1
|
Steiner BM, Berry DC. The Regulation of Adipose Tissue Health by Estrogens. Front Endocrinol (Lausanne) 2022; 13:889923. [PMID: 35721736 PMCID: PMC9204494 DOI: 10.3389/fendo.2022.889923] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its' associated metabolic diseases such as type 2 diabetes and cardiometabolic disorders are significant health problems confronting many countries. A major driver for developing obesity and metabolic dysfunction is the uncontrolled expansion of white adipose tissue (WAT). Specifically, the pathophysiological expansion of visceral WAT is often associated with metabolic dysfunction due to changes in adipokine secretion profiles, reduced vascularization, increased fibrosis, and enrichment of pro-inflammatory immune cells. A critical determinate of body fat distribution and WAT health is the sex steroid estrogen. The bioavailability of estrogen appears to favor metabolically healthy subcutaneous fat over visceral fat growth while protecting against changes in metabolic dysfunction. Our review will focus on the role of estrogen on body fat partitioning, WAT homeostasis, adipogenesis, adipocyte progenitor cell (APC) function, and thermogenesis to control WAT health and systemic metabolism.
Collapse
Affiliation(s)
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
2
|
Corona G, Vena W, Pizzocaro A, Giagulli VA, Francomano D, Rastrelli G, Mazziotti G, Aversa A, Isidori AM, Pivonello R, Vignozzi L, Mannucci E, Maggi M, Ferlin A. Testosterone supplementation and bone parameters: a systematic review and meta-analysis study. J Endocrinol Invest 2022; 45:911-926. [PMID: 35041193 DOI: 10.1007/s40618-021-01702-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of testosterone (T) replacement therapy (TRT) in subjects with late onset hypogonadism is still the object of an intense debate. METHODS All observational studies and placebo-controlled or -uncontrolled randomized trials (RCTs) comparing the effect of TRT on different bone parameters were considered. RESULTS Out of 349 articles, 36 were considered, including 3103 individuals with a mean trial duration of 66.6 weeks. TRT improves areal bone mineral density (aBMD) at the spine and femoral neck levels in observational studies, whereas placebo-controlled RTCs showed a positive effect of TRT only at lumber spine and when trials included only hypogonadal patients at baseline (total testosterone < 12 nM). The effects on aBMD were more evident in subjects with lower T levels at baseline and increased as a function of trial duration and a higher prevalence of diabetic subjects. Either T or estradiol increase at endpoint contributed to aBMD improvement. TRT was associated with a significant reduction of bone resorption markers in observational but not in controlled studies. CONCLUSION TRT is able to inhibit bone resorption and increase bone mass, particularly at the lumbar spine level and when the duration is long enough to allow the anabolic effect of T and estrogens on bone metabolism to take place.
Collapse
Affiliation(s)
- G Corona
- Endocrinology Unit, Medical Department, Azienda Usl, Maggiore-Bellaria Hospital, Bologna, Italy
| | - W Vena
- Unit of Endocrinology, Diabetology and Medical Andrology, IRCSS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - A Pizzocaro
- Unit of Endocrinology, Diabetology and Medical Andrology, IRCSS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - V A Giagulli
- Santa Maria Hospital, GVM Care & Research, Bari, Italy
| | - D Francomano
- Unit of Internal Medicine and Endocrinology, Madonna Delle Grazie Hospital, Velletri, Rome, Italy
| | - G Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - G Mazziotti
- Unit of Endocrinology, Diabetology and Medical Andrology, IRCSS, Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - A Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - A M Isidori
- Department of Experimental Medicine, Sapienza University of Rome-Policlinico Umberto I Hospital, Rome, Italy
| | - R Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - L Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - E Mannucci
- Department of Diabetology, Azienda Ospedaliero Universitaria Careggi and University of Florence, Florence, Italy
| | - M Maggi
- Endocrinology Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - A Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Tadalafil and Steroid Hormones Interactions in Adipose, Bone and Prostate Tissues: Focus on Translational Perspectives. Int J Mol Sci 2022; 23:ijms23084191. [PMID: 35457011 PMCID: PMC9024809 DOI: 10.3390/ijms23084191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tadalafil is a selective phosphodiesterase type-5 (PDE5) inhibitor that is approved for the treatment of men with erectile dysfunction (ED) and/or benign prostate hyperplasia (BPH) -associated symptoms. Besides its classical actions on PDE5 within the genitourinary tract, where the specific enzyme expression is maximal, it may exert different systemic effects. This is mainly due to the pleiotropic distribution of PDE5 enzyme throughout the human (and animal) body, where it can exert protective effects in different clinical conditions. Recently, it has been demonstrated that tadalafil may display novel actions on androgen receptor (AR) expression and activity and cytochrome P19a1 (Cyp19a1) and estrogen receptor β (ERβ) expression in different in vitro systems, such as adipose, bone and prostate cancer cells, where it can act as a selective modulator of steroid hormone production. This may determine novel potential mechanism(s) of control in pathophysiologic pathways. In this review, we summarize basic research and translational results applicable to the use of tadalafil in the treatment of obesity, bone loss and prostate cancer.
Collapse
|
4
|
Mykoniatis I, Pyrgidis N, Zilotis F, Kapoteli P, Fournaraki A, Kalyvianakis D, Hatzichristou D. The Effect of Combination Treatment with Low-Intensity Shockwave Therapy and Tadalafil on Mild and Mild-To-Moderate Erectile Dysfunction: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J Sex Med 2022; 19:106-115. [PMID: 34866029 DOI: 10.1016/j.jsxm.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Combination of different first-line treatments for erectile dysfunction (ED) has emerged as a promising therapeutic approach. AIM To conduct the first double-blind, randomized, placebo-controlled clinical trial to evaluate the efficacy and safety of combination therapy with low-intensity shockwave therapy (LiST) and tadalafil vs LiST and placebo in patients with mild or mild-to-moderate vasculogenic ED. METHODS Fifty sexually active patients fulfilling the eligibility criteria were randomly assigned to 6 sessions of LiST twice weekly for 3 weeks and tadalafil (n = 25) or placebo (n = 25) once daily for 4 weeks. Patients were evaluated at 1, 3, and 6 months after completion of the treatment protocol. OUTCOMES The primary outcome was the mean change from baseline in the International Index of Erectile Function-Erectile Function (IIEF-EF) domain between the 2 groups at 3 months after treatment. Erectile function was also assessed at 1 and 6 months. The number of patients attaining a minimal clinically important difference (MCID) in the IIEF-EF, as well as the safety of combination therapy were evaluated. RESULTS Adjusting for the baseline values, IIEF-EF improved by 0.8 points more (95% confidence interval [CI] = -0.2 to 1.9, P = .12) at 1 month, 1 point more (95% CI = 0.1-1.9, P = .02) at 3 months and 1.7 points more (95% CI = 0.8-2.7, P < .001) at 6 months in patients treated with combination therapy compared to monotherapy. The number of patients attaining a MCID in the IIEF-EF between the 2 groups improved significantly only at the 3-month evaluation. No adverse events were reported during the whole study period. CLINICAL IMPLICATIONS Combination of LiST twice weekly for 3 weeks and tadalafil 5 mg once daily for 4 weeks may further ameliorate mild or mild-to-moderate vasculogenic ED compared to LiST monotherapy. STRENGTHS & LIMITATIONS We conducted the first randomized trial exploring the role of LiST and tadalafil in the management of ED. Conversely, our study lacks external validity due to its single-center design. CONCLUSION The addition of daily low-dose tadalafil during application of LiST may further improve erectile function compared to application of LiST as a standalone treatment in patients with mild or mild-to-moderate vasculogenic ED. Still, further high-quality studies are warranted to corroborate our findings.
Collapse
Affiliation(s)
- Ioannis Mykoniatis
- First Department of Urology, G. Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute for the Study of Urological Diseases, Thessaloniki, Greece
| | - Nikolaos Pyrgidis
- Institute for the Study of Urological Diseases, Thessaloniki, Greece
| | - Filimon Zilotis
- First Department of Urology, G. Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskeui Kapoteli
- First Department of Urology, G. Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Agrippina Fournaraki
- First Department of Urology, G. Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Kalyvianakis
- First Department of Urology, G. Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute for the Study of Urological Diseases, Thessaloniki, Greece
| | - Dimitrios Hatzichristou
- First Department of Urology, G. Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute for the Study of Urological Diseases, Thessaloniki, Greece
| |
Collapse
|
5
|
Feraco A, Gorini S, Armani A, Camajani E, Rizzo M, Caprio M. Exploring the Role of Skeletal Muscle in Insulin Resistance: Lessons from Cultured Cells to Animal Models. Int J Mol Sci 2021; 22:ijms22179327. [PMID: 34502235 PMCID: PMC8430804 DOI: 10.3390/ijms22179327] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is essential to maintain vital functions such as movement, breathing, and thermogenesis, and it is now recognized as an endocrine organ. Muscles release factors named myokines, which can regulate several physiological processes. Moreover, skeletal muscle is particularly important in maintaining body homeostasis, since it is responsible for more than 75% of all insulin-mediated glucose disposal. Alterations of skeletal muscle differentiation and function, with subsequent dysfunctional expression and secretion of myokines, play a key role in the pathogenesis of obesity, type 2 diabetes, and other metabolic diseases, finally leading to cardiometabolic complications. Hence, a deeper understanding of the molecular mechanisms regulating skeletal muscle function related to energy metabolism is critical for novel strategies to treat and prevent insulin resistance and its cardiometabolic complications. This review will be focused on both cellular and animal models currently available for exploring skeletal muscle metabolism and endocrine function.
Collapse
Affiliation(s)
- Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- PhD Programme in Endocrinological Sciences, Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Correspondence: ; Tel.: +39-065-225-3419
| |
Collapse
|
6
|
Bimonte VM, Marampon F, Antonioni A, Fittipaldi S, Ferretti E, Pestell RG, Curreli M, Lenzi A, Vitale G, Brunetti A, Migliaccio S, Aversa A. Phosphodiesterase Type-5 Inhibitor Tadalafil Modulates Steroid Hormones Signaling in a Prostate Cancer Cell Line. Int J Mol Sci 2021; 22:ijms22020754. [PMID: 33451122 PMCID: PMC7828628 DOI: 10.3390/ijms22020754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/29/2023] Open
Abstract
Background: The androgen receptor (AR) plays a key role in normal prostate homeostasis and in prostate cancer (PCa) development, while the role of aromatase (Cyp19a1) is still unclear. We evaluated the effects of a treatment with Tadalafil (TAD) on both these proteins. Methods: Androgen-sensitive human PCa cell line (LnCAP) was incubated with/without TAD (10−6 M) and bicalutamide (BCT) (10−4 M) to evaluate a potential modulation on cell proliferation, protein and mRNA expression of Cyp19a, AR and estrogen receptor-β (ERβ), respectively. Results: TAD increased early AR nuclear translocation (p < 0.05, after 15 min of exposure), and increased AR transcriptional activity (p < 0.05) and protein expression (p < 0.05) after 24 h. Moreover, after 24 h this treatment upregulated Cyp19a1 and ERβ mRNA (p < 0.05 and p < 0.005 respectively) and led to an increase in protein expression of both after 48 h (p < 0.05). Interestingly, TAD counteracted Cyp19a1 stimulation induced by BCT (p < 0.05) but did not alter the effect induced by BCT on the AR protein expression. Conclusion: We demonstrate for the first time that TAD can significantly modulate AR expression and activity, Cyp19a1 and ERβ expression in PCa cells, suggesting a specific effect of these proteins. In addition, TAD potentiates the antiproliferative activity of BCT, opening a new clinical scenario in the treatment of PCa.
Collapse
Affiliation(s)
- Viviana M. Bimonte
- Department of Movement, Human and Health Sciences, “Foro Italico” University, 00135 Rome, Italy; (V.M.B.); (S.M.)
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University, 00161 Rome, Italy;
| | - Ambra Antonioni
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, “Tor Vergata” University, 00133 Rome, Italy;
| | - Elisabetta Ferretti
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA 19111, USA;
| | - Mariaignazia Curreli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.A.); (E.F.); (M.C.); (A.L.)
| | - Giovanni Vitale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20122 Milan, Italy;
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, Cusano Milanino, 20095 Milan, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, “Foro Italico” University, 00135 Rome, Italy; (V.M.B.); (S.M.)
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
7
|
Wisanwattana W, Wongkrajang K, Cao DY, Shi XK, Zhang ZH, Zhou ZY, Li F, Mei QG, Wang C, Suksamrarn A, Zhang GL, Wang F. Inhibition of Phosphodiesterase 5 Promotes the Aromatase-Mediated Estrogen Biosynthesis in Osteoblastic Cells by Activation of cGMP/PKG/SHP2 Pathway. Front Endocrinol (Lausanne) 2021; 12:636784. [PMID: 33776932 PMCID: PMC7995890 DOI: 10.3389/fendo.2021.636784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanical stimulation induces bone growth and remodeling by the secondary messenger, cyclic guanosine 3', 5'-monophosphate (cGMP), in osteoblasts. However, the role of cGMP in the regulation of estrogen biosynthesis, whose deficiency is a major cause of osteoporosis, remains unclear. Here, we found that the prenylated flavonoids, 3-O-methoxymethyl-7-O-benzylicaritin (13), 7-O-benzylicaritin (14), and 4'-O-methyl-8-isopentylkaempferol (15), which were synthesized using icariin analogs, promoted estrogen biosynthesis in osteoblastic UMR106 cells, with calculated EC50 values of 1.53, 3.45, and 10.57 µM, respectively. 14 and 15 increased the expression level of the bone specific promoter I.4-driven aromatase, the only enzyme that catalyzes estrogen formation by using androgens as substrates, in osteoblastic cells. 14 inhibited phosphodiesterase 5 (PDE5), stimulated intracellular cGMP level and promoted osteoblast cell differentiation. Inhibition of cGMP dependent-protein kinase G (PKG) abolished the stimulatory effect of 14 on estrogen biosynthesis and osteoblast cell differentiation. Further, PKG activation by 14 stimulated the activity of SHP2 (Src homology 2 domain-containing tyrosine phosphatase 2), thereby activating Src and ERK (extracellular signal-regulated kinase) signaling and increasing ERK-dependent aromatase expression in osteoblasts. Our findings reveal a previously unknown role of cGMP in the regulation of estrogen biosynthesis in the bone. These results support the further development of 14 as a PKG-activating drug to mimic the anabolic effects of mechanical stimulation of bone in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Wisanee Wisanwattana
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kanjana Wongkrajang
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand
| | - Dong-yi Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-ke Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-hui Zhang
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Zong-yuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qing-gang Mei
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chun Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Guo-lin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Fei Wang, ; Guo-lin Zhang,
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Fei Wang, ; Guo-lin Zhang,
| |
Collapse
|
8
|
Itoga A, Zha X, Nagase K, Aoki Y, Ito H, Yokoyama O. Correcting imbalance of sex hormones by a phosphodiesterase 5 inhibitor improves copulatory dysfunction in male rats with type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001111. [PMID: 32371530 PMCID: PMC7228473 DOI: 10.1136/bmjdrc-2019-001111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Sexual dysfunction is a common complication in men with type 2 diabetes and is often refractory to treatment. This study investigated the long-term influence of the phosphodiesterase 5 inhibitor (PDE5I) tadalafil on the level of sex hormones and sexual function in male Otsuka Long-Evans Tokushima Fatty (OLETF) rats as an animal model of spontaneous type 2 diabetes. RESEARCH DESIGN AND METHODS We treated 36-week-old male OLETF and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats with oral tadalafil (100 µg/kg/day) for 12 weeks; sham groups received vehicle for 12 weeks. Before and after tadalafil treatment, serum levels of total and free testosterone, estradiol, luteinizing hormone (LH), follicle-stimulating hormone and proinflammatory cytokines were compared among four treatment groups. Copulatory function was examined by matching each rat to an estrous female. After completion of the experiment, total fat mass in the abdomen was measured. RESULTS Testosterone levels were significantly lower in OLETF versus LETO rats at 36 weeks. After 12 weeks of tadalafil treatment, levels of testosterone were significantly increased both in OLETF-tadalafil and LETO-tadalafil groups versus vehicle groups. Tadalafil decreased estradiol levels both in OLETF and LETO rats. Furthermore, tadalafil increased serum LH levels with a reduction of proinflammatory cytokines. Total fat mass was significantly lower in the OLETF-tadalafil group versus the OLETF-vehicle group. A significant suppression of copulatory behavior, that is, elongation of intromission latency was found in OLETF rats. However, tadalafil treatment for 12 weeks shortened the intromission latency. CONCLUSION Our results indicate that tadalafil treatment might improve copulatory disorder in the type 2 diabetic model via improvement of an imbalance in sex hormones and an increase in LH levels.
Collapse
Affiliation(s)
- Akiko Itoga
- Department of Urology, Faculty of Medical Science, University of Fukui, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Xinmin Zha
- Department of Urology, Faculty of Medical Science, University of Fukui, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Keiko Nagase
- Department of Urology, Faculty of Medical Science, University of Fukui, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Yoshitaka Aoki
- Department of Urology, Faculty of Medical Science, University of Fukui, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Hideaki Ito
- Department of Urology, Faculty of Medical Science, University of Fukui, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Osamu Yokoyama
- Department of Urology, Faculty of Medical Science, University of Fukui, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| |
Collapse
|
9
|
Nie X, Sheng W, Hou D, Liu Q, Wang R, Tan Y. Effect of Hyperin and Icariin on steroid hormone secretion in rat ovarian granulosa cells. Clin Chim Acta 2019; 495:646-651. [PMID: 29729232 DOI: 10.1016/j.cca.2018.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 10/17/2022]
Abstract
AIM OF THE STUDY This study was designed to investigate the effect of different concentrations of Hyperin and Icariin (ICA)on proliferation and the secretion of estrogen (E2), and progesterone (P) in granulosa cells, and to explore the effect of Hyperin and Icariin on the expression of CYP17 and CYP19. MATERIALS AND METHODS Rat ovary granulosa cells were cultured in vitro and treated with different concentrations of Hyperin and Icariin. The proliferation of ovarian granulosa cells was measured with the MTT assay. The concentration of estradiol was measured with a magnetic particle-based enzyme-linked immunosorbent assay (ELISA) kit. The CYP17 and CYP19 mRNA expression was detected by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). The CYP17 and CYP19 protein expression was determined with Western blotting. RESULTS Hyperin (50 μg/l) and Icariin (10 μg/l) significantly increased proliferation of ovarian granulosa cells and secretion of estrogen and progesterone. Hyperin and Icariin stimulated the mRNA and protein expression of CYP17 and CYP19. CONCLUSIONS These results showed that Hyperin and Icariin can promote the secretion of E2 and P through up-regulation of CYP17 and CYP19. Frequently used Chinese herbs like Cuscuta Chinensis Lam and Epimedium Brevicornu maxim, which contain Hyperin and Icariin, could improve the ovarian endocrine function through these effects.
Collapse
Affiliation(s)
- Xiaowei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Wenjie Sheng
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Daorong Hou
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Qiang Liu
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Ronggen Wang
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Yong Tan
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
10
|
Aversa A, Duca Y, Condorelli RA, Calogero AE, La Vignera S. Androgen Deficiency and Phosphodiesterase Type 5 Expression Changes in Aging Male: Therapeutic Implications. Front Endocrinol (Lausanne) 2019; 10:225. [PMID: 31110491 PMCID: PMC6499191 DOI: 10.3389/fendo.2019.00225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023] Open
Abstract
The age-related decline of serum T occurs in ~20-30% of adult men and it is today defined as late-onset hypogonadism (LOH). In the elderly, such decline becomes more prevalent (up to 60%) and shows-up with erectile dysfunction (ED) and hypoactive sexual desire. A large body of experimental evidences have shown that the combination of T replacement therapy (TRT) and phosphodiesterase type 5 inhibitors (PDE5i) is, usually, effective in restoring erectile function in patients with LOH and ED who have not responded to monotherapy for sexual disturbances. In fact, PDE5is potentiate the action of nitric oxide (NO) produced by endothelial cells, resulting in a vasodilator effect, while T facilitates PDE5i effects by increasing the expression of PDE5 in corpora cavernosa. Meta-analytic data have recognized to PDE5i a protective role on the cardiovascular health in patients with decreased left ventricular ejection fraction. In addition, several studies have shown pleiotropic beneficial effects of these drugs throughout the body (i.e., on bones, urogenital tract and cerebral, metabolic, and cardiovascular levels). TRT itself is able to decrease endothelial dysfunction, oxidative stress and inflammation, thus lowering the cardiovascular risk. Furthermore, untreated hypogonadism could be the cause of PDE5i ineffectiveness especially in the elderly. For these reasons, aging men complaining ED who have LOH should undergo TRT before or at the moment when PDE5i treatment is started.
Collapse
Affiliation(s)
- Antonio Aversa
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ylenia Duca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Aldo Eugenio Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- *Correspondence: Sandro La Vignera
| |
Collapse
|
11
|
Marampon F, Antinozzi C, Corinaldesi C, Vannelli GB, Sarchielli E, Migliaccio S, Di Luigi L, Lenzi A, Crescioli C. The phosphodiesterase 5 inhibitor tadalafil regulates lipidic homeostasis in human skeletal muscle cell metabolism. Endocrine 2018; 59:602-613. [PMID: 28786077 DOI: 10.1007/s12020-017-1378-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE Tadalafil seems to ameliorate insulin resistance and glucose homeostasis in humans. We have previously reported that tadalafil targets human skeletal muscle cells with an insulin (I)-like effect. We aim to evaluate in human fetal skeletal muscle cells after tadalafil or I: (i) expression profile of I-regulated genes dedicated to cellular energy control, glycolitic activity or microtubule formation/vesicle transport, as GLUT4, PPARγ, HK2, IRS-1, KIF1C, and KIFAP3; (ii) GLUT4, Flotillin-1, and Caveolin-1 localization, all proteins involved in energy-dependent cell trafficking; (iii) activation of I-targeted paths, as IRS-1, PKB/AKT, mTOR, P70/S6K. Free fatty acids intracellular level was measured. Sildenafil or a cGMP synthetic analog were used for comparison; PDE5 and PDE11 gene expression was evaluated in human fetal skeletal muscle cells. METHODS RTq-PCR, PCR, western blot, free fatty acid assay commercial kit, and lipid stain non-fluorescent assay were used. RESULTS Tadalafil upregulated I-targeted investigated genes with the same temporal pattern as I (GLUT4, PPARγ, and IRS-1 at 3 h; HK2, KIF1C, KIFAP3 at 12 h), re-localized GLUT4 in cell sites positively immune-decorated for Caveolin-1 and Flotillin-1, suggesting the involvement of lipid rafts, induced specific residue phosphorylation of IRS-1/AKT/mTOR complex in association with free fatty acid de novo synthesis. Sildenafil or GMP analog did not affect GLUT4 trafficking or free fatty acid levels. CONCLUSION In human fetal skeletal muscle cells tadalafil likely favors energy storage by modulating lipid homeostasis via IRS-1-mediated mechanisms, involving activation of I-targeted genes and intracellular cascade related to metabolic control. Those data provide some biomolecular evidences explaining, in part, tadalafil-induced favorable control of human metabolism shown by clinical studies.
Collapse
Affiliation(s)
- F Marampon
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - C Antinozzi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - C Corinaldesi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - L Di Luigi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - C Crescioli
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy.
| |
Collapse
|
12
|
Li F, Du BW, Lu DF, Wu WX, Wongkrajang K, Wang L, Pu WC, Liu CL, Liu HW, Wang MK, Wang F. Flavonoid glycosides isolated from Epimedium brevicornum and their estrogen biosynthesis-promoting effects. Sci Rep 2017; 7:7760. [PMID: 28798396 PMCID: PMC5552768 DOI: 10.1038/s41598-017-08203-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/01/2017] [Indexed: 12/04/2022] Open
Abstract
Epimedium brevicornum Maxim has a long history of use in the treatment of estrogen deficiency-related diseases. However, the chemical constituents and mechanism of action of this medicinal plant are not fully understood. In the present study, we isolated four new isoprenylated flavonoid glycosides, as well as 16 known flavonoids (13 isoprenylated flavonoids), from this plant. The chemical structures of the new flavonoid glycosides were elucidated by extensive spectroscopic analysis. The new compounds 1–4 were potent promoters of estrogen biosynthesis in human ovarian granulosa-like KGN cells. ZW1, an isoprenylated flavonoid analogue and a specific inhibitor of phosphodiesterase 5 (PDE5), was synthesized and used to explore the mechanism of the isoprenylated analogues on estrogen biosynthesis. ZW1 treatment increased estrogen production by upregulation of aromatase mRNA and protein expression. ZW1 increased the phosphorylation of cAMP response element-binding protein (CREB). Further study showed that the inhibition of PDE5 by ZW1 increased estrogen biosynthesis partly through suppression of phosphodiesterase 3 (PDE3). Our results suggested that the isoprenylated flavonoids from E. brevicornum may produce beneficial health effects through the promotion of estrogen biosynthesis. PDE5 warrants further investigation as a new therapeutic target for estrogen biosynthesis in the prevention and treatment of estrogen-deficiency related diseases.
Collapse
Affiliation(s)
- Fu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Bao-Wen Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Dan-Feng Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Xuan Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kanjana Wongkrajang
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000, Thailand
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Wen-Chen Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
| | - Chang-Lu Liu
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province, Sichuan University of Arts and Science, Dazhou, 635000, P. R. China
| | - Han-Wei Liu
- Ningbo Entry-Exit Inspection and Quarantine Bureau Technical Center, Ningbo, 315012, P. R. China
| | - Ming-Kui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China. .,Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China.
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, P. R. China.
| |
Collapse
|
13
|
Aversa A, Fittipaldi S, Francomano D, Bimonte VM, Greco EA, Crescioli C, Di Luigi L, Lenzi A, Migliaccio S. Tadalafil improves lean mass and endothelial function in nonobese men with mild ED/LUTS: in vivo and in vitro characterization. Endocrine 2017; 56:639-648. [PMID: 28133708 DOI: 10.1007/s12020-016-1208-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/10/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE Phosphodiesterase type-5 inhibitor administration in diabetic men with erectile dysfunction (ED) is associated with reduced waist circumference. We evaluated potential effects of daily tadalafil administration on body composition and investigated its possible mechanism(s) of action in C2C12 skeletal muscle cells in vitro. METHODS Forty-three men on stable caloric intake (mean age 48.5 ± 7; BMI 25.5 ± 0.9 kg/m2) complaining mild ED and/or low urinary tract symptoms (LUTS) were randomly assigned to receive tadalafil (TAD) 5 mg/daily (once-a-day=OAD-TAD; n = 23) or 20 mg on-demand (on-demand=OD-TAD; n = 20) for 2 months. Primary outcomes were variations of body composition measured by Dual-energy X-ray absorptiometry; secondary outcomes were ED/LUTS questionnaire scores along with hormone (testosterone, estradiol, insulin) and endothelial function (Endopat2000) variations. RESULTS OAD-TAD increased abdominal lean mass (p < 0.01) that returned to baseline after 2 months withdrawal. LUTS scores improved (p<0.01) in OD-TAD while ED scores improved (p < 0.01) in both groups. We found significant improvements in endothelial function (p < 0.05) that directly correlated with serum insulin (p < 0.01; r = 0.3641) and inversely correlated with estradiol levels (p < 0.01; r = 0.3655) even when corrected for potential confounders. Exposure of C2C12 cells upon increasing tadalafil concentrations (10-7 to 10-6 M) increased total androgen receptor mRNA and protein expression as well as myogenin protein expression after 24 and 72 h (2.8 ± 0.4-fold and 1.4 ± 0.02-fold vs. control, respectively, p < 0.05). CONCLUSIONS Daily tadalafil improved lean mass content in non-obese men probably via enhanced insulin secretion, estradiol reduction, and improvement of endothelial function in vivo. The in vitro increased myogenin and androgen receptor protein expression in skeletal muscle cells suggests a translational action of phosphodiesterase type-5 on this receptor.
Collapse
Affiliation(s)
- Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
| | | | - Davide Francomano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, "Sapienza" University of Rome, Rome, Italy
| | - Viviana M Bimonte
- Department of Movement, Human and Health Sciences, Section of Health Sciences, "Foro Italico" University of Rome, Rome, Italy
| | - Emanuela A Greco
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, "Sapienza" University of Rome, Rome, Italy
- LiSa Laboratory, Policlinico Catania, University of Catania, Catania, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, "Foro Italico" University of Rome, Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Section of Health Sciences, "Foro Italico" University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Section of Health Sciences, "Foro Italico" University of Rome, Rome, Italy
| |
Collapse
|
14
|
Diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate exhibits antihypertensive activity in rats through increase in intracellular cGMP level and blockade of calcium channels. Eur J Pharmacol 2017; 799:84-93. [PMID: 28159537 DOI: 10.1016/j.ejphar.2017.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
We report here the antihypertensive and vasorelaxant potential of some steroidal and non-steroidal compounds identified through a library of compounds. All the novel analogues showed vasorelaxant potential in isolated rat aorta. The most potent lead neolignan1 (Diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate) produced concentration dependent relaxation with [pD2 5.16±0.05; n=16 and Emax 96.97%±1.12%; n=16]. The neolignan1 relaxation is independent of endothelium and is sensitive to ODQ (1H-[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one; a blocker of soluble guanylyl cyclase (sGC) which synthesizes cGMP (cyclic guanosine monophosphate)). ELISA analysis of treated arterial tissues showed concentration-dependent increase in cGMP level in treated tissues compared to control (2.03 and 7.16 fold of control at 10 and 30µM of neolignan1, respectively) and a synergistic increase in cGMP level by 26.66 fold compared to control when used in combination with sildenafil (10µM; a known inducer of cGMP level by selectively blocking cGMP specific phosphodiesterase 5). Our present study reports for the first time that neolignans produce relaxation in isolated rat aorta through increase in intracellular cGMP level. The ODQ resistant relaxation of neolignan1 is mediated by blockade of voltage dependent L-type calcium channel (VDCC) as observed in the experiment with CaCl2. Neolignan1 upon intravenous administration via tail vein in Spontaneously Hypertensive Rats (SHR) produced significant decrease in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP). The present study concludes that neolignan1 exhibited antihypertensive potential in rats through rise in intracellular cGMP and blockade of VDCC.
Collapse
|
15
|
Maneschi E, Cellai I, Aversa A, Mello T, Filippi S, Comeglio P, Bani D, Guasti D, Sarchielli E, Salvatore G, Morelli A, Mazzanti B, Corcetto F, Corno C, Francomano D, Galli A, Vannelli GB, Lenzi A, Mannucci E, Maggi M, Vignozzi L. Tadalafil reduces visceral adipose tissue accumulation by promoting preadipocytes differentiation towards a metabolically healthy phenotype: Studies in rabbits. Mol Cell Endocrinol 2016; 424:50-70. [PMID: 26805634 DOI: 10.1016/j.mce.2016.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/15/2022]
Abstract
Development of metabolically healthy adipocytes within dysfunctional adipose tissue may represent an attractive way to counteract metabolic syndrome (MetS). In an experimental animal model of high fat diet (HFD)-induced MetS, in vivo, long- and short-term tadalafil treatments were able to reduce visceral adipose tissue (VAT) accumulation and hypertriglyceridemia, and to induce the expression in VAT of the brown fat-specific marker, uncoupling protein 1 (UCP1). VAT preadipocytes (PAD), isolated from the tadalafil-treated HFD rabbits, showed: i) a multilocular morphology; ii) an increased expression of brown fat-specific genes (such as UCP1 and CIDEA); iii) improved mitochondrial structure and dynamic and reduced superoxide production; iv) improved insulin sensitivity. Similar effects were obtained after in vitro tadalafil treatment in HFD rPAD. In conclusion, tadalafil counteracted HFD-associated VAT alterations, by restoring insulin-sensitivity and prompting preadipocytes differentiation towards a metabolically healthy phenotype.
Collapse
Affiliation(s)
- Elena Maneschi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Florence, Italy
| | - Ilaria Cellai
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Florence, Italy
| | - Antonio Aversa
- Department of Experimental Medicine, Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tommaso Mello
- Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of Neuroscience, Drug Research and Child Care, Viale Pieraccini 6, 50139 University of Florence, Florence, Italy
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Largo Brambilla 3, 50134, University of Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Largo Brambilla 3, 50134, University of Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, Largo Brambilla 3, 50134, University of Florence, Italy
| | - Giulia Salvatore
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, Largo Brambilla 3, 50134, University of Florence, Italy
| | - Benedetta Mazzanti
- Department of Experimental and Clinical Medicine, Largo Brambilla 3, 50134, University of Florence, Italy
| | - Francesca Corcetto
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Florence, Italy
| | - Chiara Corno
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Florence, Italy
| | - Davide Francomano
- Department of Experimental Medicine, Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Andrea Galli
- Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Italy
| | - Gabriella Barbara Vannelli
- Department of Experimental and Clinical Medicine, Largo Brambilla 3, 50134, University of Florence, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Edoardo Mannucci
- Diabetes Section Geriatric Unit, Department of Critical Care, Careggi Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Florence, Italy
| | - Linda Vignozzi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, Viale Morgagni 50, 50134, University of Florence, Florence, Italy.
| |
Collapse
|
16
|
Aversa A, Fittipaldi S, Bimonte VM, Wannenes F, Papa V, Francomano D, Greco EA, Lenzi A, Migliaccio S. Tadalafil modulates aromatase activity and androgen receptor expression in a human osteoblastic cell in vitro model. J Endocrinol Invest 2016; 39:199-205. [PMID: 26134065 DOI: 10.1007/s40618-015-0344-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/13/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE Phosphodiesterase type-5 inhibitor (PDE5i) tadalafil administration in men with erectile dysfunction is associated with increased testosterone/estradiol ratio, leading to hypothesize a potential increased effect of androgen action on target tissues. We aimed to characterize, in a cellular model system in vitro, the potential modulation of aromatase and sex steroid hormone receptors upon exposure to tadalafil (TAD). METHODS Human osteoblast-like cells SAOS-2 were chosen as an in vitro model system since osteoblasts are target of steroid hormones. Cells were tested for viability upon TAD exposure, which increased cell proliferation. Then, cells were treated with/without TAD for several times to evaluate potential modulation in PDE5, aromatase (ARO), androgen (AR) and estrogen (ER) receptor expression. RESULTS Osteoblasts express significant levels of both PDE5 mRNA and protein. Exposure of cells to increasing concentrations of TAD (10(-8)-10(-7) M) decreased PDE5 mRNA and protein expression. Also, TAD inhibited ARO mRNA and protein expression leading to an increase in testosterone levels in the supernatants. Interestingly, TAD increased total AR mRNA and protein expression and decreased ERα, with an increased ratio of AR/ER, suggesting preferential androgenic vs estrogenic pathway activation. CONCLUSIONS Our results demonstrate for the first time that TAD decreases ARO expression and increases AR protein expression in human SAOS-2, strongly suggesting a new control of steroid hormones pathway by PDE5i. These findings might represent the first evidence of translational actions of PDE5i on AR, which leads to hypothesize a growing relevance of this molecule in men with prostate cancer long-term treated with TAD for sexual rehabilitation.
Collapse
Affiliation(s)
- A Aversa
- Section of Medical Pathophysiology, Endocrinology and Nutrition, Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
- Lisa Laboratory, Policlinico of Catania, University of Catania, Catania, Italy.
| | - S Fittipaldi
- Lisa Laboratory, Policlinico of Catania, University of Catania, Catania, Italy
- Section of Health Sciences, Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy
| | - V M Bimonte
- Lisa Laboratory, Policlinico of Catania, University of Catania, Catania, Italy
- Section of Health Sciences, Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy
| | - F Wannenes
- Lisa Laboratory, Policlinico of Catania, University of Catania, Catania, Italy
- Section of Health Sciences, Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy
| | - V Papa
- Lisa Laboratory, Policlinico of Catania, University of Catania, Catania, Italy
- Section of Health Sciences, Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy
| | - D Francomano
- Section of Medical Pathophysiology, Endocrinology and Nutrition, Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - E A Greco
- Section of Medical Pathophysiology, Endocrinology and Nutrition, Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
- Lisa Laboratory, Policlinico of Catania, University of Catania, Catania, Italy
| | - A Lenzi
- Section of Medical Pathophysiology, Endocrinology and Nutrition, Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - S Migliaccio
- Section of Health Sciences, Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy.
| |
Collapse
|
17
|
Leitner L, Jürets A, Itariu BK, Keck M, Prager G, Langer F, Grablowitz V, Zeyda M, Stulnig TM. Osteopontin promotes aromatase expression and estradiol production in human adipocytes. Breast Cancer Res Treat 2015; 154:63-9. [DOI: 10.1007/s10549-015-3603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
18
|
Kuo KK, Wu BN, Liu CP, Yang TY, Kao LP, Wu JR, Lai WT, Chen IJ. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss. J Lipid Res 2015; 56:2070-84. [PMID: 26351364 PMCID: PMC4617394 DOI: 10.1194/jlr.m057547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1–14 or 8–14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10−7∼10−5 M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3′,5′-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit 14C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight.
Collapse
Affiliation(s)
- Kung-Kai Kuo
- Division of Hepatobiliopancreatic Surgery, Kaohsiung Medical University Hospital
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Chung-Pin Liu
- Department of Cardiology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yang Yang
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Li-Pin Kao
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Jiunn-Ren Wu
- Department of Pedatrics, Kaohsiung Medical University Hospital
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine
| |
Collapse
|
19
|
Pfeifer A, Hoffmann LS. Brown, beige, and white: the new color code of fat and its pharmacological implications. Annu Rev Pharmacol Toxicol 2014; 55:207-27. [PMID: 25149919 DOI: 10.1146/annurev-pharmtox-010814-124346] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults. The enormous metabolic powers of BAT in animal models could make it an attractive target for antiobesity therapies in humans. Here, we review the present knowledge on the role of BAT in energy homeostasis and metabolism, focusing on signaling pathways and potential targets for novel therapeutics. We also shine light on ongoing debates, including those about the true color of brown fat in adults, as well as on the requirements for translation of basic research on BAT into clinical medicine.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53105 Bonn, Germany;
| | | |
Collapse
|
20
|
Nielsen TS, Jessen N, Jørgensen JOL, Møller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 2014; 52:R199-222. [PMID: 24577718 DOI: 10.1530/jme-13-0277] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipolysis is the process by which triglycerides (TGs) are hydrolyzed to free fatty acids (FFAs) and glycerol. In adipocytes, this is achieved by sequential action of adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase. The activity in the lipolytic pathway is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue (AT). This response is crucial in order to provide the organism with a sufficient supply of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. As the discovery of ATGL in 2004, substantial progress has been made in the delineation of the remarkable complexity of the regulatory network controlling adipocyte lipolysis. Notably, regulatory mechanisms have been identified on multiple levels of the lipolytic pathway, including gene transcription and translation, post-translational modifications, intracellular localization, protein-protein interactions, and protein stability/degradation. Here, we provide an overview of the recent advances in the field of AT lipolysis with particular focus on the molecular regulation of the two main lipases, ATGL and HSL, and the intracellular and extracellular signals affecting their activity.
Collapse
Affiliation(s)
- Thomas Svava Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Jessen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Jens Otto L Jørgensen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Møller
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Sten Lund
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| |
Collapse
|
21
|
Vignozzi L, Filippi S, Comeglio P, Cellai I, Morelli A, Maneschi E, Sarchielli E, Gacci M, Carini M, Vannelli GB, Maggi M. Tadalafil effect on metabolic syndrome-associated bladder alterations: an experimental study in a rabbit model. J Sex Med 2014; 11:1159-72. [PMID: 24612540 DOI: 10.1111/jsm.12478] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Metabolic syndrome (MetS) and lower urinary tract symptoms (LUTS) are often associated. Bladder detrusor hyper-contractility-a major LUTS determinant-is characterized by increased Ras homolog gene family, member A/Rho-associated protein kinase (RhoA/ROCK) signaling, which is often upregulated in MetS. AIM This study investigated the effects of tadalafil dosing on RhoA/ROCK signaling in bladder, in a rabbit model of high-fat diet (HFD)-induced MetS. METHODS Adult male rabbits feeding a HFD for 12 weeks. A subset of HFD animals was treated with tadalafil (2 mg/kg/day, 1 week: the last of the 12 weeks) and compared with HFD and control (feeding a regular diet) rabbits. MAIN OUTCOME MEASURES In vitro contractility studies to evaluate the relaxant effect of the selective ROCK inhibitor, Y-27632, in carbachol precontracted bladder strips. Evaluation of RhoA activation by its membrane translocation. Immunohistochemistry for ROCK expression has been performed to evaluate ROCK expression in bladder from the different experimental groups. mRNA expression of inflammation, pro-fibrotic markers by quantitative RT-PCR has been performed to evaluate the effect of tadalafil on MetS-induced inflammation and fibrosis within the bladder. The in vitro effect of tadalafil on RhoA/ROCK signaling in bladder smooth muscle cells was evaluated by using chemotaxis assay. RESULTS Bladder strips from HFD rabbits showed hyper-responsiveness to Y-27632, indicating RhoA/ROCK overactivity in HFD bladder compared with matched controls. Accordingly, the fraction of activated (translocated to the membrane) RhoA as well as ROCK expression are increased in HFD bladder. Tadalafil dosing normalized HFD-induced bladder hypersensitivity to Y-27632, by reducing RhoA membrane translocation and ROCK overexpression. Tadalafil dosing reduced mRNA expression of inflammatory, pro-fibrotic, and hypoxia markers. A direct inhibitory effect of tadalafil on RhoA/ROCK signaling in bladder smooth muscle cell was demonstrated by using chemotaxis assay. Pre-treatment with tadalafil inhibited both basal and PDGF-induced migration of bladder smooth muscle cells. CONCLUSIONS Tadalafil dosing reduced RhoA/ROCK signaling and smooth muscle overactivity in an animal model of MetS-associated bladder alterations. Our findings suggest a novel mechanism of action of tadalafil in alleviating LUTS in MetS patients.
Collapse
Affiliation(s)
- Linda Vignozzi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Colombo G, Colombo MDHP, Schiavon LDL, d'Acampora AJ. Phosphodiesterase 5 as target for adipose tissue disorders. Nitric Oxide 2013; 35:186-192. [PMID: 24177060 DOI: 10.1016/j.niox.2013.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/26/2013] [Accepted: 10/21/2013] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Adipose tissue as an endocrine organ is responsible for the release of multiple cytokines, which have the most diverse metabolic functions. Therefore, it is extremely important to preserve its physiological health in order to avoid local and systemic disorders. Experiments available in literature show the importance of the nitric oxide (NO)/guanosine 3'5' cyclic monophosphate (cGMP)/protein kinase G (PKG) pathway in adipocyte biology. Phosphodiesterase 5 (PDE5) is an enzyme responsible for cGMP inactivation, and the use of its inhibitors can be an alternative in the search of a more balanced adipose tissue. OBJECTIVE This review aims to describe the PDE5 role and the possibility of using PDE5 inhibitors in adipocyte physiology derangements and their consequences. DESIGN AND METHODS Studies published in the last 10years that related PDE5 and its inhibitors to adipose tissue were raised in major databases. RESULTS PDE5 is present in adipocyte, and PDE5 inhibitors can promote adipogenesis, interfere with adipokines secretion, decrease inflammatory markers expression, and increase the thermogenic potential of white adipose tissue. CONCLUSIONS PDE5 plays an important role in adipocyte physiology and the use of its inhibitors may prove a useful tool to combat adipose tissue disorders and its highest expression, metabolic syndrome.
Collapse
|
23
|
Pfeifer A, Kilić A, Hoffmann LS. Regulation of metabolism by cGMP. Pharmacol Ther 2013; 140:81-91. [PMID: 23756133 DOI: 10.1016/j.pharmthera.2013.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 01/16/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) mediates the physiological effects of nitric oxide and natriuretic peptides in a broad spectrum of tissues and cells. So far, the major focus of research on cGMP lay on the cardiovascular system. Recent evidence suggests that cGMP also plays a major role in the regulation of cellular and whole-body metabolism. Here, we focus on the role of cGMP in adipose tissue. In addition, other organs important for the regulation of metabolism and their regulation by cGMP are discussed. Targeting the cGMP signaling pathway could be an exciting approach for the regulation of energy expenditure and the treatment of obesity.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Germany.
| | | | | |
Collapse
|
24
|
Yang L, Lu D, Guo J, Meng X, Zhang G, Wang F. Icariin from Epimedium brevicornum Maxim promotes the biosynthesis of estrogen by aromatase (CYP19). JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:715-721. [PMID: 23261485 DOI: 10.1016/j.jep.2012.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium brevicornum Maxim has long been used for the treatment of osteoporosis in China and other Asian countries. However, the mechanism behind the antiosteoporotic activity of this medicinal plant is not fully understood. AIM OF THE STUDY The present study was designed to investigate the effects of five widely used antiosteoporotic medicinal plants (Epimedium brevicornum, Cuscuta chinensis, Rhizoma drynariae, Polygonum multiflorum, and Ligustrum lucidum) on the production of estrogen, and identify the bioactive compounds responsible for the estrogen biosynthesis-promoting effect. MATERIALS AND METHODS Human ovarian granulosa-like KGN cells were used to evaluate estrogen biosynthesis, and the production of 17β-estradiol was quantified by a magnetic particle-based enzyme-linked immunosorbent assay (ELISA) kit. Further, the mRNA expression of aromatase was determined by a quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), and the protein expression of aromatase was detected by western blotting. The activity of alkaline phosphatase (ALP) in rat osteoblastic UMR-106 cells was measured using p-nitrophenyl sodium phosphate assay. RESULTS Among the 5 antiosteoporotic medicinal plants, the extract of Epimedium brevicornum was found to significantly promote estrogen biosynthesis in KGN cells. Icariin, the major compound in Epimedium brevicornum, was identified to be the active compound for the estrogen biosynthesis-promoting effect. Icariin promoted estrogen biosynthesis in KGN cells in a concentration- and time-dependant manner and enhanced the mRNA and protein expressions of aromatase, which is the only enzyme for the conversion of androgens to estrogens in vertebrates. Further study showed that icariin also promoted estrogen biosynthesis and ALP activity in osteoblastic UMR-106 cells. CONCLUSIONS These results show that the promotion of estrogen biosynthesis is a novel effect of Epimedium brevicornum, and icariin could be utilized for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lijuan Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
25
|
Costa IC, Carvalho HN, Pacheco-Figueiredo L, Tomada I, Tomada N. Hormonal modulation in aging patients with erectile dysfunction and metabolic syndrome. Int J Endocrinol 2013; 2013:107869. [PMID: 24459467 PMCID: PMC3888699 DOI: 10.1155/2013/107869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/20/2013] [Accepted: 09/05/2013] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED), metabolic syndrome (MetS), and hypogonadism are closely related, often coexisting in the aging male. Obesity was shown to raise the risk of ED and hypogonadism, as well as other endocrinological disturbances with impact on erectile function. We selected 179 patients referred for ED to our andrology unit, aiming to evaluate gonadotropins and estradiol interplay in context of ED, MetS, and hypogonadism. Patients were stratified into groups in accordance with the presence (or not) of MetS and/or hypogonadism. Noticeable differences in total testosterone (TT) and free testosterone (FT) levels were found between patients with and without MetS. Men with MetS evidenced lower TT circulating levels with an increasing number of MetS parameters, for which hypertriglyceridemia and waist circumference strongly contributed. Regarding the hypothalamic-pituitary-gonadal axis, patients with hypogonadism did not exhibit raised LH levels. Interestingly, among those with higher LH levels, estradiol values were also increased. Possible explanations for this unexpected profile of estradiol may be the age-related adiposity, other estrogen-raising pathways, or even unknown mechanisms. Estradiol is possibly a molecule with further interactions beyond the currently described. Our results further enlighten this still unclear multidisciplinary and complex subject, raising new investigational opportunities.
Collapse
Affiliation(s)
- Inês Campos Costa
- Faculty of Medicine, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- *Inês Campos Costa:
| | - Hugo Nogueira Carvalho
- Faculty of Medicine, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luís Pacheco-Figueiredo
- Department of Urology, São João Central Hospital, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Inês Tomada
- Department of Experimental Biology, Faculty of Medicine, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Molecular Cell Biology, Universidade do Porto (IBMC), Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Faculty of Biotechnology, Catholic University of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Nuno Tomada
- Faculty of Medicine, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Urology, São João Central Hospital, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Molecular Cell Biology, Universidade do Porto (IBMC), Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
26
|
Abstract
Since the discovery of natriuretic peptides (NPs) by de Bold et al. in 1981, the cardiovascular community has been well aware that they exert potent effects on vessels, heart remodeling, kidney function, and the regulation of sodium and water balance. Who would have thought that NPs are also able to exert metabolic effects and contribute to an original cross talk between heart, adipose tissues, and skeletal muscle? The attention on the metabolic role of NPs was awakened in the year 2000 with the discovery that NPs exert potent lipolytic effects mediated by the NP receptor type A/cGMP pathway in human fat cells and that they contribute to lipid mobilization in vivo. In this review, we will discuss the biological effects of NPs on the main tissues involved in the regulation of energy metabolism (i.e., white and brown adipose tissues, skeletal muscle, liver, and pancreas). These recent results on NPs are opening a new chapter into the physiological properties and therapeutic usefulness of this family of hormones.
Collapse
Affiliation(s)
- Cedric Moro
- Institut National de la Santé et de la Recherche Médicale/UPS UMR 1048-I2MC-Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.
| | | |
Collapse
|
27
|
Haas B, Schlinkert P, Mayer P, Eckstein N. Targeting adipose tissue. Diabetol Metab Syndr 2012; 4:43. [PMID: 23102228 PMCID: PMC3568051 DOI: 10.1186/1758-5996-4-43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022] Open
Abstract
Two different types of adipose tissues can be found in humans enabling them to respond to starvation and cold: white adipose tissue (WAT) is generally known and stores excess energy in the form of triacylglycerol (TG), insulates against cold, and serves as a mechanical cushion. Brown adipose tissue (BAT) helps newborns to cope with cold. BAT has the capacity to uncouple the mitochondrial respiratory chain, thereby generating heat rather than adenosine triphosphate (ATP). The previously widely held view was that BAT disappears rapidly after birth and is no longer present in adult humans. Using positron emission tomography (PET), however, it was recently shown that metabolically active BAT occurs in defined regions and scattered in WAT of the adult and possibly has an influence on whole-body energy homeostasis. In obese individuals adipose tissue is at the center of metabolic syndrome. Targeting of WAT by thiazolidinediones (TZDs), activators of peroxisome proliferator-activated receptor γ (PPARγ) a 'master' regulator of fat cell biology, is a current therapy for the treatment of type 2 diabetes. Since its unique capacity to increase energy consumption of the body and to dissipate surplus energy as heat, BAT offers new perspectives as a therapeutic target for the treatment of obesity and associated diseases such as type 2 diabetes and metabolic syndrome. Recent discoveries of new signaling pathways of BAT development give rise to new therapeutic possibilities in order to influence BAT content and activity.
Collapse
Affiliation(s)
- Bodo Haas
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn, 53175, Germany
| | - Paul Schlinkert
- University of Salzburg, Molecular Biology, Hellbrunnerstraße 34, Salzburg, 5020, Austria
| | - Peter Mayer
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn, 53175, Germany
| | - Niels Eckstein
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn, 53175, Germany
| |
Collapse
|
28
|
Ribeiro R, Monteiro C, Catalán V, Hu P, Cunha V, Rodríguez A, Gómez-Ambrosi J, Fraga A, Príncipe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhães J, Oliveira J, Pina F, Lopes C, Medeiros R, Frühbeck G. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue. BMC Med 2012; 10:108. [PMID: 23009291 PMCID: PMC3523039 DOI: 10.1186/1741-7015-10-108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/25/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. METHODS Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. RESULTS In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. CONCLUSIONS Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for prostate cancer progression.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Molecular Oncology Group, Portuguese Institute of Oncology, Ed, Laboratórios-Piso 4, Rua Dr, António Bernardino de Almeida 4200-072, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Asimakopoulos AD, Miano R, Agrò EF, Vespasiani G, Spera E. Does Current Scientific and Clinical Evidence Support the Use of Phosphodiesterase Type 5 Inhibitors for the Treatment of Premature Ejaculation? A Systematic Review and Meta‐analysis. J Sex Med 2012; 9:2404-16. [DOI: 10.1111/j.1743-6109.2011.02628.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Janjic MM, Stojkov NJ, Bjelic MM, Mihajlovic AI, Andric SA, Kostic TS. Transient rise of serum testosterone level after single sildenafil treatment of adult male rats. J Sex Med 2012; 9:2534-43. [PMID: 22429315 DOI: 10.1111/j.1743-6109.2012.02674.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Phosphodiesterase type 5 (PDE5) inhibitors have been established in therapy for a variety of physiological disorders including erectile dysfunction. Despite its popularity and wide usage in erectile dysfunction treatment, the short-term effect of PDE5 inhibition on Leydig cell functionality and testosterone dynamics is missing. AIM This study was designed to assess the acute in vivo effects of sildenafil citrate (Viagra) treatment on testosterone production. METHODS Male adult rats were given sildenafil (1.25 mg/kg BW) per os, and testosterone production were analyzed 30, 60, 120, and 180 minutes after treatment. Additionally, in vitro effect of sildenafil extract on Leydig cell steroidogenesis was estimated. MAIN OUTCOME MEASURES The formation of testicular interstitial fluid (TIF), and testosterone, cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP) content was followed. Occurrence and phosphorylation of mature steroidogenic acute regulatory protein (StAR) and interaction with protein kinase G 1 (PRKG1) were assessed by immunoprecipitation and Western blot. RESULTS Serum testosterone was increased 60 and 120 minutes after sildenafil treatment. In 60 minutes, TIF volume was doubled and stayed increased till the end of the experimental period. cGMP and testosterone content in TIF were increased 30 minutes after treatment, and cAMP decreased in 60 minutes. Further, sildenafil-induced stimulation of testosterone production was abolished by ex vivo addition of PRKG1 inhibitor but not by protein kinase A inhibitor. Sildenafil treatment increased the level of phosphorylated and total StAR protein. Moreover, co-immunoprecipitation of StAR and PRKG1 was increased following sildenafil treatment suggesting the active role of this kinase in initiation of testosterone synthesis. Additionally, sildenafil extract applied in vitro on primary Leydig cell culture increased cGMP accumulation and testosterone production in time- and dose-dependent manner without effect on cAMP level. CONCLUSION Acute sildenafil treatment enlarged TIF volume but also stimulated testosterone production which may be significant considering the positive testosterone effect in regulation of sexual activity.
Collapse
Affiliation(s)
- Marija M Janjic
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | | | | |
Collapse
|
31
|
Lugnier C. PDE inhibitors: a new approach to treat metabolic syndrome? Curr Opin Pharmacol 2011; 11:698-706. [PMID: 22018840 DOI: 10.1016/j.coph.2011.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/27/2011] [Indexed: 01/16/2023]
Abstract
About one third of people in the world suffer from metabolic syndrome (MetS), with symptoms such as hypertension and elevated blood cholesterol, and with increased risk of developing additional diseases such as diabetes mellitus and heart disease. The progression of this multifactorial pathology, which targets various tissues and organs, might necessitate a renewal in therapeutic approaches. Since cyclic nucleotide phosphodiesterases (PDEs), enzymes which hydrolyze cyclic AMP and cyclic GMP, play a crucial role in regulating endocrine and cardiovascular functions, inflammation, oxidative stress, and cell proliferation, all of which contribute to MetS, we wonder whether PDE inhibitors might represent new therapeutic approaches for preventing and treating MetS.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
32
|
Armani A, Marzolla V, Rosano GMC, Fabbri A, Caprio M. Phosphodiesterase type 5 (PDE5) in the adipocyte: a novel player in fat metabolism? Trends Endocrinol Metab 2011; 22:404-11. [PMID: 21741267 DOI: 10.1016/j.tem.2011.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase type 5 (PDE5) is expressed in many tissues (e.g. heart, lung, pancreas, penis) and plays a specific role in hydrolyzing cyclic guanosine monophosphate (cGMP). In adipocytes, cGMP regulates crucial functions by activating cGMP-dependent protein kinase (PKG). Interestingly, PDE5 was recently identified in adipose tissue, although its role remains unclear. Its inhibition, however, was recently shown to affect adipose differentiation and aromatase function. This review summarizes evidence supporting a role for the PDE5-regulated cGMP/PKG system in adipose tissue and its effects on adipocyte function. A better elucidation of the role of PDE5 in the adipocyte could reveal new therapeutic strategies for fighting obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Armani
- Center for Clinical and Basic Research, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) San Raffaele Pisana, Rome, Italy
| | | | | | | | | |
Collapse
|
33
|
El-Sakka AI. Alleviation of post-radical prostatectomy cavernosal fibrosis: future directions and potential utility for PDE5 inhibitors. Expert Opin Investig Drugs 2011; 20:1305-9. [PMID: 21846259 DOI: 10.1517/13543784.2011.609315] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reversion of cavernosal fibrosis remains a controversial issue. The relative smooth muscle cells' loss that happens with cavernosal nerve damage and their impact on deterioration of erectile function were demonstrated in several studies. Furthermore, chronic ischemia that occurs with aging and medical co-morbidities is associated with the reduction of nitric oxide-cyclic guanosine monophosphate and ultimately cavernosal fibrosis. Despite the encouraging recent results of the role of phosphodiesterase type 5 inhibitors in the prevention of post-prostatectomy erectile dysfunction, debate regarding the exact mechanism of PDE5 inhibitors in prevention, amelioration and reversion of penile fibrosis still exists. Recently, several reports suggested that PDE5 inhibitors may improve endothelial function and decrease arterial stiffness, introducing this class of compounds as potential drugs for the treatment of erectile dysfunction-associated penile fibrosis. In this editorial, we intended to address the role of PDE5 inhibitors as a promising treatment to alleviate or reverse ED associated-cavernosal fibrosis.
Collapse
|
34
|
Aversa A, Francomano D, Bruzziches R, Natali M, Spera G, Lenzi A. Is there a role for phosphodiesterase type-5 inhibitors in the treatment of premature ejaculation? Int J Impot Res 2011; 23:17-23. [DOI: 10.1038/ijir.2010.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|