1
|
Takeishi A, Shaban AK, Kakihana T, Takihara H, Okuda S, Osada H, Suameitria Dewi DNS, Ozeki Y, Yoshida Y, Nishiyama A, Tateishi Y, Aizu Y, Chuma Y, Onishi K, Hayashi D, Yamamoto S, Mukai T, Ato M, Thai DH, Nhi HTT, Shirai T, Shibata S, Obata F, Fujii J, Yamayoshi S, Kiso M, Matsumoto S. Genetic engineering employing MPB70 and its promoter enables efficient secretion and expression of foreign antigen in bacillus Calmette Guérin (BCG) Tokyo. Microbiol Immunol 2024; 68:130-147. [PMID: 38294180 DOI: 10.1111/1348-0421.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.
Collapse
Affiliation(s)
- Atsuki Takeishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Amina K Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Taichi Kakihana
- Department of Virology, School of Medicine, Niigata University, Niigata, Japan
| | - Hayato Takihara
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Hidekazu Osada
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- NIPPON ZENYAKU KOGYO CO., LTD, Fukushima, Japan
| | - Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Microbiology, Universitas Ciputra, Surabaya, Indonesia
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yuki Aizu
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Yasushi Chuma
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Kazuyo Onishi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Daisuke Hayashi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Saburo Yamamoto
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Duong Huu Thai
- Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Huynh Thi Thao Nhi
- Department of BCG production, Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Satoshi Shibata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Fumiko Obata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Jun Fujii
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Seiya Yamayoshi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Motamedi H, Ari MM, Dashtbin S, Fathollahi M, Hossainpour H, Alvandi A, Moradi J, Abiri R. An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. Int Immunopharmacol 2021; 96:107763. [PMID: 34162141 PMCID: PMC8101866 DOI: 10.1016/j.intimp.2021.107763] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the rapidly spreading pandemic COVID-19 in the world. As an effective therapeutic strategy is not introduced yet and the rapid genetic variations in the virus, there is an emerging necessity to design, evaluate and apply effective new vaccines. An acceptable vaccine must elicit both humoral and cellular immune responses, must have the least side effects and the storage and transport systems should be available and affordable for all countries. These vaccines can be classified into different types: inactivated vaccines, live-attenuated virus vaccines, subunit vaccines, virus-like particles (VLPs), nucleic acid-based vaccines (DNA and RNA) and recombinant vector-based vaccines (replicating and non-replicating viral vector). According to the latest update of the WHO report on April 2nd, 2021, at least 85 vaccine candidates were being studied in clinical trial phases and 184 candidate vaccines were being evaluated in pre-clinical stages. In addition, studies have shown that other vaccines, including the Bacillus Calmette-Guérin (BCG) vaccine and the Plant-derived vaccine, may play a role in controlling pandemic COVID-19. Herein, we reviewed the different types of COVID-19 candidate vaccines that are currently being evaluated in preclinical and clinical trial phases along with advantages, disadvantages or adverse reactions, if any.
Collapse
Affiliation(s)
- Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ, Oliveira SC. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect 2020; 22:515-524. [PMID: 32961274 PMCID: PMC7501874 DOI: 10.1016/j.micinf.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Nina Marí G P de Queiroz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabio V Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo A Chagas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Mariana T Q de Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq/MCT, BA, Brazil.
| |
Collapse
|
6
|
North RJ, Izzo AA. Mycobacterial virulence. Virulent strains of Mycobacteria tuberculosis have faster in vivo doubling times and are better equipped to resist growth-inhibiting functions of macrophages in the presence and absence of specific immunity. J Exp Med 1993; 177:1723-33. [PMID: 8496688 PMCID: PMC2191059 DOI: 10.1084/jem.177.6.1723] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The kinetics of growth of two virulent strains of mycobacteria (M. tuberculosis Erdman and M. tuberculosis H37Rv) and two attenuated strains (M. tuberculosis H37Ra and M. bovis Bacillus Calmette-Guerin [BCG]) were studied in the lungs, livers, spleens, and kidneys of severe combined immunodeficient (SCID) mice and of their coisogenic CB-17 immunocompetent counterparts. It was found, in keeping with the findings of earlier investigators (Pierce, C. H., R. J. Dubos, and W. B. Schaefer. 1953. J. Exp. Med. 97:189.), that in immunocompetent mice, virulent organisms grew progressively only in the lungs, whereas the growth of attenuated organisms was controlled in all organs. In SCID mice, in contrast, virulent mycobacteria grew rapidly and progressively in all organs, as did BCG, although at a slower rate. However, H37Ra failed to grow progressively in any organs of SCID mice, unless the mice were treated with hydrocortisone. In fact, hydrocortisone treatment enabled virulent, as well as attenuated, organisms to grow strikingly more rapidly in all organs of SCID mice and in all organs of CB-17 mice. A histological study showed that in SCID mice, multiplication of mycobacteria in the liver occurs in the cytoplasm of macrophages in granulomas and presumably in macrophages in other organs. It is suggested, therefore, that the macrophages of SCID mice possess a glucocorticoid-sensitive mycobacterial mechanism that prevents virulent and avirulent mycobacteria from expressing their true minimal doubling times. In the absence of this mechanism in the lungs of hydrocortisone-treated SCID mice, the doubling times of Erdman, H37Rv, BCG, and H37Ra were 17.7, 17.4, 44.6, and 98.6 h, respectively. The possible importance of a rapid multiplication rate for mycobacterial virulence is discussed.
Collapse
Affiliation(s)
- R J North
- Trudeau Institute, Inc., Saranac Lake, New York 12983
| | | |
Collapse
|
8
|
Winkel KD, Good MF. Inability of Plasmodium vinckei-immune spleen cells to transfer protection to recipient mice exposed to vaccine 'vectors' or heterologous species of plasmodium. Parasite Immunol 1991; 13:517-30. [PMID: 1683480 DOI: 10.1111/j.1365-3024.1991.tb00548.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mice can be immunized to Plasmodium vinckei by repeated infections followed by cure. Such immunity is dependent on CD4 T cells and an architecturally modified spleen, but has little requirement for antibody. Thus, athymic mice can be exposed to P. vinckei and cured, but do not develop immunity. They are resistant to challenge with parasites, however, if they are then given spleen cells from euthymic immunized animals. Such immune spleen cells, however, cannot transfer resistance to normal mice which have been exposed to BCG, Salmonella typhimurium, or vaccinia virus, and are only partially effective in transferring resistance to mice which have been previously immunized with heterologous plasmodia, P. yoelii, P. chabaudi and P. berghei. Mice exposed to varying numbers of irradiated P. vinckei-pRBC do not develop immunity and nor are such animals protected following adoptive transfer of immune spleen cells. Cellular immunity to malaria may not only be dependent on a population of immune CD4 T cells, but may require a specifically architecturally modified spleen which may not occur following either exposure to candidate vaccine vectors, heterologous plasmodia or non-viable homologous plasmodia.
Collapse
Affiliation(s)
- K D Winkel
- Tropical Health Program, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | | |
Collapse
|