1
|
Haque M, Kaminsky L, Abdulqadir R, Engers J, Kovtunov E, Rawat M, Al-Sadi R, Ma TY. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front Immunol 2024; 15:1348010. [PMID: 39081324 PMCID: PMC11286488 DOI: 10.3389/fimmu.2024.1348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. METHODS The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. RESULTS AND CONCLUSION Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Lauren Kaminsky
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Raz Abdulqadir
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Jessica Engers
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Evgeny Kovtunov
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Manmeet Rawat
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Rana Al-Sadi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Y. Ma
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
2
|
Abdel-Hameed EA, Masenga SK. HIV-related gut damage persists long-term in perinatally acquired HIV and is associated with insulin resistance. AIDS 2024; 38:1265-1266. [PMID: 38814714 DOI: 10.1097/qad.0000000000003921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
| | - Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| |
Collapse
|
3
|
Benyamini P. Phylogenetic Tracing of Evolutionarily Conserved Zonula Occludens Toxin Reveals a "High Value" Vaccine Candidate Specific for Treating Multi-Strain Pseudomonas aeruginosa Infections. Toxins (Basel) 2024; 16:271. [PMID: 38922165 PMCID: PMC11209546 DOI: 10.3390/toxins16060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
4
|
Khan N, Kurnik-Łucka M, Latacz G, Gil K. Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin-Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions. Int J Mol Sci 2024; 25:5566. [PMID: 38791603 PMCID: PMC11122119 DOI: 10.3390/ijms25105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.
Collapse
Affiliation(s)
- Nadia Khan
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
5
|
Pepe G, Corica D, Currò M, Aversa T, Alibrandi A, Ientile R, Caccamo D, Wasniewska M. Fasting and meal-related zonulin serum levels in a large cohort of obese children and adolescents. Front Endocrinol (Lausanne) 2024; 15:1329363. [PMID: 38405153 PMCID: PMC10885807 DOI: 10.3389/fendo.2024.1329363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Zonulin recently emerged as a valuable biological marker to assess the integrity of the intestinal mucosal barrier. Nevertheless, data about zonulin in pediatric age are extremely scarce. Aim of this study was to investigate the relationship between serum zonulin levels, both fasting and postprandial, with body mass index (BMI) and biochemical markers of insulin resistance (IR), insulin sensitivity, b-cell function and cardio-metabolic risk in obese non-diabetic youths. Methods One hundred and four children and adolescents with obesity (BMI ≥ 2.0 SDS) were enrolled (mean age 11.43 ± 2.66). All the patients underwent clinical and biochemical assessment, including oral glucose tolerance test (OGTT) and liver ultrasonography. Zonulin serum levels were measured at fasting state, at 60-minute and 120-minute OGTT timepoint. Results Impaired fasting glycaemia and impaired glucose tolerance were documented in 27.9% and 11.5% of patients, respectively. IR was documented in 69.2% of cases. Liver steatosis was diagnosed in 39.4%. Zonulin serum levels significantly increased from baseline to 60-minute and 120-minute OGTT timepoint (p positive correlation between BMI SDS and serum zonulin levels at 120-minute OGTT timepoint (p highlighted a positive association of zonulin fasting levels with IR and glutamicoxalacetic transaminase levels (GOT, p zonulin levels were demonstrated for age, sex, pubertal status, glucose, lipid profile and the other obesity-related parameters. Discussion Our results show, for the first time in a pediatric cohort, the meal-related pattern of secretion of serum zonulin, which tends to significantly increase during and at 2-hours postprandial assessment. Even if the underlying mechanisms associating intestinal permeability and obesity have not been fully elucidated yet, our data confirm a close relationship between zonulin concentration and obesity in pediatric population. IR seems to significantly influence zonulin serum levels, thus a central role of IR in this pathway is conceivable.
Collapse
Affiliation(s)
- Giorgia Pepe
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Monica Currò
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | | | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Repossi R, Martín-Ramírez R, Gómez-Bernal F, Medina L, Fariña-Jerónimo H, González-Fernández R, Martín-Vasallo P, Plata-Bello J. Evaluation of Zonulin Expression and Its Potential Clinical Significance in Glioblastoma. Cancers (Basel) 2024; 16:356. [PMID: 38254845 PMCID: PMC10814510 DOI: 10.3390/cancers16020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma, the deadliest adult brain tumor, poses a significant therapeutic challenge with a dismal prognosis despite current treatments. Zonulin, a protein influencing tight junctions and barrier functions, has gained attention for its diverse roles in various diseases. This study aimed to preliminarily analyze the circulating and tumor zonulin levels, evaluating their impact on disease prognosis and clinical-radiological factors. Additionally, we investigated in vitro zonulin expression in different glioblastoma cell lines under two different conditions. The study comprised 34 newly diagnosed glioblastoma patients, with blood samples collected before treatment for zonulin and haptoglobin analysis. Tumor tissue samples from 21 patients were obtained for zonulin expression. Clinical, molecular, and radiological data were collected, and zonulin protein levels were assessed using ELISA and Western blot techniques. Furthermore, zonulin expression was analyzed in vitro in three glioblastoma cell lines cultured under standard and glioma-stem-cell (GSC)-specific conditions. High zonulin expression in glioblastoma tumors correlated with larger preoperative contrast enhancement and edema volumes. Patients with high zonulin levels showed a poorer prognosis (progression-free survival [PFS]). Similarly, elevated serum levels of zonulin were associated with a trend of shorter PFS. Higher haptoglobin levels correlated with MGMT methylation and longer PFS. In vitro, glioblastoma cell lines expressed zonulin under standard cell culture conditions, with increased expression in tumorsphere-specific conditions. Elevated zonulin levels in both the tumor and serum of glioblastoma patients were linked to a poorer prognosis and radiological signs of increased disruption of the blood-brain barrier. In vitro, zonulin expression exhibited a significant increase in tumorspheres.
Collapse
Affiliation(s)
- Roberta Repossi
- Neurogenetics of Rare Disease Group, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
| | - Rita Martín-Ramírez
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Fuensanta Gómez-Bernal
- Department of Biochemistry, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Lilian Medina
- Department of Biochemistry, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Helga Fariña-Jerónimo
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Rebeca González-Fernández
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Pablo Martín-Vasallo
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Julio Plata-Bello
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| |
Collapse
|
7
|
Rella S, Onyiah J, Baker C, Singh V, Her A, Rasouli N. Design and rationale for the SIB trial: a randomized parallel comparison of semaglutide versus placebo on intestinal barrier function in type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2023; 14:20420188231207348. [PMID: 37916028 PMCID: PMC10617296 DOI: 10.1177/20420188231207348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Objective To describe the rationale and design of the SIB trial, an interventional clinical trial testing the hypothesis that subcutaneous (s.c.) once-weekly semaglutide can improve intestinal permeability and reduce systemic inflammation in participants with type 2 diabetes (T2D) and obesity. Methods SIB (NCT04979130) is an investigator-initiated, single-center randomized, double-blinded, placebo-controlled clinical study being conducted at the University of Colorado Anschutz Medical Campus. The primary objective of this novel trial is to test the hypothesis that subcutaneous (s.c.) once-weekly semaglutide could improve intestinal permeability and reduce systemic inflammation in participants with T2D and obesity. Eligible participants had a diagnosis of type 2 diabetes, elevated body mass index, and evidence of systemic inflammation. Participants were randomized 1:1 to s.c. semaglutide or placebo. Participants were assessed for intestinal permeability and markers of inflammation at baseline, mid-study, and at the end of the study. Efficacy assessments were based on the analysis of the following: lactulose:mannitol ratio test, serum lipopolysaccharide-binding protein (LBP), fecal calprotectin, inflammatory biomarkers (IL-6, TNF, IL-1, IL-8, hs-CRP), and HbA1c. All participants who enrolled in the trial provided written informed consent after having received written and oral information on the trial. The risks of semaglutide use were minimized by administration according to FDA-labeled use and close monitoring for adverse events. Discussion SIB is the first study to examine the effects of GLP-1 receptor agonists on intestinal permeability in humans and will provide important data on their impact on systemic inflammation and intestinal permeability in the setting of T2D and obesity.
Collapse
Affiliation(s)
- Steven Rella
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Mail Stop 8106, 12631 East 17th Avenue, Aurora, CO 80045-2559, USA
| | - Joseph Onyiah
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chelsea Baker
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vatsala Singh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Her
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neda Rasouli
- University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Asbjornsdottir B, Sigurdsson S, Miranda-Ribera A, Fiorentino M, Konno T, Lan J, Gudmundsson LS, Gottfredsson M, Lauth B, Birgisdottir BE, Fasano A. Evaluating Prophylactic Effect of Bovine Colostrum on Intestinal Barrier Function in Zonulin Transgenic Mice: A Transcriptomic Study. Int J Mol Sci 2023; 24:14730. [PMID: 37834178 PMCID: PMC10572565 DOI: 10.3390/ijms241914730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The intestinal barrier comprises a single layer of epithelial cells tightly joined to form a physical barrier. Disruption or compromise of the intestinal barrier can lead to the inadvertent activation of immune cells, potentially causing an increased risk of chronic inflammation in various tissues. Recent research has suggested that specific dietary components may influence the function of the intestinal barrier, potentially offering a means to prevent or mitigate inflammatory disorders. However, the precise mechanism underlying these effects remains unclear. Bovine colostrum (BC), the first milk from cows after calving, is a natural source of nutrients with immunomodulatory, anti-inflammatory, and gut-barrier fortifying properties. This novel study sought to investigate the transcriptome in BC-treated Zonulin transgenic mice (Ztm), characterized by dysbiotic microbiota, intestinal hyperpermeability, and mild hyperactivity, applying RNA sequencing. Seventy-five tissue samples from the duodenum, colon, and brain of Ztm and wild-type (WT) mice were dissected, processed, and RNA sequenced. The expression profiles were analyzed and integrated to identify differentially expressed genes (DEGs) and differentially expressed transcripts (DETs). These were then further examined using bioinformatics tools. RNA-seq analysis identified 1298 DEGs and 20,952 DETs in the paired (Ztm treatment vs. Ztm control) and reference (WT controls) groups. Of these, 733 DEGs and 10,476 DETs were upregulated, while 565 DEGs and 6097 DETs were downregulated. BC-treated Ztm female mice showed significant upregulation of cingulin (Cgn) and claudin 12 (Cldn12) duodenum and protein interactions, as well as molecular pathways and interactions pertaining to tight junctions, while BC-treated Ztm males displayed an upregulation of transcripts like occludin (Ocln) and Rho/Rac guanine nucleotide exchange factor 2 (Arhgf2) and cellular structures and interfaces, protein-protein interactions, and organization and response mechanisms. This comprehensive analysis reveals the influence of BC treatment on tight junctions (TJs) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway gene expressions. The present study is the first to analyze intestinal and brain samples from BC-treated Ztm mice applying high-throughput RNA sequencing. This study revealed molecular interaction in intestinal barrier function and identified hub genes and their functional pathways and biological processes in response to BC treatment in Ztm mice. Further research is needed to validate these findings and explore their implications for dietary interventions aimed at improving intestinal barrier integrity and function. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Unit for Nutrition Research, Landspitali University Hospital, Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland
| | - Snaevar Sigurdsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Biomedical Center, University of Iceland, 102 Reykjavik, Iceland
| | - Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Takumi Konno
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Larus S. Gudmundsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Magnus Gottfredsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Department of Scientific Affairs, Landspitali University Hospital, 102 Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, 102 Reykjavik, Iceland
| | - Bertrand Lauth
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, 102 Reykjavik, Iceland
| | - Bryndis Eva Birgisdottir
- Unit for Nutrition Research, Landspitali University Hospital, Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02138, USA
| |
Collapse
|
9
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Burckhardt JC, Chong DHY, Pett N, Tropini C. Gut commensal Enterocloster species host inoviruses that are secreted in vitro and in vivo. MICROBIOME 2023; 11:65. [PMID: 36991500 PMCID: PMC10061712 DOI: 10.1186/s40168-023-01496-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Bacteriophages in the family Inoviridae, or inoviruses, are under-characterized phages previously implicated in bacterial pathogenesis by contributing to biofilm formation, immune evasion, and toxin secretion. Unlike most bacteriophages, inoviruses do not lyse their host cells to release new progeny virions; rather, they encode a secretion system that actively pumps them out of the bacterial cell. To date, no inovirus associated with the human gut microbiome has been isolated or characterized. RESULTS In this study, we utilized in silico, in vitro, and in vivo methods to detect inoviruses in bacterial members of the gut microbiota. By screening a representative genome library of gut commensals, we detected inovirus prophages in Enterocloster spp. (formerly Clostridium spp.). We confirmed the secretion of inovirus particles in in vitro cultures of these organisms using imaging and qPCR. To assess how the gut abiotic environment, bacterial physiology, and inovirus secretion may be linked, we deployed a tripartite in vitro assay that progressively evaluated bacterial growth dynamics, biofilm formation, and inovirus secretion in the presence of changing osmotic environments. Counter to other inovirus-producing bacteria, inovirus production was not correlated with biofilm formation in Enterocloster spp. Instead, the Enterocloster strains had heterogeneous responses to changing osmolality levels relevant to gut physiology. Notably, increasing osmolality induced inovirus secretion in a strain-dependent manner. We confirmed inovirus secretion in a gnotobiotic mouse model inoculated with individual Enterocloster strains in vivo in unperturbed conditions. Furthermore, consistent with our in vitro observations, inovirus secretion was regulated by a changed osmotic environment in the gut due to osmotic laxatives. CONCLUSION In this study, we report on the detection and characterization of novel inoviruses from gut commensals in the Enterocloster genus. Together, our results demonstrate that human gut-associated bacteria can secrete inoviruses and begin to elucidate the environmental niche filled by inoviruses in commensal bacteria. Video Abstract.
Collapse
Affiliation(s)
- Juan C Burckhardt
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Derrick H Y Chong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Nicola Pett
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada.
| |
Collapse
|
11
|
Mohammadparast V, Mohammadi T, Karimi E, Mallard BL. Effects of Probiotic and Selenium Co-supplementation on Lipid Profile and Glycemia Indices: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Curr Nutr Rep 2023; 12:167-180. [PMID: 36781602 PMCID: PMC9974686 DOI: 10.1007/s13668-023-00448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 02/15/2023]
Abstract
PURPOSE OF REVIEW The current systematic review and meta-analysis was done to evaluate the effects of selenium and probiotic co-supplementation on lipid profile and glycemia indices of the adult population using randomized controlled clinical trials (RCTs). RECENT FINDINGS Five studies involving 282 participants with a sample size ranging from 38 to 79 were eligible to be enrolled in the current study. Co-supplementation with probiotic and selenium reduced fasting plasma glucose (WMD = -4.02 mg/dL; 95% CI: -5.87 to -2.18; P < 0.001), insulin (WMD = -2.50 mIU/mL; 95% CI: -3.11 to -1.90; P < 0.001), homeostatic model assessment for insulin resistance (WMD = -0.59; 95% CI: -0.74 to -0.43; P < 0.001), quantitative insulin sensitivity check index (WMD = 0.01; 95% CI: 0.01 to 0.02; P < 0.001), total cholesterol (WMD = -12.75 mg/dL; 95% CI: -19.44 to -6.07; P < 0.001), low-density lipoprotein cholesterol (WMD = -7.09 mg/dL; 95% CI: -13.45 to -0.73; P = 0.029), and triglyceride (WMD = -14.38 mg/dL; 95% CI: -23.13 to -5.62; P = 0.001). The findings of the current systematic review and meta-analysis suggested that co-supplementation with probiotics and selenium may benefit adults in terms of glycemia indices and lipid profile. However, due to the small number of included studies, further trials are needed to confirm our findings.
Collapse
Affiliation(s)
- Vida Mohammadparast
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021 New Zealand
| | - Tanin Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Beth L. Mallard
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021 New Zealand
| |
Collapse
|
12
|
Naryzhny S, Legina O. Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. BIOMEDITSINSKAYA KHIMIYA 2022; 68:309-320. [DOI: 10.18097/pbmc20226805309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the interrelationship between the brain and the gut has become an area of high scientific interest. The intestine is responsible not only for digestion, as it contains millions of neurons, its own immune system, and affects the emotional and cognitive processes. The relationship between the gut and the brain suggests that the processes carried out by the gut microbiota play a significant role in the regulation of brain function, and vice versa. A special role here is played by intercellular tight junctions (TJ), where the zonulin protein holds an important place. Zonulin, an unprocessed precursor of mature haptoglobin, is the only physiological modulator of intercellular TJ that can reversibly regulate the permeability of the intestinal (IB) and blood-brain (BBB) barriers in the human body. BBB disruption and altered microbiota composition are associated with many diseases, including neurological disorders and neuroinflammation. That is, there is a gut-brain axis (GBA) — a communication system through which the brain modulates the functions of the gastrointestinal tract (GIT) and vice versa. GBA is based on neuronal, endocrine, and immunological mechanisms that are interconnected at the organismal, organ, cellular, and molecular levels.
Collapse
Affiliation(s)
- S.N. Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| | - O.K. Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| |
Collapse
|
13
|
Intestinal Permeability and Depression in Patients with Inflammatory Bowel Disease. J Clin Med 2022; 11:jcm11175121. [PMID: 36079050 PMCID: PMC9457405 DOI: 10.3390/jcm11175121] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Abstract
Depression is a global health problem that requires an early and accurate diagnosis to ensure quick access to appropriate treatment. Among multiple psychopathological paths, recent attention has focused on analysing the brain–gut–microbiota axis. The intestinal barrier plays a key role, and dysfunctions occurring at this level have implications for mental health. The aim of the present study was to investigate the role of intestinal permeability biomarkers, i.e., calprotectin, zonulin, lipopolysaccharide-binding protein (LBP) and intestinal fatty acid-binding protein (I-FAB), in relation to depression in patients with inflammatory bowel disease (IBD). This is the first study of this kind taking place in Romania, Eastern Europe, with an emphasis on patients with Crohn’s disease and ulcerative colitis. The correlations identified between depression and calprotectin and depression and LBP have the potential to shed light on the process of rapid diagnosis of depression with the help of biomarkers. Since depression is correlated with a decrease in the quality of life in patients with IBD, the need for access to appropriate treatments must be urgent.
Collapse
|
14
|
Guo Z, Pan J, Zhu H, Chen ZY. Metabolites of Gut Microbiota and Possible Implication in Development of Diabetes Mellitus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5945-5960. [PMID: 35549332 DOI: 10.1021/acs.jafc.1c07851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus is characterized by having a disorder of glucose metabolism. The types of diabetes mellitus include type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other specific types of diabetes mellitus. Many risk factors contribute to diabetes mellitus mainly including genetics, environment, obesity, and diet. In the recent years, gut microbiota has been shown to be linked to the development of diabetes. It has been reported that the gut microbiota composition of diabetic patients is different from that of healthy people. Although the mechanism behind the abnormality remains to be explored, most hypotheses focus on the inflammation response and leaky gut in relation to the changes in production of endotoxins and metabolites derived from the intestinal flora. Consequently, the above-mentioned abnormalities trigger a series of metabolic changes, gradually leading to development of hyperglycemia, insulin resistance, and diabetes. This review is (i) to summarize the differences in gut microbiota between diabetic patients and healthy people, (ii) to discuss the underlying mechanism(s) by which how lipopolysaccharide, diet, and metabolites of the gut microbiota affect diabetes, and (iii) to provide a new insight in the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Zinan Guo
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Jingjin Pan
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
| | - Hanyue Zhu
- School of Food Science and Engineering, South China Food Safety Research Center, Foshan University, Foshan 528011, Guangdong, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| |
Collapse
|
15
|
Ren S, Wang C, Chen A, Lv W, Gao R. The Probiotic Lactobacillus paracasei Ameliorates Diarrhea Cause by Escherichia coli O8via Gut Microbiota Modulation1. Front Nutr 2022; 9:878808. [PMID: 35662940 PMCID: PMC9159302 DOI: 10.3389/fnut.2022.878808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction Koumiss is a fermented horse milk food containing abundant probiotics. Lactobacillus paracasei is a bacterial strain isolated from koumiss that helps regulate the intestinal microbiota. One of the major cause of diarrhea is an imbalance of the intestinal flora. The aim of this study was to investigate whether Lactobacillus paracasei can ameliorate E. coli-induced diarrhea and modulate the gut microbiota. Methods Mouse models of diarrhea were established via intragastric E. coli O8 administration. We then attempted to prevent or treat diarrhea in the mice via intragastric administration of a 3 × 108 CFU/mL L. paracasei cell suspension. The severity of diarrhea was evaluated based on the body weight, diarrhea rate, and index, fecal diameter, ileum injury, hematoxylin-eosin (H&E) staining, and diamine oxidase (DAO) and zonulin expression. Expression of the tight junction (TJ) proteins claudin-1, occludin, and zona occludens (ZO-)1 were detected by immunohistochemistry (IHC). Gastrointestinal mRNA expression levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were detected by real-time polymerase chain reaction (RT-PCR). The microbial composition was analyzed by 16s rRNA sequencing. Results The L. paracasei demonstrated excellent therapeutic efficacy against diarrhea. It elevated the TJ protein levels and downregulated proinflammatory cytokines IL-6, IL-1β, TNF-α, and p65, myosin light chain 2 (MLC2), myosin light chain kinase (MLCK). Moreover L. paracasei increased those bacteria, which can product short-chain fatty acid (SCFA) such Alistipes, Odoribacter, Roseburia, and Oscillibacter. Conclusion L. paracasei ameliorated diarrhea by inhibiting activation of the nuclear factor kappa B (NF-κB)-MLCK pathway and increasing the abundance of gut microbiota that produce SCFA.
Collapse
Affiliation(s)
- Shunan Ren
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Chunjie Wang,
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenting Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijuan Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
16
|
Plasma and fecal zonulin are not altered by a high green leafy vegetable dietary intervention: secondary analysis of a randomized control crossover trial. BMC Gastroenterol 2022; 22:184. [PMID: 35413837 PMCID: PMC9004007 DOI: 10.1186/s12876-022-02248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zonulin is observed in animal models to regulate intestinal permeability and influenced by dietary intake, gut microbiota, and inflammation. We conducted a secondary analysis of a randomized controlled crossover trial (NCT03582306) in individuals with a BMI greater than 30 kg/m2 and high habitual red meat intake and low habitual green leafy vegetable (GLV) intake. METHODS Participants were provided with frozen GLV during the first or last four weeks (immediate or delayed intervention) of the twelve-week trial. Biological and anthropometric measures were taken at the beginning and at each four-week interval. A subset of 20 participants was selected for this secondary analysis of the intestinal permeability and inflammation-related biomarkers: serum and fecal zonulin; serum lipopolysaccharide binding protein (LBP), Alpha-1-acid glycoprotein 1 (ORM-1), tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and C-reactive protein; 8-hydroxy-2'-deoxyguanosine (8OHdG) and plasma Vitamin K1 as a marker of protocol adherence. Nutrient and food group intake from two-24-h dietary recalls collected at each time point were assessed. Fecal microbiota was measured by 16 s rRNA PCR sequencing. Changes in biological markers, dietary factors, and microbial taxa were assessed with Wilcoxon Sign Ranks Tests. Exploratory analyses of the relationship between changes in outcome variables were conducted with Spearman correlations. RESULTS No changes in serum and fecal zonulin and serum LBP were observed. Plasma Vitamin K (p = 0.005) increased, while plasma 8OHdG (p = 0.023) decreased during the intervention compared to the control. The only dietary factors that changed significantly were increases during intervention in Vitamin K and Dark GLV (p < 0.001 for both) compared to control. Fecal microbiota did not change significantly across all times points; however, change in serum zonulin was associated with change in Proteobacteria (ρ = - 0.867, p = 0.001) in females and Bifidobacterium (ρ = - 0.838, p = 0.009) and Bacteroidaceae (ρ = 0.871, p = 0.005) in men. CONCLUSIONS A high GLV dietary intervention increased serum zonulin levels and had no effect on fecal zonulin. Lack of concordance between several inflammation-associated biomarkers and zonulin corroborate recent reports of limited utility of zonulin in obese adults free of lower gastrointestinal disease. Trial Registration information: https://clinicaltrials.gov/ct2/show/NCT03582306 (NCT03582306) registered on 07/11/2018.
Collapse
|
17
|
Miranda-Ribera A, Serena G, Liu J, Fasano A, Kingsbury MA, Fiorentino MR. The Zonulin-transgenic mouse displays behavioral alterations ameliorated via depletion of the gut microbiota. Tissue Barriers 2021; 10:2000299. [PMID: 34775911 DOI: 10.1080/21688370.2021.2000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gut-brain axis hypothesis suggests that interactions in the intestinal milieu are critically involved in regulating brain function. Several studies point to a gut-microbiota-brain connection linking an impaired intestinal barrier and altered gut microbiota composition to neurological disorders involving neuroinflammation. Increased gut permeability allows luminal antigens to cross the gut epithelium, and via the blood stream and an impaired blood-brain barrier (BBB) enters the brain impacting its function. Pre-haptoglobin 2 (pHP2), the precursor protein to mature HP2, is the first characterized member of the zonulin family of structurally related proteins. pHP 2 has been identified in humans as the thus far only endogenous regulator of epithelial and endothelial tight junctions (TJs). We have leveraged the Zonulin-transgenic mouse (Ztm) that expresses a murine pHP2 (zonulin) to determine the role of increased gut permeability and its synergy with a dysbiotic intestinal microbiota on brain function and behavior. Here we show that Ztm mice display sex-dependent behavioral abnormalities accompanied by altered gene expression of BBB TJs and increased expression of brain inflammatory genes. Antibiotic depletion of the gut microbiota in Ztm mice downregulated brain inflammatory markers ameliorating some anxiety-like behavior. Overall, we show that zonulin-dependent alterations in gut permeability and dysbiosis of the gut microbiota are associated with an altered BBB integrity, neuroinflammation, and behavioral changes that are partially ameliorated by microbiota depletion. Our results suggest the Ztm model as a tool for the study of the cross-talk between the microbiome/gut and the brain in the context of neurobehavioral/neuroinflammatory disorders.
Collapse
Affiliation(s)
- Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gloria Serena
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jundi Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA.,Lurie Center for Autism, Boston, MA, USA
| | - Maria R Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
18
|
Yeung CY, Chiang Chiau JS, Cheng ML, Chan WT, Jiang CB, Chang SW, Liu CY, Chang CW, Lee HC. Effects of Vitamin D-Deficient Diet on Intestinal Epithelial Integrity and Zonulin Expression in a C57BL/6 Mouse Model. Front Med (Lausanne) 2021; 8:649818. [PMID: 34414198 PMCID: PMC8369235 DOI: 10.3389/fmed.2021.649818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: Vitamin D (VD) plays an important role not only in mineral balance and skeletal maintenance but also in immune modulation. VD status was found correlated with the pathophysiology and severity of inflammatory bowel diseases and other autoimmune disorders. Epithelial barrier function is primarily regulated by the tight-junction (TJ) proteins. In this study, we try to establish an animal model by raising mice fed VD-deficient diet and to investigate the effects of VD-deficient diet on gut integrity and zonulin expression. Methods: Male C57BL/6 mice were administered either VD-deficient [VDD group, 25(OH)2D3 0 IU/per mouse] or VD-sufficient [VDS group, 25(OH)2D3 37.8 IU/per mouse] special diets for 7 weeks. Body weight and diet intake were recorded weekly. Serum VD levels were detected. After sacrifice, jejunum and colon specimens were collected. The villus length and crypt depth of the jejunum as well as mucosa thickness of the colon were measured. Various serum pro-inflammatory cytokines and intestinal TJ proteins were assessed. The serum level of zonulin and the mRNA expression of jejunum zonulin were also investigated. Results: We found that mice fed a VDD diet had a lower serum level of VD after 7 weeks (p < 0.001). VDD mice gained significant less weight (p = 0.022) and took a similar amount of diet (p = 0.398) when compared to mice raised on a VDS diet. Significantly decreased colon mucosa thickness was found in VDD mice compared with the VDS group (p = 0.022). A marked increase in serum pro-inflammatory cytokine levels was demonstrated in VDD mice. All relative levels of claudin (CLD)-1 (p = 0.007), CLD-3 (p < 0.001), CLD-7 (p < 0.001), and zonulin-1 (ZO-1, p = 0.038) protein expressions were significantly decreased in the VDD group when compared to the VDS group. A significant upregulation of mRNA expression of jejunum zonulin (p = 0.043) and elevated serum zonulin (p = 0.001) were found in the VDD group. Conclusions: We successfully demonstrated that VDD could lead to impaired barrier properties. We assume that sufficient VD could maintain intestinal epithelial integrity and prevent mucosal barrier dysfunction. VD supplementation may serve as part of a therapeutic strategy for human autoimmune and infectious diseases with intestinal barrier dysfunction (leaky gut) in the future. To our knowledge, this is the first study to demonstrate that VDD could lead to a significant upregulation in mRNA expression of the jejunum zonulin level and also a marked elevation of serum zonulin in a mouse model.
Collapse
Affiliation(s)
- Chun-Yan Yeung
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | - Mei-Lein Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Wen Chang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chia-Yuan Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Hepatology and Gastroenterology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ching-Wei Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Hepatology and Gastroenterology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hung-Chang Lee
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
19
|
Yonker LM, Gilboa T, Ogata AF, Senussi Y, Lazarovits R, Boribong BP, Bartsch YC, Loiselle M, Rivas MN, Porritt RA, Lima R, Davis JP, Farkas EJ, Burns MD, Young N, Mahajan VS, Hajizadeh S, Lopez XIH, Kreuzer J, Morris R, Martinez EE, Han I, Griswold K, Barry NC, Thompson DB, Church G, Edlow AG, Haas W, Pillai S, Arditi M, Alter G, Walt DR, Fasano A. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J Clin Invest 2021; 131:149633. [PMID: 34032635 PMCID: PMC8279585 DOI: 10.1172/jci149633] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.METHODSHere, we analyzed biospecimens from 100 children: 19 with MIS-C, 26 with acute COVID-19, and 55 controls. Stools were assessed for SARS-CoV-2 by reverse transcription PCR (RT-PCR), and plasma was examined for markers of breakdown of mucosal barrier integrity, including zonulin. Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As a proof of concept, we treated a patient with MIS-C with larazotide, a zonulin antagonist, and monitored the effect on antigenemia and the patient's clinical response.RESULTSWe showed that in children with MIS-C, a prolonged presence of SARS-CoV-2 in the GI tract led to the release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The patient with MIS-C treated with larazotide had a coinciding decrease in plasma SARS-CoV-2 spike antigen levels and inflammatory markers and a resultant clinical improvement above that achieved with currently available treatments.CONCLUSIONThese mechanistic data on MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.
Collapse
Affiliation(s)
- Lael M. Yonker
- Mucosal Immunology and Biology Research Center and
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Tal Gilboa
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Alana F. Ogata
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Roey Lazarovits
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Brittany P. Boribong
- Mucosal Immunology and Biology Research Center and
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Yannic C. Bartsch
- Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, Massachusetts, USA
| | | | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rebecca A. Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rosiane Lima
- Mucosal Immunology and Biology Research Center and
| | | | | | | | - Nicola Young
- Mucosal Immunology and Biology Research Center and
| | - Vinay S. Mahajan
- Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, Massachusetts, USA
| | - Soroush Hajizadeh
- Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Xcanda I. Herrera Lopez
- Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Johannes Kreuzer
- Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Robert Morris
- Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Enid E. Martinez
- Mucosal Immunology and Biology Research Center and
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Isaac Han
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Kettner Griswold
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Nicholas C. Barry
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - David B. Thompson
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - George Church
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G. Edlow
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wilhelm Haas
- Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Shiv Pillai
- Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, Massachusetts, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Galit Alter
- Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, Massachusetts, USA
| | - David R. Walt
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center and
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
20
|
Effects of probiotic supplementation on anthropometric and metabolic characteristics in adults with metabolic syndrome: A systematic review and meta-analysis of randomized clinical trials. Clin Nutr 2021; 40:4662-4673. [PMID: 34237694 DOI: 10.1016/j.clnu.2021.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/22/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
AIMS We conducted a systematic review and meta-analysis to evaluate evidence from randomized controlled trials (RCTs) documenting the effectiveness of supplementation with pro-/synbiotics versus placebo controls on anthropometric and metabolic (glucoregulatory status, lipid profile) indices in adults with metabolic syndrome (MetS). METHODS Databases of MEDLINE, Scopus, Embase, Web of Science, and Cochrane Library were searched through March 2020 to identify eligible RCTs evaluating the effects of pro-/synbiotic consumption in adults (≥18 years) with MetS. Mean differences (MDs) and 95% confidence intervals (CIs) were pooled using random-effects models. RESULTS Ten eligible publications (9 RCTs, n = 344 participants) were included. Supplementation with pro-/synbiotics reduced total cholesterol (TC) in adults with MetS versus placebo (MD: -6.66 mg/dL, 95% CI: -13.25 to -0.07, P = 0.04, I2 = 28.8%, n = 7), without affecting weight, body mass index, waist circumference, fasting blood sugar, homeostasis model assessment for insulin resistance, insulin, triglyceride, low-density lipoprotein cholesterol, or high-density lipoprotein cholesterol (P > 0.05). CONCLUSIONS Pro-/synbiotic consumption may be beneficial in reducing TC levels in adults with MetS. However, our observations do not support the effectiveness of pro-/synbiotics consumption on other anthropometric or metabolic outcomes of MetS. Further investigations with larger sample sizes are required to confirm these findings.
Collapse
|
21
|
Kaczmarczyk M, Löber U, Adamek K, Węgrzyn D, Skonieczna-Żydecka K, Malinowski D, Łoniewski I, Markó L, Ulas T, Forslund SK, Łoniewska B. The gut microbiota is associated with the small intestinal paracellular permeability and the development of the immune system in healthy children during the first two years of life. J Transl Med 2021; 19:177. [PMID: 33910577 PMCID: PMC8082808 DOI: 10.1186/s12967-021-02839-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The intestinal barrier plays an important role in the defense against infections, and nutritional, endocrine, and immune functions. The gut microbiota playing an important role in development of the gastrointestinal tract can impact intestinal permeability and immunity during early life, but data concerning this problem are scarce. METHODS We analyzed the microbiota in fecal samples (101 samples in total) collected longitudinally over 24 months from 21 newborns to investigate whether the markers of small intestinal paracellular permeability (zonulin) and immune system development (calprotectin) are linked to the gut microbiota. The results were validated using data from an independent cohort that included the calprotectin and gut microbiota in children during the first year of life. RESULTS Zonulin levels tended to increase for up to 6 months after childbirth and stabilize thereafter remaining at a high level while calprotectin concentration was high after childbirth and began to decline from 6 months of life. The gut microbiota composition and the related metabolic potentials changed during the first 2 years of life and were correlated with zonulin and calprotectin levels. Faecal calprotectin correlated inversely with alpha diversity (Shannon index, r = - 0.30, FDR P (Q) = 0.039). It also correlated with seven taxa; i.a. negatively with Ruminococcaceae (r = - 0.34, Q = 0.046), and Clostridiales (r = - 0.34, Q = 0.048) and positively with Staphylococcus (r = 0.38, Q = 0.023) and Staphylococcaceae (r = 0.35, Q = 0.04), whereas zonulin correlated with 19 taxa; i.a. with Bacillales (r = - 0.52, Q = 0.0004), Clostridiales (r = 0.48, Q = 0.001) and the Ruminococcus (torques group) (r = 0.40, Q = 0.026). When time intervals were considered only changes in abundance of the Ruminococcus (torques group) were associated with changes in calprotectin (β = 2.94, SE = 0.8, Q = 0.015). The dynamics of stool calprotectin was negatively associated with changes in two MetaCyc pathways: pyruvate fermentation to butanoate (β = - 4.54, SE = 1.08, Q = 0.028) and Clostridium acetobutylicum fermentation (β = - 4.48, SE = 1.16, Q = 0.026). CONCLUSIONS The small intestinal paracellular permeability, immune system-related markers and gut microbiota change dynamically during the first 2 years of life. The Ruminococcus (torques group) seems to be especially involved in controlling paracellular permeability. Staphylococcus, Staphylococcaceae, Ruminococcaceae, and Clostridiales, may be potential biomarkers of the immune system. Despite observed correlations their clear causation and health consequences were not proven. Mechanistic studies are required.
Collapse
Affiliation(s)
- Mariusz Kaczmarczyk
- Department of Clinical Biochemistry, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Ulrike Löber
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Karolina Adamek
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Dagmara Węgrzyn
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | | | - Damian Malinowski
- Department of Pharmacology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460, Szczecin, Poland.
- Department of Human Nutrition and Metabolomics, Broniewskiego 24, 71-460, Szczecin, Poland.
| | - Lajos Markó
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53127, Bonn, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
| | - Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| |
Collapse
|
22
|
Meira de-Faria F, Bednarska O, Ström M, Söderholm JD, Walter SA, Keita ÅV. Colonic paracellular permeability and circulating zonulin-related proteins. Scand J Gastroenterol 2021; 56:424-431. [PMID: 33535002 DOI: 10.1080/00365521.2021.1879247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Irritable bowel syndrome (IBS) is a gut-brain disorder associated with increased gut permeability. Zonulin has been suggested to regulate the gut barrier and claimed to be pre-haptoglobin 2 (pre-HP2) and circulating zonulin is often used as a proxy for gastrointestinal permeability. This study investigated the correlation between colonic paracellular permeability and levels of circulating zonulin and pre-HP2. MATERIALS AND METHODS Colonic biopsies from 32 patients with IBS and 15 healthy controls (HC) were used to measure permeability in Ussing chambers and levels of zonulin (Cusabio ELISA). Zonulin was also measured in blood samples from 40 HC, 78 patients with IBS and 20 patients with celiac disease (CeD), before and after a gluten-free diet. In addition, we verified HP genotype and circulating pre-HP2 using a monoclonal pre-HP2 antibody (Bio-Rad) by ELISA. RESULTS Increased colonic paracellular permeability correlated positively with zonulin levels in IBS biopsies, but negatively with plasma zonulin. We found no agreement between circulating zonulin and pre-HP2. Genotyping revealed non-specificity of the zonulin kit, as all pre-HP2 non-producers presented detectable levels. Patients with CeD displayed higher pre-HP2 and zonulin levels compared to HC. A gluten-free diet in patients with CeD led to lower serum zonulin and pre-HP2 concentrations. CONCLUSIONS Our study suggests that neither circulating zonulin nor pre-HP2 mirror colonic permeability. Our data corroborate previous reports showing the inability of the Cusabio zonulin kit to target zonulin and highlights that the results of studies using this kit must be re-examined with caution.
Collapse
Affiliation(s)
- Felipe Meira de-Faria
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Olga Bednarska
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Gastroenterology, Linköping University, Linköping, Sweden
| | - Magnus Ström
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Gastroenterology, Linköping University, Linköping, Sweden
| | - Johan D Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Surgery, Linköping University, Linköping, Sweden
| | - Susanna A Walter
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Gastroenterology, Linköping University, Linköping, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Bischoff SC, Kaden-Volynets V, Filipe Rosa L, Guseva D, Seethaler B. Regulation of the gut barrier by carbohydrates from diet - Underlying mechanisms and possible clinical implications. Int J Med Microbiol 2021; 311:151499. [PMID: 33864957 DOI: 10.1016/j.ijmm.2021.151499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
The gut barrier has been recognized as being of relevance in the pathogenesis of multiple different diseases ranging from inflammatory bowel disease, irritable bowel syndrome, inflammatory joint disease, fatty liver disease, and cardiometabolic disorders. The regulation of the gut barrier is, however, poorly understood. Especially, the role of food components such as sugars and complex carbohydrates has been discussed controversially in this respect. More recently, the intestinal microbiota has been proposed as an important regulator of the gut barrier. Whether the microbiota affects the barrier by its own, or whether food components such as carbohydrates mediate their effects through alterations of the microbiota composition or its metabolites, is still not clear. In this review, we will summarize the current knowledge on this topic derived from both animal and human studies and discuss data for possible clinical impact.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Valentina Kaden-Volynets
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany; Acousia Therapeutics GmbH & Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Louisa Filipe Rosa
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Daria Guseva
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Benjamin Seethaler
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
24
|
Analysis of gut microbiota and intestinal integrity markers of inpatients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110076. [PMID: 32827611 DOI: 10.1016/j.pnpbp.2020.110076] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Previous studies have reported on the relationship between gut microbiota and major depressive disorder (MDD). However, there remain gaps in literature concerning the role of the intestinal barrier and microflora in the pathogenesis of depression. This study analyzes the potential causative relationship between gut microbiota and inflammatory and gut integrity markers and clinical symptoms in inpatients with depressive episodes. Sixteen inpatients (50% females) being treated with escitalopram (5-20 mg daily) in standardized conditions were included in the study. The composition of fecal microbiota was evaluated at baseline and endpoint using 16S rRNA sequencing. A significant correlation between depression severity was found, as measured with HDRS24 (Hamilton Depression Rating Scale-24 item), and the following abundance in bacteria: positive correlation with Paraprevotella (r = 0.80, q = 0.012), strong, negative correlations with Clostridiales (r = -0.70, q = 0.016), Clostridia (r = -0.71, q = 0.026), Firmicutes (r = -0.67. q = 0.032), and the RF32 order (r = -0.70, p = 0.016) in the Alphaproteobacteria (r = -0.66, q = 0.031). After six weeks of treatment, clinical outcomes were found to have a negative correlation with levels of plasma intestinal fatty acid-binding protein (IFABP) at the beginning of the study. Still they had a positive correlation with changes in fecal calprotectin during hospitalization. In conclusion, gut microbiota was associated with the severity of depressive symptoms. However, these findings do not serve as predictors of symptomatic improvement during antidepressant treatment in inpatient treatment for MDD. In turn, intestinal integrity and inflammation markers were associated with the response to treatment of patients with MDD and symptom severity. Additional studies are needed to confirm and extend these findings.
Collapse
|
25
|
Yu J, Shen Y, Zhou N. Advances in the role and mechanism of zonulin pathway in kidney diseases. Int Urol Nephrol 2021; 53:2081-2088. [PMID: 33428167 DOI: 10.1007/s11255-020-02756-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The intestinal barrier is the first line of defense against foreign antigens. Tight junctions play an important role in maintaining the function of the intestinal wall. Zonulin is the only physiological protein discovered in recent years that can reversibly regulate tight junctions in human body. It changes the permeability of intestinal epithelial cells by regulating the state of tight junctions. Increased intestinal permeability can lead to abnormal activation of intestinal mucosal immune and bacterial translocation, then inducing systemic inflammation. It has already been reported that zonulin plays an important pathogenic role in a variety of diseases by regulating tight junctions leading to an abnormal increase of intestinal permeability. However, the research on the pathogenic role and mechanism of zonulin pathway in kidney disease is still in its infancy. Therefore, we reviewed the progress on pathophysiological characteristics of zonulin as well as the pathogenesis of zonulin in kidney disease in this paper.
Collapse
Affiliation(s)
- Jie Yu
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health (Beijing), Beijing, China
| | - Ying Shen
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health (Beijing), Beijing, China.,Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Nan Zhou
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China. .,National Center for Children's Health (Beijing), Beijing, China. .,Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China. .,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
26
|
De Munck TJI, Xu P, Verwijs HJA, Masclee AAM, Jonkers D, Verbeek J, Koek GH. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis. Liver Int 2020; 40:2906-2916. [PMID: 33037768 PMCID: PMC7756870 DOI: 10.1111/liv.14696] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The gut-liver axis is considered to play a critical role in the development and progression of nonalcoholic fatty liver disease (NAFLD). The integrity of the epithelial barrier is crucial to protect the liver against the invasion of microbial products from the gut, although its exact role in NAFLD onset and progression is not clear. METHODS We performed a systematic review and meta-analysis of studies that addressed the intestinal permeability (IP) in association with NAFLD presence or severity as defined by the presence of nonalcoholic steatohepatitis (NASH) and the degree of steatosis, hepatic inflammation or fibrosis. A total of 14 studies were eligible for inclusion. RESULTS Studies investigating IP in adult (n = 6) and paediatric (n = 8) NAFLD showed similar results. Thirteen of the included studies focussed on small IP, two studies on whole gut permeability and none on colonic permeability. In the pooled analysis, NAFLD patients showed an increased small intestinal permeability compared to healthy controls based on dual sugar tests (standardized mean difference 0.79, 95% CI 0.49-1.08) and serum zonulin levels (standardized mean difference 1.04 ng/mL, 95% CI 0.40-1.68). No clear difference in IP was observed between simple steatosis and NASH patients. Furthermore, whole gut and small intestinal permeability increased with the degree of hepatic steatosis in 4/4 studies, while no association with hepatic inflammation or fibrosis was observed. CONCLUSION Based on the limited number of studies available, IP appears to be increased in NAFLD patients compared to healthy controls and is associated with the degree of hepatic steatosis.
Collapse
Affiliation(s)
- Toon J. I. De Munck
- Department of Internal MedicineDivision of Gastroenterology and HepatologyMaastricht University Medical Centre+Maastrichtthe Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Pan Xu
- School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Harm J. A. Verwijs
- Department of Internal MedicineDivision of Gastroenterology and HepatologyMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Ad A. M. Masclee
- Department of Internal MedicineDivision of Gastroenterology and HepatologyMaastricht University Medical Centre+Maastrichtthe Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Daisy Jonkers
- Department of Internal MedicineDivision of Gastroenterology and HepatologyMaastricht University Medical Centre+Maastrichtthe Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Jef Verbeek
- Department of Gastroenterology and HepatologyUniversity Hospitals KU LeuvenLeuvenBelgium
| | - Ger H. Koek
- Department of Internal MedicineDivision of Gastroenterology and HepatologyMaastricht University Medical Centre+Maastrichtthe Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
27
|
Zhao L, Lou H, Peng Y, Chen S, Fan L, Li X. Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota. Diabetes Res Clin Pract 2020; 169:108418. [PMID: 32891692 DOI: 10.1016/j.diabres.2020.108418] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Studies have shown that destruction of the intestinal barrier in type 2 diabetes (T2D) leads to increased absorption of macromolecules from intestinal. We previously exhibited that short-chain fatty acids (SCFAs) and bile acids (BAs) were significantly decreased in faeces of T2D patients. In the current study, we extended these findings by focusing on the interactions between intestinal barrier and clinical characteristics, gut microbiota, SCFAs and BAs. METHODS 65 T2D patients and 35 healthy controls were recruited, targeted metabolomics was used to evaluate the SCFAs and BAs in their serum samples. The serum zonula occludens-1 (ZO-1) was measured by ELISA to evaluate intestinal barrier. RESULTS Compared with the healthy controls, the serum concentrations of total SCFA, acetate and propionate were significantly increased in the T2D patients, and certain BAs were also significantly increased. In addition, the higher levels of serum ZO-1 suggested a "leaky gut" in T2D patients. The ZO-1 was comprehensively correlated with clinical characteristics, gut microbiota, SCFAs and BAs. CONCLUSION SCFAs and BAs were excessively absorbed from the intestinal through the leaky gut, leading to higher levels of circulating SCFAs and BAs in T2D patients, and that the leaky gut might be caused by the disordered gut microbiota.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hongxiang Lou
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shihong Chen
- Department of Endocrinology, Second Hospital of Shandong University, 247 Beiyuan Road, Jinan 250033, China
| | - Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
28
|
Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. Int J Mol Sci 2020; 21:ijms21165820. [PMID: 32823659 PMCID: PMC7461212 DOI: 10.3390/ijms21165820] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in the portal circulation, i.e., bacterial translocation.
Collapse
|
29
|
Zonulin-Dependent Intestinal Permeability in Children Diagnosed with Mental Disorders: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12071982. [PMID: 32635367 PMCID: PMC7399941 DOI: 10.3390/nu12071982] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Worldwide, up to 20% of children and adolescents experience mental disorders, which are the leading cause of disability in young people. Research shows that serum zonulin levels are associated with increased intestinal permeability (IP), affecting neural, hormonal, and immunological pathways. This systematic review and meta-analysis aimed to summarize evidence from observational studies on IP in children diagnosed with mental disorders. The review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search of the Cochrane Library, PsycINFO, PubMed, and the Web of Science identified 833 records. Only non-intervention (i.e., observational) studies in children (<18 years) diagnosed with mental disorders, including a relevant marker of intestinal permeability, were included. Five studies were selected, with the risk of bias assessed according to the Newcastle–Ottawa scale (NOS). Four articles were identified as strong and one as moderate, representing altogether 402 participants providing evidence on IP in children diagnosed with attention deficit and hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive–compulsive disorder (OCD). In ADHD, elevated serum zonulin levels were associated with impaired social functioning compared to controls. Children with ASD may be predisposed to impair intestinal barrier function, which may contribute to their symptoms and clinical outcome compared to controls. Children with ASD, who experience gastro-intestinal (GI) symptoms, seem to have an imbalance in their immune response. However, in children with OCD, serum zonulin levels were not significantly different compared to controls, but serum claudin-5, a transmembrane tight-junction protein, was significantly higher. A meta-analysis of mean zonulin plasma levels of patients and control groups revealed a significant difference between groups (p = 0.001), including the four studies evaluating the full spectrum of the zonulin peptide family. Therefore, further studies are required to better understand the complex role of barrier function, i.e., intestinal and blood–brain barrier, and of inflammation, to the pathophysiology in mental and neurodevelopmental disorders. This review was PROSPERO preregistered, (162208).
Collapse
|
30
|
Łoniewska B, Adamek K, Węgrzyn D, Kaczmarczyk M, Skonieczna-Żydecka K, Clark J, Adler G, Tousty J, Uzar I, Tousty P, Łoniewski I. Analysis of Faecal Zonulin and Calprotectin Concentrations in Healthy Children During the First Two Years of Life. An Observational Prospective Cohort Study. J Clin Med 2020; 9:jcm9030777. [PMID: 32178435 PMCID: PMC7141325 DOI: 10.3390/jcm9030777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Factors affecting the intestinal-barrier permeability of newborns, such as body mass index (BMI), nutrition and antibiotics, are assumed to affect intestinal-barrier permeability in the first two years of life. This study assessed 100 healthy, full-term newborns to 24 months old. Faecal zonulin/calprotectin concentrations were measured at 1, 6, 12, 24 months as gut-permeability markers. Zonulin concentrations increased between 1 and 12 months (medians: 114.41, 223.7 ng/mL; respectively), whereas calprotectin concentrations decreased between one and six months (medians: 149. 29, 109.28 µg/mL); both then stabilized (24 months: 256.9 ng/mL zonulin; 59.5 µg/mL calprotectin). In individual children, high levels at one month gave high levels at older ages (correlations: calprotectin: between 1 and 6 or 12 months: correlation coefficient (R) = 0.33, statistical significance (p) = 0.0095; R = 0.28, p = 0.032; zonulin: between 1 and 24 months: R = 0.32; p = 0.022, respectively). Parameters which gave marker increases: antibiotics during pregnancy (calprotectin; six months: by 80%, p = 0.038; 12 months: by 48%, p = 0.028); vaginal birth (calprotectin: 6 months: by 140%, p = 0.005); and > 5.7 pregnancy-BMI increase (zonulin: 12 months: by 74%, p = 0.049). Conclusions: “Closure of the intestines” is spread over time and begins between the sixth and twelfth month of life. Antibiotic therapy, BMI increase > 5.7 during pregnancy and vaginal birth are associated with increased intestinal permeability during the first two years of life. Stool zonulin and calprotectin concentrations were much higher compared with previous measurements at older ages; clinical interpretation and validation are needed (no health associations found).
Collapse
Affiliation(s)
- Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University, Szczecin 70-111, Poland; (K.A.); (D.W.); (J.T.)
- Correspondence: ; Tel.: +48-(91)-466-1375
| | - Karolina Adamek
- Department of Neonatal Diseases, Pomeranian Medical University, Szczecin 70-111, Poland; (K.A.); (D.W.); (J.T.)
| | - Dagmara Węgrzyn
- Department of Neonatal Diseases, Pomeranian Medical University, Szczecin 70-111, Poland; (K.A.); (D.W.); (J.T.)
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin 70-111, Poland; (M.K.); (J.C.)
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin 71-460, Poland; (K.S.-Ż.); (I.Ł.)
| | - Jeremy Clark
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin 70-111, Poland; (M.K.); (J.C.)
| | - Grażyna Adler
- Department of Studies in Anthropogenetics and Biogerontology, Pomeranian Medical University, Szczecin 71-210, Poland;
| | - Joanna Tousty
- Department of Neonatal Diseases, Pomeranian Medical University, Szczecin 70-111, Poland; (K.A.); (D.W.); (J.T.)
| | - Izabela Uzar
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, Szczecin 71-230, Poland;
| | - Piotr Tousty
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Szczecin 70-111, Poland;
| | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin 71-460, Poland; (K.S.-Ż.); (I.Ł.)
| |
Collapse
|
31
|
Miranda-Ribera A, Ennamorati M, Serena G, Cetinbas M, Lan J, Sadreyev RI, Jain N, Fasano A, Fiorentino M. Exploiting the Zonulin Mouse Model to Establish the Role of Primary Impaired Gut Barrier Function on Microbiota Composition and Immune Profiles. Front Immunol 2019; 10:2233. [PMID: 31608059 PMCID: PMC6761304 DOI: 10.3389/fimmu.2019.02233] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022] Open
Abstract
The balanced interplay between epithelial barrier, immune system, and microbiota maintains gut homeostasis, while disruption of this interplay may lead to inflammation. Paracellular permeability is governed by intercellular tight-junctions (TJs). Zonulin is, to date, the only known physiological regulator of intestinal TJs. We used a zonulin transgenic mouse (Ztm) model characterized by increased small intestinal permeability to elucidate the role of a primary impaired gut barrier on microbiome composition and/or immune profile. Ztm exhibit an altered gene expression profile of TJs in the gut compared to wild-type mice (WT): Claudin-15, Claudin-5, Jam-3, and Myosin-1C are decreased in the male duodenum whereas Claudin-15, Claudin-7, and ZO-2 are reduced in the female colon. These results are compatible with loss of gut barrier function and are paralleled by an altered microbiota composition with reduced abundance of the genus Akkermansia, known to have positive effects on gut barrier integrity and strengthening, and an increased abundance of the Rikenella genus, associated to low-grade inflammatory conditions. Immune profile analysis shows a subtly skewed distribution of immune cell subsets toward a pro-inflammatory phenotype with more IL-17 producing adaptive and innate-like T cells in Ztm. Interestingly, microbiota “normalization” involving the transfer of WT microbiota into Ztm, did not rescue the altered immune profile. Our data suggest that a primary impaired gut barrier causing an uncontrolled trafficking of microbial products leads to a latent pro-inflammatory status, with a skewed microbiota composition and immune profile that, in the presence of an environmental trigger, as we have previously described (1), might promote the onset of overt inflammation and an increased risk of chronic disease.
Collapse
Affiliation(s)
- Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Maria Ennamorati
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Gloria Serena
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nitya Jain
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
32
|
Camilleri M, Lyle BJ, Madsen KL, Sonnenburg J, Verbeke K, Wu GD. Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol 2019; 317:G17-G39. [PMID: 31125257 PMCID: PMC6689735 DOI: 10.1152/ajpgi.00063.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A reduction in intestinal barrier function is currently believed to play an important role in pathogenesis of many diseases, as it facilitates passage of injurious factors such as lipopolysaccharide, peptidoglycan, whole bacteria, and other toxins to traverse the barrier to damage the intestine or enter the portal circulation. Currently available evidence in animal models and in vitro systems has shown that certain dietary interventions can be used to reinforce the intestinal barrier to prevent the development of disease. The relevance of these studies to human health is unknown. Herein, we define the components of the intestinal barrier, review available modalities to assess its structure and function in humans, and review the available evidence in model systems or perturbations in humans that diet can be used to fortify intestinal barrier function. Acknowledging the technical challenges and the present gaps in knowledge, we provide a conceptual framework by which evidence could be developed to support the notion that diet can reinforce human intestinal barrier function to restore normal function and potentially reduce the risk for disease. Such evidence would provide information on the development of healthier diets and serve to provide a framework by which federal agencies such as the US Food and Drug Administration can evaluate evidence linking diet with normal human structure/function claims focused on reducing risk of disease in the general public.
Collapse
Affiliation(s)
- Michael Camilleri
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Barbara J. Lyle
- 2International Life Sciences Institute North America, Washington, DC,3School of Professional Studies, Northwestern University, Evanston, Illinois
| | - Karen L. Madsen
- 4Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Justin Sonnenburg
- 5Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Kristin Verbeke
- 6Translational Research in Gastrointestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gary D. Wu
- 7Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
The Influence of Maternal-Foetal Parameters on Concentrations of Zonulin and Calprotectin in the Blood and Stool of Healthy Newborns during the First Seven Days of Life. An Observational Prospective Cohort Study. J Clin Med 2019; 8:jcm8040473. [PMID: 30959960 PMCID: PMC6517987 DOI: 10.3390/jcm8040473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background: It can be hypothetically assumed that maternal and perinatal factors influence the intestinal barrier. Methods: The study was conducted with 100 healthy, full-term newborns breastfed in the first week of life, with similar analyses for their mothers. Zonulin and calprotectin levels were used as intestinal permeability markers. Results: The median (range) zonulin concentrations (ng/mL) were in mothers: serum, 21.39 (6.39–57.54); stool, 82.23 (42.52–225.74); and newborns: serum cord blood, 11.14 (5.82–52.34); meconium, 54.15 (1.36–700.65); and stool at age seven days, 114.41 (29.38–593.72). Calprotectin median (range) concentrations (µg/mL) in mothers were: stool, 74.79 (3.89–211.77); and newborns: meconium, 154.76 (6.93–8884.11); and stool at age seven days 139.12 (11.89–627.35). The use of antibiotics during pregnancy resulted in higher zonulin concentrations in umbilical-cord serum and calprotectin concentrations in newborn stool at seven days, while antibiotic therapy during labour resulted in higher zonulin concentrations in the stool of newborns at seven days. Zonulin concentrations in the stool of newborns (at seven days) who were born via caesarean section were higher compared to with vaginal birth. With further analyses, caesarean section was found to have a greater effect on zonulin concentrations than prophylactic administration of antibiotics in the perinatal period. Pregnancy mass gain >18 kg was associated with higher calprotectin concentrations in maternal stool. Body Mass Index (BMI) increase >5.7 during pregnancy was associated with decreased zonulin concentrations in maternal stool and increased calprotectin concentrations in stool of mothers and newborns at seven days. There was also a negative correlation between higher BMI increase in pregnancy and maternal zonulin stool concentrations and a positive correlation between BMI increase in pregnancy and maternal calprotectin stool concentrations. Conclusion: Maternal-foetal factors such as caesarean section, antibiotic therapy during pregnancy, as well as change in mother’s BMI during pregnancy may increase intestinal permeability in newborns. Changes in body mass during pregnancy can also affect intestinal permeability in mothers. However, health consequences associated with increased intestinal permeability during the first days of life are unknown. Additionally, before the zonulin and calprotectin tests can be adopted as universal diagnostic applications to assess increased intestinal permeability, validation of these tests is necessary.
Collapse
|
34
|
Leonard MM, Camhi S, Kenyon V, Betensky RA, Sturgeon C, Yan S, Fasano A. Targeted genotyping for the prediction of celiac disease autoimmunity development in patients with type 1 diabetes and their family members. World J Diabetes 2019; 10:189-199. [PMID: 30891154 PMCID: PMC6422857 DOI: 10.4239/wjd.v10.i3.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patients with type 1 diabetes (T1D) and their first-degree relatives (FDRs) have an increased risk of developing celiac disease (CD) compared to the general population. This is largely explained by the shared association with major histocompatibility class II human leukocyte antigen (HLA) DQ2 and/or DQ8 between the two disease states.
AIM To describe the frequency of CD autoimmunity (CDA) and the distribution of HLA and haptoglobin genotypes in patients with T1D and their FDRs. Additionally, we aimed at identifying predictors associated with an increased risk of developing CDA in patients with T1D and their family members.
METHODS We obtained clinical information and blood samples from 1027 participants (302 with T1D and 725 FDRs) over a five-year period. Samples were tested for autoantibodies associated with CD, HLA-DQ alleles, and haptoglobin genotype. We fit univariate and multiple logistic regression models for CDA separately for subjects with T1D and for FDRs of subjects with T1D.
RESULTS Implementation of a screening program increased the frequency of CDA by 2-fold in participants with T1D and 2.8-fold in their FDRs. Multivariate analysis found that, in participants with T1D, having both DR7-DQ2 and DR4-DQ8 was associated with an increased frequency of CDA. In FDRs of T1D patients, reported CD in the family was associated with an increased frequency of CDA during screening. Haptoglobin 2 genotype was not associated with developing CDA in the multivariate analysis.
CONCLUSION Patients with T1D and their FDRs have a high frequency of CDA. Carrying both DR7-DQ2 and DR4-DQ8 was associated with development of CDA in patients with T1D.
Collapse
Affiliation(s)
- Maureen M Leonard
- Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA 02115, United States
- Center for Celiac Research and Treatment, Mass General Hospital for Children, Boston, MA 02115, United States
- Department of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Boston, MA 02114, United States
| | - Stephanie Camhi
- Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA 02115, United States
- Center for Celiac Research and Treatment, Mass General Hospital for Children, Boston, MA 02115, United States
- Department of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Boston, MA 02114, United States
| | - Victoria Kenyon
- Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA 02115, United States
- Center for Celiac Research and Treatment, Mass General Hospital for Children, Boston, MA 02115, United States
- Department of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Boston, MA 02114, United States
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Craig Sturgeon
- Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA 02115, United States
- Center for Celiac Research and Treatment, Mass General Hospital for Children, Boston, MA 02115, United States
- Department of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Boston, MA 02114, United States
| | - Shu Yan
- Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA 02115, United States
- Center for Celiac Research and Treatment, Mass General Hospital for Children, Boston, MA 02115, United States
- Department of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Boston, MA 02114, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA 02115, United States
- Center for Celiac Research and Treatment, Mass General Hospital for Children, Boston, MA 02115, United States
- Department of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Boston, MA 02114, United States
| |
Collapse
|
35
|
Abstract
Celiac disease (CD) is an autoimmune enteropathy triggered by gluten. Gluten-free diets can be challenging because of their restrictive nature, inadvertent cross-contaminations, and the high cost of gluten-free food. Novel nondietary therapies are at the preclinical stage, clinical trial phase, or have already been developed for other indications and are now being applied to CD. These therapies include enzymatic gluten degradation, binding and sequestration of gluten, restoration of epithelial tight junction barrier function, inhibition of tissue transglutaminase-mediated potentiation of gliadin oligopeptide immunogenicity or of human leukocyte antigen-mediated gliadin presentation, induction of tolerance to gluten, and antiinflammatory interventions.
Collapse
Affiliation(s)
- Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA 02114, USA; Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Ciaran P Kelly
- Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA 02114, USA; Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Rahman MT, Ghosh C, Hossain M, Linfield D, Rezaee F, Janigro D, Marchi N, van Boxel-Dezaire AHH. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun 2018; 507:274-279. [PMID: 30449598 DOI: 10.1016/j.bbrc.2018.11.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Breakdown of the blood-brain barrier (BBB) precedes lesion formation in the brains of multiple sclerosis (MS) patients. Since recent data implicate disruption of the small intestinal epithelial barrier (IEB) in the pathogenesis of MS, we hypothesized that the increased permeability of the BBB and IEB are mechanistically linked. Zonulin, a protein produced by small intestine epithelium, can rapidly increase small intestinal permeability. Zonulin blood levels are elevated in MS, but it is unknown whether zonulin can also disrupt the BBB. Increased production of IL-17A and IFN-γ has been implicated in the pathogenesis of MS, epilepsy, and stroke, and these cytokines impact BBB integrity after 24 h. We here report that primary human brain microvascular endothelial cells expressed the EGFR and PAR2 receptors necessary to respond to zonulin, and that zonulin increased BBB permeability to a 40 kDa dextran tracer within 1 h. Moreover, both IL-17A and IFN-γ also rapidly increased BBB and IEB permeability. By using confocal microscopy, we found that exposure of the IEB to zonulin, IFN-γ, or IL-17A in vitro rapidly modified the localization of the TJ proteins, ZO-1, claudin-5, and occludin. TJ disassembly was accompanied by marked depolymerization of the peri-junctional F-actin cytoskeleton. Our data indicate that IFN-γ, IL-17A, or zonulin can increase the permeability of the IEB and BBB rapidly in vitro, by modifying TJs and the underlying actin cytoskeleton. These observations may help clarify how the gut-brain axis mediates the pathogenesis of neuro-inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed T Rahman
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Chaitali Ghosh
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Mohammed Hossain
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Debra Linfield
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Fariba Rezaee
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Damir Janigro
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Nicola Marchi
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | | |
Collapse
|
37
|
Shekar A, Ramlal S, Jeyabalaji JK, Sripathy MH. Intranasal immunization of cocktail/fusion protein containing Tir along with ΔG active fragment of Zot as mucosal adjuvant confers enhanced immunogenicity and reduces E. coli O157:H7 shedding in mice. Int Immunopharmacol 2018; 63:211-219. [PMID: 30103196 DOI: 10.1016/j.intimp.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
Abstract
Ruminants are the major reservoirs of Escherichia coli O157:H7 and its fecal shedding mainly act as a source of entry of this pathogen into the human food chain. In humans, E. coli O157:H7 infection causes diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. Intimate adherence of E. coli O157:H7 is mediated by Translocated intimin receptor (Tir) to which intimin binds in the host cell. Since E. coli O157:H7 colonizes intestinal epithelium, the mucosal vaccine has a potential to prevent its colonization. Zonula occludens toxin (Zot) of Vibrio cholerae transiently, reversibly alters epithelial tight junction structure to increase mucosal permeability of macromolecules via paracellular route. The C-terminal region of Zot (ΔG) responsible for this function could be used for mucosal antigen delivery. Therefore, we employed individual (Tir), cocktail (ΔG + Tir), fusion protein (ΔG-Tir) and assessed the efficacy of its intranasal immunization on immunogenicity and fecal shedding of E. coli O157:H7 in streptomycin treated mouse model. Compared to control, ΔG + Tir, ΔG-Tir immunized mice elicited significant antigen specific antibody titers in serum (IgG, IgA) and feces (IgA), whereas Tir immunized mice induced only serum IgG titer. Cytokine analysis revealed mixed Th1/Th2 type immune response in case of ΔG + Tir, ΔG-Tir group while that of Tir group was solely Th2 type. Tir, ΔG + Tir and ΔG-Tir immunized mice showed reduction in shedding of E. coli O157:H7 compared to control group. However, ΔG-Tir immunized group performed better than ΔG + Tir, Tir group in reducing fecal shedding. Overall, our results demonstrate that intranasal immunization of ΔG-Tir induces effective systemic, mucosal, cellular immune responses and represents a promising mucosal subunit vaccine to prevent E. coli O157:H7 colonization.
Collapse
|
38
|
Zonulin level, a marker of intestinal permeability, is increased in association with liver enzymes in young adolescents. Clin Chim Acta 2018; 481:218-224. [DOI: 10.1016/j.cca.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/09/2017] [Accepted: 03/10/2018] [Indexed: 02/06/2023]
|
39
|
Sheen YH, Jee HM, Kim DH, Ha EK, Jeong IJ, Lee SJ, Baek HS, Lee SW, Lee K, Lee KS, Jung Y, Sung M, Kim MA, Han MY. Serum zonulin is associated with presence and severity of atopic dermatitis in children, independent of total IgE and eosinophil. Clin Exp Allergy 2018; 48:1059-1062. [DOI: 10.1111/cea.13158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Y. H. Sheen
- Department of Pediatrics CHA Gangnam Medical Center CHA University Seoul Korea
| | - H. M. Jee
- Department of Pediatrics CHA Bundang Medical Center CHA University Seongnam Korea
| | - D. H. Kim
- Department of Dermatology CHA Bundang Medical Center CHA University Seongnam Korea
| | - E. K. Ha
- Department of Pediatrics CHA Bundang Medical Center CHA University Seongnam Korea
| | - I. J. Jeong
- Department of Dermatology CHA Bundang Medical Center CHA University Seongnam Korea
| | - S. J. Lee
- Department of Pediatrics CHA Bundang Medical Center CHA University Seongnam Korea
| | - H. S. Baek
- Department of Pediatrics Hallym University Kangdong Sacred Heart Hospital Hallym University College of Medicine Seoul Korea
| | | | - K.‐J. Lee
- Department of Information and Statistics Korea National Open University Seoul Korea
| | - K. S. Lee
- Department of Pediatrics CHA Bundang Medical Center CHA University Seongnam Korea
| | - Y.‐H. Jung
- Department of Pediatrics CHA Bundang Medical Center CHA University Seongnam Korea
| | - M. Sung
- Department of Pediatrics Inje University Haeundae Paik Hospital Busan Korea
| | - M. A. Kim
- Department of Internal Medicine CHA Bundang Medical Center CHA University Seongnam Korea
| | - M. Y. Han
- Department of Pediatrics CHA Bundang Medical Center CHA University Seongnam Korea
| |
Collapse
|
40
|
Ganda Mall JP, Östlund-Lagerström L, Lindqvist CM, Algilani S, Rasoal D, Repsilber D, Brummer RJ, Keita ÅV, Schoultz I. Are self-reported gastrointestinal symptoms among older adults associated with increased intestinal permeability and psychological distress? BMC Geriatr 2018; 18:75. [PMID: 29554871 PMCID: PMC5859527 DOI: 10.1186/s12877-018-0767-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Despite the substantial number of older adults suffering from gastrointestinal (GI) symptoms little is known regarding the character of these complaints and whether they are associated with an altered intestinal barrier function and psychological distress. Our aim was to explore the relationship between self-reported gut health, intestinal permeability and psychological distress among older adults. Methods Three study populations were included: 1) older adults with GI symptoms (n = 24), 2) a group of older adults representing the general elderly population in Sweden (n = 22) and 3) senior orienteering athletes as a potential model of healthy ageing (n = 27). Questionnaire data on gut-health, psychological distress and level of physical activity were collected. Intestinal permeability was measured by quantifying zonulin in plasma. The level of systemic and local inflammation was monitored by measuring C-reactive protein (CRP), hydrogen peroxide in plasma and calprotectin in stool samples. The relationship between biomarkers and questionnaire data in the different study populations was illustrated using a Principal Component Analysis (PCA). Results Older adults with GI symptoms displayed significantly higher levels of both zonulin and psychological distress than both general older adults and senior orienteering athletes. The PCA analysis revealed a separation between senior orienteering athletes and older adults with GI symptoms and showed an association between GI symptoms, psychological distress and zonulin. Conclusions Older adults with GI symptoms express increased plasma levels of zonulin, which might reflect an augmented intestinal permeability. In addition, this group suffer from higher psychological distress compared to general older adults and senior orienteering athletes. This relationship was further confirmed by a PCA plot, which illustrated an association between GI symptoms, psychological distress and intestinal permeability.
Collapse
Affiliation(s)
- John-Peter Ganda Mall
- Nutrition Gut Brain Interactions Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Nutrition and Physical Activity Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lina Östlund-Lagerström
- Nutrition Gut Brain Interactions Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Nutrition and Physical Activity Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Carl Mårten Lindqvist
- Nutrition Gut Brain Interactions Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Samal Algilani
- Nutrition and Physical Activity Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Dara Rasoal
- Nutrition and Physical Activity Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Nutrition Gut Brain Interactions Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert J Brummer
- Nutrition Gut Brain Interactions Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ida Schoultz
- Nutrition and Physical Activity Research Centre, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
41
|
Kayansamruaj P, Dong H, Hirono I, Kondo H, Senapin S, Rodkhum C. Genome characterization of piscine ‘Scale drop and Muscle Necrosis syndrome’-associated strain ofVibrio harveyifocusing on bacterial virulence determinants. J Appl Microbiol 2018; 124:652-666. [DOI: 10.1111/jam.13676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023]
Affiliation(s)
- P. Kayansamruaj
- Department of Veterinary Microbiology; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
- Department of Aquaculture; Faculty of Fisheries; Kasetsart University; Bangkok Thailand
| | - H.T. Dong
- Aquaculture Vaccine Platform; Department of Microbiology; Faculty of Science; King Mongkut's University of Technology Thonburi; Bangkok Thailand
| | - I. Hirono
- Laboratory of Genome Science; Tokyo University of Marine Science and Technology; Tokyo Japan
| | - H. Kondo
- Laboratory of Genome Science; Tokyo University of Marine Science and Technology; Tokyo Japan
| | - S. Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp); Faculty of Science; Mahidol University; Bangkok Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - C. Rodkhum
- Department of Veterinary Microbiology; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
- Fish Infectious Diseases (FIDs) - Special Task Force for Activating Research (STAR); Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
42
|
Scheffler L, Crane A, Heyne H, Tönjes A, Schleinitz D, Ihling CH, Stumvoll M, Freire R, Fiorentino M, Fasano A, Kovacs P, Heiker JT. Widely Used Commercial ELISA Does Not Detect Precursor of Haptoglobin2, but Recognizes Properdin as a Potential Second Member of the Zonulin Family. Front Endocrinol (Lausanne) 2018; 9:22. [PMID: 29459849 PMCID: PMC5807381 DOI: 10.3389/fendo.2018.00022] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND There is increasing evidence for the role of impaired intestinal permeability in obesity and associated metabolic diseases. Zonulin is an established serum marker for intestinal permeability and identical to pre-haptoglobin2. Here, we aimed to investigate the relationship between circulating zonulin and metabolic traits related to obesity. METHODS Serum zonulin was measured by using a widely used commercial ELISA kit in 376 subjects from the metabolically well-characterized cohort of Sorbs from Germany. In addition, haptoglobin genotype was determined in DNA samples from all study subjects. RESULTS As zonulin concentrations did not correlate to the haptoglobin genotypes, we investigated the specificity of the zonulin ELISA assay using antibody capture experiments, mass spectrometry, and Western blot analysis. Using serum samples that gave the highest or lowest ELISA signals, we detected several proteins that are likely to be captured by the antibody in the present kit. However, none of these proteins corresponds to pre-haptoglobin2. We used increasing concentrations of recombinant pre-haptoglobin2 and complement C3 as one of the representative captured proteins and the ELISA kit did not detect either. Western blot analysis using both the polyclonal antibodies used in this kit and monoclonal antibodies rose against zonulin showed a similar protein recognition pattern but with different intensity of detection. The protein(s) measured using the ELISA kit was (were) significantly increased in patients with diabetes and obesity and correlated strongly with markers of the lipid and glucose metabolism. Combining mass spectrometry and Western blot analysis using the polyclonal antibodies used in the ELISA kit, we identified properdin as another member of the zonulin family. CONCLUSION Our study suggests that the zonulin ELISA does not recognize pre-haptoglobin2, rather structural (and possibly functional) analog proteins belonging to the mannose-associated serine protease family, with properdin being the most likely possible candidate.
Collapse
Affiliation(s)
- Lucas Scheffler
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Alyce Crane
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Henrike Heyne
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Anke Tönjes
- Divisions of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Dorit Schleinitz
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michael Stumvoll
- Divisions of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Rachel Freire
- Mucosal Immunology And Biology Research Center, Massachusetts General Hospital--Harvard Medical School, Boston, MA, United States
| | - Maria Fiorentino
- Mucosal Immunology And Biology Research Center, Massachusetts General Hospital--Harvard Medical School, Boston, MA, United States
| | - Alessio Fasano
- Mucosal Immunology And Biology Research Center, Massachusetts General Hospital--Harvard Medical School, Boston, MA, United States
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - John T Heiker
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Lukaszyk E, Lukaszyk M, Koc-Zorawska E, Bodzenta-Lukaszyk A, Malyszko J. Zonulin, inflammation and iron status in patients with early stages of chronic kidney disease. Int Urol Nephrol 2017; 50:121-125. [PMID: 29134616 PMCID: PMC5758680 DOI: 10.1007/s11255-017-1741-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/06/2017] [Indexed: 01/28/2023]
Abstract
Background/aims Zonulin is the only known regulator of intestinal permeability. It is also considered as a potential inflammatory marker in several conditions such as diabetes and inflammatory bowel syndrome. The aim of the study was to investigate zonulin levels in patients with early stages of CKD and its possible correlation with inflammation, anemia and iron status parameters. Methods Eighty-eight patients with early stages of CKD and 23 healthy volunteers were enrolled in the study. Zonulin, hepcidin-25, soluble transferrin receptor, interleukin-6 and high-sensitivity C-reactive protein were measured using commercially available assays. Results Zonulin was significantly lower among patients with CKD in comparison with healthy volunteers. There were no statistically significant differences in zonulin concentration between patients with and without inflammation. Zonulin was significantly correlated with hepcidin only in patients with inflammation. Zonulin was neither related to iron nor related to ferritin. Conclusions Zonulin cannot be considered as an inflammatory marker in CKD. It does not play a role in the disturbances of iron metabolism in CKD. Its physiological role remains to be elucidated.
Collapse
Affiliation(s)
- Ewelina Lukaszyk
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Marii Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Mateusz Lukaszyk
- Department of Allergy and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Ewa Koc-Zorawska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Marii Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Anna Bodzenta-Lukaszyk
- Department of Allergy and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Jolanta Malyszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Marii Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
44
|
Malíčková K, Francová I, Lukáš M, Kolář M, Králíková E, Bortlík M, Ďuricová D, Štěpánková L, Zvolská K, Pánková A, Zima T. Fecal zonulin is elevated in Crohn's disease and in cigarette smokers. Pract Lab Med 2017; 9:39-44. [PMID: 29034305 PMCID: PMC5633835 DOI: 10.1016/j.plabm.2017.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Human zonulin is a protein that increases permeability in the epithelial layer of the small intestine by reversibly modulating the intercellular tight junctions. There is not sufficient information available about zonulin's participation in inflammatory bowel diseases (IBD). The aim of this study was therefore to investigate fecal and serum zonulin in IBD patients and its relation to the disease localization, behavior and smoking status. DESIGN AND METHODS Forty IBD patients and forty healthy persons were examined for fecal and serum zonulin concentrations by competitive ELISA (DRG International Inc). Values were correlated to IBD type, localization and behavior, and smoking. RESULTS Serum and fecal zonulin were significantly higher in patients with Crohn's disease compared to ulcerative colitis (p = 0.038 for fecal zonulin, and p = 0.041 for serum zonulin concentrations). No association of serum or fecal zonulin was found with respect to IBD localization and behavior. The only difference was found with respect to smoking. Both the IBD cohort and healthy smokers showed significantly higher fecal zonulin levels (median 203 ng/mL) compared to non-smokers (median 35.8 ng/mL), p < 0.001. CONCLUSIONS Fecal and serum zonulin levels are elevated in patients with active Crohn's disease but not with ulcerative colitis. High fecal zonulin levels in smokers irrespective of IBD point to the significant and undesirable up-regulation of gut permeability in cigarette smokers.
Collapse
Affiliation(s)
- Karin Malíčková
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital & 1st Faculty of Medicine of the Charles University, U Nemocnice 2, Prague 2 12800, Czech Republic
| | - Irena Francová
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital & 1st Faculty of Medicine of the Charles University, U Nemocnice 2, Prague 2 12800, Czech Republic
| | - Milan Lukáš
- IBD Clinical and Research Centre ISCARE, Jankovcova 1569, Prague 7 17000, Czech Republic
| | - Martin Kolář
- IBD Clinical and Research Centre ISCARE, Jankovcova 1569, Prague 7 17000, Czech Republic
| | - Eva Králíková
- The Centre for Tobacco-Dependent of the 3rd Medical Department - Department of Endocrinology and Metabolism, General University Hospital & 1st Faculty of Medicine of the Charles University, U Nemocnice 1, Prague 2 12800, Czech Republic
| | - Martin Bortlík
- IBD Clinical and Research Centre ISCARE, Jankovcova 1569, Prague 7 17000, Czech Republic
| | - Dana Ďuricová
- IBD Clinical and Research Centre ISCARE, Jankovcova 1569, Prague 7 17000, Czech Republic
| | - Lenka Štěpánková
- The Centre for Tobacco-Dependent of the 3rd Medical Department - Department of Endocrinology and Metabolism, General University Hospital & 1st Faculty of Medicine of the Charles University, U Nemocnice 1, Prague 2 12800, Czech Republic
| | - Kamila Zvolská
- The Centre for Tobacco-Dependent of the 3rd Medical Department - Department of Endocrinology and Metabolism, General University Hospital & 1st Faculty of Medicine of the Charles University, U Nemocnice 1, Prague 2 12800, Czech Republic
| | - Alexandra Pánková
- The Centre for Tobacco-Dependent of the 3rd Medical Department - Department of Endocrinology and Metabolism, General University Hospital & 1st Faculty of Medicine of the Charles University, U Nemocnice 1, Prague 2 12800, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital & 1st Faculty of Medicine of the Charles University, U Nemocnice 2, Prague 2 12800, Czech Republic
| |
Collapse
|
45
|
Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J, Kellerer T, Clavel T, Rychlik M, Haller D, Hauner H. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep 2017; 7:11955. [PMID: 28931850 PMCID: PMC5607294 DOI: 10.1038/s41598-017-12109-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Recent findings suggest an association between obesity, loss of gut barrier function and changes in microbiota profiles. Our primary objective was to examine the effect of caloric restriction and subsequent weight reduction on gut permeability in obese women. The impact on inflammatory markers and fecal microbiota was also investigated. The 4-week very-low calorie diet (VLCD, 800 kcal/day) induced a mean weight loss of 6.9 ± 1.9 kg accompanied by a reduction in HOMA-IR (Homeostasis model assessment-insulin resistance), fasting plasma glucose and insulin, plasma leptin, and leptin gene expression in subcutaneous adipose tissue. Plasma high-molecular weight adiponectin (HMW adiponectin) was significantly increased after VLCD. Plasma levels of high-sensitivity C-reactive protein (hsCRP) and lipopolysaccharide-binding protein (LBP) were significantly decreased after 28 days of VLCD. Using three different methods, gut paracellular permeability was decreased after VLCD. These changes in clinical parameters were not associated with major consistent changes in dominant bacterial communities in feces. In summary, a 4-week caloric restriction resulted in significant weight loss, improved gut barrier integrity and reduced systemic inflammation in obese women.
Collapse
Affiliation(s)
- Beate Ott
- Else Kröner-Fresenius-Center of Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Thomas Skurk
- Else Kröner-Fresenius-Center of Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Ljiljana Hastreiter
- Else Kröner-Fresenius-Center of Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Sandra Fischer
- ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Janine Büttner
- Charité-Universitätsmedizin, Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Berlin, Germany
| | - Teresa Kellerer
- Else Kröner-Fresenius-Center of Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Thomas Clavel
- ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany.,Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Dirk Haller
- ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany.,Chair of Nutrition and Immunology, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Hans Hauner
- Else Kröner-Fresenius-Center of Nutritional Medicine, Technical University of Munich, Freising, Germany. .,ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany. .,Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
46
|
Naz A, Obaid A, Awan FM, Ikram A, Ahmad J, Ali A. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma. Front Microbiol 2017; 8:1682. [PMID: 28932213 PMCID: PMC5592237 DOI: 10.3389/fmicb.2017.01682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.
Collapse
Affiliation(s)
- Anam Naz
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Faryal M. Awan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling & Simulation, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| |
Collapse
|
47
|
Zonulin: A Potential Marker of Intestine Injury in Newborns. DISEASE MARKERS 2017; 2017:2413437. [PMID: 28769143 PMCID: PMC5523403 DOI: 10.1155/2017/2413437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Zonulin (ZO), a new diagnostic biomarker of intestinal permeability, was tested in newborns presenting symptoms of infection and/or inflammation of the gut or being at risk of intestinal pathology. MATERIAL AND METHODS Serum ZO was assessed in 81 newborns diagnosed with sepsis, necrotizing enterocolitis (NEC), rotavirus infection, and gastroschisis, also in extremely low gestational age babies, and in controls (healthy newborns). ZO concentration was compared to C-reactive protein (CRP) and procalcitonin (PCT) values, leucocyte and platelet count, basic demographic data, and the value of the Neonatal Therapeutic Intervention Scoring System (NTISS). RESULTS Median values of ZO were markedly higher in groups with rotavirus infection and gastroschisis (36.0 (1-3Q: 26.0-43.2) and 20.3 (1-3Q: 17.7-28.2) ng/ml, resp.) versus controls (3.5 (1-3Q: 2.7-4.8) ng/ml). Its concentration in the NEC group was twice as high as in controls but did not reach statistical significance. ZO levels were not related to NTISS, CRP, and PCT. CONCLUSIONS Zonulin is a promising biomarker of intestinal condition, markedly elevated in rotavirus infections. Its role in defining the severity of necrotizing enterocolitis and the risk for perforation is not well described and needs further evaluation. An increase in zonulin may not be parallel to the release of inflammatory markers, and low CRP should not exclude an injury to neonatal intestine.
Collapse
|
48
|
Sturgeon C, Lan J, Fasano A. Zonulin transgenic mice show altered gut permeability and increased morbidity/mortality in the DSS colitis model. Ann N Y Acad Sci 2017; 1397:130-142. [PMID: 28423466 DOI: 10.1111/nyas.13343] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
Abstract
Increased small intestinal permeability (IP) has been proposed to be an integral element, along with genetic makeup and environmental triggers, in the pathogenies of chronic inflammatory diseases (CIDs). We identified zonulin as a master regular of intercellular tight junctions linked to the development of several CIDs. We aim to study the role of zonulin-mediated IP in the pathogenesis of CIDs. Zonulin transgenic Hp2 mice (Ztm) were subjected to dextran sodium sulfate (DSS) treatment for 7 days, followed by 4-7 days' recovery and compared to C57Bl/6 (wild-type (WT)) mice. IP was measured in vivo and ex vivo, and weight, histology, and survival were monitored. To mechanistically link zonulin-dependent impairment of small intestinal barrier function with clinical outcome, Ztm were treated with the zonulin inhibitor AT1001 added to drinking water in addition to DSS. We observed increased morbidity (more pronounced weight loss and colitis) and mortality (40-70% compared with 0% in WT) at 11 days post-DSS treatment in Ztm compared with WT mice. Both in vivo and ex vivo measurements showed an increased IP at baseline in Ztm compared to WT mice, which was exacerbated by DSS treatment and was associated with upregulation of zonulin gene expression (fourfold in the duodenum, sixfold in the jejunum). Treatment with AT1001 prevented the DSS-induced increased IP both in vivo and ex vivo without changing zonulin gene expression and completely reverted morbidity and mortality in Ztm. Our data show that zonulin-dependent small intestinal barrier impairment is an early step leading to the break of tolerance with subsequent development of CIDs.
Collapse
Affiliation(s)
- Craig Sturgeon
- Mucosal Immunology and Biology Research Center, Center for Celiac Research, and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, Massachusetts.,Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jinggang Lan
- Mucosal Immunology and Biology Research Center, Center for Celiac Research, and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research, and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, Massachusetts.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
49
|
Ergün C, Urhan M, Ayer A. A review on the relationship between gluten and schizophrenia: Is gluten the cause? Nutr Neurosci 2017; 21:455-466. [PMID: 28393621 DOI: 10.1080/1028415x.2017.1313569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Schizophrenia is a chronic disease that possesses various clinical manifestations. It presents rather heterogeneous characteristics with respect to onset type, symptoms, and the course of the disease. Although the lifetime prevalence is as low as 1%, it can cause serious disability. Thus, it is very important to develop efficient treatment methods. In some studies, it is hypothesized that removing gluten from the diet leads to a significant improvement in disease symptoms. Epidemiological studies revealed that the prevalence of celiac disease among schizophrenic patients is almost two times higher than that of the general population. OBJECTIVE In this review, we evaluate the effects of gluten and celiac disease on the onset of schizophrenia. Efficacy of gluten-free diet applications, antibody response against gluten, and the interaction of the brain-gut axis and the presence of common genetic points are also investigated. METHODS Without any publication date restriction, Pubmed database searches were made for 'schizophrenia, gluten, gliadin, celiac disease, exorphin, brain-gut axis, psychiatric disorders.' The keywords and the articles about the schizophrenia-celiac disease relationship are included in our review. RESULTS Several studies presented evidence to suggest that symptoms associated with schizophrenia were minimized when gluten was excluded from patients' diets. Immunological searches revealed that most schizophrenic patients with increased anti-gliadin antibodies did not possess celiac disease; yet, the presence of increased antibodies against gliadin can be the share point of the immunological abnormalities found in both of the diseases. DISCUSSION There were no consistent results in the clinical, immunological, microbiological, and epidemiological studies that investigated the relationship between schizophrenia and celiac disease. This presents a need for a larger scale study to confirm the presence of this suggested correlation between schizophrenia and celiac disease. The underlying mechanisms between the two diseases should be explored.
Collapse
Affiliation(s)
- Can Ergün
- a Faculty of Health Sciences, Department of Nutrition and Dietetics , Bahçeşehir University , Beşiktaş, Istanbul , Turkey
| | - Murat Urhan
- b Manisa Mental Health and Diseases Hospital , Şehitler Street, 45020 Manisa , Turkey
| | - Ahmet Ayer
- b Manisa Mental Health and Diseases Hospital , Şehitler Street, 45020 Manisa , Turkey
| |
Collapse
|
50
|
Higher Levels of Serum Zonulin May Rather Be Associated with Increased Risk of Obesity and Hyperlipidemia, Than with Gastrointestinal Symptoms or Disease Manifestations. Int J Mol Sci 2017; 18:ijms18030582. [PMID: 28282855 PMCID: PMC5372598 DOI: 10.3390/ijms18030582] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Zonulin is considered a biomarker of increased intestinal permeability, and elevated levels have been found in celiac disease. The primary aim of this study was to examine the association between serum zonulin levels and gastrointestinal (GI) symptoms, and secondarily, between zonulin levels and anthropometric and metabolic factors. The offspring (n = 363) of the participants of the Malmö Diet and Cancer cardiovascular cohort (MDC-CV) were invited to an anthropometric and clinical examination, where fasting plasma glucose levels were measured. Questionnaires about lifestyle factors and medical history were completed along with the Visual Analog Scale for Irritable Bowel Syndrome (VAS-IBS). Zonulin levels were measured in serum by ELISA. Neither GI symptoms nor GI diseases had any influence on zonulin levels. Higher zonulin levels were associated with higher waist circumference (p = 0.003), diastolic blood pressure (p = 0.003), and glucose levels (p = 0.036). Higher zonulin levels were associated with increased risk of overweight (p < 0.001), obesity (p = 0.047), and hyperlipidemia (p = 0.048). We cannot detect altered zonulin levels among individuals reporting GI symptoms or GI diseases, but higher zonulin levels are associated with higher waist circumference, diastolic blood pressure, fasting glucose, and increased risk of metabolic diseases.
Collapse
|