1
|
Hayashi T, Watanabe C, Katsuyama S, Agatsuma Y, Scuteri D, Bagetta G, Sakurada T, Sakurada S. Contribution of Histamine to Nociceptive Behaviors Induced by Intrathecally Administered Cholecystokinin-8. Front Pharmacol 2020; 11:590918. [PMID: 33250769 PMCID: PMC7673449 DOI: 10.3389/fphar.2020.590918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023] Open
Abstract
The involvement of spinal release of histamine in the nociceptive behaviors induced by cholecystokinin-8 (CCK-8) was investigated in mice. Intrathecal (i.t.) injection of CCK-8 elicited the nociceptive behaviors consisting of biting and licking. The nociceptive behaviors induced by i.t. treatment with CCK-8 showed two bell-shaped patterns. The histamine H3 receptor antagonist significantly promoted the nociceptive behaviors induced by CCK-8 at doses of 1–100 fmol and 100 pmol. The nociceptive behaviors elicited by CCK-8 was inhibited by i.t. administration of the CCK-B receptor antagonist in a dose-dependent manner, but not by the CCK-A receptor antagonist. The nociceptive behaviors induced by CCK-8 were markedly suppressed by i.t. pretreatment with antiserum against histamine and were abolished in histidine decarboxylase-deleted gene mice. In histamine H1 receptor-deleted gene mice, the nociceptive behaviors induced at both 10 amol and 10 pmol of CCK-8 were not affected. The tachykinin neurokinin-1 (NK1) receptor antagonists inhibited CCK-8 (10 pmol)-induced nociceptive behaviors in a dose-dependent manner. CCK-8 (10 amol)-induced nociceptive behaviors was not antagonized by co-administration with the tachykinin NK1 receptor antagonists. The nociceptive behaviors elicited by CCK-8 were inhibited by i.t. administration of the antagonist for the N-methyl-D-aspartate (NMDA) receptor in a dose-dependent manner. Our results suggest that the nociceptive behaviors induced by i.t. administration of CCK-8 (10 pmol) are mediated through the spinal release of histamine and are elicited via activation of the tachykinin NK1 and NMDA receptors, whereas the nociceptive behaviors induced by i.t. administration of CCK-8 (10 amol) are mediated through the spinal release of histamine and elicited via NMDA receptor activation.
Collapse
Affiliation(s)
- Takafumi Hayashi
- Laboratory of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chizuko Watanabe
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Soh Katsuyama
- Center for Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Saitama, Japan
| | - Yasuyuki Agatsuma
- Laboratory of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Tsukasa Sakurada
- Center for Supporting Pharmaceutical Education, Faculty of Pharmaceutical sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
2
|
Preface. PROGRESS IN BRAIN RESEARCH 2020; 258:xvii-xxiii. [DOI: 10.1016/s0079-6123(20)30227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Lovell PV, Mello CV. Brain expression and song regulation of the cholecystokinin gene in the zebra finch (Taeniopygia guttata). J Comp Neurol 2011; 519:211-37. [PMID: 21165972 DOI: 10.1002/cne.22513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gene encoding cholecystokinin (Cck) is abundantly expressed in the mammalian brain and has been associated with such functions as feeding termination and satiety, locomotion and self-stimulation, the modulation of anxiety-like behaviors, and learning and memory. Here we describe the brain expression and song regulation of Cck in the brain of the adult male zebra finch (Taeniopygia guttata), a songbird species. Using in situ hybridization we demonstrate that Cck is highly expressed in several discrete brain regions, most prominently the caudalmost portion of the hippocampal formation, the caudodorsal nidopallial shelf and the caudomedial nidopallium (NCM), the core or shell regions of dorsal thalamic nuclei, dopaminergic cell groups in the mesencephalon and pons, the principal nucleus of the trigeminal nerve, and the dorsal raphe. Cck was largely absent in song control system, a group of nuclei required for vocal learning and song production in songbirds, although sparse labeling was detected throughout the striatum, including song nucleus area X. We also show that levels of Cck mRNA and the number of labeled cells increase in the NCM of males and females following auditory stimulation with conspecific song. Double labeling further reveals that the majority of Cck cells, excluding those in the reticular nucleus of the thalamus, are non-GABAergic. Together, these data provide the first comprehensive characterization of Cck expression in a songbird, and suggest a possible involvement of Cck regulation in important aspects of birdsong biology, such as perceptual processing, auditory memorization, and/or vocal-motor control of song production.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
4
|
Anxiolytic-like effects of the neurokinin 1 receptor antagonist GR-205171 in the elevated plus maze and contextual fear-potentiated startle model of anxiety in gerbils. Behav Pharmacol 2011; 20:584-95. [PMID: 19675456 DOI: 10.1097/fbp.0b013e32832ec594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gerbils show a neurokinin (NK)1 receptor pharmacological profile, which is similar to that observed in humans, and thus have become a commonly used species to test efficacy of NK1 receptor antagonists. The aim of this study was to determine whether systemic administration of the NK1 receptor antagonist GR-205171 produced anxiolytic-like effects in the elevated plus maze and in a novel contextual conditioned fear test using fear-potentiated startle (FPS). On the elevated plus maze, treatment with GR-205171 at 0, 0.3, 1.0, and 5.0 mg/kg doses, 30 min before testing produced anxiolytic-like effects in an increasing dose-response manner as measured by the percentage of open arm time and percentage of open arm entries. For contextual fear conditioning, gerbils were given 10 unsignaled footshocks (0.6 mA) at a 2-min variable interstimulus interval in a distinctive training context. Twenty-four hours after training, gerbils received treatment of GR-205171 at 0, 0.3, 1.0, and 5.0 mg/kg doses, 30 min before testing in which startle was elicited in the same context in which they were trained. Contextual FPS was defined as an increase in startle over pretraining baseline values. All drug dose levels (0.3, 1.0, and 5.0 mg/kg) significantly attenuated contextual FPS when compared with the vehicle control group. A control group, which received testing in a different context, showed little FPS. These findings support other evidence for anxiolytic activity of NK1 receptor antagonists and provide a novel conditioned fear test that may be an appropriate procedure to test other NK1 antagonists for preclinical anxiolytic activity in gerbils.
Collapse
|
5
|
Repeated administration of methamphetamine blocked cholecystokinin-octapeptide injection-induced c-fos mRNA expression without change in capsaicin-induced junD mRNA expression in rat cerebellum. J Neural Transm (Vienna) 2010; 117:1041-53. [PMID: 20680358 DOI: 10.1007/s00702-010-0444-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
In the cerebellum, there are numerous cholecystokinin (CCK-8)-containing fibers. Since systemic CCK-8 injection-induced anxiety (psychological stress) activates the locus coeruleus cells that send mossy fiber inputs to the cerebellum, we examined whether systemic CCK-8 injections activate the rat and mouse cerebellum. First, injections of CCK-8 were found to induce c-fos mRNA expression in a vague patchy pattern that is different from single methamphetamine-induced Zebrin band-like c-fos mRNA expression, suggesting that the CCK-8 activating mossy fibers induce gene expression differently from the dopamine-containing mossy fibers in the ventral tegmental area. Second, since CCK-8 facilitates neural activity of dopamine in the midbrain, we examined whether repeated methamphetamine administration that induced behavioral sensitization had similar effects on the cerebellar CCK system. Repeated administration of methamphetamine suppressed the CCK-8-induced c-fos mRNA expression in the rat cerebellum. Third, capsaicin injections (physical stress) into a hind limb of the rat increased junD mRNA expression with no effect on c-fos mRNA expression, and repeated methamphetamine injections had no effect on the capsaicin-induced expression of junD mRNA. Fourth, either single injection of methamphetamine or CCK-8 to mice increased c-fos mRNA expression in the locus coeruleus, and so noradrenalin, but not dopamine, might interact with CCK-8-activating system. However, we considered the possibility unlikely. Thus, we conclude that repeated methamphetamine administration though dopamine selectively inhibits the c-fos mRNA expression after CCK-8 injection in the cerebellum.
Collapse
|
6
|
Hebb ALO, Poulin JF, Roach SP, Zacharko RM, Drolet G. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition, and emotion. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1225-38. [PMID: 16242828 DOI: 10.1016/j.pnpbp.2005.08.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 11/22/2022]
Abstract
It is well documented that stressful life experiences contribute to the etiology of human mood disorders. Cholecystokinin (CCK) is a neuropeptide found in high concentrations throughout the central nervous system, where it is involved in numerous physiological functions. A role for CCK in the induction and persistence of anxiety and major depression appears to be conspicuous. While increased CCK has been associated with motivational loss, anxiety and panic attacks, an increase in mesocorticolimbic opioid availability has been associated with coping and mood elevation. The close neuroanatomical distribution of CCK with opioid peptides in the limbic system suggests that there may be an opioid-CCK link in the modulation and expression of anxiety or stressor-related behaviors. In effect, while CCK induces relatively protracted behavioral disturbances in both animal and human subjects following stressor applications, opioid receptor activation may change the course of psychopathology. The antagonistic interaction of CCK and opioid peptides is evident in psychological disturbances as well as stress-induced analgesia. There appears to be an intricate balance between the memory-enhancing and anxiety-provoking effects of CCK on one hand, and the amnesic and anxiolytic effects of opioid peptides on the other hand. Potential anxiogenic and mnemonic influences of site-specific mesocorticolimbic CCK and opioid peptide availability, the relative contributions of specific CCK and opioid receptors, as well as the time course underlying neuronal substrates of long-term behavioral disturbances as a result of stressor manipulations, are discussed.
Collapse
Affiliation(s)
- Andrea L O Hebb
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, Canada B3H 1X5.
| | | | | | | | | |
Collapse
|
7
|
Emmett SR, Greenfield SA. Correlation between dopaminergic neurons, acetylcholinesterase and nicotinic acetylcholine receptors containing the α3- or α5-subunit in the rat substantia nigra. J Chem Neuroanat 2005; 30:34-44. [PMID: 15975762 DOI: 10.1016/j.jchemneu.2005.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 08/28/2004] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the relationship between the cells possessing the alpha3 or alpha5 nicotinic acetylcholine receptor subunits and the enzyme acetylcholinesterase, with respect to tyrosine hydroxylase immunoreactive dopaminergic neurons in the rat substantia nigra. Most, but certainly not all, acetylcholinesterase immunoreactive cells were located in the pars compacta. In the substantia nigra pars compacta there were in turn two populations of acetylcholinesterase containing neurons: those that were tyrosine hydroxylase reactive and those that were not. Double label studies, that included an antibody immunoreactive against a common immunogen on alpha1 of muscle and alpha3 and alpha5 neuronal nicotinic acetylcholine receptor subunits, revealed that nearly all nicotinic receptor positive cells were also tyrosine hydroxylase neurons. However, a minority non-tyrosine hydroxylase population was alpha3- and/or alpha5-nAChR positive and these were always AChE-immunoreactive. In summary, there appears to be a close correlation between nicotinic receptors and acetylcholinesterase in the substantia nigra, irrespective of the transmitter phenotype in different neuronal subpopulations.
Collapse
Affiliation(s)
- Stevan R Emmett
- University Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
8
|
Abstract
Cholecystokinin (CCK) is a regulatory peptide hormone, predominantly found in the gastrointestinal tract, and a neurotransmitter present throughout the nervous system. In the gastrointestinal system CCK regulates motility, pancreatic enzyme secretion, gastric emptying, and gastric acid secretion. In the nervous system CCK is involved in anxiogenesis, satiety, nociception, and memory and learning processes. Moreover, CCK interacts with other neurotransmitters in some areas of the CNS. The biological effects of CCK are mediated by two specific G protein coupled receptor subtypes, termed CCK(1) and CCK(2). Over the past fifteen years the search of CCK receptor ligands has evolved from the initial CCK structure derived peptides towards peptidomimetic or non-peptide agonists and antagonists with improved pharmacokinetic profile. This research has provided a broad assortment of potent and selective CCK(1) and CCK(2) antagonists of diverse chemical structure. These antagonists have been discovered through optimization programs of lead compounds which were designed based on the structures of the C-terminal tetrapeptide, CCK-4, or the non-peptide natural compound, asperlicin, or derived from random screening programs. This review covers the main pharmacological and therapeutic aspects of these CCK(1) and CCK(2) antagonist. CCK(1) antagonists might have therapeutic potential for the treatment of pancreatic disorders and as prokinetics for the treatment of gastroesophageal reflux disease, bowel disorders, and gastroparesis. On the other hand, CCK(2) antagonists might have application for the treatment of gastric acid secretion and anxiety disorders.
Collapse
Affiliation(s)
- Rosario Herranz
- Instituto de Química Medica (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain.
| |
Collapse
|
9
|
Loonam TM, Noailles PAH, Yu J, Zhu JPQ, Angulo JA. Substance P and cholecystokinin regulate neurochemical responses to cocaine and methamphetamine in the striatum. Life Sci 2003; 73:727-39. [PMID: 12801594 DOI: 10.1016/s0024-3205(03)00393-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mechanism of action of drugs of abuse like cocaine and amphetamines has been studied extensively in the dopamine terminal field areas of the caudate-putamen (CPu) and the nucleus accumbens (NAc) of the rodent brain. These brain regions contain several neuropeptides that must play important roles in the normal physiological functions of these brain regions. The study of neuropeptide physiology in the context of the neurobiological responses to drugs of abuse may shed some light on the intrinsic mechanism of action of neuropeptides of the CPu and the NAc. The neuropeptides substance P (SP) and cholecystokinin (CCK) are present in the striatum where they could play an important role regulating the effects of psychostimulants like cocaine and amphetamines (methamphetamine [METH] is a long acting derivative of d-amphetamine). These highly addictive agents induce the release of dopamine (DA) (and other catecholamines) from dopaminergic terminals of the striatum. The excessive release of DA in the striatum and the NAc has been implicated in the habit-forming properties of these drugs. In order to study the contribution of SP and CCK in the striatum during psychostimulant treatment, we employed selective non-peptide neurokinin-1 (NK-1) and cholecystokinin-2 (CCK-2) receptor antagonists that readily cross the blood brain barrier. We infused the neurokinin-1 receptor (NK-1R) antagonist, L-733,060, into the striatum of freely moving rats via a microdialysis probe in order to assess the effects of SP on cocaine-induced DA overflow in the striatum. Infusion of the NK-1R antagonist prior to a systemic injection of cocaine (10 mg/kg i.p.) significantly attenuated DA overflow in the striatum. Conversely, infusion of a CCK-2 receptor (CCK-2R) antagonist, L-369,293, through the microdialysis probe evoked DA overflow in the striatum in the absence of cocaine and potentiated DA overflow after a single injection of cocaine (10 mg/kg i.p.). Exposure to METH (10 mg/kg 4x at two-hour intervals) produced deficits of dopamine transporters (DAT) in mice striatum that are detectable three days after the treatment and are long lasting. Pre-treatment (i.p. injections) with the NK-1R antagonist, WIN-51,708 30 minutes before the 1st and 4th injections of METH prevented the loss of DAT in the striatum. Moreover, pre-treatment with the NK-1R antagonist prevents METH-induced cell death. Taken together, these results demonstrate that the NK-1R and the CCK-2R are important modulators of the actions of the psychostimulants cocaine and METH. Neuropeptide receptors represent an important control point mediating the effects of the neurotransmitter DA in the striatum of the rodent brain.
Collapse
Affiliation(s)
- Thomas M Loonam
- Department of Biological Sciences, Hunter College of the City University of New York, 695 Park Avenue, New York 10021, USA
| | | | | | | | | |
Collapse
|
10
|
Triarhou LC. Histochemical properties of intrastriatal mesencephalic grafts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 517:43-61. [PMID: 12580306 DOI: 10.1007/978-1-4615-0699-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lazaros C Triarhou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Medical Science Building A142, Indiana University Medical Center, 635 Barnhill Drive, Indianapolis, Indiana 46202-5120, USA
| |
Collapse
|
11
|
Blanchard DC, Griebel G, Blanchard RJ. The Mouse Defense Test Battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 2003; 463:97-116. [PMID: 12600704 DOI: 10.1016/s0014-2999(03)01276-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Mouse Defense Test Battery was developed from tests of defensive behaviors in rats, reflecting earlier studies of both acute and chronic responses of laboratory and wild rodents to threatening stimuli and situations. It measures flight, freezing, defensive threat and attack, and risk assessment in response to an unconditioned predator stimulus, as well as pretest activity and postthreat (conditioned) defensiveness to the test context. Factor analyses of these indicate four factors relating to cognitive and emotional aspects of defense, flight, and defensiveness to the test context. In the Mouse Defense Test Battery, GABA(A)-benzodiazepine anxiolytics produce consistent reductions in defensive threat/attack and risk assessment, while panicolytic and panicogenic drugs selectively reduce and enhance, respectively, flight. Effects of GABA(A)-benzodiazepine, serotonin, and neuropeptide ligands in the Mouse Defense Test Battery are reviewed. This review suggests that the Mouse Defense Test Battery is a sensitive and appropriate tool for preclinical evaluation of drugs potentially effective against defense-related disorders such as anxiety and panic.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biomedical Research Center, University of Hawaii, 1993 East-West Road, Honolulu 96822, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Carlberg M, Gundlach AL, Mercer LD, Beart PM. Autoradiographic Localization of Cholecystokinin A and B Receptors in Rat Brain Using [125I]d-Tyr25 (Nle28,31)-CCK 25 - 33S. Eur J Neurosci 2002; 4:563-573. [PMID: 12106342 DOI: 10.1111/j.1460-9568.1992.tb00906.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of receptors for the sulphated octapeptide cholecystokinin 26 - 33 (CCK - 8S) in rat brain was investigated by radioligand binding in conjunction with autoradiography using the novel iodinable, non-oxidizable, amino- and thiolendopeptidase-resistant CCK analogue, d-Tyr25(Nle28,31)-CCK 25 - 33S. Labelling of the peptide was achieved by synthesis utilizing Na125I and Chloramine-T. [125I]d-Tyr25(Nle28,31)-CCK 25 - 33S (100 pM) bound rapidly and reversibly to a single population of sites on slide-mounted coronal sections of rat forebrain with a dissociation constant of 34 pM. Specific binding was fully inhibited by CCK-8S, CCK-8, CCK-4, L-365,260 and L-364,718, with inhibition constants 2.7, 9.8, 35, 7.0 and 130 nM, respectively. These inhibition data may indicate that the [125I] ligand binds preferentially to a CCKB subtype of receptor, but may also reflect the relative paucity of CCKA receptors in the rat forebrain. Optimum conditions for autoradiography combined the preincubation of brain sections in unlabelled 10 pM d-Tyr25(Nle28,31)-CCK 25 - 33S with a 60-min wash after incubation with the [125I] ligand. Analyses of the autoradiograms obtained from the use of coronal and horizontal brain sections were aided by the high levels of specific binding (80 - 90%), and revealed that CCK receptors were topographically distributed through the neuroaxis. High densities of receptor-associated silver grains were found in the olfactory bulb (internal plexiform layer), neocortex (layer III), nucleus accumbens, parasubiculum, subbrachial nucleus, parabigeminal nucleus, dorsal vagal complex, area postrema and the A2 region. Moderate labelling was observed in many telencephalic and diencephalic nuclei. The majority of these receptors were of the CCKB subtype, as shown by the use of subtype-selective antagonists, although CCKA receptors were present in moderate to high densities in the A2 area, area postrema and nucleus tractus solitarii, and at low density in the interpeduncular nucleus and central amygdala. These findings provide further evidence for the widespread, topographic distribution of CCK receptors and indicate that [125I]d-Tyr25(Nle28,31)-CCK 25 - 33S is very suitable for autoradiographic investigations because of its low non-specific binding.
Collapse
Affiliation(s)
- M. Carlberg
- University of Melbourne, Clinical Pharmacology and Therapeutics Unit, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | | | | | | |
Collapse
|
14
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1550] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
15
|
Zhang X, de Araujo Lucas G, Elde R, Wiesenfeld-Hallin Z, Hökfelt T. Effect of morphine on cholecystokinin and mu-opioid receptor-like immunoreactivities in rat spinal dorsal horn neurons after peripheral axotomy and inflammation. Neuroscience 2000; 95:197-207. [PMID: 10619476 DOI: 10.1016/s0306-4522(99)00419-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to further investigate the interaction between the octapeptide cholecystokinin and opioid analgesia in the spinal cord we used double-colour immunofluorescence to examine the anatomical distribution of cholecystokinin and mu-opioid receptors in the dorsal horn, as well as the effect of morphine on cholecystokinin- and mu-opioid receptor-like immunoreactivities following peripheral nerve injury and inflammation. Mu-opioid receptor-like immunoreactivity was present in 65.6% of cholecystokinin-positive neurons in laminae I and II of rat spinal cord. Conversely, 40.4% of mu-opioid receptor-positive neurons contained cholecystokinin-like immunoreactivity. Systemic application of morphine (1, 3 or 10 mg/kg; i.v.) after sciatic nerve section significantly, but reversibly, decreased mu-Opioid receptor-like immunoreactivity in the medial half of lamina II in segment L5 of the ipsilateral dorsal horn, and cholecystokinin-like immunoreactivity was also markedly reduced in the same region. These effects were dose- and time-dependent and could be prevented by naloxone preadministration. In contrast, no significant change in the pattern of distribution or intensity of mu-opioid receptor- and cholecystokinin-like immunoreactivities was observed in intact rats or during peripheral inflammation. These results provide a cellular basis for the interaction of mu-opioid receptors and cholecystokinin at the spinal level by showing a high degree of co-existence of these two molecules in local interneurons, and also show that morphine can induce rapid and short lasting effects on mu-opioid receptors after peripheral nerve injury. The results contribute to our understanding of how endogenous cholecystokinin reduces the analgesic effect of morphine.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
16
|
Broberger C, Farkas-Szallasi T, Szallasi A, Lundberg JM, Hökfelt T, Wiesenfeld-Hallin Z, Xu XJ. Increased spinal cholecystokinin activity after systemic resiniferatoxin: electrophysiological and in situ hybridization studies. Pain 2000; 84:21-28. [PMID: 10601669 DOI: 10.1016/s0304-3959(99)00173-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study assessed the effect of a single subcutaneous injection of resiniferatoxin (RTX), an ultrapotent capsaicin analogue, on the activity of spinal cholecystokinin (CCK) systems, by using electrophysiological and in situ hybridization techniques. Subcutaneous RTX at 0.3 mg/kg, but not vehicle, produced marked thermal hypoalgesia in rats on the hot plate and tail flick tests. Partial recovery from hypoalgesia occurred in some (<50%), but not all, RTX-treated rats after 2 weeks. The flexor reflex in response to activation of high threshold afferents was recorded 15-35 days after RTX- or vehicle-treatment. There was no obvious difference between RTX- and vehicle-treated rats in the baseline flexor reflex. Intravenous morphine at 1 mg/kg caused a depression of the flexor reflex in vehicle- and in RTX-treated rats. The reflex depressive effect of morphine was significantly briefer in RTX-treated, non-recovered rats than vehicle-treated rats. Furthermore, CI-988, a high affinity antagonist of CCKB receptors, caused a minor depression of the reflex in vehicle- and RTX-treated rats that had partially recovered, whereas the reflex depressive effect of CI-988 was significantly enhanced in RTX-treated, non-recovered rats. In situ hybridization showed that RTX treatment caused a marked and significant increase in the number of dorsal root ganglion (DRG) neurone profiles expressing CCKB receptor mRNA, whereas only a small increase was observed for CCKA receptor mRNA expressing neurone profiles. Significantly more DRG neurone profiles expressed CCKB receptor mRNA in RTX-treated, non-recovered rats compared to partially recovered rats. RTX-treatment did not influence the expression of CCK mRNA in DRGs. Since CCK functions as a physiological antagonist of morphine, it is suggested that RTX treatment enhances the activity of spinal CCK systems, leading to the reduced effect of morphine and increased effect of the CCKB receptor antagonist CI-988. This may mainly be due to upregulation of CCKB receptors in DRG neurones.
Collapse
Affiliation(s)
- Christian Broberger
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden Department of Physiology and Pharmacology, Division of Pharmacology, Karolinska Institute, Stockholm, Sweden Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Phan DC, Newton BW. Cholecystokinin-8-like-immunoreactive fibers in rat lumbosacral autonomic regions are sexually dimorphic and altered by a reduction of androgen receptors. J Chem Neuroanat 1999; 17:169-77. [PMID: 10609866 DOI: 10.1016/s0891-0618(99)00044-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cholecystokinin-8-like-immunoreactive (CCK-8-LI) fibers in laminae VII and X of the rat lumbosacral spinal cord demarcate the position of preganglionic autonomic neurons. This investigation reveals that adult male Sprague-Dawley, or King-Holtzman/Sprague-Dawley rats contain more CCK-8-LI fibers in lumbosacral laminae VII and X than adult females. Furthermore, testicular feminization mutation male rats (which lack 85-90% of their functional androgen receptors) contain fewer CCK-8-LI fibers than normal male or female rats, with the amount of CCK-8-LI being reduced to a greater extent in the sympathetic vs. the parasympathetic regions of the lumbosacral spinal cord. Thus, CCK-8-LI in testicular feminization mutation male rats has a distinctly female-like pattern. These results suggest that testosterone is a regulatory factor for CCK-8-LI fibers found in laminae VII and X of the lumbosacral spinal cord. Sexual dimorphism in lumbosacral CCK-8-LI fibers may contribute to modulating the final common pathway which differentially regulates the reproductive organs and stereotypic reproductive behavior, and may be involved with the sex differences described for pain.
Collapse
Affiliation(s)
- D C Phan
- Department of Anatomy and Center for Neuroscience, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | |
Collapse
|
18
|
Abstract
The electrophysiological and neurochemical characteristics of the nondopaminergic nigrostriatal (NO-DA) cells and their functional response to the degeneration of dopaminergic nigrostriatal (DA) cells were studied. Three different criteria were used to identify NO-DA cells: (1) antidromic response to striatal stimulation with an electrophysiological behavior (firing rate, interspike interval variability, and conduction velocity) different from that of DA cells; (2) retrograde labeling after striatal injection of HRP but showing immunonegativity for DA cell markers (tyrosine hydroxylase, calretinin, calbindin-D28k, and cholecystokinin); and (3) resistance to neurotoxic effect of 6-hydroxydomine (6-OHDA). Our results showed that under normal conditions, 5-8% of nigrostriatal neurons are immunoreactive for GABA, glutamic acid decarboxylase, and parvalbumin, markers of GABAergic neurons, a percentage that reached 81-84% after 6-OHDA injection. Electrophysiologically, NO-DA cells showed a behavior similar to that found in other nigral GABAergic (nigrothalamic) cells. In addition, the 6-OHDA degeneration of DA cells induced a modification of their electrophysiological pattern similar to that found in GABAergic nigrothalamic neurons. Taken together, the present data indicate the existence of a small GABAergic nigrostriatal pathway and suggest their involvement in the pathophysiology of Parkinson's disease.
Collapse
|
19
|
Abstract
This review provides an overview of preclinical and clinical evidence of a role for the neuroactive peptides cholecystokinin (CCK), corticotropin-releasing factor (CRF), neuropeptide Y (NPY), tachykinins (i.e., substance P, neurokinin [NK] A and B), and natriuretic peptides in anxiety and/or stress-related disorders. Results obtained with CCK receptor antagonists in animal studies have been highly variable, and clinical trials with several of these compounds in anxiety disorders have been unsuccessful so far. However, future investigations using CCK receptor antagonists with better pharmacokinetic characteristics and animal models other than those validated with the classical anxiolytics benzodiazepines may permit a more precise evaluation of the potential of these compounds as anti-anxiety agents. Results obtained with peptide CRF receptor antagonists in animal models of anxiety convincingly demonstrated that the blockade of central CRF receptors may yield anxiolytic-like activity. However, the discovery of nonpeptide and more lipophilic CRF receptor antagonists is essential for the development of these agents as anxiolytics. Similarly, there is clear preclinical evidence that the central infusion of NPY and NPY fragments selective for the Y1 receptor display anxiolytic-like effects in a variety of tests. However, synthetic nonpeptide NPY receptor agonists are still lacking, thereby hampering the development of NPY anxiolytics. Unlike selective NK1 receptor antagonists, which have variable effects in anxiety models, peripheral administration of selective NK2 receptor antagonists and central infusion of natriuretic peptides produce clear anxiolytic-like activity. Taken as a whole, these findings suggest that compounds targeting specific neuropeptide receptors may become an alternative to benzodiazepines for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- G Griebel
- CNS Research Department, Synthélabo Recherche, Bagneux, France
| |
Collapse
|
20
|
Jerabek I, Boulenger JP, Bradwejn J, Drumheller A, Lavallée YJ, Jolicoeur FB. CCK4-induced panic in healthy subjects II: neurochemical correlates. Eur Neuropsychopharmacol 1999; 9:157-64. [PMID: 10082242 DOI: 10.1016/s0924-977x(98)00021-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cholecystokinin tetrapeptide (CCK4) induces symptoms similar to those of panic attack. The present study investigated the effects of CCK4 administration on catecholaminergic system. In this double blind, randomised, crossover experiment, 16 healthy subjects received injections of either 25 microg of CCK4 or placebo on two separate occasions. Platelet and plasma catecholamine concentrations were assessed before the administration and compared to post-injection values. The results clearly show that both plasma and platelet concentrations of catecholamines are significantly affected by CCK4. Plasma norepinephrine (NE) and epinephrine (EPI) raised significantly above baseline in the immediate post-CCK4 period, while in plasma dopamine (DA), the significant increases were delayed. In the platelets, significant post-CCK4 increases of NE and EPI concentrations were observed with a delay of several minutes. In summary, we have demonstrated that, in healthy subjects, CCK4 increases peripheral concentrations of catecholamines in both plasma and platelets, with the most consistent changes occurring in platelet NE and plasma EPI concentrations.
Collapse
Affiliation(s)
- I Jerabek
- Department of Psychiatry, Faculty of Medicine, Université de Sherbrooke, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Akiyoshi J, Yamauchi C, Furuta M, Katsuragi S, Kohno Y, Yamamoto Y, Miyamoto M, Tsutsumi T, Isogawa K, Fujii I. Relationship between SCL-90, Maudsley Personality Inventory and CCK4-induced intracellular calcium response in T cells. Psychiatry Res 1998; 81:381-6. [PMID: 9925189 DOI: 10.1016/s0165-1781(98)00116-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study examined the relationship between the Symptom Checklist 90 (SCL-90), Maudsley Personality Inventory (MPI) and cholecystokinin 4 (CCK4)-induced intracellular calcium response in T cells. Fifty-two normal volunteers were 37 males and 15 females; they ranged in age from 23 to 44 years. Measures included CCK4-induced intracellular calcium response in T cells, SCL-90 scores, and MPI. Paranoid ideation and interpersonal sensitivity in SCL-90 showed a significant negative association with CCK4-induced intracellular calcium response. Absent were sex differences and extroversion and neuroticism correlations. There were no significant differences between men and women in SCL-90 or MPI scores. There was no correlation among extroversion and neuroticism and CCK4-induced intracellular calcium response. CCKB receptor function might play a role in paranoid ideation and interpersonal sensitivity.
Collapse
Affiliation(s)
- J Akiyoshi
- Department of Neuropsychiatry, Oita Medical University, Hasama-Machi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Behavioral and pharmacological evidence has shown a different and opposite role of the neuropeptide cholecystokinin (CCK) on the dopamine (DA) function in the caudal versus rostral part of the nucleus accumbens. Previous reports have speculated that the caudal region of the nucleus accumbens would receive CCKergic innervation from dopaminergic neurons of the mesencephalic ventral tegmental area, whereas the CCKergic input to the rostral accumbens would originate in non-dopaminergic neurons from extra-mesencephalic areas of the brain. In the present study, this issue was addressed using retrograde tracing techniques in conjunction with immunocytochemistry. Retrograde tracers were injected in the three compartments of the accumbens (i.e., rostral pole, core and septal shell). In summary, our results demonstrate that 1) the main CCKergic input of the accumbens originates in the ventral mesencephalon; 2) the rostral pole is equally innervated by CCK neurons projecting from both substantia nigra pars compacta and ventral tegmental area; 3) the primary source of CCK innervation of the accumbal core is the substantia nigra pars compacta; and 4) whereas the CCKergic input to the septal shell originates primarily in the ventral tegmental area. Additionally, our results also showed that most of the CCKergic neurons projecting to any of the accumbal compartments also produce dopamine. These data constitute the first neuroanatomical evidence for the differential effects of CCK on dopamine actions in the different regions of the nucleus accumbens.
Collapse
Affiliation(s)
- A J Lança
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Singh J, Desiraju T, Raju TR. Effects of microinjections of cholecystokinin and neurotensin into lateral hypothalamus and ventral mesencephalon on intracranial self-stimulation. Pharmacol Biochem Behav 1997; 58:893-8. [PMID: 9408192 DOI: 10.1016/s0091-3057(97)00040-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Changes in intracranial self-stimulation (ICSS) evoked from ventral tegmental area-substantia nigra (VTA-SN) and lateral hypothalamus-medial forebrain bundle (LH-MFB) before and after microinjections of sulfated cholecystokinin octapeptide (CCK-8S) and unsulfated cholecystokinin (CCK-8US), neurotensin tridecapeptide ([D-Tyr11]NT(1-13) or [DTrp11]NT(1-13)) into either VTA-SN or LH-MFB were assessed. The current intensity was fixed at a level to obtain 60-70% of the maximal asymptotic rate. CCK-8S (0.10 microg/0.5 microl and 0.25 microg/0.5 microl) into VTA-SN resulted in dose-dependent decreases in VTA-SN ICSS of 38-42% and 78-92%, respectively, without affecting the ICSS of LH-MFB. Similar doses of CCK-8S injected into LH-MFB changed neither LH-MFB ICSS nor VTA-SN ICSS. CCK-8Us injected into VTA-SN or LH-MFB had no effect on ICSS in either site. Intra-VTA-SN injections of the neurotensin-1 (NT1) receptor agonist [DTyr11]NT(1-13) and the NT1 receptor antagonist [D-Trp11]NT(1-13) at doses of 5 microg/0.5 microl and 10 microg/0.5 microl decreased VTA-SN ICSS. NT1 receptor agonist and antagonist injections did not alter LH-MFB ICSS in any significant manner. Similar injections of these peptides into LH-MFB did not change the responding rates for LH-MFB ICSS or VTA-SN ICSS. Increasing the current intensity reversed the inhibitory effect of CCK-8S and [D-Trp11]NT(1-13) on VTA-SN ICSS and restored basal preinjection rates of responding. These results suggest that CCK(A) and NT1 receptor mechanisms in the ventral tegmentum in association with dopamine neurotransmission may be important in mediating the rewarding effects of VTA-SN ICSS but not LH-MFB ICSS.
Collapse
Affiliation(s)
- J Singh
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | |
Collapse
|
24
|
Xu ZQ, Zhang X, Grillner S, Hökfelt T. Electrophysiological studies on rat dorsal root ganglion neurons after peripheral axotomy: changes in responses to neuropeptides. Proc Natl Acad Sci U S A 1997; 94:13262-6. [PMID: 9371834 PMCID: PMC24297 DOI: 10.1073/pnas.94.24.13262] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of three peptides, galanin, sulfated cholecystokinin octapeptide, and neurotensin (NT), was studied on acutely extirpated rat dorsal root ganglia (DRGs) in vitro with intracellular recording techniques. Both normal and peripherally axotomized DRGs were analyzed, and recordings were made from C-type (small) and A-type (large) neurons. Galanin and sulfated cholecystokinin octapeptide, with one exception, had no effect on normal C- and A-type neurons but caused an inward current in both types of neurons after sciatic nerve cut. In normal rats, NT caused an outward current in C-type neurons and an inward current in A-type neurons. After sciatic nerve cut, NT only caused an inward current in both C- and A-type neurons. These results suggest that (i) normal DRG neurons express receptors on their soma for some but not all peptides studied, (ii) C- and A-type neurons can have different types of receptors, and (iii) peripheral nerve injury can change the receptor phenotype of both C- and A-type neurons and may have differential effects on these neuron types.
Collapse
Affiliation(s)
- Z Q Xu
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Ladurelle N, Keller G, Blommaert A, Roques BP, Daugé V. The CCK-B agonist, BC264, increases dopamine in the nucleus accumbens and facilitates motivation and attention after intraperitoneal injection in rats. Eur J Neurosci 1997; 9:1804-14. [PMID: 9383203 DOI: 10.1111/j.1460-9568.1997.tb00747.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although it is known that panic attacks are triggered by the cholecystokinin fragment CCK4, the specific involvement of peripheral or central cholecystokinin CCK receptors in various adaptive processes such as emotion, memory and anxiety has yet to be demonstrated. With this aim, we have investigated the biochemical and pharmacological effects resulting from the administration of BC264, a highly potent and selective CCK-B agonist able to cross the blood-brain barrier. Very low doses of BC264 (microg/kg i.p.), increased the exploration of animals submitted to an unknown territory but were devoid of anxiogenic properties in the elevated plus maze. BC264 increased locomotion and rearings of rats newly placed in an open field and improved their spontaneous alternation in a Y-maze. The use of vagotomized animals showed that the increased alternation induced by BC264 did not require an intact vagus nerve, unlike the locomotor activation. These behavioural effects, prevented by the prior i.p. administration of the CCK-B antagonist L-365,260 but not by the CCK-A antagonist L-364,718, were shown to depend on dopaminergic systems, since they were blocked by D1 (SCH23390, 25 microg/kg i.p.) or D2 (sulpiride, 50 or 100 mg/kg i.p.) antagonists. In addition, bilateral perfusion in freely moving rats of BC264 at pharmacologically active doses, using a newly designed microdialysis system, was found to increase the extracellular levels of DA, DOPAC and HVA in the anterior part of the nucleus accumbens. These results show that activation of CCK-B receptors by BC264 does not produce anxiogenic-like effects but appears to improve motivation and attention, whereas other CCK-B agonists such as BocCCK4 induce anxiogenic responses. Several explanations, including the existence of different sub-sites of the CCK-B receptor, could account for these differential effects.
Collapse
Affiliation(s)
- N Ladurelle
- Département de Pharmacochimie Moléculaire et Structurale, U 266 INSERM, URA D 1500 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Bishop GA. Cholecystokinin modulation of spontaneous and excitatory amino acid-induced activity in the opossum cerebellum. Neuropeptides 1996; 30:533-40. [PMID: 9004250 DOI: 10.1016/s0143-4179(96)90035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cholecystokinin-B (CCK-8) is an octapeptide that was initially described in the gastrointestinal tract. Recent studies have shown that this peptide also has an extensive distribution in the central nervous system, including the cerebellum of the opossum. In addition to the protein, binding sites for CCK-8 also have been described in the granule cell and molecular layer of this species. These anatomical data suggest that CCK-8 has a functional role in cerebellar circuitry. In the present study we have determined the physiological effects of CCK-8 on spontaneous and amino acid-induced activity. The results indicate that this peptide has both excitatory and inhibitory effects on spontaneous activity as well as the excitatory responses elicited by application of the excitatory amino acids aspartate, glutamate and quisqualate. The data suggest that CCK-8 may influence more than one population of cerebellar neurons. The findings support a neuromodulatory role for this peptide in cerebellar circuitry.
Collapse
Affiliation(s)
- G A Bishop
- Ohio State University, Department of Cell Biology, Neurobiology and Anatomy, Columbus 43210, USA
| |
Collapse
|
27
|
Abstract
Cholecystokinin (CCK) plays an important role in both the alimentary tract and the central nervous system (CNS). At present it seems to be the most abundant neuropeptide in the CNS. This paper reviews the CCK neuronal system and its interactions with gamma-aminobutyric acid (GABA) and serotonin (5-hydroxytryptamine; 5-HT). In addition, its putative role in anxiety will be discussed on the basis of animal data and studies in healthy volunteers and panic disorder patients. According to these investigations, the CCK4 challenge test fulfills most criteria for an ideal panicogenic agent and evidence has been found that CCKB receptor antagonists might possess anxiolytic properties in man.
Collapse
Affiliation(s)
- H J van Megen
- Rudolf Magnus Institute for Neurosciences, Department of Psychiatry, University Hospital Utrecht, Netherlands
| | | | | | | |
Collapse
|
28
|
Weng JH, Bado A, Garbay C, Roques BP. Novel CCK-B receptor agonists: diketopiperazine analogues derived for CCK4 bioactive conformation. REGULATORY PEPTIDES 1996; 65:3-9. [PMID: 8876029 DOI: 10.1016/0167-0115(96)00065-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recently, we proposed a CCK-B agonist bioactive conformation characterized by an 'S' shape of the peptidic backbone which was derived from structure-activity relationships and conformational analysis of CCK4 (Trp-Met-Asp-Phe-NH2) analogues. Using this template, we report here the synthesis of cyclic CCK4 analogues which contain, in place of the Trp-Met dipeptide, a diketopiperazine moiety resulting from a cyclization between Nle and N-substituted (D)Trp residues and coupled with a small linker to Asp-Phe-NH2. Some of these compounds displayed good affinities and selectivities for the CCK-B receptor. The results are discussed in terms of size, hydrophobicity and spatial orientation of the side-chains on the diketopiperazine ring. The most potent ligand exhibited potent and full CCK-B receptor agonist properties in promoting the hydrolysis of inositol phosphates (EC50 = 8 nM) in CHO cells, stably transfected with the rat brain CCK-B receptor. This compound was also shown to be a potent selective CCK-B/gastrin receptor agonist since, it increased gastric acid secretion measured in anesthetized rats on i.v. administration. These compounds provide a rigid template for the design of non-peptide CCK-B agonists, by modification of the remaining peptide moiety.
Collapse
Affiliation(s)
- J H Weng
- Département de Pharmacochimie Moléculaire et Structurale U266 INSERM -URA D 1500 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, Université René Descartes, Faculté de Pharmacie, Paris, France
| | | | | | | |
Collapse
|
29
|
van Megen HJ, Westenberg HG, Den Boer JA, Kahn RS. The panic-inducing properties of the cholecystokinin tetrapeptide CCK4 in patients with panic disorder. Eur Neuropsychopharmacol 1996; 6:187-94. [PMID: 8880078 DOI: 10.1016/0924-977x(96)00018-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the effect of the cholecystokinin tetrapeptide (CCK4), a potent CCKB antagonist, in patients with panic disorder. Two different dosages (25 and 50 micrograms) of CCK4 and saline were tested in 12 patients who were randomly allocated to 2 of the 3 possible treatment groups. Patients were tested on 2 separate occasions, 1 week apart, using an unbalanced single-blind incomplete block design. A total of 24 intravenous injections were carried out. The panic rate with 25 micrograms CCK was 44% (4/9) and 71% (5/7) with 50 micrograms. None of the patients panicked with saline (0/8). Patients' symptom responses were very similar to their spontaneous panic attacks. Taking the Panic Symptom Scale (PSS) as outcome variable, we found that CCK4 provoked symptoms of panic in a dose-dependent fashion. The behavioral response to CCK4 was not accompanied by activation of the hypothalamic-pituitary-adrenal (HPA) axis as measured by the prolactin and cortisol responses. Moreover, CCK4-induced panic symptoms were not correlated with plasma increases in the principal noradrenergic metabolite, 3-methoxy-4-hydroxy-phenylglycol (MHPG), suggesting that activation of the locus coeruleus may not be critical for CCK4-induced panic.
Collapse
Affiliation(s)
- H J van Megen
- Rudolf Magnus Institute for Neurosciences, Department of Psychiatry, University Hospital Utrecht, The Netherlands
| | | | | | | |
Collapse
|
30
|
McRitchie DA, Hardman CD, Halliday GM. Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 1996; 364:121-50. [PMID: 8789281 DOI: 10.1002/(sici)1096-9861(19960101)364:1<121::aid-cne11>3.0.co;2-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study compares the distribution of three calcium binding proteins, calbindin-D28k, calretinin, and parvalbumin, in the midbrain tegmentum of rats and humans. In order to compare the distributions of these proteins directly, the cytoarchitecture of this region was evaluated by using immunohistochemistry for tyrosine hydroxylase and substance P in serial sections in both transverse and horizontal planes. There was a high degree of homology in the cytoarchitecture of the three main dopaminergic regions identified. The A8 group was localised in the retrorubral fields, which extended rostrally into the midbrain reticular fields in the human. The A9 group corresponded to the substantia nigra, which was delimited by its dense substance P innervation. The heterogeneous A10 group, situated along the dorsal border as well as medial to the A9 group, comprised multiple nuclei. The distribution of calcium binding proteins was similar in both species, although a larger proportion of neurons contained these proteins in the rat. Calbindin-D28k was localised in neurons within A8 and A10 nuclei and within the caudomedial A9 region (and rostrolateral A9 in the rat only). Calretinin was localised in similar regions. In contrast, neurons containing parvalbumin were concentrated in the substantia nigra pars reticulata. The results suggest that few dopaminergic neurons receiving striatal input in the substantia nigra contain calcium binding proteins; rather, the nondopaminergic nigral neurons contain parvalbumin. Interestingly, dopaminergic neurons are more numerous in humans, whereas nondopaminergic neurons predominate in rats, which suggests that functional differences may exist between rats and humans.
Collapse
Affiliation(s)
- D A McRitchie
- Prince of Wales Medical Research Institute, Prince of Wales Hospital, Randwick, Australia
| | | | | |
Collapse
|
31
|
Markowski VP, Hull EM. Cholecystokinin modulates mesolimbic dopaminergic influences on male rat copulatory behavior. Brain Res 1995; 699:266-74. [PMID: 8616630 DOI: 10.1016/0006-8993(95)00918-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Much evidence suggests that the neuropeptide cholecystokinin (CCK) functions as a neurotransmitter or neuromodulator in the central nervous system. The CCKa receptor subtype in the nucleus accumbens has been demonstrated to potentiate the behavioral and neurophysiological effects of dopamine. Since the mesolimbic dopamine system participates in the regulation of male rat sexual behavior, the present investigation was undertaken to determine if central CCK modulates this dopaminergic regulation. Electrical stimulation of the ventral tegmental area greatly enhanced several measures of appetitive and consummatory male rat sexual behavior. Administration of a CCKa receptor antagonist to the posteromedian nucleus accumbens reversed the electrically stimulated behavioral enhancement. A CCKb antagonist was without effect. In a second group of animals, administration of either a CCKa or CCKb antagonist to the anterolateral nucleus accumbens reversed the enhancement of consummatory sexual responding produced by electrical stimulation. These results agree with the growing body of evidence supporting different behavioral roles for two distinct CCK systems in the nucleus accumbens.
Collapse
Affiliation(s)
- V P Markowski
- Department of Environmental Medicine, University of Rochester, NY 1464, USA
| | | |
Collapse
|
32
|
Daugé V, Roques BP. Opioid and CCK Systems in Anxiety and Reward. NEUROSCIENCE INTELLIGENCE UNIT 1995. [DOI: 10.1007/978-3-662-21705-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Bertrand P, Böhme GA, Durieux C, Guyon C, Capet M, Jeantaud B, Boudeau P, Ducos B, Pendley CE, Martin GE. Pharmacological properties of ureido-acetamides, new potent and selective non-peptide CCKB/gastrin receptor antagonists. Eur J Pharmacol 1994; 262:233-45. [PMID: 7813588 DOI: 10.1016/0014-2999(94)90737-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We present here the pharmacological properties of 3 ureido-acetamide members of a novel family of non-peptide cholecystokinin-B (CCKB) receptor antagonists. RP 69758 (3-(3-[N-(N-methyl N-phenyl-carbamoylmethyl) N-phenyl-carbamoylmethyl] ureido)phenylacetic acid), RP 71483 ((E)-2-[3-(3-hydroxyiminomethyl phenyl) ureido] N-(8-quinolyl) N-[(1,2,3,4-tetrahydro 1-quinolyl)carbonylmethyl]acetamide) and RP 72540 ((RS)-2-[3-(3-[N-(3-methoxy phenyl) N-(N-methyl N-phenyl-carbamoylmethyl) carbamoylmethyl] ureido) phenyl] propionic acid) displayed nanomolar affinity for guinea-pig, rat and mouse CCKB receptors labelled with [3H]pCCK-8 or with the selective CCKB receptor ligand [3H]pBC264. RP 69758 and RP 72540 showed selectivity factors in express of 200 for CCKB versus CCKA receptors. All three compounds had also high affinity for gastrin binding sites in the stomach. The ureido-acetamides behaved as potent antagonists of CCK-8-induced neuronal firing in rat hippocampal slices in vitro, a functional model of brain CCKB receptor mediated responses. RP 69758 is also a potent gastrin receptor antagonist in vivo that dose dependently inhibits gastric acid secretion induced by i.v. injection of pentagastrin in the rat. None of the three ureido-acetamides, at concentrations up to 1 microM, significantly blocked CCK-8-evoked contractions of the guinea-pig ileum in vitro, a CCKA receptor bioassay. In ex vivo binding studies, i.p. administration of RP 69758 and RP 72540 resulted in a dose-dependent inhibition of [3H]pCCK-8 binding in mouse brain homogenate. However, the relative penetration of these ureido-acetamides into the forebrain after peripheral administration was below 0.01%. RP 71483 did not appear to cross the blood-brain barrier in quantities sufficient to prevent [3H]pCCK-8 binding at low doses, a property that makes it suitable for the exploration of the peripheral versus central origin of the behavioural effects observed following systemic administration of CCK. RP 69758, RP 71483 and RP 72540 are highly potent and selective non-peptide CCKB receptor antagonists which are useful tools to explore the physiological functions of CCKB receptors.
Collapse
Affiliation(s)
- P Bertrand
- Department of Biology, Rhône-Poulenc Rorer S.A., Centre de Recherches de Vitry-Alfortville, Vitry-Sur-Seine, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Crawley JN. Cholecystokinin modulates dopamine-mediated behaviors. Differential actions in medial posterior versus anterior nucleus accumbens. Ann N Y Acad Sci 1994; 713:138-42. [PMID: 8185154 DOI: 10.1111/j.1749-6632.1994.tb44060.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J N Crawley
- Section on Behavioral Neuropharmacology, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Hökfelt T, Morino P, Verge V, Castel MN, Broberger C, Zhang X, Herrera-Marschitz M, Meana JJ, Ungerstedt U, Xu XJ. CCK in cerebral cortex and at the spinal level. Ann N Y Acad Sci 1994; 713:157-63. [PMID: 8185156 DOI: 10.1111/j.1749-6632.1994.tb44062.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- T Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baali-Cherif H, Roques BP, Tramu G, Thibault J. Ultrastructural study of CCK and tyrosine hydroxylase immunoreactivity in the rat nucleus accumbens. Peptides 1994; 15:341-51. [PMID: 7911994 DOI: 10.1016/0196-9781(94)90022-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cholecystokinin (CCK)- and tyrosine hydroxylase (TH)-like immunoreactive (LI) axons and boutons were studied in the caudal and medial parts of the rat nucleus accumbens (NAC), using the indirect immunoperoxidase technique, at the electron microscopic level. Both CCK- and TH-LI boutons contained clear synaptic vesicles and large granular vesicles of similar size, but the CCK-LI boutons contained more large granular vesicles than TH-LI boutons. The CCK-LI and TH-LI boutons were heterogeneous. This finding might be related to the various immunoreactive neuronal types innervating the caudomedial NAC. However, the CCK-LI boutons (containing mostly small, round, clear synaptic vesicles) formed mainly asymmetrical synaptic contacts with dendritic spines whereas the TH-LI boutons (containing medium-sized as well as small, round, clear synaptic vesicles) formed mostly symmetrical synaptic contacts with dendritic shafts.
Collapse
Affiliation(s)
- H Baali-Cherif
- Laboratoire de Cytologie, Université Pierre et Marie Curie, France
| | | | | | | |
Collapse
|
37
|
Ladurelle N, Keller G, Roques BP, Daugé V. Effects of CCK8 and of the CCKB-selective agonist BC264 on extracellular dopamine content in the anterior and posterior nucleus accumbens: a microdialysis study in freely moving rats. Brain Res 1993; 628:254-62. [PMID: 8313154 DOI: 10.1016/0006-8993(93)90962-m] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of the local administration of cholecystokinin octapeptide (CCK8) in the posterior nucleus accumbens (N. Acc.) and of BC264 (a selective CCKB agonist) in the anterior N. Acc. on dopamine (DA) neurotransmission were studied in awake rats. Microdialysis was used to quantify the extracellular contents of DA and its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). In the posterior N. Acc., a perfusion of 10(-5) M CCK8 for 40 min (i.e. 25 pmol) increased the extracellular levels of DA, DOPAC and HVA. In contrast, 10(-4) M BC264 perfused for 40 min (i.e. 350 pmol) into the anterior N. Acc. reduced extracellular DA but did not modify DOPAC and HVA levels. These findings suggest that the CCK-DA interactions are different in various regions of the N. Acc. and emphasize the functional heterogeneity of the N. Acc., issuing in part from its particular DA innervation (mixed CCK-DA terminals only in the posterior region) but also from the distribution of the CCK fibers and binding sites in this nucleus. This microdialysis study, using perfusions of CCK compounds in the N. Acc. of freely moving rats, shows that the CCK system might play an important regulatory role in limbic DA function.
Collapse
Affiliation(s)
- N Ladurelle
- Département de Pharmacochimie Moléculaire et Structurale, U 266 INSERM, URA D 1500 CNRS, Université René Descartes (Paris V), Faculté des Sciences Pharmaceutiques et Biologiques, France
| | | | | | | |
Collapse
|
38
|
Sirinathsinghji DJ, Heavens RP, Torres EM, Dunnett SB. Cholecystokinin-dependent regulation of host dopamine inputs to striatal grafts. Neuroscience 1993; 53:651-63. [PMID: 8487948 DOI: 10.1016/0306-4522(93)90613-k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intrastriatal infusions of cholecystokinin-8-sulphate in the rat exerts a dose-dependent inhibition of dopamine-release from nigrostriatal terminals in the neostriatum, as measured by push-pull perfusion. This effect is abolished by excitotoxic lesions of the neostriatum, which, along with behavioural, electrophysiological and receptor binding studies, suggests that cholecystokinin exerts its action indirectly on dopamine release via receptors located on intrinsic striatal neurons. Grafts of embryonic striatum implanted in the lesioned striatum become innervated by host-derived dopamine axons and restore the response of those host neurons to cholecystokinin infusion. This suggests that the innervation of the grafts by dopaminergic axons of the host brain does not simply provide a tonic input to the grafts, but rather represents a phasic input that is under dynamic local regulation by graft-host feedback influences from the transplanted neurons themselves.
Collapse
Affiliation(s)
- D J Sirinathsinghji
- Department of Neurobiology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | | | |
Collapse
|
39
|
Verge VM, Wiesenfeld-Hallin Z, Hökfelt T. Cholecystokinin in mammalian primary sensory neurons and spinal cord: in situ hybridization studies in rat and monkey. Eur J Neurosci 1993; 5:240-50. [PMID: 8261105 DOI: 10.1111/j.1460-9568.1993.tb00490.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The peptide cholecystokinin (CCK) has been suggested to be involved in nociception, but its exact localization at the level of the spinal cord and in spinal ganglia has been a controversial issue. Therefore the distribution of messenger RNA (mRNA) for CCK was studied by in situ hybridization using oligonucleotide probes on sections of adult rat lumbar dorsal root ganglia following unilateral section of the sciatic nerve and on sections of untreated monkey trigeminal ganglia, spinal cord and spinal ganglia from all levels. For comparison, calcitonin gene-related peptide (CGRP) mRNA was also studied in the monkey tissue using the same techniques. Peripheral sectioning of the sciatic nerve in the rat resulted in the appearance of detectable CCK mRNA in up to 30% of remaining ipsilateral L4 and L5 dorsal root ganglion neurons 3 weeks after surgery, with a distinct but more limited appearance also in the contralateral ganglia. No cells, or only single cells, could be seen in normal control rat ganglia. In contrast, in the normal monkey, approximately 20% of dorsal root ganglion neurons, regardless of spinal level, and 10% of trigeminal ganglia neurons expressed mRNA for CCK. CGRP mRNA was expressed at detectable levels in approximately 80% of these monkey dorsal root ganglion neurons. In the monkey spinal cord, CCK mRNA was detected in the dorsal horn and in motoneurons, whereas CGRP mRNA was only seen in motoneurons. The present results suggest that CCK peptides can be involved in sensory processing in the dorsal horn of the spinal cord in normal monkeys and in rats after peripheral nerve injury, adding one more possible excitatory peptide to the group of mediators in the dorsal horn.
Collapse
Affiliation(s)
- V M Verge
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Itoh T, Murai S, Masuda Y, Abe E, Ohkubo N, Itsukaichi O, Shoji S. Pharmacological properties of ceruletide in the vertical and horizontal locomotor activities of mice. Pharmacol Biochem Behav 1992; 43:571-6. [PMID: 1438494 DOI: 10.1016/0091-3057(92)90192-i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To clarify the pharmacological properties of ceruletide (CER) and cholecystokinin-octapeptide (CCK-8) with respect to vertical (VLA) and horizontal (HLA) locomotor activities of mice, effects of pretreatment with CER (0.5, 5, and 50 micrograms/kg, IP) and CCK-8 (5, 50, and 500 micrograms/kg, IP) on apomorphine (0.1 mg/kg, SC)- and clonidine (0.1 mg/kg, SC)-induced hypo-VLA and -HLA and on apomorphine (1 mg/kg, SC)-induced hyper-VLA and -HLA were examined. CER and CCK-8 had a dose-dependent inhibitory effect on VLA and HLA in intact mice. Pretreatment with CER had a biphasic effect (increase and decrease) on apomorphine- and clonidine-induced hypo-VLA, as well as an effect on apomorphine-induced hypo-HLA, a decreased effect on clonidine-induced hypo-HLA, and a decreased effect on apomorphine-induced hyper-VLA and -HLA. On the other hand, pretreatment with CCK-8 had no effect on apomorphine- and clonidine-induced hypo-VLA and -HLA and a decreased effect on apomorphine-induced hyper-HLA but not on hyper-VLA. These results suggest that for apomorphine- and clonidine-induced locomotion in mice CER has pharmacological properties different from those of CCK-8.
Collapse
Affiliation(s)
- T Itoh
- Department of Pharmacology, School of Dentistry, Iwate Medical University, Morioka, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Klein CM, Coggeshall RE, Carlton SM, Sorkin LS. The effects of A- and C-fiber stimulation on patterns of neuropeptide immunostaining in the rat superficial dorsal horn. Brain Res 1992; 580:121-8. [PMID: 1504792 DOI: 10.1016/0006-8993(92)90935-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study determines the effects of sciatic nerve stimulation at intensities that activate A-fibers alone or both A- and C-fibers on immunostaining for substance P (SP), cholecystokinin-octapeptide (CCK-8), galanin (GAL), dynorphin (DYN) and vasoactive intestinal polypeptide (VIP) in the superficial dorsal horn of the rat spinal cord. The goal of this study is to provide a more precise spatial localization of the sites of release or accumulation of these compounds in relation to specific types of stimuli. Following A-fiber stimulation, there was no significant change in immunostaining for any of these compounds. However, A- and C-fiber stimulation resulted in major changes. For SP, CCK-8, GAL and DYN there was a large and significant loss of immunostaining in medial regions of the dorsal horn. This is the area where sciatic nerve primary afferent fibers terminate and the depletion is probably correlated with activity in these fibers. By contrast, VIP immunostaining is increased in the lateral part of the superficial cord, which is outside of the central sciatic afferent fiber terminations. This indicates that the increase is not in the fine sciatic sensory axons that are directly stimulated. As a final point, the fact that C-fiber but not A-fiber stimulation causes marked changes in the immunocytochemical distribution of all these compounds is further evidence, albeit indirect, that they are involved in nociceptive information processing.
Collapse
Affiliation(s)
- C M Klein
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77550
| | | | | | | |
Collapse
|
42
|
Sirinathsinghji DJ, Kupsch A, Mayer E, Zivin M, Pufal D, Oertel WH. Cellular localization of tyrosine hydroxylase mRNA and cholecystokinin mRNA-containing cells in the ventral mesencephalon of the common marmoset: effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. ACTA ACUST UNITED AC 1992; 12:267-74. [PMID: 1347634 DOI: 10.1016/0169-328x(92)90093-q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In situ hybridization histochemistry was used to localize tyrosine hydroxylase (TH) mRNA and cholecystokinin (CCK) mRNA-expressing cells in the ventral mesencephalon of the common marmoset (Callithrix jacchus) and to examine the effects of the dopaminergic (DA) neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on these two populations of neurons in the pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA). X-ray film and liquid emulsion autoradiography of brain sections hybridized with an 35S-labelled synthetic 45-mer antisense human TH oligonucleotide probe showed strong hybridization signals and dense populations of TH mRNA expressing cells in the SNc and VTA at all levels, in the control marmoset brain. In the MPTP-treated brain, there was a substantial reduction of TH mRNA in the ventral midbrain. The loss of TH mRNA-expressing cells amounted to 98% in the lateral SNc, 88% in the medial SNc and 33% in the VTA. In situ hybridization of adjacent sections with an 35S-labelled synthetic 45-mer antisense human CCK oligonucleotide probe showed a weak hybridization signal for CCK mRNA in the ventral midbrain of the control brain. Emulsion autoradiography demonstrated CCK mRNA expressing cells in the SNc and VTA at all levels with the number of cells in the VTA similar to that for TH mRNA. However, the number of cells in the SNc expressing CCK mRNA was a fraction (1/4) of that expressing TH mRNA; moreover, the level of expression per cell was substantially less than that for TH mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D J Sirinathsinghji
- Department of Behavioural Physiology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | | | | | | | |
Collapse
|
43
|
Andriès JC, Belemtougri G, Tramu G. Multiple peptide immunoreactivities in the nervous system of Aeschna cyanea (Insecta, Odonata). An immunohistochemical study using antisera to cholecystokinin octapeptide, somatoliberin, vasoactive intestinal peptide, motilin and proctolin. HISTOCHEMISTRY 1991; 96:139-48. [PMID: 1917570 DOI: 10.1007/bf00315984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By use of the indirect immunoperoxidase method, the brain, the suboesophageal ganglion and the corpora cardiaca of the dragonfly Aeschna cyanea have been shown to be immunoreactive to proctolin antiserum and to several mammalian peptide antisera including unsulfated cholecystokinin octapeptide (CCK-8 NS) (Andriès et al. 1989), vasoactive intestinal peptide (VIP), human somatoliberin (hGRF) (Andriès et al. 1984) and motilin antisera. Immunohistochemical studies have been performed on material fixed in a solution of picricacid paraformaldehyde or in Bouin Hollande's sublimate solution. Antisera were applied on alternate sections or, according to the elution-restaining method of Tramu et al. (1978), one after another on the same section. Multiple peptide immunoreactivities appear expressed in the brain and the suboesophageal ganglion. Cells reactive to both hGRF and VIP antisera show also gastrin/CCK-like immunoreactivity and some of them are also detected by motilin antiserum. Besides, some cells immunopositive to CCK-8 NS and motilin antisera do not show hGRF or VIP immunoreactivity. At least, two pairs of protocerebral cells appear immunoreactive to both CCK-8 NS and proctolin antisera. Therefore, the present observations support our previously developed idea (Andriès et al. 1989) that the population of CCK-like cells is heterogenous.
Collapse
Affiliation(s)
- J C Andriès
- Laboratoire de Biologie Animale et Unité Associée au CNRS n degrees 148, Université des Sciences et Techniques de Lille, Villeneuve d'Ascq., France
| | | | | |
Collapse
|
44
|
Analysis of expression of cholecystokinin in dopamine cells in the ventral mesencephalon of several species and in humans with schizophrenia. Proc Natl Acad Sci U S A 1990; 87:8427-31. [PMID: 1978324 PMCID: PMC54969 DOI: 10.1073/pnas.87.21.8427] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ventral mesencephalons of hamster, guinea pig, cat, monkey, and several humans with and without the diagnosis of schizophrenia were analyzed with in situ hybridization and immunohistochemistry. Extensive codistribution of cholecystokinin mRNA and tyrosine hydroxylase [L-tyrosine, tetrahydropteridine: oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] mRNA was observed in cats and monkeys as well as in all five human subjects with the diagnosis of schizophrenia and in two out of five control brains. Double labeling revealed coexistence of the two markers in cat, monkey, and human. No cholecystokinin mRNA or cholecystokinin peptide was detected in the substantia nigra/ventral tegmental area of the hamster or guinea pig, even after acute and chronic neuroleptic treatment.
Collapse
|
45
|
Ciofi P, Tramu G. Distribution of cholecystokinin-like-immunoreactive neurons in the guinea pig forebrain. J Comp Neurol 1990; 300:82-112. [PMID: 2229489 DOI: 10.1002/cne.903000107] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The distribution of cholecystokinin (CCK)-immunoreactive nerve fibers and cell bodies was studied in the forebrain of control and colchicine-treated guinea pigs by using an antiserum directed against the carboxyterminus of CCK octapeptide (CCK-8) in the indirect immunoperoxidase technique. Virtually all forebrain areas examined contained immunoreactive nerve fibers. A dense innervation was visualized in; neocortical layers II-III, piriform cortex, the medial amygdala, the medial preoptic area, a circumventricular organ-like structure located at the top of the third ventricle in the preoptic area, the subfornical organ, the posterior bed nucleus of the stria terminalis, the posterior globus pallidus (containing labeled woolly fiber-like profiles), the ventromedial hypothalamus, the median eminence, and the premammillary nucleus. A moderately dense innervation was visualized elsewhere excepted in the septum and thalamus where labeled axons were comparatively few. Immunoreactive perikarya were abundant in: neocortex (especially layers II-III), piriform cortex, amygdala, the median preoptic nucleus, the bed nucleus of the stria terminalis, the hypothalamic paraventricular (parvicellular part), arcuate, and dorsomedial (pars compacta) nuclei, the dorsal and perifornical hypothalamic areas, and throughout the thalamus. Areas also containing a moderate number of labeled cell bodies were the medial preoptic area, the globus pallidus, the caudate-putamen, and the periventromedial area in the hypothalamus. Immunostained perikarya were absent or only occasionally observed in the septum, the suprachiasmatic nucleus, the magnocellular hypothalamoneurohypophyseal nuclei, and the ventral mesencephalon. In the adenohypophysis, corticomelanotrophs were labeled in both males and females, and thyrotrophs were labeled in females only. This distribution pattern of CCK-8 immunoreactivity is compared to those previously recorded in other mammals. This shows that very few features are peculiar to the the guinea pig. It is discussed whether some interspecific differences in immunostaining are real rather than methodological.
Collapse
Affiliation(s)
- P Ciofi
- U. 156 INSERM, Lille, France
| | | |
Collapse
|
46
|
Wiesenfeld-Hallin Z, Xu XJ, Hughes J, Horwell DC, Hökfelt T. PD134308, a selective antagonist of cholecystokinin type B receptor, enhances the analgesic effect of morphine and synergistically interacts with intrathecal galanin to depress spinal nociceptive reflexes. Proc Natl Acad Sci U S A 1990; 87:7105-9. [PMID: 1698290 PMCID: PMC54692 DOI: 10.1073/pnas.87.18.7105] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The effects of systemic PD134308 [0.1-3 mg/kg; an antagonist of the cholecystokinin (CCK) type B receptor], morphine, and intrathecal (i.t.) galanin (GAL) on the excitability of the spinal nociceptive flexor reflex and in the hot plate test were examined in rats. PD134308 caused a weak naloxone-reversible depression of the flexor reflex and a moderate antinociceptive effect in the hot plate test. However, PD134308 significantly potentiated the antinociceptive effect of morphine as well as its depressive effect on the flexor reflex. PD134308 and i.t. GAL synergistically depressed the flexor reflex, an effect that was reversed by naloxone. Finally, the magnitude and duration of the depression of the flexor reflex by morphine were synergistically increased by coadministering PD134308 and GAL i.t. The results demonstrated that a CCK antagonist directed to the central CCK type B receptor potentiates the analgesic effects of opioids and nonopioid drugs at the spinal level, thus supporting the notion that CCK in the central nervous system may be an endogenous, physiological opioid antagonist.
Collapse
|
47
|
Riche D, De Pommery J, Menetrey D. Neuropeptides and catecholamines in efferent projections of the nuclei of the solitary tract in the rat. J Comp Neurol 1990; 293:399-424. [PMID: 1969868 DOI: 10.1002/cne.902930306] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study focuses on the involvement of catecholamines and nine different peptides in efferents of the nucleus of the solitary tract to the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and different parabrachial and hypothalamic nuclei in the rat. A double-labeling technique was used that combines a protein-gold complex as the retrograde tracer with immunohistochemistry. Catecholaminergic projection neurons were the most numerous type observed and projected mainly ipsilaterally to all targets studied. Most projections arose from areas overlying the dorsal motor nucleus, mainly the medial nucleus. Neurons synthesizing somatostatin, met-enkephalin-Arg-Gly-Leu, dynorphin B, neuropeptide Y, and neurotensin projected to all structures examined. Somatostatin and enkephalin immunoreactive projection cells were the most numerous. They were located in close proximity to each other, including all subnuclei immediately surrounding the solitary tract, bilaterally. Most dynorphin and neuropeptide Y immunoreactive projection cells were found rostral to that of enkephalinergic and somatostatinergic projections, and mainly in the ipsilateral medial nucleus. Neurotensinergic projections were sparse and from dorsal and dorsolateral nuclei. Substance P and cholecystokinin contribute to parabrachial afferents. The location of substance P immunoreactive projection cells closely resembled that of enkephalinergic and somatostatinergic projections. Projecting cholecystokinin immunoreactive cells were observed in dorsolateral nucleus. Bombesin immunoreactive cells in dorsal nucleus projected to either the parabrachial or hypothalamic nuclei. No vasoactive intestinal polypeptide-containing cells were detected. Thus, most catecholaminergic and neuropeptidergic efferents originated from different populations of cells. It is proposed that catecholaminergic neurons constitute the bulk of solitary efferents and that they may contribute to autonomic neurotransmission. Peptidergic neurons mainly form other subgroups of projections and may play a role in modulating the physiological state of the target nuclei.
Collapse
Affiliation(s)
- D Riche
- CNRS, Laboratoire de Physiologie Nerveuse, Gif-sur-Yvette, France
| | | | | |
Collapse
|
48
|
Savasta M, Palacios JM, Mengod G. Regional distribution of the messenger RNA coding for the neuropeptide cholecystokinin in the human brain examined by in situ hybridization. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1990; 7:91-104. [PMID: 2160047 DOI: 10.1016/0169-328x(90)90086-s] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The regional localization of mRNA coding for the neuropeptide cholecystokinin (CCK) has been studied in the human brain by in situ hybridization using a 32P-labelled synthetic oligonucleotide. Autoradiograms were quantified using computer-assisted microdensitometry. Positive hybridizing cells were seen in the neocortex, the claustrum, the hippocampus and the amygdala with the highest densities observed in the claustrum, some cortical layers and the CA2 and CA3 regions of the hippocampus. No significant hybridization signal was observed in the substantia nigra, caudate nucleus, putamen, globus pallidus, nucleus accumbens, thalamus, hypothalamus, medulla oblongata and cerebellum. The topographic distribution of neurons expressing CCK mRNA correlates well with that previously reported by immunocytochemistry or radioimmunoassay in brain areas such as the neocortex, the amygdala and the hippocampus. However, some discrepancies were also found, particularly in the basal ganglia, the midbrain, the thalamus and the hypothalamus. These results show that in situ hybridization with oligonucleotide probes together with a semiquantitative analysis can be used to map the distribution of cells expressing CCK mRNA in human postmortem materials.
Collapse
Affiliation(s)
- M Savasta
- Preclinical Research, Sandoz Ltd., Basle, Switzerland
| | | | | |
Collapse
|
49
|
Seroogy KB, Mohapatra NK, Lund PK, Réthelyi M, McGehee DS, Perl ER. Species-specific expression of cholecystokinin messenger RNA in rodent dorsal root ganglia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1990; 7:171-6. [PMID: 2160045 DOI: 10.1016/0169-328x(90)90095-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The expression of cholecystokinin (CCK) messenger RNA (mRNA) was examined in dorsal root ganglia of rat and guinea pig using in situ hybridization histochemistry and RNA (Northern) blot hybridization with synthetic oligodeoxyribonucleotide (oligomer) probes. In guinea pig, CCK mRNA was detected in small and medium-sized neuronal perikarya comprising approximately 10-15% of the total dorsal root ganglia cell population. In contrast, in neurons of rat dorsal root ganglia, CCK mRNA was not detectable. Northern blot analyses revealed a single CCK mRNA species of expected size (0.8 kb) in guinea pig, but not rat, dorsal root ganglia. A 0.8 kb CCK mRNA was, however, detected in cortex of both rat and guinea pig. These data suggest that CCK is normally not synthesized in neurons of rat dorsal root ganglia and that there are species differences in CCK gene expression in mammalian sensory ganglia.
Collapse
Affiliation(s)
- K B Seroogy
- Department of Physiology, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | |
Collapse
|
50
|
Kritzer MF, Innis RB, Goldman-Rakic PS. Regional distribution of cholecystokinin binding sites in macaque basal ganglia determined by in vitro receptor autoradiography. Neuroscience 1990; 38:81-92. [PMID: 2255400 DOI: 10.1016/0306-4522(90)90375-e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cholecystokinin binding sites were labeled with [3H]cholecystokinin-8, [125I]cholecystokinin-33, and [125I]cholecystokinin-8 in major structures of macaque basal ganglia by in vitro receptor autoradiography. Analysis of autoradiograms revealed areas of heavy cholecystokinin binding in the neostriatum and substantia nigra that were set off, often quite sharply, from the adjacent globus pallidus and subthalamic nucleus where labeling was, by contrast, very light. Heavy label characterized the ventromedial and posterior parts of the caudate nucleus and adjacent putamen, binding was of moderate intensity in central areas of these regions, while, the dorsolateral margin of the head of the caudate and precommissural putamen, the dorsolateral one-third of the body of the caudate, and all but the most medial and ventral portions of the posterior putamen lateral to the pallidum were sparsely labeled. The pattern of cholecystokinin binding within the neostriatum was mottled; patches of reduced label stood out from the background of more prominent binding. However, those patches were only imperfectly correlated with the striosomal organization of both the caudate nucleus and putamen as revealed by acetylcholinesterase staining. Cholecystokinin binding in the substantia nigra was also intricately patterned. Moderately dense, vertically orientated bands of label were found in the dorsal one-third to half of the pars reticulata, providing a marked contrast to the near background levels in the ventral pars reticulata and overlying pars compacta. The present study shows that heavy cholecystokinin binding is confined to particular areas within the primate basal ganglia; the pattern of label within the substantia nigra and neostriatum can be linked to intrinsic and afferent connections of these structures. The confinement of binding sites to the dorsal pars reticulata suggests an association with dendrites of pars compacta neurons which invade this region; this interpretation is consistent with recent evidence of depletion of nigral cholecystokinin binding sites in macaques following chemical lesion of dopaminergic cells of the par compacta. In the neostriatum the distribution of binding shows overlap with its topographically organized corticostriatal innervation; portions of heavily labeled striatum coincide with regions innervated by association cortex of the frontal and temporal lobes, whereas regions of diminished binding correspond to areas innervated mainly by sensory and motor cortex. These latter findings suggest that cholecystokinin may have a particularly strong influence on cognitive aspects of striatal function.
Collapse
Affiliation(s)
- M F Kritzer
- Section of Neuroanatomy, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|