabhavalkar K. Possible Benefits of Considering Glutamate with Melatonin or Orexin or Oxytocin as a Combination Approach in the Treatment of Anxiety. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00207-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Trujillo KA, Heller CY. Ketamine sensitization: Influence of dose, environment, social isolation and treatment interval. Behav Brain Res 2019; 378:112271. [PMID: 31593791 DOI: 10.1016/j.bbr.2019.112271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Ketamine is a dissociative anesthetic first developed in the 1960s but is increasingly used at subanesthetic doses for both clinical and non-clinical purposes. There is evidence from human recreational users of compulsive use and addiction. Sensitization is an increase in an effect of a drug with repeated use that is thought to be important in the development of addiction. Research on psychomotor stimulants has shown the development of sensitization in laboratory animals to be modified by factors that influence addiction. In the current paper we describe four experiments on the development of sensitization in laboratory rats aimed at determining if ketamine sensitization is also influenced by factors thought to be important in addiction. Adult, male Sprague-Dawley rats received ketamine (5, 10, 20 or 50 mg/kg i.p.) for five or more days and the development of locomotor sensitization was followed. Experiment 1 examined the ability of low doses of ketamine to produce sensitization and found sensitization at 5, 10 and 20 mg/kg. Experiment 2 examined the influence of environmental context and found that ketamine sensitization (20 mg/kg) was greater when administration occurred in a novel environment (the experimental apparatus) than in home cages. Experiment 3 found that ketamine sensitization (20 mg/kg) did not occur when animals were housed in social isolation but occurred readily in pair-housed animals. Finally, Experiment 4 found that ketamine sensitization (20 or 50 mg/kg) was similar whether drug was administered daily or at 3-day intervals. Together, the results demonstrate that ketamine sensitization is robust and reliable, occurring under a variety of circumstances. Moreover, ketamine sensitization is influenced by factors that influence the development of addiction in humans. The current results may lead to a better understanding of ketamine abuse and addiction and may help inform clinical use of the drug.
Collapse
Affiliation(s)
- Keith A Trujillo
- Department of Psychology and Office for Training, Research, and Education in the Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096-0001, USA.
| | - Colleen Y Heller
- Department of Psychology and Office for Training, Research, and Education in the Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096-0001, USA
| |
Collapse
|
22
|
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109668. [PMID: 31207274 DOI: 10.1016/j.pnpbp.2019.109668] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence demonstrating that dysfunction of glutamatergic neurotransmission, particularly via N-methyl-d-aspartate (NMDA) receptors, is involved in the pathophysiology of major depressive disorder (MDD). Several studies have revealed an altered expression of NMDA receptor subtypes and impaired NMDA receptor-mediated intracellular signaling pathways in brain circuits of patients with MDD. Clinical studies have demonstrated that NMDA receptor antagonists, particularly ketamine, have rapid antidepressant effects in treatment-resistant depression, however, neurobiological mechanisms are not completely understood. Growing body of evidence suggest that signal transduction pathways involved in synaptic plasticity play critical role in molecular mechanisms underlying rapidly acting antidepressant properties of ketamine and other NMDAR antagonists in MDD. Discovering the molecular mechanisms underlying the unique antidepressant actions of ketamine will facilitate the development of novel fast acting antidepressants which lack undesirable effects of ketamine. This review provides a critical examination of the NMDA receptor involvement in the neurobiology of MDD including analyses of alterations in NMDA receptor subtypes and their interactive signaling cascades revealed by postmortem studies. Furthermore, to elucidate mechanisms underlying rapid-acting antidepressant properties of NMDA receptor antagonists we discussed their effects on the neuroplasticity, mostly based on signaling systems involved in synaptic plasticity of mood-related neurocircuitries.
Collapse
Affiliation(s)
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; New Jersey Institute of Technology, Newark, NJ, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; Department of Psychiatry, University Tuebingen, Germany
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
23
|
Zhang M, Radford KD, Driscoll M, Purnomo S, Kim J, Choi KH. Effects of subanesthetic intravenous ketamine infusion on neuroplasticity-related proteins in the prefrontal cortex, amygdala, and hippocampus of Sprague-Dawley rats. IBRO Rep 2019; 6:87-94. [PMID: 30723838 PMCID: PMC6350099 DOI: 10.1016/j.ibror.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Ketamine, a multimodal dissociative anesthetic, is a powerful analgesic administered following trauma due to its hemodynamic and respiratory stability. However, ketamine can cause hallucination and dissociation which may adversely impact traumatic memory after an injury. The effects of ketamine on proteins implicated in neural plasticity are unclear due to different doses, routes, and timing of drug administration in previous studies. Here, we investigated the effects of a single intravenous (IV) ketamine infusion on protein levels in three brain regions of rats. Adult male Sprague-Dawley rats with indwelling IV catheters underwent an auditory fear conditioning (three pairings of tone and mild footshock 0.8 mA, 0.5 s) and received a high dose of IV ketamine (0 or 40 mg/kg/2 h) infusion (Experiment 1). In a follow-up study, animals received a low dose of IV ketamine (0 or 10 mg/kg/2 h) infusion (Experiment 2). Two hours after the infusion, brain tissue from the medial prefrontal cortex (mPFC), hippocampus, and amygdala were collected for western blot analyses. Protein levels of a transcription factor (c-Fos), brain-derived neurotrophic factor (BDNF), and phosphorylated extracellular signal-regulated kinase (pERK) were quantified in these regions. The 40 mg/kg ketamine infusion increased c-Fos levels in the mPFC and amygdala as well as pERK levels in the mPFC and hippocampus. The 10 mg/kg ketamine infusion increased BDNF levels in the amygdala, but decreased pERK levels in the mPFC and hippocampus. These findings suggest that a clinically relevant route of ketamine administration produces dose-dependent and brain region-specific effects on proteins involved in neuroplasticity.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Mercedes Driscoll
- National Capital Consortium Psychiatry Residency Program, Walter Reed National Military Medical Center, Bethesda, MD 20814, United States
| | - Salsabila Purnomo
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Jean Kim
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Kwang H. Choi
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| |
Collapse
|
24
|
Starowicz G, Jarosz M, Frąckiewicz E, Grzechnik N, Ostachowicz B, Nowak G, Mlyniec K. Long-lasting antidepressant-like activity of the GPR39 zinc receptor agonist TC-G 1008. J Affect Disord 2019; 245:325-334. [PMID: 30419533 DOI: 10.1016/j.jad.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The discovery of the zinc-sensing receptor, has provided new possibilities for explaining the neurobiology of zinc. Recent studies indicate that the GPR39 zinc receptor may play an important role in the pathogenesis of depression as well as in the antidepressant mechanism of action. METHODS In this study we evaluated the time-course of the antidepressant response of the GPR39 agonist (TC-G 1008), imipramine, ZnCl2 and MK-801 in the forced swim test in mice 30 min, 3 h, 6 h and 24 h after acute drug administration as well as after 14-day treatment. Zinc level was measured in serum of mice. BDNF protein level was evaluated in hippocampus following both acute and chronic TC-G 1008 treatment. RESULTS A single administration of the GPR39 agonist caused an antidepressant-like effect lasting up to 24 h following the injection, which is longer than the effect of imipramine, ZnCl2 and MK-801. Chronic treatment with these compounds caused a decrease in immobility time in the FST. Serum zinc concentrations showed an increased level following chronic ZnCl2 administration, but not following administration of TC-G 1008, imipramine or MK-801. We also observed some tendencies for increased BDNF following acute TC-G 1008 treatment. LIMITATIONS TC-G 1008 is new drug designed to study GPR39 therefore additional pharmacodynamic and pharmacokinetic properties in preclinical studies are required. CONCLUSION This study shows for the first time the long-lasting antidepressant effect of the GPR39 agonist in comparison with imipramine, ZnCl2 and MK-801. Our findings suggest that GPR39 should be considered as a target in efforts to develop new antidepressant drugs.
Collapse
Affiliation(s)
- Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Magdalena Jarosz
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Ewelina Frąckiewicz
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Natalia Grzechnik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Smetna Street 12, 31-343 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland.
| |
Collapse
|
25
|
Trofimiuk E, Wielgat P, Braszko JJ, Car H. Stress and Ketamine, Bimodal Influence on Cognitive Functions. Behav Brain Res 2018; 360:354-364. [PMID: 30562568 DOI: 10.1016/j.bbr.2018.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
The glutamate N-methyl-D-aspartate receptor (NMDAR) non-selective antagonist, ketamine, has been recently repurposed as a rapidly acting antidepressant, catalyzing the vigorous investigation of glutamate-signaling modulators as novel therapeutic agents for depressive disorders. Beneficial effects of this drug in the quick-acting treatment of depression are recognized. The long-term effects of ketamine have not been known, including the cognitive sphere. It is well acknowledged that prolonged exposure to stress induces depression and cognitive impairment. It seemed reasonable to ask how the long-term ketamine administration would affect stressed animals in the aspect of cognitive functions. In the current study we tested whether it is possible for ketamine, used in prolonged-regimen in rats, to alleviate stress-evoked memory deficits? Stressed (restraint 2 h daily for 21 days) and non-stressed rats (6-weeks-old) were treated with ketamine for 21 days and next subjected to a battery of behavioral tests: for the assessment of working and reference spatial memory (Morris water maze (MWM) and Barnes maze (BM)), stereotypy (stereotypy test - ST), locomotor functions (Open field - OF) and anxiety behavior (Elevated plus maze - EPM). Ketamine administration resulted in a significant stereotype behaviour in rats tested in ST. Stressed rats displayed a significant decline in the spatial working and reference memory. The effect of chronic ketamine administration depended on the type of test and differed between control rats and animals simultaneously exposed to chronic stress. However, in the MWM the impact was quite unequivocal, as we observed an improvement in spatial memory in stressed animals and a deterioration in non-stressed animals after ketamine administration. In the BM, the effect of ketamine changed in successive attempts, from favorable in the initial period to negative at the end of the test in the group of stressed animals and without a significant impact on control animals. We found no significant effects of ketamine on locomotor performance and on the level of anxiety. Taken together, these findings demonstrate that ketamine potently abolishes or prevents some kinds of stress-induced memory impairments and cognitive decline in rats, although in some circumstances, it could even increase damage to memory, especially in unstressed animals. It seems that the prolonged use of ketamine in the prevention of stress-induced memory declines can fulfill its role.
Collapse
Affiliation(s)
- Emil Trofimiuk
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland.
| | - Przemysław Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland
| | - Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland
| |
Collapse
|
26
|
Le Nedelec M, Glue P, Winter H, Goulton C, Medlicott NJ. The effect of route of administration on the enantioselective pharmacokinetics of ketamine and norketamine in rats. J Psychopharmacol 2018; 32:1127-1132. [PMID: 29895202 DOI: 10.1177/0269881118780013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ketamine has been shown to produce a rapid and potent antidepressant response in patients with treatment-resistant depression. Currently ketamine is most commonly administered as a 40-minute intravenous infusion, though it is unknown whether this is the optimal route of administration. AIMS To determine the plasma concentration time course of the R- and S-enantiomers of ketamine and norketamine following administration of ketamine by four different routes of administration. METHODS Plasma from conscious non-anaesthetised rats was collected following administration of ketamine by either subcutaneous (SC), intramuscular (IM), intravenous infusion (IVI) or intravenous bolus (IVB) routes of administration. Concentrations of the enantiomers of ketamine and norketamine were determined by LC/MS. RESULTS Administration by the SC, IM and IVI routes produced an overall similar drug exposure. In contrast, administration by the IVB route produced approximately 15-fold higher peak plasma concentrations for the enantiomers of ketamine and an approximately four-fold lower AUC for the enantiomers of norketamine. CONCLUSIONS Route of administration can significantly influence ketamine and norketamine exposures. These differences may influence safety and tolerability, and potentially drug efficacy in humans. This knowledge adds to current research into the optimisation of the use of ketamine for the treatment of depression.
Collapse
Affiliation(s)
- Martin Le Nedelec
- 1 School of Pharmacy, University of Otago, Dunedin, New Zealand.,2 Department of Psychological Medicine, Dunedin School of Medicine, University of Otago, New Zealand.,3 Department of Physiology, University of New South Wales, Sydney, Australia
| | - Paul Glue
- 2 Department of Psychological Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | | | - Chelsea Goulton
- 3 Department of Physiology, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
27
|
Dandekar MP, Peng T, McPherson DD, Quevedo J, Soares JC, Huang SL. Intravenous infusion of xenon-containing liposomes generates rapid antidepressant-like effects. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:140-149. [PMID: 29559371 DOI: 10.1016/j.pnpbp.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
AIM Similar to ketamine, xenon gas acts as a glutamatergic N-methyl-d-aspartate receptor antagonist, but devoid of propensity to cause untoward effects. Herein, we loaded xenon gas into a liposomal carrier called xenon-containing liposomes (Xe-liposome) for systemic delivery, and investigated its effect as an antidepressant and also analyzed synaptic biomarkers including brain-derived neurotrophic factor (BDNF), protein kinase B (AKT), mammalian target of rapamycin (mTOR), protein kinase C (PKC) and extracellular signal-regulated kinase-1/2 (ERK1/2) in blood and brain. METHODS Xe-liposomes (15 μl/mg) were prepared by a pressurized freeze-thaw method, and injected via the lateral tail vein (0.6 mL/rat) in male Wistar rats. The uncaging of xenon gas from circulating Xe-liposome was facilitated by continuous ultrasound application externally on the neck over the internal common carotid artery. One-hour after Xe-liposome infusion, animals were assessed for depression-like behaviors using a forced swimming test (FST), and spontaneous locomotor activity. Blood, as well as frontal cortex and hippocampal samples were obtained for immunoblotting and/or enzyme-linked immune sorbent assays. RESULTS Acute intravenous infusion of Xe-liposome, at 6 mg/kg, showed an increase in swimming time in the FST (p < 0.006), indicating antidepressant-like phenotypes. Higher doses of Xe-liposomes (9 mg/kg) failed to improve swimming duration. This behavioral discrepancy was not associated with locomotion aberrations, as gross activity of rats remained similar for both doses. In biochemical analyses of frontal cortex, protein levels of BDNF increased by 64%, and enhanced phosphorylation of AKT (43%) and mTOR (93%) was observed at the 6 mg/kg dose level of Xe-liposomes, while these biomarkers and phosphorylated PKC and ERK1/2 levels remained unchanged at the higher dose. Moreover, Xe-liposomal treatment did not change the plasma and protein levels of BDNF, and phosphorylated AKT, mTOR, PKC and ERK1/2 hippocampal expressions. CONCLUSION Xe-liposomes mediate a rapid antidepressant-like effect through activation of AKT/mTOR/BDNF signaling pathway.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA; Department of Biomedical Sciences, The University of Texas Medical School at Houston, USA; Memorial Hermann Heart and Vascular Institute-Texas Medical Center, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA
| | - Shao-Ling Huang
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA.
| |
Collapse
|
28
|
Effectiveness of memantine on depression-like behavior, memory deficits and brain mRNA levels of BDNF and TrkB in rats subjected to repeated unpredictable stress. Pharmacol Rep 2018; 70:600-606. [DOI: 10.1016/j.pharep.2017.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/13/2017] [Accepted: 12/19/2017] [Indexed: 01/20/2023]
|
29
|
Lin T, Dang S, Su Q, Zhang H, Zhang J, Zhang L, Zhang X, Lu Y, Li H, Zhu Z. The Impact and Mechanism of Methylated Metabotropic Glutamate Receptors 1 and 5 in the Hippocampus on Depression-Like Behavior in Prenatal Stress Offspring Rats. J Clin Med 2018; 7:jcm7060117. [PMID: 29882864 PMCID: PMC6025529 DOI: 10.3390/jcm7060117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/06/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
An increasing number of epidemiological investigations and animal models research suggest that prenatal stress (PS) could cause depression-like behavior in the offspring, which is sex specific. However, the underlying mechanisms remain to be elucidated. This study is to investigate the promoter methylation of metabotropic glutamate receptor 1 (mGluR1) and metabotropic Glutamate Receptor 5 (mGluR5) gene modification on PS induced depression-like behavior in offspring rats (OR). PS models were established, with or without 5-aza-2′-deoxycytidine (5-azaD, decitabine) treatment. Animal behavior was assessed by the sucrose preference test (SPT), forced swimming test (FST), and open field test (OFT). The mRNA and protein expression levels of mGluR1 and mGluR5 in the hippocampus of offspring were detected with quantitative real-time PCR and Western blot analysis, respectively. The promoter methylation in the hippocampus of mGluR1 and mGluR5 OR were also analyzed. SPT showed significantly reduced sucrose preference in PS induced OR. FST showed significantly prolonged immobility time in PS induced OR. OFT showed significantly reduced central residence time in PS induced OR and no significantly influence in rearing as well as in frequency of micturition. Moreover, the mRNA, protein expression levels, and gene promoter methylation level of mGluR1 and mGluR5 in the hippocampus were significantly increased in the PS induced male OR, while no significantly influence in the PS induced female OR. Furthermore, the PS induced effects in male OR could be reversed by the microinjection of 5-azaD. In conclusion, our results showed that the promoter methylation of mGluR1 and mGluR5 gene modification is only involved in PS induced depression-like behavior in male OR in a sex-specific manner. These findings might contribute to the understanding of the disease pathogenesis and clinical treatment in future.
Collapse
Affiliation(s)
- Tianwei Lin
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Shaokang Dang
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Qian Su
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Huiping Zhang
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Junli Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Lin Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Xiaoxiao Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Yong Lu
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Hui Li
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Zhongliang Zhu
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
30
|
H3K9 Acetylation of Tph2 Involved in Depression-like Behavior in Male, but not Female, Juvenile Offspring Rat Induced by Prenatal Stress. Neuroscience 2018; 381:138-148. [PMID: 29625215 DOI: 10.1016/j.neuroscience.2018.03.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Increasing evidence has shown that prenatal stress (PS) could cause depression-like behavior in the offspring, which is sex-specific. However, the underlying mechanisms remain to be elucidated. This study is to investigate the involvement of tryptophan hydroxylase 2 (Tph2) H3K9 acetylation (H3K9ac) modification on PS-induced depression-like behavior in juvenile offspring rats (JOR). PS models were established, with or without trichostatin A (TSA) treatment. Animal behavior was assessed by the sucrose preference test (SPT) and forced swimming test (FST). The mRNA and protein expression levels of TPH2 in the dorsal raphenucleus (DRN), hippocampus, and prefrontal cortex were detected with quantitative real-time PCR and Western blot analysis, respectively. The Tph2 H3K9ac levels in the hippocampus were also analyzed. SPT and FST showed significantly reduced sucrose preference and significantly prolonged immobility in PS-induced male juvenile offspring rats (MJOR). Moreover, the mRNA and protein expression levels of TPH2 in the DRN and hippocampus were significantly declined, while the hippocampal Tph2 H3K9ac levels were significantly declined in the PS-induced MJOR. Furthermore, the PS-induced effects in MJOR could be reversed by the microinjection of TSA. However, no significant effects were observed for the female juvenile offspring rats (FJORs). In conclusion, our results showed that the Tph2 H3K9ac modification is only involved in PS-induced depression-like behavior in MJOR, in a sex-specific manner. These findings might contribute to the understanding of the disease pathogenesis and clinical treatment in future.
Collapse
|
31
|
The role of memantine in the treatment of major depressive disorder: Clinical efficacy and mechanisms of action. Eur J Pharmacol 2018; 827:103-111. [PMID: 29551658 DOI: 10.1016/j.ejphar.2018.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Abstract
A developing body of evidence indicates that disturbed glutamate neurotransmission especially through N-methyl-d-aspartate (NMDA) is central to the pathophysiology of major depressive disorder (MDD) and NMDA receptor antagonists have shown therapeutic potential in the MDD treatment. Memantine is an uncompetitive NMDA receptor antagonist, approved for treatment of Alzheimer's disease (AD) that in contrast to other NMDA receptor antagonists at therapeutic doses does not induce highly undesirable side effects. Neuroprotective properties and well tolerability of memantine have been attributed to its unique pharmacological features such as moderate affinity, rapid blocking kinetics and strongly voltage-dependency. In this review we summarized clinical trial evidence of antidepressant effectiveness of memantine and its mechanisms of action. Available data indicate contradictory findings relating to clinical efficacy suggesting further research is necessary in determining as to whether memantine will eventually be an advantageous therapy for MDD. Preclinical data proposed various neurobiological mechanisms underlying antidepressant-like properties of memantine that are responsible for synaptic plasticity and cell survival.
Collapse
|
32
|
Réus GZ, de Moura AB, Silva RH, Resende WR, Quevedo J. Resilience Dysregulation in Major Depressive Disorder: Focus on Glutamatergic Imbalance and Microglial Activation. Curr Neuropharmacol 2018; 16:297-307. [PMID: 28676011 PMCID: PMC5843981 DOI: 10.2174/1570159x15666170630164715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Many studies have been shown an important role of glutamatergic system as well microglial activation in the pathophysiology of major depressive disorder (MDD). In humans most resistant to the development of psychiatric disorders, including MDD, are observed a greater degree of resilience resulting from stress. Less resilience is associated with neuroendocrine and neuroinflammatory markers, as well as with glutamatergic system dysregulation. Thus, this review we highlighted findings from literature identifying the function of glutamatergic system, microglial activation and inflammation in resilience. METHODS We conducted a review of computerized databases from 1970 to 2017. RESULTS There is an association between microglial activation and glutamatergic system activation with stress vulnerability and resilience. CONCLUSIONS Glutamate neurotransmission, including neurotransmitter synthesis, signalling, and glutamate receptor functions and expression all seem to be involved with both stress vulnerability and resilience. Moreover, inflammation and microglial activation mediate individual differences in resilience and the risk of stress-induced MDD.
Collapse
Affiliation(s)
- Gislaine Z. Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Airam B. de Moura
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ritele H. Silva
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Wilson R. Resende
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
33
|
Neves G, Borsoi M, Antonio CB, Pranke MA, Betti AH, Rates SMK. Is Forced Swimming Immobility a Good Endpoint for Modeling Negative Symptoms of Schizophrenia? - Study of Sub-Anesthetic Ketamine Repeated Administration Effects. AN ACAD BRAS CIENC 2017; 89:1655-1669. [PMID: 28832723 DOI: 10.1590/0001-3765201720160844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Immobility time in the forced swimming has been described as analogous to emotional blunting or apathy and has been used for characterizing schizophrenia animal models. Several clinical studies support the use of NMDA receptor antagonists to model schizophrenia in rodents. Some works describe the effects of ketamine on immobility behavior but there is variability in the experimental design used leading to controversial results. In this study, we evaluated the effects of repeated administration of ketamine sub-anesthetic doses in forced swimming, locomotion in response to novelty and novel object recognition, aiming a broader evaluation of the usefulness of this experimental approach for modeling schizophrenia in mice. Ketamine (30 mg/kg/day i.p. for 14 days) induced a not persistent decrease in immobility time, detected 24h but not 72h after treatment. This same administration protocol induced a deficit in novel object recognition. No change was observed in mice locomotion. Our results confirm that repeated administration of sub-anesthetic doses of ketamine is useful in modeling schizophrenia-related behavioral changes in mice. However, the immobility time during forced swimming does not seem to be a good endpoint to evaluate the modeling of negative symptoms in NMDAR antagonist animal models of schizophrenia.
Collapse
Affiliation(s)
- Gilda Neves
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Milene Borsoi
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Camila B Antonio
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Mariana A Pranke
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Andresa H Betti
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Stela M K Rates
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Ortmann CF, Abelaira HM, Réus GZ, Ignácio ZM, Chaves VC, dos Santos TC, de Carvalho P, Carlessi AS, Bruchchen L, Danielski LG, Cardoso SG, de Campos AM, Petronilho F, Rebelo J, dos Santos Morais MO, Vuolo F, Dal-Pizzol F, Streck EL, Quevedo J, Reginatto FH. LC/QTOF profile and preliminary stability studies of an enriched flavonoid fraction ofCecropia pachystachyaTrécul leaves with potential antidepressant-like activity. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/10/2017] [Accepted: 03/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Caroline Flach Ortmann
- Programa de Pós-graduação em Farmácia; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Helena Mendes Abelaira
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Gislaine Zilli Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Zuleide Maria Ignácio
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Vitor Clasen Chaves
- Programa de Pós-graduação em Farmácia; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Talitha Caldas dos Santos
- Programa de Pós-graduação em Farmácia; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Pâmela de Carvalho
- Programa de Pós-graduação em Farmácia; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Anelise Scussel Carlessi
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Livia Bruchchen
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Lucineia G. Danielski
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde; Universidade do Sul de Santa Catarina; Tubarão Santa Catarina Brazil
| | - Simone Gonçalves Cardoso
- Programa de Pós-graduação em Farmácia; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Angela Machado de Campos
- Programa de Pós-graduação em Farmácia; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | - Fabricia Petronilho
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde; Universidade do Sul de Santa Catarina; Tubarão Santa Catarina Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Meline Oliveira dos Santos Morais
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Francieli Vuolo
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - Emilio Luiz Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde; Universidade do Extremo Sul Catarinense; Criciúma Santa Catarina Brazil
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences; The University of Texas Medical School at Houston; Houston Texas USA
| | - Flávio Henrique Reginatto
- Programa de Pós-graduação em Farmácia; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| |
Collapse
|
35
|
Ramaker MJ, Dulawa SC. Identifying fast-onset antidepressants using rodent models. Mol Psychiatry 2017; 22:656-665. [PMID: 28322276 DOI: 10.1038/mp.2017.36] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Depression is a leading cause of disability worldwide and a major contributor to the burden of suicide. A major limitation of classical antidepressants is that 2-4 weeks of continuous treatment is required to elicit therapeutic effects, prolonging the period of depression, disability and suicide risk. Therefore, the development of fast-onset antidepressants is crucial. Preclinical identification of fast-onset antidepressants requires animal models that can accurately predict the delay to therapeutic onset. Although several well-validated assay models exist that predict antidepressant potential, few thoroughly tested animal models exist that can detect therapeutic onset. In this review, we discuss and assess the validity of seven rodent models currently used to assess antidepressant onset: olfactory bulbectomy, chronic mild stress, chronic forced swim test, novelty-induced hypophagia (NIH), novelty-suppressed feeding (NSF), social defeat stress, and learned helplessness. We review the effects of classical antidepressants in these models, as well as six treatments that possess fast-onset antidepressant effects in the clinic: electroconvulsive shock therapy, sleep deprivation, ketamine, scopolamine, GLYX-13 and pindolol used in conjunction with classical antidepressants. We also discuss the effects of several compounds that have yet to be tested in humans but have fast-onset antidepressant-like effects in one or more of these antidepressant onset sensitive models. These compounds include selective serotonin (5-HT)2C receptor antagonists, a 5-HT4 receptor agonist, a 5-HT7 receptor antagonist, NMDA receptor antagonists, a TREK-1 receptor antagonist, mGluR antagonists and (2R,6R)-HNK. Finally, we provide recommendations for identifying fast-onset antidepressants using rodent behavioral models and molecular approaches.
Collapse
Affiliation(s)
- M J Ramaker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - S C Dulawa
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
Sun X, Wang M, Wang Y, Lian B, Sun H, Wang G, Li Q, Sun L. Melatonin produces a rapid onset and prolonged efficacy in reducing depression-like behaviors in adult rats exposed to chronic unpredictable mild stress. Neurosci Lett 2017; 642:129-135. [PMID: 28082153 DOI: 10.1016/j.neulet.2017.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 01/15/2023]
Abstract
The present study was aimed at evaluating the rapidity and duration of melatonin as an antidepressant in a rat model of depression. The rats were subjected to a six-week period of unpredictable mild stress followed by melatonin treatment. Three groups of rats were included in this study: Controls (CON - no stress exposure), Chronic Unpredictable Mild Stress (CUS) and CUS followed by melatonin (MT). Stressors consisted of exposure to rotation on a shaker, placement in a chamber maintained at 4°C, lights off for 3h, lights on overnight, exposure to an aversive odor, 45° tilted cages, food and water deprivation and crowding and isolated housing. Subsequently, the saline vehicle (CUS) or melatonin was administered at a dose of 10mg/kg for 14days period. Body weight and behavioral tests were used to evaluate depression-like behavior and its recovery following melatonin treatment. While body weight increases were significantly lower in rats exposed to CUS versus CON, body weights of the MT group increased significantly following melatonin treatment as compared with the CUS group. With regard to results obtained with behavioral assays indicative of depression, rapid and long-term functional recoveries in depression were observed in the MT as compared to the CUS group. The results indicate that not only does melatonin induce an antidepressant-like action within this rat model of depression, but does so with a rapid onset and prolonged efficacy. As most current treatments for depression require an extended period of administration, our current results suggest that melatonin may prove to be a particularly effect agent to promote a rapid onset and prolonged behavioral benefits in the treatment of depression.
Collapse
Affiliation(s)
- Xiaoran Sun
- Department of Psychology, Weifang Medical University, 7166(#) Baotong West Street, 261053, PR China
| | - Mengting Wang
- Department of Psychology, Weifang Medical University, 7166(#) Baotong West Street, 261053, PR China
| | - Yiqiang Wang
- School of Bioscience and Technology, Weifang Medical University, 7166(#) Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Bo Lian
- School of Bioscience and Technology, Weifang Medical University, 7166(#) Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Hongwei Sun
- Department of Psychology, Weifang Medical University, 7166(#) Baotong West Street, 261053, PR China
| | - Gang Wang
- Laboratory for Cognitive Neuroscience, Weifang Medical University, 7166(#) Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, PR China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, 7166(#) Baotong West Street, 261053, PR China; Laboratory for Cognitive Neuroscience, Weifang Medical University, 7166(#) Baotong West Street, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
37
|
Ketamine modulates hippocampal neurogenesis and pro-inflammatory cytokines but not stressor induced neurochemical changes. Neuropharmacology 2017; 112:210-220. [DOI: 10.1016/j.neuropharm.2016.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 12/28/2022]
|
38
|
Abelaira HM, Réus GZ, Ignácio ZM, dos Santos MAB, de Moura AB, Matos D, Demo JP, da Silva JBI, Danielski LG, Petronilho F, Carvalho AF, Quevedo J. Ketamine Exhibits Different Neuroanatomical Profile After Mammalian Target of Rapamycin Inhibition in the Prefrontal Cortex: the Role of Inflammation and Oxidative Stress. Mol Neurobiol 2016; 54:5335-5346. [DOI: 10.1007/s12035-016-0071-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/18/2016] [Indexed: 01/08/2023]
|
39
|
do Vale EM, Xavier CC, Nogueira BG, Campos BC, de Aquino PEA, da Costa RO, Leal LKAM, de Vasconcelos SMM, Neves KRT, de Barros Viana GS. Antinociceptive and Anti-Inflammatory Effects of Ketamine and the Relationship to Its Antidepressant Action and GSK3 Inhibition. Basic Clin Pharmacol Toxicol 2016; 119:562-573. [PMID: 27390215 DOI: 10.1111/bcpt.12637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/30/2016] [Indexed: 12/20/2022]
Abstract
Ketamine (KET), a NMDA antagonist, exerts an antidepressant effect at subanaesthetic doses and possesses analgesic and anti-inflammatory activities. We evaluated the involvement of KET antinociceptive and anti-inflammatory effects with its antidepressant action. Male Swiss mice were subjected to formalin, carrageenan-induced paw oedema and forced swimming tests, for assessing antinociceptive, anti-inflammatory and antidepressant effects. The treatment groups were as follows: control, KET (2, 5 and 10 mg/kg), lithium (LI: 5 mg/kg) and KET2 + LI5 combination. Immunohistochemistry analyses (TNF-α, iNOS, COX-2 and GSK3) in oedematous paws were performed. KET5 and KET10 reduced licking times in neurogenic (22 and 38%) and inflammatory (67 and 78%) phases of the formalin test, respectively, as related to controls. While LI5 inhibited the second phase by 24%, the licking time was inhibited by 26 and 59% in the KET2 + LI5 group (first and second phases). Furthermore, oedema volumes were reduced by 37 and 45% in the KET5 and KET10 groups, respectively. Oedema reductions were 29% in the LI5 group and 48% in the KET2 + LI5 group. In the forced swimming test, there were 23, 38 and 53% decreases in the immobility time in KET2, KET5 and KET10 groups, respectively. While LI5 caused no significant effect, decreases of 52% were observed with KET2 + LI5. KET also decreased TNF-α, iNOS, COX-2 and GSK3 immunostainings in oedematous paws, effects intensified with KET2 + LI5. We showed that KET presents antinociceptive and anti-inflammatory effects associated with its antidepressant response. Furthermore, our results indicate the close involvement of GSK3 inhibition and blockade of inflammatory responses, in the antidepressant drug effect.
Collapse
Affiliation(s)
- Eduardo Mulato do Vale
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil
| | - Cecília Coelho Xavier
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil
| | - Brenda Gomes Nogueira
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil
| | - Bruna Caldas Campos
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil
| | | | | | | | | | | | - Glauce Socorro de Barros Viana
- Faculty of Medicine, Estácio of Juazeiro do Norte (FMJ), Juazeiro do Norte, Ceará, Brazil.,Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| |
Collapse
|
40
|
Thelen C, Sens J, Mauch J, Pandit R, Pitychoutis PM. Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice. Behav Brain Res 2016; 312:305-12. [PMID: 27343934 DOI: 10.1016/j.bbr.2016.06.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
One of the most striking discoveries in the treatment of major depression was the finding that infusion of a single sub-anesthetic dose of ketamine induces rapid and sustained antidepressant effects in treatment-resistant depressed patients. However, ketamine's antidepressant-like actions are transient and can only be sustained by repeated drug treatment. Despite the fact that women experience major depression at roughly twice the rate of men, research regarding the neurobiological antidepressant-relevant effects of ketamine has focused almost exclusively on the male sex. Importantly, knowledge regarding the sex-differentiated effects, the frequency and the dose on which repeated ketamine administration stops being beneficial, is limited. In the current study, we investigated the behavioral, neurochemical and synaptic molecular effects of repeated ketamine treatment (10mg/kg; 21days) in male and female C57BL/6J mice. We report that ketamine induced beneficial antidepressant-like effects in male mice, but induced both anxiety-like (i.e., decreased time spent in the center of the open field arena) and depressive-like effects (i.e., enhanced immobility duration in the forced swim test; FST) in their female counterparts. Moreover, repeated ketamine treatment induced sustained sex-differentiated neurochemical and molecular effects, as it enhanced hippocampal synapsin protein levels and serotonin turnover in males, but attenuated glutamate and aspartate levels in female mice. Taken together, our findings indicate that repeated ketamine treatment induces opposite behavioral effects in male and female mice, and thus, present data have far-reaching implications for the sex-oriented use of ketamine in both experimental and clinical research settings.
Collapse
Affiliation(s)
- Connor Thelen
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, 45469-2320 OH, USA
| | - Jonathon Sens
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, 45469-2320 OH, USA
| | - Joseph Mauch
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, 45469-2320 OH, USA
| | - Radhika Pandit
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, 45469-2320 OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, 45469-2320 OH, USA.
| |
Collapse
|
41
|
Holubova K, Kleteckova L, Skurlova M, Ricny J, Stuchlik A, Vales K. Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology (Berl) 2016; 233:2077-2097. [PMID: 27004790 DOI: 10.1007/s00213-016-4256-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of our study was to test whether ketamine produces an antidepressant effect in animal model of olfactory bulbectomy and assess the role of mammalian target of rapamycin (mTOR) pathway in ketamine's antidepressant effect. METHODS Bulbectomized (OBX) rats and sham controls were assigned to four subgroups according to the treatment they received (ketamine, saline, ketamine + rapamycin, and saline + rapamycin). The animals were subjected to open field (OF), elevated plus maze (EPM), passive avoidance (PA), Morris water maze (MWM), and Carousel maze (CM) tests. Blood samples were collected before and after drug administration for analysis of phosphorylated mTOR level. After behavioral testing, brains were removed for evaluation of brain-derived neurotrophic factor (BDNF) in prefrontal cortex (PFC) and hippocampus. RESULTS Ketamine normalized hyperactivity of OBX animals in EPM and increased the time spent in open arms. Rapamycin pretreatment resulted in elimination of ketamine effect in EPM test. In CM test, ketamine + rapamycin administration led to cognitive impairment not observed in saline-, ketamine-, or saline + rapamycin-treated OBX rats. Prefrontal BDNF content was significantly decreased, and level of mTOR was significantly elevated in OBX groups. CONCLUSIONS OBX animals significantly differed from sham controls in most of the tests used. Treatment had more profound effect on OBX phenotype than controls. Pretreatment with rapamycin eliminated the anxiolytic and antidepressant effects of ketamine in task-dependent manner. The results indicate that ketamine + rapamycin application resulted in impaired stress responses manifested by cognitive deficits in active place avoidance (CM) test. Intensity of stressor (mild vs. severe) used in the behavioral tests had opposite effect on controls and on OBX animals.
Collapse
Affiliation(s)
- Kristina Holubova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Lenka Kleteckova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Martina Skurlova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Jan Ricny
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Ales Stuchlik
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic
| | - Karel Vales
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic. .,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic.
| |
Collapse
|
42
|
Réus GZ, Abaleira HM, Titus SE, Arent CO, Michels M, da Luz JR, dos Santos MAB, Carlessi AS, Matias BI, Bruchchen L, Steckert AV, Ceretta LB, Dal-Pizzol F, Quevedo J. Effects of ketamine administration on the phosphorylation levels of CREB and TrKB and on oxidative damage after infusion of MEK inhibitor. Pharmacol Rep 2016; 68:177-84. [DOI: 10.1016/j.pharep.2015.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/31/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022]
|
43
|
Ortmann CF, Réus GZ, Ignácio ZM, Abelaira HM, Titus SE, de Carvalho P, Arent CO, Dos Santos MAB, Matias BI, Martins MM, de Campos AM, Petronilho F, Teixeira LJ, Morais MOS, Streck EL, Quevedo J, Reginatto FH. Enriched Flavonoid Fraction from Cecropia pachystachya Trécul Leaves Exerts Antidepressant-like Behavior and Protects Brain Against Oxidative Stress in Rats Subjected to Chronic Mild Stress. Neurotox Res 2016; 29:469-83. [PMID: 26762362 DOI: 10.1007/s12640-016-9596-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/10/2015] [Accepted: 01/02/2016] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to assess the effect of an enriched C-glycosyl flavonoids fraction (EFF-Cp) from Cecropia Pachystachya leaves on behavior, mitochondrial chain function, and oxidative balance in the brain of rats subjected to chronic mild stress. Male Wistar rats were divided into experimental groups (saline/no stress, saline/stress, EFF-Cp/no stress, and EFF-Cp/stress). ECM groups were submitted to stress for 40 days. On the 35th ECM day, EFF-Cp (50 mg/kg) or saline was administrated and the treatments lasted until the 42nd day. On the 41st and 42nd days, the animals were submitted to the splash test and the forced swim test. After these behavioral tests, the enzymatic activity of mitochondrial chain complexes and oxidative stress were analyzed. EFF-Cp reversed the depressive-like behavior induced by ECM. It also reversed the increase in thiobarbituric acid reactive species, myeloperoxidase activity, and nitrite/nitrate concentrations in some brain regions. The reduced activities of the antioxidants superoxide dismutase and catalase in some brain regions were also reversed by EFF-Cp. The most pronounced effect of EFF-Cp on mitochondrial complexes was an increase in complex IV activity in all studied regions. Thus, it is can be concluded that EFF-Cp exerts an antidepressant-like effect and that oxidative balance may be an important physiological process underlying these effects.
Collapse
Affiliation(s)
- Caroline F Ortmann
- Programa de Pós-graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| | - Zuleide M Ignácio
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Helena M Abelaira
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Stephanie E Titus
- Department of Psychiatry and Behavioral Sciences, Center for Translational Psychiatry, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Pâmela de Carvalho
- Programa de Pós-graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Camila O Arent
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Maria Augusta B Dos Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Beatriz I Matias
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Maryane M Martins
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Angela M de Campos
- Programa de Pós-graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabricia Petronilho
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Leticia J Teixeira
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Meline O S Morais
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.,Department of Psychiatry and Behavioral Sciences, Center for Translational Psychiatry, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Flávio H Reginatto
- Programa de Pós-graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
44
|
Amat J, Dolzani SD, Tilden S, Christianson JP, Kubala KH, Bartholomay K, Sperr K, Ciancio N, Watkins LR, Maier SF. Previous Ketamine Produces an Enduring Blockade of Neurochemical and Behavioral Effects of Uncontrollable Stress. J Neurosci 2016; 36:153-61. [PMID: 26740657 PMCID: PMC4701957 DOI: 10.1523/jneurosci.3114-15.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/04/2015] [Accepted: 11/13/2015] [Indexed: 01/05/2023] Open
Abstract
Recent interest in the antidepressant and anti-stress effects of subanesthetic doses of ketamine, an NMDA receptor antagonist, has identified mechanisms whereby ketamine reverses the effect of stress, but little is known regarding the prophylactic effect ketamine might have on future stressors. Here we investigate the prophylactic effect of ketamine against neurochemical and behavioral changes that follow inescapable, uncontrollable tail shocks (ISs) in Sprague Dawley rats. IS induces increased anxiety, which is dependent on activation of serotonergic (5-HT) dorsal raphe nucleus (DRN) neurons that project to the basolateral amygdala (BLA). Ketamine (10 mg/kg, i.p.) administered 2 h, 1 week, or 2 weeks before IS prevented the increased extracellular levels of 5-HT in the BLA typically produced by IS. In addition, ketamine administered at these time points blocked the decreased juvenile social investigation produced by IS. Microinjection of ketamine into the prelimbic (PL) region of the medial prefrontal cortex duplicated the effects of systemic ketamine, and, conversely, systemic ketamine effects were prevented by pharmacological inhibition of the PL. Although IS does not activate DRN-projecting neurons from the PL, IS did so after ketamine, suggesting that the prophylactic effect of ketamine is a result of altered functioning of this projection. SIGNIFICANCE STATEMENT The reported data show that systemic ketamine, given up to 2 weeks before a stressor, blunts behavioral and neurochemical effects of the stressor. The study also advances understanding of the mechanisms involved and suggests that ketamine acts at the prelimbic cortex to sensitize neurons that project to and inhibit the DRN.
Collapse
Affiliation(s)
- Jose Amat
- Department of Psychology and Neuroscience and the Center for Neuroscience and
| | - Samuel D Dolzani
- Department of Psychology and Neuroscience and the Center for Neuroscience and Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80305, and
| | - Scott Tilden
- Department of Psychology and Neuroscience and the Center for Neuroscience and
| | - John P Christianson
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Kenneth H Kubala
- Department of Psychology and Neuroscience and the Center for Neuroscience and
| | - Kristi Bartholomay
- Department of Psychology and Neuroscience and the Center for Neuroscience and
| | - Katherine Sperr
- Department of Psychology and Neuroscience and the Center for Neuroscience and
| | - Nicholas Ciancio
- Department of Psychology and Neuroscience and the Center for Neuroscience and
| | - Linda R Watkins
- Department of Psychology and Neuroscience and the Center for Neuroscience and
| | - Steven F Maier
- Department of Psychology and Neuroscience and the Center for Neuroscience and
| |
Collapse
|
45
|
Réus GZ, Abelaira HM, Tuon T, Titus SE, Ignácio ZM, Rodrigues ALS, Quevedo J. Glutamatergic NMDA Receptor as Therapeutic Target for Depression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 103:169-202. [DOI: 10.1016/bs.apcsb.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Belujon P, Grace AA. Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc Biol Sci 2015; 282:rspb.2014.2516. [PMID: 25788601 DOI: 10.1098/rspb.2014.2516] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although, historically, the norepinephrine system has attracted the majority of attention in the study of the stress response, the dopamine system has also been consistently implicated. It has long been established that stress plays a crucial role in the pathogenesis of psychiatric disorders. However, the neurobiological mechanisms that mediate the stress response and its effect in psychiatric diseases are not well understood. The dopamine system can play distinct roles in stress and psychiatric disorders. It is hypothesized that, even though the dopamine (DA) system forms the basis for a number of psychiatric disorders, the pathology is likely to originate in the afferent structures that are inducing dysregulation of the DA system. This review explores the current knowledge of afferent modulation of the stress/DA circuitry, and presents recent data focusing on the effect of stress on the DA system and its relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Pauline Belujon
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
47
|
Grimm O, Gass N, Weber-Fahr W, Sartorius A, Schenker E, Spedding M, Risterucci C, Schweiger JI, Böhringer A, Zang Z, Tost H, Schwarz AJ, Meyer-Lindenberg A. Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats. Psychopharmacology (Berl) 2015; 232:4231-41. [PMID: 26184011 DOI: 10.1007/s00213-015-4022-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/06/2015] [Indexed: 12/27/2022]
Abstract
RATIONALE Aberrant prefrontal-hippocampal (PFC-HC) connectivity is disrupted in several psychiatric and at-risk conditions. Advances in rodent functional imaging have opened the possibility that this phenotype could serve as a translational imaging marker for psychiatric research. Recent evidence from functional magnetic resonance imaging (fMRI) studies has indicated an increase in PFC-HC coupling during working-memory tasks in both schizophrenic patients and at-risk populations, in contrast to a decrease in resting-state PFC-HC connectivity. Acute ketamine challenge is widely used in both humans and rats as a pharmacological model to study the mechanisms of N-methyl-D-aspartate (NMDA) receptor hypofunction in the context of psychiatric disorders. OBJECTIVES We aimed to establish whether acute ketamine challenge has consistent effects in rats and humans by investigating resting-state fMRI PFC-HC connectivity and thus to corroborate its potential utility as a translational probe. METHODS Twenty-four healthy human subjects (12 females, mean age 25 years) received intravenous doses of either saline (placebo) or ketamine (0.5 mg/kg body weight). Eighteen Sprague-Dawley male rats received either saline or ketamine (25 mg/kg). Resting-state fMRI measurements took place after injections, and the data were analyzed for PFC-HC functional connectivity. RESULTS In both species, ketamine induced a robust increase in PFC-HC coupling, in contrast to findings in chronic schizophrenia. CONCLUSIONS This translational comparison demonstrates a cross-species consistency in pharmacological effect and elucidates ketamine-induced alterations in PFC-HC coupling, a phenotype often disrupted in pathological conditions, which may give clue to understanding of psychiatric disorders and their onset, and help in the development of new treatments.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Natalia Gass
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.,Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Esther Schenker
- Neuroscience Drug Discovery Unit, Institut de Recherches Servier, Croissy s/Seine, France
| | | | - Celine Risterucci
- CNS Biomarker, Pharmaceuticals Division, F. Hoffmann-La Roche, Basel, Switzerland
| | - Janina Isabel Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Andreas Böhringer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Adam James Schwarz
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| |
Collapse
|
48
|
The role of glutamatergic, GABA-ergic, and cholinergic receptors in depression and antidepressant-like effect. Pharmacol Rep 2015; 68:443-50. [PMID: 26922551 DOI: 10.1016/j.pharep.2015.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/23/2022]
Abstract
Depression is one of the most common mental disorders and social issue worldwide. Although there are many antidepressants available, the effectiveness of the therapy is still a serious issue. Moreover, there are many limitations of currently used antidepressants, including slow onset of action, numerous side effects, or the fact that many patients do not respond adequately to the treatment. Therefore, scientists are searching for new compounds with different mechanisms of action. Numerous data indicate the important role of glutamatergic, GABA-ergic, and cholinergic receptors in the pathomechanism of major depressive disorder. This review presents the role of glutamatergic, GABA-ergic, and cholinergic receptors in depression and antidepressant-like effect.
Collapse
|
49
|
Leffa DD, Valvassori SS, Varela RB, Lopes-Borges J, Daumann F, Longaretti LM, Dajori ALF, Quevedo J, Andrade VM. Effects of palatable cafeteria diet on cognitive and noncognitive behaviors and brain neurotrophins' levels in mice. Metab Brain Dis 2015; 30:1073-82. [PMID: 25998605 DOI: 10.1007/s11011-015-9682-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/11/2015] [Indexed: 01/24/2023]
Abstract
The consumption of palatable high-fat and high-sugar foods have increased dramatically over the past years. Overconsumption of calorically dense food contributes to increasing rates of overweight and obesity that are associated with psychiatry disorders, in particular mood and anxiety disorders. This study evaluated the impact of palatable cafeteria diet (CAF) intake on cognitive and noncognitive behaviors, as well as identified factors related to these behaviors through an evaluation of brain neurotrophic factor (BDNF, NGF, and GDNF) levels in hippocampus of mice. Male Swiss mice received two different diets during 13 weeks: standard chow (STA) and highly CAF. Posteriorly, forced swimming test (FST), tail suspension test (TST), plus-maze test (PMT), open-field tests (OFT), and object recognition task (ORT) were utilized as behavioral tests. In addition, brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) neurotrophins' levels were evaluated in hippocampus of mice. The results demonstrated that mice from the CAF group showed a decrease in the immobility time in the FST and TST. Besides, mice in the CAF group spent more time in the open arms of the PMT. No significant differences were observed in the cognitive behaviors, which were evaluated in the OFT and ORT. In addition, the CAF group showed that BDNF and NGF protein levels increased in the hippocampus of mice. In conclusion, our data suggest that the consumption of palatable high-fat and high-sugar foods induces antidepressant- and anxiolytic-like behaviors, which can be related with BDNF and NGF expression increases in hippocampus of mice in the CAF group.
Collapse
Affiliation(s)
- Daniela D Leffa
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo J. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 2015; 300:141-54. [PMID: 25981208 DOI: 10.1016/j.neuroscience.2015.05.018] [Citation(s) in RCA: 450] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
Psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia, affect a significant percentage of the world population. These disorders are associated with educational difficulties, decreased productivity and reduced quality of life, but their underlying pathophysiological mechanisms are not fully elucidated. Recently, studies have suggested that psychiatric disorders could be considered as inflammatory disorders, even though the exact mechanisms underlying this association are not known. An increase in inflammatory response and oxidative stress may lead to inflammation, which in turn can stimulate microglia in the brain. Microglial activation is roused by the M1 phenotype, which is associated with an increase in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). On the contrary, M2 phenotype is associated with a release of anti-inflammatory cytokines. Thus, it is possible that the inflammatory response from microglial activation can contribute to brain pathology, as well as influence treatment responses. This review will highlight the role of inflammation in the pathophysiology of psychiatric disorders, such as MDD, BD, schizophrenia, and autism. More specifically, the role of microglial activation and associated molecular cascades will also be discussed as a means by which these neuroinflammatory mechanisms take place, when appropriate.
Collapse
Affiliation(s)
- G Z Réus
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| | - G R Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L Stertz
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - M Badawy
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - I C Passos
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - T Barichello
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - F Kapczinski
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - J Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|