1
|
Rosso M, Muñoz M, Berger M. The role of neurokinin-1 receptor in the microenvironment of inflammation and cancer. ScientificWorldJournal 2012; 2012:381434. [PMID: 22545017 PMCID: PMC3322385 DOI: 10.1100/2012/381434] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 11/20/2011] [Indexed: 12/11/2022] Open
Abstract
The recent years have witnessed an exponential increase in cancer research, leading to a considerable investment in the field. However, with few exceptions, this effort has not yet translated into a better overall prognosis for patients with cancer, and the search for new drug targets continues. After binding to the specific neurokinin-1 (NK-1) receptor, the peptide substance P (SP), which is widely distributed in both the central and peripheral nervous systems, triggers a wide variety of functions. Antagonists against the NK-1 receptor are safe clinical drugs that are known to have anti-inflammatory, analgesic, anxiolytic, antidepressant, and antiemetic effects. Recently, it has become apparent that SP can induce tumor cell proliferation, angiogenesis, and migration via the NK-1 receptor, and that the SP/NK-1 receptor complex is an integral part of the microenvironment of inflammation and cancer. Therefore, the use of NK-1 receptor antagonists as a novel and promising approach for treating patients with cancer is currently under intense investigation. In this paper, we evaluate the recent scientific developments regarding this receptor system, its role in the microenvironment of inflammation and cancer, and its potentials and pitfalls for the usage as part of modern anticancer strategies.
Collapse
Affiliation(s)
- Marisa Rosso
- Research Laboratory on Neuropeptides, Hospital Infantil Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, 41013 Seville, Spain.
| | | | | |
Collapse
|
2
|
Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep–wake regulation. Prog Neurobiol 2004; 73:379-96. [PMID: 15313333 DOI: 10.1016/j.pneurobio.2004.06.004] [Citation(s) in RCA: 369] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
This review addresses three principal questions about adenosine and sleep-wake regulation: (1) Is adenosine an endogenous sleep factor? (2) Are there specific brain regions/neuroanatomical targets and receptor subtypes through which adenosine mediates sleepiness? (3) What are the molecular mechanisms by which adenosine may mediate the long-term effects of sleep loss? Data suggest that adenosine is indeed an important endogenous, homeostatic sleep factor, likely mediating the sleepiness that follows prolonged wakefulness. The cholinergic basal forebrain is reviewed in detail as an essential area for mediating the sleep-inducing effects of adenosine by inhibition of wake-promoting neurons via the A1 receptor. The A2A receptor in the subarachnoid space below the rostral forebrain may play a role in the prostaglandin D2-mediated somnogenic effects of adenosine. Recent evidence indicates that a cascade of signal transduction induced by basal forebrain adenosine A1 receptor activation in cholinergic neurons leads to increased transcription of the A1 receptor; this may play a role in mediating the longer-term effects of sleep deprivation, often called sleep debt.
Collapse
Affiliation(s)
- Radhika Basheer
- Neuroscience Laboratory, Department of Psychiatry, Harvard Medical School and Boston VA Healthcare System, Brockton, MA 02301, USA
| | | | | | | |
Collapse
|
3
|
Lai JP, Ho WZ, Yang JH, Wang X, Song L, Douglas SD. A non-peptide substance P antagonist down-regulates SP mRNA expression in human mononuclear phagocytes. J Neuroimmunol 2002; 128:101-8. [PMID: 12098517 DOI: 10.1016/s0165-5728(02)00164-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Substance P (SP), a potent modulator of neuroimmunoregulation, exerts its activity by binding to the neurokinin-1 receptor (NK-1R). The SP-NK-1R interaction is important in inflammation and viral infections, including HIV infection of human immune cells. We recently demonstrated that SP modulates HIV replication and that a non-peptide SP antagonist CP-96,345 inhibits HIV replication in human monocyte-derived macrophages (MDM) by affecting the SP-NK-1R interaction. In order to examine the effect of the SP antagonist on SP mRNA expression, MDM was incubated with or without CP-96,345 in the presence or absence of HIV infection. SP mRNA expression in these cells was then determined by real-time PCR technology. The effect of CP-96,345 on chemokine gene expression was also investigated by using a cDNA array assay. CP-96,345 down-regulated SP mRNA expression and antagonized exogenous SP-enhanced SP expression at the mRNA level, suggesting that SP autocrine regulation was interrupted by CP-96,345. CP-96,345 inhibited HIV replication in MDM, associated with down-regulated SP mRNA expression in comparison to HIV infection controls. In parallel with down-regulated SP and CCR5 mRNA expression, cDNA array assays indicated that CP-96,345 treatment also inhibited IL-8 gene expression, while enhancing expression of fractalkine and monocyte chemotactic protein-3 (MCP-3). Since SP plays an important role in inflammation and viral infections, these studies may have potential applications for therapeutic intervention of inflammation and viral infection of immune cells.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Autocrine Communication/drug effects
- Autocrine Communication/genetics
- Biphenyl Compounds/pharmacology
- Cells, Cultured
- Chemokine CCL7
- Chemokine CX3CL1
- Chemokines, CX3C/genetics
- Cytokines
- DNA, Complementary/analysis
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- HIV/drug effects
- HIV/immunology
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV Infections/virology
- Humans
- Interleukin-8/genetics
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Membrane Proteins/genetics
- Monocyte Chemoattractant Proteins/genetics
- Neuroimmunomodulation/drug effects
- Neuroimmunomodulation/immunology
- Oligonucleotide Array Sequence Analysis
- Phagocytes/drug effects
- Phagocytes/immunology
- Phagocytes/virology
- RNA, Messenger/metabolism
- Receptors, Neurokinin-1/drug effects
- Receptors, Neurokinin-1/immunology
- Receptors, Neurokinin-1/metabolism
- Substance P/antagonists & inhibitors
- Substance P/genetics
- Virus Replication/drug effects
- Virus Replication/immunology
Collapse
Affiliation(s)
- Jian-Ping Lai
- Division of Immunologic and Infectious Diseases, Joseph Stokes Jr. Research Institute at the Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
4
|
Basheer R, Rainnie DG, Porkka-Heiskanen T, Ramesh V, McCarley RW. Adenosine, prolonged wakefulness, and A1-activated NF-kappaB DNA binding in the basal forebrain of the rat. Neuroscience 2001; 104:731-9. [PMID: 11440805 DOI: 10.1016/s0306-4522(01)00111-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is considerable evidence to suggest that adenosine is a modulator of behavioral state. Our previous reports showed that perfusion of adenosine into the basal forebrain decreased wakefulness. Furthermore, prolonged wakefulness resulted in increased levels of extracellular adenosine in the basal forebrain of cats and rats. However, the longer-term consequences of prolonged wakefulness and increased adenosine are largely unknown. We report here an increase in the DNA binding activity of the transcription factor, nuclear factor-kappa B (NF-kappaB) following 3 h of sustained wakefulness in the rat basal forebrain. Moreover, this treatment led to the appearance of the p65 subunit of NF-kappaB in the nucleus, as determined by western blot analysis of nuclear proteins. This contrasted with undetectable levels in the sleeping controls. A concomitant disappearance of I-kappaB in cytoplasm suggested the degradation of this inhibitor of NF-kappaB. In the acute in vitro basal forebrain slice preparation, perfusion of adenosine increased NF-kappaB DNA binding while pretreatment of the slices with the A1 adenosine receptor antagonist, cyclopentyl-1-3-dimethylxanthine, significantly reduced NF-kappaB DNA binding. These results are compatible with the hypothesis that increases in the levels of adenosine in the basal forebrain, that occur during prolonged wakefulness, act through an A1 adenosine receptor and a second messenger system to increase the activity of the transcription factor NF-kappaB. We further hypothesize that some of the long duration effects of prolonged wakefulness/sleep deprivation on performance and physiology, often termed 'sleep debt', might be mediated through adenosine and its activation of NF-kappaB, which is known to alter the expression of several behavioral state regulatory factors.
Collapse
Affiliation(s)
- R Basheer
- Department of Psychiatry, Havard Medical School and VA Medical Center, Brockton, MA 02401, USA
| | | | | | | | | |
Collapse
|
5
|
Basheer R, Halldner L, Alanko L, McCarley RW, Fredholm BB, Porkka-Heiskanen T. Opposite changes in adenosine A1 and A2A receptor mRNA in the rat following sleep deprivation. Neuroreport 2001; 12:1577-80. [PMID: 11409719 DOI: 10.1097/00001756-200106130-00013] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extracellular levels of adenosine increase in basal forebrain following prolonged wakefulness. Moreover, perfusion of adenosine into basal forebrain increases sleep. In this study we have examined the adenosine receptor subtypes, A1 and A2A, for changes in the levels of mRNA using RT-PCR and in situ hybridization and the receptor ligand binding efficiency using autoradiography following 3 and 6 h of sleep deprivation. We observed that A1 receptor mRNA levels increased in basal forebrain with no changes in other forebrain areas examined. A1 receptor binding was not affected. A2A receptor mRNA and ligand binding were undetectable in basal forebrain. However, in the olfactory tubercle, A2A mRNA and receptor binding decreased significantly. Based on the significant increase in the A1 but not in A2A receptor, we hypothesize that the effects of sleep deprivation-induced increased adenosine are mediated by A1 receptor in basal forebrain of rats.
Collapse
Affiliation(s)
- R Basheer
- Harvard Medical School and V.A. Medical Center, Department of Psychiatry, West Roxbury, MA 02132, USA
| | | | | | | | | | | |
Collapse
|
6
|
Gao J, Zhao J, Rayner SE, Van Helden DF. Evidence that the ATP-induced increase in vasomotion of guinea-pig mesenteric lymphatics involves an endothelium-dependent release of thromboxane A2. Br J Pharmacol 1999; 127:1597-602. [PMID: 10455315 PMCID: PMC1566155 DOI: 10.1038/sj.bjp.0702710] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
1. Experiments were made to investigate mechanisms by which adenosine 5'-trisphosphate (ATP) enhanced vasomotion in mesenteric lymphatic vessels isolated from young guinea-pigs. 2. ATP (10-8 - 10-3 M) caused a concentration-dependent increase of perfusion-induced vasomotion with the endothelium mediating a fundamental role at low ATP concentrations (10-8 - 10-6 M). 3. The response to 10-6 M ATP showed tachyphylaxis when applied at intervals of 10 min but not at intervals of 20 or 30 min. 4. Suramin (10-4 M) or reactive blue 2 (3x10-5 M) but not PPADS (3x10-5 M) abolished the excitatory response to 10-6 M ATP confirming an involvement of P2 purinoceptors. 5. The excitatory response to 10-6 M ATP was abolished by treatment with either pertussis toxin (100 ng ml-1), antiflammin-1 (10-9 M), indomethacin (3x10-6 M) or SQ29548 (3x10-7 M), inhibitors of specific G proteins, phospholipase A2, cyclo-oxygenase and thromboxane A2 receptors respectively. 6. ATP simultaneously induced a suramin-sensitive inhibitory response, which was normally masked by the excitatory response. ATP-induced inhibition was mediated by endothelium-derived nitric oxide (EDNO) as the response was abolished by NG-nitro-L-arginine (L-NOARG; 10-4 M), an inhibitor of nitric oxide synthase. 7. We conclude that ATP modulates lymphatic vasomotion by endothelium-dependent and endothelium-independent mechanisms. One of these is a dominant excitation caused through endothelial P2 purinoceptors which because of an involvement of a pertussis toxin sensitive G-protein may be of the P2Y receptor subtype. Their stimulation increases synthesis of phospholipase A2 and production of thromboxane A2, an arachidonic acid metabolite which acts as an endothelium-derived excitatory factor.
Collapse
Affiliation(s)
- J Gao
- The Neuroscience Group, Discipline of Human Physiology, Faculty of Medicine & Health Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
7
|
Riegler M, Castagliuolo I, So PT, Lotz M, Wang C, Wlk M, Sogukoglu T, Cosentini E, Bischof G, Hamilton G, Teleky B, Wenzl E, Matthews JB, Pothoulakis C. Effects of substance P on human colonic mucosa in vitro. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G1473-83. [PMID: 10362651 DOI: 10.1152/ajpgi.1999.276.6.g1473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies indicated that the peptide substance P (SP) causes Cl--dependent secretion in animal colonic mucosa. We investigated the effects of SP in human colonic mucosa mounted in Ussing chamber. Drugs for pharmacological characterization of SP-induced responses were applied 30 min before SP. Serosal, but not luminal, administration of SP (10(-8) to 10(-6) M) induced a rapid, monophasic concentration and Cl--dependent, bumetanide-sensitive short-circuit current (Isc) increase, which was inhibited by the SP neurokinin 1 (NK1)-receptor antagonist CP-96345, the neuronal blocker TTX, the mast cell stabilizer lodoxamide, the histamine 1-receptor antagonist pyrilamine, and the PG synthesis inhibitor indomethacin. SP caused TTX- and lodoxamide-sensitive histamine release from colonic mucosa. Two-photon microscopy revealed NK1 (SP)-receptor immunoreactivity on nerve cells. The tyrosine kinase inhibitor genistein concentration dependently blocked SP-induced Isc increase without impairing forskolin- and carbachol-mediated Isc increase. We conclude that SP stimulates Cl--dependent secretion in human colon by a pathway(s) involving mucosal nerves, mast cells, and the mast cell product histamine. Our results also indicate that tyrosine kinases may be involved in this SP-induced response.
Collapse
Affiliation(s)
- M Riegler
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Barak LS, Warabi K, Feng X, Caron MG, Kwatra MM. Real-time visualization of the cellular redistribution of G protein-coupled receptor kinase 2 and beta-arrestin 2 during homologous desensitization of the substance P receptor. J Biol Chem 1999; 274:7565-9. [PMID: 10066824 DOI: 10.1074/jbc.274.11.7565] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The substance P receptor (SPR) is a G protein-coupled receptor (GPCR) that plays a key role in pain regulation. The SPR desensitizes in the continued presence of agonist, presumably via mechanisms that implicate G protein-coupled receptor kinases (GRKs) and beta-arrestins. The temporal relationship of these proposed biochemical events has never been established for any GPCR other than rhodopsin beyond the resolution provided by biochemical assays. We investigate the real-time activation and desensitization of the human SPR in live HEK293 cells using green fluorescent protein conjugates of protein kinase C, GRK2, and beta-arrestin 2. The translocation of protein kinase C betaII-green fluorescent protein to and from the plasma membrane in response to substance P indicates that the human SPR becomes activated within seconds of agonist exposure, and the response desensitizes within 30 s. This desensitization process coincides with a redistribution of GRK2 from the cytosol to the plasma membrane, followed by a robust redistribution of beta-arrestin 2 and a profound change in cell morphology that occurs after 1 min of SPR stimulation. These data establish a role for GRKs and beta-arrestins in homologous desensitization of the SPR and provide the first visual and temporal resolution of the sequence of events underlying homologous desensitization of a GPCR in living cells.
Collapse
Affiliation(s)
- L S Barak
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
9
|
Quinlan KL, Song IS, Bunnett NW, Letran E, Steinhoff M, Harten B, Olerud JE, Armstrong CA, Wright Caughman S, Ansel JC. Neuropeptide regulation of human dermal microvascular endothelial cell ICAM-1 expression and function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1580-90. [PMID: 9843720 DOI: 10.1152/ajpcell.1998.275.6.c1580] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is increasing evidence that sensory nerves may participate in cutaneous inflammatory responses by the release of neuropeptides such as substance P (SP). We examined the direct effect of SP on human dermal microvascular endothelial cell (HDMEC) intercellular adhesion molecule 1 (ICAM-1) expression and function. Our results indicated that, although cultured HDMEC expressed mRNA for neurokinin receptors 1, 2, and 3 (NK-1R, NK-2R, and NK-3R), SP initiated a rapid increase in HDMEC intracellular Ca2+ levels, primarily by the activation of NK-1R. Immunohistochemistry studies likewise demonstrated that HDMEC predominantly expressed NK-1R. The addition of SP to HDMEC resulted in a rapid increase in cellular ICAM-1 mRNA levels, followed by a fivefold increase in ICAM-1 cell surface expression. This functionally resulted in a threefold increase in 51Cr-labeled binding of J-Y lymphoblastoid cells to HDMEC. In vivo studies demonstrated a marked increase in microvascular ICAM-1 immunostaining 24 and 48 h after application of capsaicin to the skin. These results indicate that neuropeptides such as SP are capable of directly activating HDMEC to express increased levels of functional ICAM-1 and further support the role of the cutaneous neurological system in modulating inflammatory processes in the skin.
Collapse
Affiliation(s)
- K L Quinlan
- Department of Dermatology and Emory Skin Diseases Research Core Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Tachykinins are a family of neuropeptides, which act by binding to three main subtypes of G protein-coupled receptors, named NK1, NK2 and NK3. Tachykinins are contained in both nerve fibers and secretory cells of the hypothalamo-pituitary-adrenal (HPA) axis, and evidence indicates that they take part in the functional control of it. Tachykinins involved in this function include substance P (SP), neuropeptide K and its derivative neurokinin A (NKA), and neurokinin B, which preferentially bind to NK1, NK2 and NK3 receptors, respectively. NK1 agonists exert an inhibitory effect on the hypothalamo pituitary CRH/ACTH system, while NK2 and perhaps NK3 agonists stimulate it, thereby controlling the secretion and growth of the adrenal cortex via circulating ACTH. Intra-adrenal tachykinins may also affect the cortex function. Their direct action on adrenocortical cells is doubtful and probably pharmacologic in nature, but several investigations suggest that tachykinins indirectly stimulate the cortex by acting on medullary chromaffin cells, which in turn exert a paracrine control on adrenocortical cells. SP enhances aldosterone production of zona glomerulosa by eliciting catecholamine secretion; neuropeptide K and NKA raise glucocorticoid production of zonae fasciculata and reticularis through the activation of the intramedullary CRH/ACTH system. The relevance of these effects of tachykinins under basal conditions is questionable, although there are indications that SP is involved in the maintenance of a normal growth and steroidogenic capacity of rat zona glomerulosa, and that SP and NKA play an important role in the stimulation of the adrenal growth during the fetal life. In contrast, evidence has been provided that the role of tachykinins, and especially of SP, could become very relevant under paraphysiological (e.g., physical or inflammatory stresses) or pathological conditions (e.g., ACTH-secreting pituitary tumors), when an excess of steroid-hormone production has to be counteracted.
Collapse
|
11
|
Gade G. The Explosion of Structural Information on Insect Neuropeptides. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE / PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 1997. [DOI: 10.1007/978-3-7091-6529-4_1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Ansel JC, Kaynard AH, Armstrong CA, Olerud J, Bunnett N, Payan D. Skin-nervous system interactions. J Invest Dermatol 1996; 106:198-204. [PMID: 8592075 DOI: 10.1111/1523-1747.ep12330326] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J C Ansel
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cragg PA, Runold M, Kou YR, Prabhakar NR. Tachykinin antagonists in carotid body responses to hypoxia and substance P in the rat. RESPIRATION PHYSIOLOGY 1994; 95:295-310. [PMID: 7520191 DOI: 10.1016/0034-5687(94)90092-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present study, we tested the hypothesis that substance P (SP) is an excitatory peptide to the rat carotid body and plays an important role in chemosensory excitation by hypoxia. Chemosensory discharge was recorded from the cut carotid sinus nerve in 19 anaesthetized, paralyzed and mechanically ventilated rats. Intracarotid administration of SP augmented the chemoreceptor activity in a dose-dependent manner. Maximal excitation was seen with 10 nmol SP. Carotid body stimulation by SP was independent of its effects on arterial blood pressure. The effect of SP antagonists, D-Pro2-D-Trp7,9-SP (DPDT-SP) or Spantide, on chemoreceptor responses to SP and hypoxia was examined in 12 rats. Close carotid body administration of either antagonist at doses of 40 micrograms.kg-1.min-1 elicited an augmentation followed by a progressive depression of baseline carotid body activity. SP antagonists significantly reduced peptide-induced carotid body stimulation and also markedly attenuated the chemoreceptor response to hypoxia. Systemic administration of sodium bicarbonate stimulated the carotid bodies, presumably by releasing CO2, and the bicarbonate-induced chemoreceptor stimulation was not affected by SP antagonists. From these results we conclude that in rats (a) SP stimulates the carotid bodies independently of its effects on arterial blood pressure, and (b) SP is associated with the chemosensory stimulation by hypoxia but not with other excitatory stimuli.
Collapse
Affiliation(s)
- P A Cragg
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | |
Collapse
|
14
|
Lundquist CT, Clottens FL, Holman GM, Nichols R, Nachman RJ, Nässel DR. Callitachykinin I and II, two novel myotropic peptides isolated from the blowfly, Calliphora vomitoria, that have resemblances to tachykinins. Peptides 1994; 15:761-8. [PMID: 7984492 DOI: 10.1016/0196-9781(94)90027-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two peptides, related to the locust myotropic peptides locustatachykinin I-IV, were isolated from the blowfly Calliphora vomitoria. Whole, frozen flies were used for extraction with acidified methanol. A cockroach hindgut muscle contraction bioassay was used for monitoring fractions during subsequent purification steps. A series of eight different high performance liquid chromatography column systems was required to obtain optically pure peptides. Two peptides were isolated and their sequences determined by Edman degradation and confirmed by mass spectrometry and chemical synthesis as APTAFYGVR-NH2 and GLGNNAFVGVR-NH2. They were named callitachykinin I and II. The peptides have sequence similarities to the locustatachykinins and vertebrate tachykinins. Both callitachykinins were recognized by an antiserum to locustatachykinin I in enzyme-linked immunosorbent assay (ELISA) tests and callitachykinin II was additionally recognized by an antiserum to the vertebrate tachykinin kassinin, suggesting that immunolabeling of blowfly neurons with these antisera is due to neuronal callitachykinins.
Collapse
|
15
|
Matute C, Nguyen QT, Miledi R. mRNAs coding for neurotransmitter receptors in rabbit and rat visual areas. J Neurosci Res 1993; 35:652-63. [PMID: 8411267 DOI: 10.1002/jnr.490350608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Levels of mRNAs encoding neurotransmitter receptors in the visual cortex, lateral geniculate nucleus, and superior colliculus of the rabbit and rat, and properties of the receptors expressed, were studied using Xenopus laevis oocytes. mRNA extracted from these areas was injected into the oocytes, which then acquired functional receptors. Electrical recordings of neurotransmitter-induced membrane currents reflect the relative amounts of mRNAs encoding the corresponding receptors. Receptors to gamma aminobutyric acid (GABA), kainate, glutamate, and serotonin exhibited uniformly high levels of expression, whereas expression of receptors to glycine and N-methyl-D-aspartate was uniformly low. In contrast, the expression of receptors to acetylcholine and substance P was highly non-uniform. Expression of acetylcholine receptors was high in oocytes injected with mRNA from the visual cortex, low for the lateral geniculate nucleus, and very low or absent for the superior colliculus. Conversely, the currents elicited by substance P were large in oocytes injected with superior colliculus mRNA, but were small or absent in oocytes injected with mRNAs from the other regions. Immunohistochemical analysis, at the light and electron microscopic levels, was used to localize choline acetyltransferase, the acetylcholine-synthesizing enzyme, and substance P-containing synaptic boutons in the three visual areas. Their presence closely paralleled the potency of mRNAs coding for acetylcholine and substance P receptors. The ability of rat mRNA, from each visual area, to induce neurotransmitter receptors was similar to that observed in the corresponding rabbit mRNAs. In addition to the marked differential distribution of mRNA encoding neurotransmitter receptors in the visual system, our findings reveal the probable existence of as yet uncharacterized receptors, whose new molecular forms may be revealed by further study. Our results also provide the basic information required for subsequent studies on the effect of monocular deprivation on the expression of neurotransmitter receptors in the visual system.
Collapse
Affiliation(s)
- C Matute
- Department of Psychobiology, University of California, Irvine 92717
| | | | | |
Collapse
|
16
|
Abstract
The last decade has witnessed major breakthroughs in the study of tachykinin receptors. The currently described NK-1, NK-2, and NK-3 receptors have been sequenced and cloned from various mammalian sources. A far greater variety of tachykinin analogues are now available for use as selective agonists and antagonists. Importantly, potent nonpeptide antagonists highly selective for the NK-1 and NK-2 receptors have been developed recently. These improved tools for tachykinin receptor characterization have enabled us to describe at least three distinct receptor types. Furthermore, novel antagonists have yielded radioligand binding and functional data strongly favoring the existence of putative subtypes of NK-1 and especially NK-2 receptors. Whether these subtypes are species variants or true within-species subtypes awaits further evidence. As yet undiscovered mammalian tachykinins, or bioactive fragments, may have superior potency at a specific receptor class. The common C terminus of tachykinins permits varying degrees of interaction at essentially all tachykinin receptors. Although the exact physiological significance of this inherent capacity for receptor "cross talk" remains unknown, one implication is for multiple endogenous ligands at a single receptor. For example, NP gamma and NPK appear to be the preferred agonists and binding competitors at some NK-2 receptors, previously thought of as exclusively "NKA-preferring." Current evidence suggests that tachykinin coexistence and expression of multiple receptors may also occur with postulated NK-2 and NK-1 receptor subtypes. Other "tachykinin" receptors may recognize preprotachykinins and the N terminus of SP. In light of these recent developments, the convenient working hypothesis of three endogenous ligands (SP, NKA, and NKB) for three basic receptor types (NK-1, NK-2, and NK-3) may be too simplistic and in need of amendment as future developments occur (Burcher et al., 1991b). In retrospect, the 1980s contributed greatly to our understanding of the structure, function, and regulation of tachykinins and their various receptors. The development of improved, receptor subtype-selective antagonists and radioligands, in addition to recent advances in molecular biological techniques, may lead to a more conclusive pharmacological and biochemical characterization of tachykinin receptors. The 1990s may prove to be the decade of application, where a better understanding of the roles played by endogenous tachykinins (at various receptor subtypes) under pathophysiological conditions will no doubt hasten the realization of clinically useful therapeutic agents.
Collapse
Affiliation(s)
- C J Mussap
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
17
|
Graminski G, Jayawickreme C, Potenza M, Lerner M. Pigment dispersion in frog melanophores can be induced by a phorbol ester or stimulation of a recombinant receptor that activates phospholipase C. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53412-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Hall JM, Flowers JM, Morton IK. A pharmacological study of NK1 and NK2 tachykinin receptor characteristics in the rat isolated urinary bladder. Br J Pharmacol 1992; 107:777-84. [PMID: 1282072 PMCID: PMC1907736 DOI: 10.1111/j.1476-5381.1992.tb14523.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. We have estimated potencies of tachykinin receptor agonist and antagonist analogues in order to determine the recognition characteristics of tachykinin receptors mediating phasic contractile responses of the rat isolated urinary bladder in vitro. 2. The NK1-selective synthetic agonists, substance P methyl ester and GR73632, the synthetic NK2-selective agonists [beta-Ala8]-NKA(4-10) and GR64349, and the mammalian tachykinins, neurokinin A and neurokinin B, were assayed relative to substance P and were found to be approximately equipotent. The NK3-selective agonist, senktide, was inactive (10 microM). 3. Potencies of all these agonists were not significantly different (P > 0.05) when experiments were carried out in the presence of the neutral endopeptidase inhibitor, phosphoramidon, and the kininase II inhibitor, enalaprilat (both 1 microM). 4. The NK1-selective antagonist, GR82334, inhibited responses to substance P methyl ester in a competitive manner in the rat urinary bladder and the rat ileum, and also in the guinea-pig ileum. Markedly different pKB estimates were obtained in the rat bladder (6.38) and rat ileum (6.56) compared to the guinea-pig ileum (7.42). GR82334 (3 microM) was inactive against responses of the rat bladder to [beta-Ala8]-NKA(4-10). 5. The NK1-selective antagonist (+/-)-CP-96,345 also inhibited responses of the rat bladder and guinea-pig ileum to substance P methyl ester; however, in the rat bladder at 1 microM, this antagonist reversibly inhibited responses both to the NK2-selective agonist [beta-Ala8]-NKA(4-10) and to the muscarinic agonist carbachol (P < or = 0.01), thus showing evidence of some non-selective depressant actions. 6. The NK2-selective antagonists, MEN10207 and L-659,874, competitively inhibited responses of the rat bladder to the NK2-selective agonist [P-Ala5]-NKA(4-10) giving pKB estimates of 5.75 and 6.68,respectively. Both antagonists (1O microM) were inactive against responses to the NKI-selective agonist substance P methyl ester.7. These results support the proposal of a mixed population of NKI and NK2 receptors mediating contraction of the rat isolated urinary bladder. The NK2 receptor is characterized by a relatively low affinity for the NK2-selective antagonist MEN10207 but a high affinity for L-659,874. The NKImediated responses are inhibited by (+/-)-CP-96,345: this compound however, has non-specific depressant effects in the rat bladder at high concentration (1 microM). In contrast, the NK,-receptor peptide antagonist GR82334, did not have non-specific depressant effects and competitively inhibited NK, responses in the rat bladder and rat ileum with an affinity significantly lower than at the NK,-receptors in the guinea-pigileum.
Collapse
Affiliation(s)
- J M Hall
- Pharmacology Group, King's College London, London
| | | | | |
Collapse
|
19
|
Krause JE, Takeda Y, Hershey AD. Structure, functions, and mechanisms of substance P receptor action. J Invest Dermatol 1992; 98:2S-7S. [PMID: 1316925 DOI: 10.1111/1523-1747.ep12462082] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Substance P is a member of a family of structurally related peptides, called tachykinins, that are involved in the regulation of many biologic processes. Diversity in the generation of multiple tachykinin peptides arises due to multiple genes encoding these peptides as well as by mechanisms of alternative RNA processing and differential posttranslational processing. The multiple peptides are neurotransmitters and/or neuromodulator substances, and they bring about their actions mainly by activating three primary types of receptors, NK-1, NK-2, and NK-3. The pharmacology and tissue locations of these receptor sites are discussed, as is their involvement in certain biologic responses. These three receptor sites have been molecularly characterized by cDNA cloning and functional expression, and all are members of the superfamily of receptors coupled to G-regulatory proteins. Second messenger systems established to be activated by tachykinin receptor stimulation include the hydrolysis of inositol containing phospholipids by a phospholipase C mechanism. The role of substance P in neurogenic inflammation and plasma extravasation is briefly discussed. The generation of new research tools recently in the tachykinin field should allow for a detailed examination of the mechanisms of peptide action, including a focus on receptor structure-function relations and regulation of receptor sensitivity.
Collapse
Affiliation(s)
- J E Krause
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | |
Collapse
|