1
|
Ottonelli I, Sharma A, Ruozi B, Tosi G, Duskey JT, Vandelli MA, Lafuente JV, Nozari A, Muresanu DF, Buzoianu AD, Tian ZR, Zhang Z, Li C, Feng L, Wiklund L, Sharma HS. Nanowired Delivery of Curcumin Attenuates Methamphetamine Neurotoxicity and Elevates Levels of Dopamine and Brain-Derived Neurotrophic Factor. ADVANCES IN NEUROBIOLOGY 2023; 32:385-416. [PMID: 37480467 DOI: 10.1007/978-3-031-32997-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Curcumin is a well-known antioxidant used as traditional medicine in China and India since ages to treat variety of inflammatory ailments as a food supplement. Curcumin has antitumor properties with neuroprotective effects in Alzheimer's disease. Curcumin elevates brain-derived neurotrophic factor (BDNF) and dopamine (DA) levels in the brain indicating its role in substance abuse. Methamphetamine (METH) is one of the most abused substances in the world that induces profound neurotoxicity by inducing breakdown of the blood-brain barrier (BBB), vasogenic edema and cellular injuries. However, influence of curcumin on METH-induced neurotoxicity is still not well investigated. In this investigation, METH neurotoxicity and neuroprotective effects of curcumin nanodelivery were examined in a rat model. METH (20 mg/kg, i.p.) neurotoxicity is evident 4 h after its administration exhibiting breakdown of BBB to Evans blue albumin in the cerebral cortex, hippocampus, cerebellum, thalamus and hypothalamus associated with vasogenic brain edema as seen measured using water content in all these regions. Nissl attaining exhibited profound neuronal injuries in the regions of BBB damage. Normal curcumin (50 mg/kg, i.v.) 30 min after METH administration was able to reduce BBB breakdown and brain edema partially in some of the above brain regions. However, TiO2 nanowired delivery of curcumin (25 mg/kg, i.v.) significantly attenuated brain edema, neuronal injuries and the BBB leakage in all the brain areas. BDNF level showed a significant higher level in METH-treated rats as compared to saline-treated METH group. Significantly enhanced DA levels in METH-treated rats were also observed with nanowired delivery of curcumin. Normal curcumin was able to slightly elevate DA and BDNF levels in the selected brain regions. Taken together, our observations are the first to show that nanodelivery of curcumin induces superior neuroprotection in METH neurotoxicity probable by enhancing BDNF and DA levels in the brain, not reported earlier.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Barbara Ruozi
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesia and Critical Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Dafin Fior Muresanu
- "RoNeuro" Institute for Neurological Research and Diagnosis, Cluj-Napoca, Romania
- Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
3
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
4
|
Somkuwar SS, Staples MC, Fannon MJ, Ghofranian A, Mandyam CD. Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior. Brain Plast 2015; 1:63-81. [PMID: 29765835 PMCID: PMC5928557 DOI: 10.3233/bpl-150007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of methamphetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors. The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Atoosa Ghofranian
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Engelmann AJ, Aparicio MB, Kim A, Sobieraj JC, Yuan CJ, Grant Y, Mandyam CD. Chronic wheel running reduces maladaptive patterns of methamphetamine intake: regulation by attenuation of methamphetamine-induced neuronal nitric oxide synthase. Brain Struct Funct 2014; 219:657-72. [PMID: 23443965 PMCID: PMC3702684 DOI: 10.1007/s00429-013-0525-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/08/2013] [Indexed: 12/11/2022]
Abstract
We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2'-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake.
Collapse
Affiliation(s)
- Alexander J. Engelmann
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark B. Aparicio
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Airee Kim
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA
| | - Jeffery C. Sobieraj
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA
| | - Clara J. Yuan
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yanabel Grant
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA
| | - Chitra D. Mandyam
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Is there a role for nitric oxide in methamphetamine-induced dopamine terminal degeneration? Neurotox Res 2013; 25:153-60. [PMID: 23918001 DOI: 10.1007/s12640-013-9415-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022]
Abstract
Methamphetamine (METH) abuse results in long-term damage to the dopaminergic system, manifesting as decreases in dopamine (DA) tissue content, DA transporter binding, as well as tyrosine hydroxylase and vesicular monoamine transporter immunostaining. However, the exact cascade of events that ultimately result in this damage has not been clearly elucidated. One factor that has been heavily implicated in METH-induced DA terminal degeneration is the production of nitric oxide (NO). Unfortunately, many of the studies attempting to clarify the role of NO in METH-induced neurotoxicity have been confounded by issues such as the disruption of METH-induced hyperthermia, preventing the formation of strong conclusions. As a result, there is a body of work suggesting that NO is sufficient for METH-induced neurotoxicity, while other studies suggest that NO does not play a role in METH-induced degeneration of DA nerve terminals. This review summarizes the existing studies investigating the role of NO in METH-induced neurotoxicity, and argues that while NO may be necessary for METH-induced neurotoxicity, it is not sufficient. Finally, important areas of future investigation are highlighted and discussed.
Collapse
|
7
|
Friend DM, Son JH, Keefe KA, Fricks-Gleason AN. Expression and activity of nitric oxide synthase isoforms in methamphetamine-induced striatal dopamine toxicity. J Pharmacol Exp Ther 2013; 344:511-21. [PMID: 23230214 PMCID: PMC3558820 DOI: 10.1124/jpet.112.199745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/07/2012] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7-30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury.
Collapse
Affiliation(s)
- Danielle M Friend
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
8
|
Jang EY, Yang CH, Han MH, Choi YH, Hwang M. Sauchinone suppresses lipopolysaccharide-induced inflammatory responses through Akt signaling in BV2 cells. Int Immunopharmacol 2012; 14:188-94. [DOI: 10.1016/j.intimp.2012.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/29/2012] [Accepted: 07/06/2012] [Indexed: 01/24/2023]
|
9
|
Wisor JP, Schmidt MA, Clegern WC. Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. Brain Behav Immun 2011; 25:767-76. [PMID: 21333736 DOI: 10.1016/j.bbi.2011.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine and modafinil exert their wake-promoting effects by elevating monoaminergic tone. The severity of hypersomnolence that occurs subsequent to induced wakefulness differs between these two agents. Microglia detects and modulates CNS reactions to agents such as D-methamphetamine that induce cellular stress. We therefore hypothesized that changes in the sleep/wake cycle that occur subsequent to administration of D-methamphetamine are modulated by cerebral microglia. In CD11b-herpes thymidine kinase transgenic mice (CD11b-TK(mt-30)), activation of the inducible transgene by intracerebroventricular (icv) ganciclovir results in toxicity to CD11b-positive cells (i.e. microglia), thereby reducing cerebral microglial cell counts. CD11b-TK(mt-30)and wild type mice were subjected to chronic icv ganciclovir or vehicle administration with subcutaneous mini-osmotic pumps. D-methamphetamine (1 and 2 mg/kg), modafinil (30 and 100 mg/kg) and vehicle were administered intraperitoneally to these animals. In CD11b-TK(mt-30) mice, but not wild type, icv infusion of ganciclovir reduced the duration of wake produced by D-methamphetamine at 2 mg/kg by nearly 1h. Nitric oxide synthase (NOS) activity, studied ex vivo, and NOS expression were elevated in CD11b-positive cerebral microglia from wild type mice acutely exposed to d-methamphetamine. Additionally, CD11b-positive microglia, but not other cerebral cell populations, exhibited changes in sleep-regulatory cytokine expression in response to d-METH. Finally, CD11b-positive microglia exposed to d-methamphetamine in vitro exhibited increased NOS activity relative to pharmacologically-naïve cells. CD11b-positive microglia from the brains of neuronal NOS (nNOS)-knockout mice failed to exhibit this effect. We propose that the effects of D-METH on sleep/wake cycles are mediated in part by actions on microglia, including possibly nNOS activity and cytokine synthesis.
Collapse
Affiliation(s)
- Jonathan P Wisor
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, WWAMI Medical Education Program, Washington State University, Spokane, WA 99202, USA.
| | | | | |
Collapse
|
10
|
Scheidweiler KB, Barnes AJ, Huestis MA. A validated gas chromatographic-electron impact ionization mass spectrometric method for methamphetamine, methylenedioxymethamphetamine (MDMA), and metabolites in mouse plasma and brain. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 876:266-76. [PMID: 19026602 PMCID: PMC2607242 DOI: 10.1016/j.jchromb.2008.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/27/2008] [Accepted: 11/02/2008] [Indexed: 11/23/2022]
Abstract
A method was developed and fully validated for simultaneous quantification of methamphetamine (MAMP), amphetamine, hydroxy-methamphetamine, methylenedioxymethamphetamine (MDMA, ecstasy), methylenedioxyamphetamine, 3-hydroxy-4-methoxy-methamphetamine, and 3-hydroxy-4-methoxy-amphetamine in 100 microL mouse plasma and 7.5mg brain. Solid phase extraction and gas chromatography-electron impact ionization mass spectrometry in selected-ion monitoring mode achieved plasma linear ranges of 10-20 to 20,000 ng/mL and 0.1-0.2 to 200 ng/mg in brain. Recoveries were greater than 91%, bias 92.3-110.4%, and imprecision less than 5.3% coefficient of variation. This method was used for measuring MAMP and MDMA and metabolites in plasma and brain during mouse neurotoxicity studies.
Collapse
Affiliation(s)
- Karl B. Scheidweiler
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Allan J. Barnes
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 2007; 32:707-59. [PMID: 18207241 PMCID: PMC2360482 DOI: 10.1016/j.neubiorev.2007.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
Amphetamines, including methamphetamine, pose a significant cost to society due to significant numbers of amphetamine-abusing individuals who suffer major health-related consequences. In addition, methamphetamine use is associated with heightened rates of violent and property-related crimes. The current paper reviews the existing literature addressing genetic differences in mice that impact behavioral responses thought to be relevant to the abuse of amphetamine and amphetamine-like drugs. Summarized are studies that used inbred strains, selected lines, single-gene knockouts and transgenics, and quantitative trait locus (QTL) mapping populations. Acute sensitivity, neuroadaptive responses, rewarding and conditioned effects are among those reviewed. Some gene mapping work has been accomplished, and although no amphetamine-related complex trait genes have been definitively identified, translational work leading from results in the mouse to studies performed in humans is beginning to emerge. The majority of genetic investigations have utilized single-gene knockout mice and have concentrated on dopamine- and glutamate-related genes. Genes that code for cell support and signaling molecules are also well-represented. There is a large behavioral genetic literature on responsiveness to amphetamines, but a considerably smaller literature focused on genes that influence the development and acceleration of amphetamine use, withdrawal, relapse, and behavioral toxicity. Also missing are genetic investigations into the effects of amphetamines on social behaviors. This information might help to identify at-risk individuals and in the future to develop treatments that take advantage of individualized genetic information.
Collapse
|
12
|
Chiu CT, Ma T, Ho IK. Methamphetamine-induced behavioral sensitization in mice: alterations in mu-opioid receptor. J Biomed Sci 2006; 13:797-811. [PMID: 16847721 PMCID: PMC2925105 DOI: 10.1007/s11373-006-9102-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/21/2006] [Indexed: 11/28/2022] Open
Abstract
We had previously demonstrated that opioid receptors contribute to the induction and expression of behavioral sensitization induced by repeated daily injection with 2.5 mg/kg of methamphetamine for 7 days. Using the same regimen, the present study investigated the alterations in mu-opioid receptor during the induction (on days 2, 5, and 8) and expression (on days 11 and 21) periods of behavioral sensitization. Radioligand binding revealed that the maximal binding of mu-opioid receptor was not changed on days 2 and 5, but down-regulated on day 8. After cessation of drug treatment, the maximal binding of mu-opioid receptor gradually and time-dependently returned to normal level on day 11 and up-regulated on day 21. In contrast, no changes in delta- and kappa-opioid receptors were detectable on any given day examined. The potency of DAMGO for [(35)S]-GTPgammaS coupling was enhanced on days 2, 5, 11, and 21. Moreover, 1 muM of naltrexone or beta-chlornaltrexamine significantly suppressed the basal [(35)S]-GTPgammaS coupling on days 2, 11, and 21. These findings indicate enhanced responsiveness and elevated constitutive activity of mu-opioid receptor. In summary, our data clearly demonstrate that alterations in mu-opioid receptor are involved in and may contribute to the sensitization to locomotor stimulating effect of methamphetamine.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Tangeng Ma
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ing K. Ho
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| |
Collapse
|
13
|
Darvesh AS, Yamamoto BK, Gudelsky GA. Evidence for the involvement of nitric oxide in 3,4-methylenedioxymethamphetamine-induced serotonin depletion in the rat brain. J Pharmacol Exp Ther 2005; 312:694-701. [PMID: 15456837 DOI: 10.1124/jpet.104.074849] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Production of reactive oxygen and/or nitrogen species has been thought to contribute to the long-term depletion of brain dopamine and serotonin (5-HT) produced by amphetamine derivatives, i.e., methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). In the present study, the effects of nitric-oxide synthase (NOS) inhibitors were examined on the long-term depletion of striatal dopamine and/or 5-HT produced by the local perfusion of malonate and MDMA or the systemic administration of MDMA. The effect of MDMA on nitric oxide formation and nitrotyrosine concentration also was determined. Perfusion with MDMA and malonate resulted in a 34% reduction of 5-HT and 49% reduction of dopamine concentrations in the striatum. The systemic administration of NOS inhibitors, N(omega)-nitro-l-arginine methyl ester hydrochloride and S-methyl-l-thiocitrulline (S-MTC), and the peroxynitrite decomposition catalyst Fe(III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride attenuated the MDMA- and malonate-induced depletion of striatal dopamine and 5-HT. S-MTC also attenuated the depletion of 5-HT in the striatum produced by the systemic administration of MDMA without attenuating MDMA-induced hyperthermia. Additionally, the systemic administration of MDMA significantly increased the formation of nitric oxide and the nitrotyrosine concentration in the striatum. These results support the conclusion that MDMA produces reactive nitrogen species in the rat that contribute to the neurotoxicity of this amphetamine analog.
Collapse
Affiliation(s)
- Altaf S Darvesh
- University of Cincinnati, College of Pharmacy, 3223 Eden Ave., Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
14
|
Meij JTA, Haselton CL, Hillman KL, Muralikrishnan D, Ebadi M, Yu L. Differential mechanisms of nitric oxide- and peroxynitrite-induced cell death. Mol Pharmacol 2004; 66:1043-53. [PMID: 15258257 DOI: 10.1124/mol.104.001354] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) contributes to cellular degeneration in various disorders, particularly in the nervous system. NO targets cell proteins such as soluble guanylyl cyclase, but its detrimental effects are generally attributed to its reaction product with superoxide, peroxynitrite. To understand the mechanisms of NO-induced cell stress, we studied the effects of the NO donors diethylenetriamine and spermine NONOate and the peroxynitrite donor 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride (SIN-1) in SH-SY5Y and NG108-15 neuroblastoma cells. All three compounds induced a dose- and time-dependent decrease in viable cells, which was not blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. The two NONOates were approximately 15-fold more potent in SH-SY5Y than in NG108-15 cells, whereas the EC50 values of SIN-1 in SH-SY5Y and NG108-15 cells were in the same order. This led us to conclude that the mechanisms of NO and peroxynitrite did not converge. This was supported by our other findings. NONOates induced DNA fragmentation and an increase in cellular caspase-3 activity that preceded the gradual decline in cell viability. In contrast, SIN-1 induced a transient decline in ATP levels and a delayed loss of cell viability with no significant increase in caspase-3 activity or DNA laddering. Moreover, post-treatment with insulin inhibited caspase-3 activation and loss of cell viability in NONOate- but not in SIN-1-exposed cells. These findings suggest that NO is a potent toxin independent of peroxynitrite formation.
Collapse
Affiliation(s)
- Johanna T A Meij
- Department of Cell Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, OH 45267-0521, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Volz TJ, Schenk JO. L-arginine increases dopamine transporter activity in rat striatum via a nitric oxide synthase-dependent mechanism. Synapse 2004; 54:173-82. [PMID: 15452864 DOI: 10.1002/syn.20075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Literature reports suggest that nitric oxide (NO) participates in the regulation of dopaminergic neurotransmission, possibly through interaction with cysteine residues of the dopamine transporter (DAT). Rotating disk electrode voltammetry was used to measure dopamine (DA) transport in rat striatum to determine if 1) the nitric oxide synthase (NOS) substrate, L-arginine (L-Arg), could affect DAT activity; 2) L-Arg-dependent effects on DAT activity could be blocked by NOS and guanylate cyclase inhibitors, a NO scavenger, DA, and cocaine; 3) a NO donor could affect DAT activity; and 4) L-Arg could protect the DAT from a sulfhydryl agent. L-Arg increased DAT activity by increasing V(max). NOS inhibitors (S-ethylisothiourea and S-isopropylisothiourea), a NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), DA, and cocaine blocked the L-Arg effect. The guanylate cyclase inhibitor, 1H-(1,2,4)-oxadiazolo[4,3a]quinoxalin-1-one, did not. The NO donor, S-nitroso-N-acetylpenicillamine, decreased DAT activity and L-Arg protected the DAT from the effects of the sulfhydryl agent N-ethylmaleimide. These results suggest that L-Arg, via NO, may play a role in regulating DAT activity in rat striatum by increasing the V(max) of DA transport. Furthermore, it is suggested that the effects of L-Arg on DAT activity may be due to modification of the DAT itself, possibly via the NO-mediated modification of DAT cysteine residues. Finally, NO produced from L-Arg may affect the DAT differently than NO from NO donors. These results further the notion that dopaminergic neurotransmission may be regulated by changes in DAT activity caused by L-Arg and NOS.
Collapse
Affiliation(s)
- Trent J Volz
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
16
|
Cadet JL, Jayanthi S, Deng X. Speed kills: cellular and molecular bases of methamphetamine‐induced nerve terminal degeneration and neuronal apoptosis. FASEB J 2003; 17:1775-88. [PMID: 14519657 DOI: 10.1096/fj.03-0073rev] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Methamphetamine (METH) is a drug of abuse that has long been known to damage monoaminergic systems in the mammalian brain. Recent reports have provided conclusive evidence that METH can cause neuropathological changes in the rodent brain via apoptotic mechanisms akin to those reported in various models of neuronal death. The purpose of this review is to provide an interim account for a role of oxygen-based radicals and the participation of transcription factors and the involvement of cell death genes in METH-induced neurodegeneration. We discuss data suggesting the participation of endoplasmic reticulum and mitochondria-mediated activation of caspase-dependent and -independent cascades in the manifestation of METH-induced apoptosis. Studies that use more comprehensive approaches to gene expression profiling should allow us to draw more instructive molecular portraits of the complex plastic and degenerative effects of this drug.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Branch, NIH, NIDA, Intramural Research Program, Department of Health and Human Services, 5500 Nathan Shock Dr., Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|
17
|
Ramos AJ, Tagliaferro P, López-Costa JJ, López EM, Pecci Saavedra J, Brusco A. Neuronal and inducible nitric oxide synthase immunoreactivity following serotonin depletion. Brain Res 2002; 958:112-21. [PMID: 12468035 DOI: 10.1016/s0006-8993(02)03489-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Serotonin (5HT) modulates the development and plasticity of its innervation areas in the central nervous system (CNS). Astrocytic 5HT(1A) receptors are involved in the plastic phenomena by releasing the astroglial-derived neurotrophic factor S-100beta. Several facts have demonstrated that nitric oxide (NO) and the nitric oxide synthase enzyme (NOS) may also be involved in this neuroglial interaction: (i) NO, S-100beta and 5HT are involved in CNS plasticity; (ii) micromolar S-100beta concentration stimulates inducible-NOS (iNOS) expression; (iii) neuronal NOS (nNOS) immunoreactive neurons are functionally and morphologically related to the serotoninergic neurons; (iv) monoamines level, including 5HT, can be modulated by NO release. We have already shown that 5HT depletion increases astroglial S-100beta immunoreactivity, induces neuronal cytoskeletal alterations and produces an astroglial reaction, while once 5HT level is recovered, a sprouting phenomenon occurs [Brain Res. 883 (2000) 1-14]. To further characterize the relationship among nNOS, iNOS and 5HT we have analyzed nNOS and iNOS expression in the CNS after 5HT depletion induced by parachlorophenylalanine (PCPA) treatment. Studies were performed immediately after ending the PCPA treatment and during a recovery period of 35 days. Areas densely innervated by 5HT fibers were studied by means of nNOS and iNOS immunoreactivity as well as NADPH diaphorase (NADPHd) staining. All parameters were quantified by computer-assisted image analysis. Increased nNOS immunoreactivity in striatum and hippocampus as well as increased NADPHd reactivity in the striatum, hippocampus and parietal cortex were found after PCPA treatment. The iNOS immunoreactivity in the corpus callosum increased 14 and 35 days after the end of PCPA treatment. These findings showed that nNOS immunoreactivity and NADPHd activity increased immediately after 5HT depletion evidencing a close functional interaction between nitrergic and serotoninergic systems. However, iNOS immunoreactivity increased when 5HT levels were normalized, which could indicate one of the biological responses to S-100beta release.
Collapse
Affiliation(s)
- Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia Prof E De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 (1121) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
18
|
Li SM, Yin LL, Shi J, Lin ZB, Zheng JW. The effect of 7-nitroindazole on the acquisition and expression of D-methamphetamine-induced place preference in rats. Eur J Pharmacol 2002; 435:217-23. [PMID: 11821029 DOI: 10.1016/s0014-2999(01)01610-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study investigated the role of nitric oxide (NO) in the rewarding effects of D-methamphetamine using 7-nitroindazole, a potent inhibitor of neuronal nitric oxide synthase (nNOS), as determined by the conditioned place preference paradigm. Male Sprague-Dawley rats treated with D-methamphetamine (1 mg/kg) or saline every other day for 8 days (four drug and four saline sessions) developed marked place preference for the drug-paired side. The administration of 7-nitroindazole (12.5-50 mg/kg) 30 min prior to the exposure to D-methamphetamine dose-dependently attenuated the acquisition of D-methamphetamine-induced conditioned place preference. In addition, when it was acutely administered 30 min prior to the testing session of an already established D-methamphetamine-induced conditioned place preference, 7-nitroindazole (12.5-50 mg/kg) attenuated the expression of this conditioned response in a dose-dependent manner, while 7-nitroindazole (25 and 50 mg/kg) alone showed no place preference effects. These findings indicate that nitric oxide (NO) is involved in the rewarding properties of methamphetamine and suggest that selective nNOS inhibitors maybe useful in the management of methamphetamine abuse.
Collapse
Affiliation(s)
- Su-Min Li
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38 Xueyuan Road, 100083, Beijing, PR China
| | | | | | | | | |
Collapse
|