1
|
Zhang G, Yin X, Tang X, Wang K, Liu Y, Gong L, Tian Z. Integrated metabolomics and network pharmacology analysis to reveal the mechanisms of naringin against atherosclerosis. J Pharm Pharmacol 2025; 77:621-634. [PMID: 39946214 DOI: 10.1093/jpp/rgae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES The purpose of this study was to explore the mechanism of naringin in atherosclerotic mice from the perspective of network pharmacology and non-targeted metabolomics. METHODS ApoE-/- mice were induced to establish an atherosclerotic model to explore the pharmacodynamics and potential mechanism of naringin in atherosclerosis (AS). Pathological section and blood lipid levels were used to evaluate the intervention effects. The core targets, metabolites, and related pathways of naringin alleviating atherosclerotic were predicted through network pharmacology and metabolomics analysis. Furthermore, the inflammatory factors and pathway-related protein expression were detected using ELISA and Western blot methods. KEY FINDINGS It turned out that compared with the model group, the naringin could reduce the development degree in atherosclerotic mice. The network pharmacology suggested that PI3K-AKT pathway was an important mechanism for naringin to interfere with AS. Serum metabolic data were collected and analyzed, and a total of 27 potential biomarkers were identified, involving vitamin B6 metabolism, arginine metabolism, and retinol metabolism. The experiment verified that naringin inhibited inflammation in AS through the PI3K-AKT/TLR4/NF-κB pathway. CONCLUSIONS This study provides a strategy combining metabolomics and network pharmacology to explore the alleviation of AS by naringin and offers a new idea for its application.
Collapse
Affiliation(s)
- Gaoning Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoyi Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Tang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kexin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lili Gong
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
2
|
Juricic S, Klac J, Stojkovic S, Tesic M, Jovanovic I, Aleksandric S, Dobric M, Zivkovic S, Maricic B, Simeunovic D, Lasica R, Dikic M, Banovic M, Beleslin B. Molecular and Pathophysiological Mechanisms Leading to Ischemic Heart Disease in Patients with Diabetes Mellitus. Int J Mol Sci 2025; 26:3924. [PMID: 40362167 PMCID: PMC12071796 DOI: 10.3390/ijms26093924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Coronary atherosclerosis in patients with diabetes mellitus is the most significant pathophysiological mechanism responsible for ischemic heart disease. Atherosclerosis in diabetes is premature, more diffuse, and more progressive, and it affects more coronary blood vessels compared to non-diabetics. Atherosclerosis begins with endothelial dysfunction, continues with the formation of fatty streaks in the intima of coronary arteries, and ends with the appearance of an atherosclerotic plaque that expands centrifugally and remodels the coronary artery. If the atherosclerotic plaque is injured, a thrombus forms at the site of the damage, which can lead to vessel occlusion and potentially fatal consequences. Diabetes mellitus and atherosclerosis are connected through several pathological pathways. Among the most significant factors that lead to atherosclerosis in diabetics are hyperglycemia, insulin resistance, oxidative stress, dyslipidemia, and chronic inflammation. Chronic inflammation is currently considered one of the most important factors in the development of atherosclerosis. However, to date, no adequate anti-inflammatory therapeutic measures have been found to prevent the progression of the atherosclerotic process, and they remain a subject of ongoing research. In this review, we summarize the most significant pathophysiological mechanisms that link atherosclerosis and diabetes mellitus.
Collapse
Affiliation(s)
- Stefan Juricic
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
| | - Jovana Klac
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (J.K.); (R.L.)
| | - Sinisa Stojkovic
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milorad Tesic
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Jovanovic
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
| | - Srdjan Aleksandric
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Dobric
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Dedinje Cardiovascular Institute, 11000 Belgrade, Serbia;
| | | | - Bojan Maricic
- Clinic of Cardiology, University Clinical Center Nis, 18000 Nis, Serbia;
| | - Dejan Simeunovic
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ratko Lasica
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (J.K.); (R.L.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Miodrag Dikic
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
| | - Marko Banovic
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Branko Beleslin
- Clinic for Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.S.); (M.T.); (I.J.); (S.A.); (D.S.); (M.D.); (M.B.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Tang Y, Song B, Hidru TH, Yang Y, Liu F, Li J, Li C, Wen Y, Yang Z, Chen Y, Yang X, Xia Y. Combined predictive value of uric acid and serum lipid for stroke events in non-valvular atrial fibrillation patients. Front Cardiovasc Med 2025; 12:1569904. [PMID: 40207305 PMCID: PMC11979146 DOI: 10.3389/fcvm.2025.1569904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
Background Serum uric acid (SUA) and lipid metabolism disorders are closely associated with atrial fibrillation (AF) and its prognosis. In patients with non-valvular AF (NAF), we evaluated the combined predictive value of SUA, triglycerides (TG), and low-density lipoprotein (LDL) for stroke to enhance stroke risk prediction and management. Methods and results We included 3,176 NAF patients treated at the First Affiliated Hospital of Dalian Medical University from January 2020 to December 2023. We analyzed SUA concentration and lipid profile, along with relevant clinical data, to assess their impact on the occurrence of ischemic stroke (IS) in NAF patients. Due to gender differences in TG (1.39 mmol/L vs. 1.28 mmol/L for males, P = 0.031;1.57 mmol/L vs. 1.28 mmol/L for females, P = 0.001) and SUA levels (424 µmol/L vs. 397 µmol/L for males, P = 0.008; 361 µmol/L vs. 328 µmol/L for females, P = 0.004), we determined the thresholds for SUA (400 µmol/L in males and 330 µmol/L in females) and TG (1.28 mmol/L in males and 1.29 mmol/L in females) that predict stroke events in NAF patients by restricted cubic spline curves. Kaplan-Meier cumulative risk analysis indicates that a gender-based combined assessment of SUA and TG enhances stroke risk stratification in NAF patients. Compared to patients with low levels of SUA and TG, those with high levels of these biomarkers have a higher risk of IS (HR = 1.98). On multivariable Cox regression analysis with potential confounders, elevated SUA and low-density lipoprotein (LDL) levels were significantly associated with an increased risk of stroke. In summary, we developed the CHA2DS2-VASc+SUA+TG+LDL stroke risk prediction model. Its clinical predictive value was assessed using Harrell's C-statistic (C-index), integrated discrimination improvement (IDI) statistics, and net reclassification index (NRI) analysis. Conclusions SUA, TG and LDL were strongly associated with stroke for NAF. The combination of SUA, TG, and LDL effectively enhanced the predictive value of the CHA2DS2-VASc score for IS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaolei Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Greaves J, Pula G. Hyperactivity and Pro-inflammatory Functions of Platelets in Diabetes. FRONT BIOSCI-LANDMRK 2025; 30:26190. [PMID: 39862077 DOI: 10.31083/fbl26190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 01/27/2025]
Abstract
Cardiovascular complications claim the lives of up to 70% of patients with diabetes mellitus (DM). The mechanisms increasing cardiovascular risk in DM remain to be fully understood and successfully addressed. Nonetheless, there is increasing evidence in the scientific literature of the participation of platelets in the cardiovascular complications of DM. Multiple reports describe the hyperactivity of platelets in DM and their participation in inflammatory responses. The understanding of the mechanisms underlying the contribution of platelets to cardiovascular pathologies in DM will help the development of targeted therapeutic strategies able to reduce cardiovascular risk in these patients. In this literature review, we summarise our current understanding of the molecular mechanisms leading to the contribution of platelets to cardiovascular risk in DM. Both platelet haemostatic activity leading to thrombus formation and their participation to inflammatory processes are stimulated by the biochemical conditions associated with DM. We also present evidence on how DM affect the efficacy of existing therapeutic treatments for thrombosis and, by converse, how antidiabetic drugs may affect platelet function and the haemostasis/thrombosis balance. Taken together, the growing evidence of the different and unexpected roles of platelets in the progression of DM provides a strong rationale for the design of cardiovascular drugs targeting specifically platelets, their pro-inflammatory activity and their activation mechanisms in this disease. Overall, this article provides an important up-to-date overview of the pathophysiological alterations of platelets in DM, which need to be taken into account for the effective management of cardiovascular health in this disease.
Collapse
Affiliation(s)
- Jordan Greaves
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK
| | - Giordano Pula
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK
| |
Collapse
|
5
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
6
|
Zhu L, Zhong Y, Yan M, Ni S, Zhao X, Wu S, Wang G, Zhang K, Chi Q, Qin X, Li C, Huang X, Wu W. Macrophage Membrane-Encapsulated Dopamine-Modified Poly Cyclodextrin Multifunctional Biomimetic Nanoparticles for Atherosclerosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32027-32044. [PMID: 38867426 DOI: 10.1021/acsami.4c04431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. β-Cyclodextrin (β-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. β-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Sheng Ni
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Xiong Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing 401329, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Chuanwei Li
- Department of Cardiology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400042, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing 401329, China
| |
Collapse
|
7
|
Munno M, Mallia A, Greco A, Modafferi G, Banfi C, Eligini S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel) 2024; 13:583. [PMID: 38790688 PMCID: PMC11118168 DOI: 10.3390/antiox13050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process.
Collapse
Affiliation(s)
- Marco Munno
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, 27100 Pavia, Italy
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Gloria Modafferi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| |
Collapse
|
8
|
Baltzi E, Papaloukas C, Spandidos DA, Michalopoulos I. Genes encoding γ‑glutamyl‑transpeptidases in the allicin biosynthetic pathway in garlic ( Allium sativum). Biomed Rep 2024; 20:45. [PMID: 38357244 PMCID: PMC10865298 DOI: 10.3892/br.2024.1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Allicin is a thiosulphate molecule produced in garlic (Allium sativum) and has a wide range of biological actions and pharmaceutical applications. Its precursor molecule is the non-proteinogenic amino acid alliin (S-allylcysteine sulphoxide). The alliin biosynthetic pathway in garlic involves a group of enzymes, members of which are the γ-glutamyl-transpeptidase isoenzymes, Allium sativum γ-glutamyl-transpeptidase AsGGT1, AsGGT2 and AsGGT3, which catalyze the removal of the γ-glutamyl group from γ-glutamyl-S-allyl-L-cysteine to produce S-allyl-L-cysteine. This removal is followed by an S-oxygenation, which leads to the biosynthesis of alliin. The aim of the present study is to annotate previously discovered genes of garlic γ-glutamyl-transpeptidases, as well as a fourth candidate gene (AsGGT4) that has yet not been described. The annotation includes identifying the loci of the genes in the garlic genome, revealing the overall structure and conserved regions of these genes, and elucidating the evolutionary history of these enzymes through their phylogenetic analysis. The genomic structure of γ-glutamyl-transpeptidase genes is conserved; each gene consists of seven exons, and these genes are located on different chromosomes. AsGGT3 and AsGGT4 enzymes contain a signal peptide. To that end, the AsGGT3 protein sequence was corrected; four indel events occurring in AsGGT3 coding regions suggested that at least in the garlic variety Ershuizao, AsGGT3 may be a pseudogene. Finally, the use of protein structure prediction tools allowed the visualization of the tertiary structure of the candidate peptide.
Collapse
Affiliation(s)
- Eleni Baltzi
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Costas Papaloukas
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
10
|
Cheng K, Chen X, Luo Y, Sun W, Yang X, Huang S, Wang Y, Wu D. Cumulative Exposure to Oxidized Low-density Lipoprotein is a Potential Predictor for Prognosis in Acute Ischemic Stroke: A Cohort Study. Curr Pharm Des 2024; 30:778-785. [PMID: 38424424 DOI: 10.2174/0113816128280291240220093912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Oxidized Low-Density Lipoprotein (ox-LDL) is crucial in the recrudescence and prognosis of acute ischemic stroke (AIS). We aimed to probe into the influence of cumulative ox-LDL exposure on the 90-day prognosis of AIS. METHODS Patients with AIS were recruited in this research. AIS severity at admission was estimated with infarct volumes and National Institute of Health Stroke Scale (NIHSS) scores. AIS prognosis was assessed using Modified Rankin Scale (mRS) scores at 90 days and the change in NIHSS scores from admission to discharge. Cumulative ox-LDL exposure was defined as ox-LDL level (pg/mL) multiplied by age(y). Multivariate logistic regression analysis was employed to reveal the correlation between exposure factors and the prognosis of AIS. The prognostic prediction ability of cumulative ox-LDL exposure was compared with cumulative LDL exposure by the receiver operating characteristic curve (ROC). RESULTS Higher cumulative ox-LDL exposure was related to worse prognosis, including neurological worsening at discharge (NIHSS increasing more than 2 points) (OR = 3.02, 95% CI, 1.30-6.98, P = 0.01) and poor functional prognosis at 90 days (mRS ≥ 3) (OR = 21.21, 95% CI, 4.72-95.36, P < 0.001). As multivariate regression analysis showed, significantly increased cumulative ox-LDL exposure was relevant to poor functional prognosis at 90 days (OR = 9.92, 95% CI, 1.23-79.76, P = 0.031), but not with neurological worsening at discharge (P = 0.414). ROC curve revealed that cumulative ox-LDL exposure had a higher predictive value (AUC = 0.843, P < 0.001) for functional prognosis of AIS than cumulative LDL exposure (AUC = 0.629, P = 0.023). CONCLUSION Cumulative ox-LDL exposure has a positive correlation with poor prognosis at 90 days of AIS, and has a more accurate predictive ability than cumulative LDL exposure.
Collapse
Affiliation(s)
- Kaili Cheng
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xiuqi Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Yufan Luo
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Wenbo Sun
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xiaoli Yang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Shengwen Huang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Yuanyuan Wang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
11
|
Zhang Y, Jiang C, Meng N. Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis. Mini Rev Med Chem 2024; 24:1262-1276. [PMID: 38284727 DOI: 10.2174/0113895575273164231130070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
12
|
Holte C, Szafranska K, Kruse L, Simon-Santamaria J, Li R, Svistounov D, McCourt P. Highly oxidized albumin is cleared by liver sinusoidal endothelial cells via the receptors stabilin-1 and -2. Sci Rep 2023; 13:19121. [PMID: 37926735 PMCID: PMC10625979 DOI: 10.1038/s41598-023-46462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Oxidized albumin (oxHSA) is elevated in several pathological conditions, such as decompensated cirrhosis, acute on chronic liver failure and liver mediated renal failure. Patient derived oxidized albumin was previously shown to be an inflammatory mediator, and in normal serum levels of oxHSA are low. The removal from circulation of oxidized albumins is therefore likely required for maintenance of homeostasis. Liver sinusoidal endothelial cells (LSEC) are prominent scavenger cells specialized in removal of macromolecular waste. Given that oxidized albumin is mainly cleared by the liver, we hypothesized the LSEC are the site of uptake in the liver. In vivo oxHSA was cleared rapidly by the liver and distributed to mainly the LSEC. In in vitro studies LSEC endocytosed oxHSA much more than other cell populations isolated from the liver. Furthermore, it was shown that the uptake was mediated by the stabilins, by affinity chromatography-mass spectrometry, inhibiting uptake in LSEC with other stabilin ligands and showing uptake in HEK cells overexpressing stabilin-1 or -2. oxHSA also inhibited the uptake of other stabilin ligands, and a 2-h challenge with 100 µg/mL oxHSA reduced LSEC endocytosis by 60% up to 12 h after. Thus the LSEC and their stabilins mediate clearance of highly oxidized albumin, and oxidized albumin can downregulate their endocytic capacity in turn.
Collapse
Affiliation(s)
- Christopher Holte
- Vascular Biology Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Larissa Kruse
- Vascular Biology Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jaione Simon-Santamaria
- Vascular Biology Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ruomei Li
- Vascular Biology Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dmitri Svistounov
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Waldron C, Zafar MA, Ziganshin BA, Weininger G, Grewal N, Elefteriades JA. Evidence Accumulates: Patients with Ascending Aneurysms Are Strongly Protected from Atherosclerotic Disease. Int J Mol Sci 2023; 24:15640. [PMID: 37958625 PMCID: PMC10650782 DOI: 10.3390/ijms242115640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Ascending thoracic aortic aneurysms may be fatal upon rupture or dissection and remain a leading cause of death in the developed world. Understanding the pathophysiology of the development of ascending thoracic aortic aneurysms may help reduce the morbidity and mortality of this disease. In this review, we will discuss our current understanding of the protective relationship between ascending thoracic aortic aneurysms and the development of atherosclerosis, including decreased carotid intima-media thickness, low-density lipoprotein levels, coronary and aortic calcification, and incidence of myocardial infarction. We also propose several possible mechanisms driving this relationship, including matrix metalloproteinase proteins and transforming growth factor-β.
Collapse
Affiliation(s)
- Christina Waldron
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06519, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Mohammad A. Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06519, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06519, USA; (C.W.); (M.A.Z.); (B.A.Z.)
- Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, 420012 Kazan, Russia
| | - Gabe Weininger
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06519, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| | - Nimrat Grewal
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06519, USA; (C.W.); (M.A.Z.); (B.A.Z.)
| |
Collapse
|
14
|
Grande T, Vornoli A, Lubrano V, Vizzarri F, Raffaelli A, Gabriele M, Novoa J, Sandoval C, Longo V, Echeverria MC, Pozzo L. Chlamydomonas agloeformis from the Ecuadorian Highlands: Nutrients and Bioactive Compounds Profiling and In Vitro Antioxidant Activity. Foods 2023; 12:3147. [PMID: 37685081 PMCID: PMC10487033 DOI: 10.3390/foods12173147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Green microalgae are single-celled eukaryotic organisms that, in recent years, are becoming increasingly important in the nutraceutical, cosmetic, and pharmaceutical fields because of their high content of bioactive compounds. In this study, a particular green microalga was isolated from freshwater highland lakes of Ecuador and morphologically and molecularly identified as Chlamydomonas agloeformis (ChA), and it was studied for nutritional and nutraceutical properties. The phenolic composition and the fatty acids profile of lyophilized cells were determined. The methanolic extract was analyzed for the phenolic compounds profile and the antioxidant capacity by means of in vitro tests. Finally, Human Microvascular Endothelial Cells (HMEC-1) were exploited to explore the capacity of ChA to reduce the endothelial damage induced by oxidized LDL-mediated oxidative stress. The extract showed a good antioxidant ability thanks to the high content in polyphenolic compounds. The observed decrease in HMEC-1 cells endothelial damage also was probably due to the antioxidant compounds present in the extract. Based on the outcomes of our in vitro assays, ChA demonstrated to be a promising source of bioactive compounds possessing exceptional antioxidant capacities which make it a prospective functional food.
Collapse
Affiliation(s)
- Teresa Grande
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Andrea Vornoli
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Valter Lubrano
- Fondazione G. Monasterio, CNR/Regione Toscana, 56124 Pisa, Italy;
| | - Francesco Vizzarri
- National Agricultural and Food Centre Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia;
| | - Andrea Raffaelli
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Jeniffer Novoa
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Carla Sandoval
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Maria Cristina Echeverria
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| |
Collapse
|
15
|
Khan H, Shaikh F, Syed MH, Mamdani M, Saposnik G, Qadura M. Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites 2023; 13:919. [PMID: 37623863 PMCID: PMC10456624 DOI: 10.3390/metabo13080919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Carotid artery stenosis (CAS), an atherosclerotic disease of the carotid artery, is one of the leading causes of transient ischemic attacks (TIA) and cerebrovascular attacks (CVA). The atherogenic process of CAS affects a wide range of physiological processes, such as inflammation, endothelial cell function, smooth muscle cell migration and many more. The current gold-standard test for CAS is Doppler ultrasound; however, there is yet to be determined a strong, clinically validated biomarker in the blood that can diagnose patients with CAS and/or predict adverse outcomes in such patients. In this comprehensive literature review, we evaluated all of the current research on plasma and serum proteins that are current contenders for biomarkers for CAS. In this literature review, 36 proteins found as potential biomarkers for CAS were categorized in to the following nine categories based on protein function: (1) Inflammation and Immunity, (2) Lipid Metabolism, (3) Haemostasis, (4) Cardiovascular Markers, (5) Markers of Kidney Function, (6) Bone Health, (7) Cellular Structure, (8) Growth Factors, and (9) Hormones. This literature review is the most up-to-date and current comprehensive review of research on biomarkers of CAS, and the only review that demonstrated the several pathways that contribute to the initiation and progression of the disease. With this review, future studies can determine if any new markers, or a panel of the proteins explored in this study, may be contenders as diagnostic or prognostic markers for CAS.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
16
|
Hung T, Jhan JY, Lin JH, Yang KT, Hsu BG, Chang JC. Serum Malondialdehyde-Oxidized Low-Density Lipoprotein Level Is Associated with Arterial Stiffness by Cardio-Ankle Vascular Index in Coronary Artery Bypass Graft Patients. J Clin Med 2023; 12:4191. [PMID: 37445227 DOI: 10.3390/jcm12134191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
A high malondialdehyde-oxidized low-density lipoprotein (MDA-oxLDL) level is associated with atherosclerotic cardiovascular diseases and major adverse cardiovascular events. A higher cardio-ankle vascular index (CAVI) is independently associated with an increased risk of cardiovascular events, cardiovascular mortality, myocardial infarction, and stroke in patients with cardiovascular risk. Thus, this study aimed to evaluate the relationship between serum MDA-oxLDL levels and CAVI in patients with triple-vessel coronary artery disease who underwent coronary artery bypass graft (CABG) surgery. Fasting blood samples and baseline characteristics were obtained from 88 patients who had undergone CABG. A commercialized enzyme-linked immunosorbent assay was used to measure MDA-oxLDL levels. An automatic pulse wave analyzer was used to measure CAVI values, and each side of CAVI values of ≥9 was designated as arterial stiffness. In total, 47 participants were assigned to the arterial stiffness group. More patients had diabetes mellitus, were older, and had higher serum MDA-oxLDL levels in the arterial stiffness group than in the control group. A multivariate logistic regression analysis disclosed that MDA-oxLDL and diabetes mellitus were independent predictors of arterial stiffness. Moreover, according to the Spearman's correlation analysis, the serum MDA-oxLDL level was positively associated with both left and right CAVI. Serum MDA-oxLDL levels were positively associated with arterial stiffness in patients who had undergone CABG.
Collapse
Affiliation(s)
- Ting Hung
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Jin-You Jhan
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Jian-Hong Lin
- Division of Experimental Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Kun-Ta Yang
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Jui-Chih Chang
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
17
|
Higashi Y. Endothelial Function in Dyslipidemia: Roles of LDL-Cholesterol, HDL-Cholesterol and Triglycerides. Cells 2023; 12:1293. [PMID: 37174693 PMCID: PMC10177132 DOI: 10.3390/cells12091293] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Dyslipidemia is associated with endothelial dysfunction. Endothelial dysfunction is the initial step for atherosclerosis, resulting in cardiovascular complications. It is clinically important to break the process of endothelial dysfunction to cardiovascular complications in patients with dyslipidemia. Lipid-lowering therapy enables the improvement of endothelial function in patients with dyslipidemia. It is likely that the relationships of components of a lipid profile such as low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides with endothelial function are not simple. In this review, we focus on the roles of components of a lipid profile in endothelial function.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 743-8551, Japan; ; Tel.: +81-82-257-5831
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| |
Collapse
|
18
|
Mehdawi A, Mohammad BA, Mosleh I, Khader HA, Habash M, Nassar RI, Awwad S, Hasoun L, Abu-Samak MS. Combined Effect of Omega-3 Fatty Acid and Vitamin D 3 on Oxidized LDL-C and Non-HDL-C Levels in People With Vitamin D Deficiency: A Randomized Controlled Trial. J Cardiovasc Pharmacol 2023; 81:251-258. [PMID: 36630694 DOI: 10.1097/fjc.0000000000001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
ABSTRACT The present randomized clinical trial (RCT) was conducted on Jordanian participants with vitamin D deficiency (VDD) with no other medical conditions, to evaluate the combined effect of 1,25-dihydroxy vitamin D 3 (Vit.D 3 ) and omega-3 fatty acid (n-3FA) supplements (D+) on oxidized low-density lipoprotein (Ox-LDL) and non-high-density lipoprotein cholesterol (non-HDL-C) levels as common predictors of cardiovascular diseases (CVDs). Participants were randomized into 4 groups as follows: a control group (C) that received no supplementations, a Vit.D 3 group that received 50,000 IU of Vit.D 3 every week, an n-3FA group that received 300 mg of omega-3 fatty acid every day, and a D+ group that received a combination of both supplements, with the same dosage administered by the previous groups but with a 4-6-hour time interval between Vit.D 3 and n-3FA administration to avoid any possible interaction. All supplementations were administered orally for 8 weeks. Forty-seven participants were allocated to each group. Twenty-six in the control group, 37 participants in the Vit.D 3 group, 37 participants in the n-3FA group, and 46 participants in the D+ group completed the study to the end. The D+ supplementations significantly increased non-HDL-C (118.99 ± 60.98 to 155.26 ± 43.36 mg/dL, P << 0.05) but decreased Ox-LDL-C levels (69.29 ± 37.69 to 52.81 ± 17.30 pg/mL, P = 0.03). The stepwise regression showed that the serum LDL-C level was the main independent variable involved in the elevation of non-HDL levels (R 2 = 0.837) observed at the end of the trial in the D+ group. The groups that were supplemented with either Vit.D 3 alone or n-3FA alone had an insignificant decrease in the level of Ox-LDL-C. In conclusion, despite the observed hyperlipidemic effect, the combination treatment is recommended by the research team because the decrease in Ox-LDL may offset the hyperlipidemic effect.
Collapse
Affiliation(s)
- Amani Mehdawi
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Beisan A Mohammad
- Department of Pharmaceutical Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Ibrahim Mosleh
- Department of Medical Laboratory Sciences, University of Jordan, Amman, Jordan
| | - Heba A Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University,, Zarqa, Jordan
| | - Maha Habash
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan; and
| | - Razan I Nassar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Shady Awwad
- Department of Pharmaceutical Chemistry & Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mahmoud S Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| |
Collapse
|
19
|
Sagris M, Theofilis P, Antonopoulos AS, Oikonomou E, Simantiris S, Papaioannou S, Tsioufis C, Tousoulis D. Adhesion Molecules as Prognostic Biomarkers in Coronary Artery Disease. Curr Top Med Chem 2023; 23:481-490. [PMID: 36600626 DOI: 10.2174/1568026623666230104125104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 01/06/2023]
Abstract
Atherosclerosis is a progressive disease, culminating in the production of atherosclerotic plaques in arteries through intricate pathophysiological processes. The progression of this disorder is based on the effect of triggering factors -mainly hyperlipidemia, diabetes mellitus, arterial hypertension, and smoking- on the endothelium. Coronary artery disease (CAD) is an atherosclerotic disease with a higher prevalence among individuals. Pro- and anti-inflammatory cytokines are the main contributors to atherosclerotic plaque formation. CAD and its manifestations multifactorial affect patients' quality of life, burdening the global healthcare system. Recently, the role of adhesion molecules in CAD progression has been recognized. Physicians delve into the pathophysiologic basis of CAD progression, focusing on the effect of adhesion molecules. They are proteins that mediate cell-cell and cell-extracellular matrix interaction and adhesion, driving the formation of atherosclerotic plaques. Several studies have assessed their role in atherosclerotic disease in small cohorts and in experimental animal models as well. Furthermore, several agents, such as nanoparticles, have been introduced modifying the main atherosclerotic risk factors as well as targeting the endothelial inflammatory response and atherosclerotic plaque stabilization. In this review, we discuss the role of adhesion molecules in atherosclerosis and CAD progression, as well as the potential to be used as targeting moieties for individualized treatment.
Collapse
Affiliation(s)
- Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Disease Hospital, University of Athens Medical School, Athens, Greece
| | - Spiros Simantiris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | | | - Constantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
20
|
Mensink FB, Los J, Ten Cate TJF, Oemrawsingh RM, Brouwer MA, El Messaoudi S, van Royen N, Cornel JH, Riksen NP, van Geuns RJM. Pharmaco-invasive therapy: Early implementation of statins and proprotein convertase subtilisin/kexin type 9 inhibitors after acute coronary syndrome. Front Cardiovasc Med 2022; 9:1061346. [PMID: 36568547 PMCID: PMC9772027 DOI: 10.3389/fcvm.2022.1061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Elevated LDL-cholesterol (LDL-C) plays a major role in atheroma formation and inflammation. Medical therapy to lower elevated LDL-C is the cornerstone for reducing the progression of atherosclerotic cardiovascular disease. Statin therapy, and more recently, other drugs such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have proven efficacy in long-term lowering of LDL-C and therefore diminish cardiovascular risk. During an acute coronary syndrome (ACS), a systemic inflammatory response can destabilize other non-culprit atherosclerotic plaques. Patients with these vulnerable plaques are at high risk of experiencing recurrent cardiovascular events in the first few years post-ACS. Initiating intensive LDL-C lowering therapy in these patients with statins or PCSK9 inhibitors can be beneficial via several pathways. High-intensity statin therapy can reduce inflammation by directly lowering LDL-C, but also through its pleiotropic effects. PCSK9 inhibitors can directly lower LDL-C to recommended guideline thresholds, and could have additional effects on inflammation and plaque stability. We discuss the potential role of early implementation of statins combined with PCSK9 inhibitors to influence these cascades and to mediate the associated cardiovascular risk, over and above the well-known long-term beneficial effects of chronic LDL-C lowering.
Collapse
Affiliation(s)
- F. B. Mensink
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: F. B. Mensink,
| | - J. Los
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - T. J. F. Ten Cate
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - R. M. Oemrawsingh
- Department of Cardiology, Albert Schweitzer Ziekenhuis, Dordrecht, Netherlands
| | - M. A. Brouwer
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - S. El Messaoudi
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - N. van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - J. H. Cornel
- Department of Cardiology, Noordwest Ziekenhuisgroep, Alkmaar, Netherlands
| | - N. P. Riksen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - R. J. M. van Geuns
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
21
|
Gáll T, Nagy P, Garai D, Potor L, Balla GJ, Balla G, Balla J. Overview on hydrogen sulfide-mediated suppression of vascular calcification and hemoglobin/heme-mediated vascular damage in atherosclerosis. Redox Biol 2022; 57:102504. [PMID: 36240620 PMCID: PMC9576974 DOI: 10.1016/j.redox.2022.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
Vulnerable atherosclerotic plaques with hemorrhage considerably contribute to cardiovascular morbidity and mortality. Calcification is the main characteristic of advanced atherosclerotic lesions and calcified aortic valve disease (CAVD). Lyses of red blood cells and hemoglobin (Hb) release occur in human hemorrhagic complicated lesions. During the interaction of cell-free Hb with plaque constituents, Hb is oxidized to ferric and ferryl states accompanied by oxidative changes of the globin moieties and heme release. Accumulation of both ferryl-Hb and metHb has been observed in atherosclerotic plaques. The oxidation hotspots in the globin chain are the cysteine and tyrosine amino acids associated with the generation of Hb dimers, tetramers and polymers. Moreover, fragmentation of Hb occurs leading to the formation of globin-derived peptides. A series of these pro-atherogenic cellular responses can be suppressed by hydrogen sulfide (H2S). Since H2S has been explored to exhibit a wide range of physiologic functions to maintain vascular homeostasis, it is not surprising that H2S may play beneficial effects in the progression of atherosclerosis. In the present review, we summarize the findings about the effects of H2S on atherosclerosis and CAVD with a special emphasis on the oxidation of Hb/heme in atherosclerotic plaque development and vascular calcification.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary; Institute of Oncochemistry, University of Debrecen, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
22
|
Duan Y, Zhang X, Zhang X, Lin J, Shu X, Man W, Jiang M, Zhang Y, Wu D, Zhao Z, Sun D. Inhibition of macrophage-derived foam cells by Adipsin attenuates progression of atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166533. [PMID: 36064133 DOI: 10.1016/j.bbadis.2022.166533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Phagocytosis of oxidized low-density lipoprotein (OxLDL) by macrophages yields "foam cells" and serves as a hallmark of atherosclerotic lesion. Adipsin is a critical component of the complement activation pathway. Recent evidence has indicated an obligatory role for Adipsin in pathological models including ischemia-reperfusion and sepsis. Adipsin levels are significantly decreased in patients with asymptomatic carotid atherosclerosis, implying the role for Adipsin as a potential marker of asymptomatic carotid atherosclerosis. This study was designed to evaluate the role for Adipsin in atherosclerosis and the mechanisms involved using both in vivo and in vitro experiments. ApoE-/-/AdipsinTg mice were constructed and were fed a high-fat diet for 12 weeks. Compared with ApoE-/- mice, area of the sclerotic plaques was reduced, along with lower macrophage deposition within the plaque in ApoE-/-/AdipsinTg mice. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were stimulated with oxLDL (50 μg/ml). Adenovirus vectors containing the Adipsin gene were transfected into macrophages. Lipid accumulation was observed by Oil red O staining. Western blot and reverse transcription-polymerase chain reaction data revealed that Adipsin overexpression inhibited oxLDL-induced lipid uptake and foam cell formation and upregulation of CD36 and PPARγ in Ad-Adipsin-transfected macrophages. In addition, the PPARγ-specific agonist GW1929 reversed Adipsin overexpression-evoked inhibitory effect on lipid uptake. These results demonstrate unequivocally that Adipsin inhibits lipid uptake in a PPARγ/CD36-dependent manner and prevents the formation of foam cells, implying that Adipsin may be a potential therapeutic target against atherosclerosis.
Collapse
Affiliation(s)
- Yu Duan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dexi Wu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
23
|
Ye J, Li L, Wang M, Ma Q, Tian Y, Zhang Q, Liu J, Li B, Zhang B, Liu H, Sun G. Diabetes Mellitus Promotes the Development of Atherosclerosis: The Role of NLRP3. Front Immunol 2022; 13:900254. [PMID: 35844498 PMCID: PMC9277049 DOI: 10.3389/fimmu.2022.900254] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is one of the main complications of diabetes mellitus, involving a variety of pathogenic factors. Endothelial dysfunction, inflammation, and oxidative stress are hallmarks of diabetes mellitus and atherosclerosis. Although the ability of diabetes to promote atherosclerosis has been demonstrated, a deeper understanding of the underlying biological mechanisms is critical to identifying new targets. NLRP3 plays an important role in both diabetes and atherosclerosis. While the diversity of its activation modes is one of the underlying causes of complex effects in the progression of diabetes and atherosclerosis, it also provides many new insights for targeted interventions in metabolic diseases.
Collapse
Affiliation(s)
- Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| |
Collapse
|
24
|
Rodrigo N, Saad S, Pollock C, Glastras SJ. Diet Modification before or during Pregnancy on Maternal and Foetal Outcomes in Rodent Models of Maternal Obesity. Nutrients 2022; 14:2154. [PMID: 35631295 PMCID: PMC9146671 DOI: 10.3390/nu14102154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
The obesity epidemic has serious implications for women of reproductive age; its rising incidence is associated not just with health implications for the mother but also has transgenerational ramifications for the offspring. Increased incidence of diabetes, cardiovascular disease, obesity, and kidney disease are seen in both the mothers and the offspring. Animal models, such as rodent studies, are fundamental to studying maternal obesity and its impact on maternal and offspring health, as human studies lack rigorous controlled experimental design. Furthermore, the short and prolific reproductive potential of rodents enables examination across multiple generations and facilitates the exploration of interventional strategies to mitigate the impact of maternal obesity, both before and during pregnancy. Given that obesity is a major public health concern, it is important to obtain a greater understanding of its pathophysiology and interaction with reproductive health, placental physiology, and foetal development. This narrative review focuses on the known effects of maternal obesity on the mother and the offspring, and the benefits of interventional strategies, including dietary intervention, before or during pregnancy on maternal and foetal outcomes. It further examines the contribution of rodent models of maternal obesity to elucidating pathophysiological pathways of disease development, as well as methods to reduce the impact of obesity on the mothers and the developing foetus. The translation of these findings into the human experience will also be discussed.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Renal Medicine, Royal North Shore Hospital, Sydney 2065, Australia
| | - Sarah J. Glastras
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
25
|
Frangie C, Daher J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed Rep 2022; 16:53. [PMID: 35620311 PMCID: PMC9112398 DOI: 10.3892/br.2022.1536] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Myeloperoxidase (MPO) belongs to the heme peroxidase family, which includes a set of enzymes with potent oxidoreductase activity. MPO is considered an important part of the innate immune system's microbicidal arm and is secreted by neutrophils and macrophages. Interestingly, this enzyme has been implicated in the pathogenesis of several diseases including atherosclerosis. MPO is ubiquitous in atherosclerotic lesions and contributes to the initiation and progression of the disease primarily by oxidizing low-density lipoprotein (LDL) particles. MPO is the only human enzyme with the ability to produce hypochlorous acid (HOCl) at physiological chloride concentrations and HOCl-LDL epitopes were shown to be present inside atheromatous lesions making it a physiologically relevant model for the oxidation of LDL. It has been shown that MPO modified LDL is not able to bind to the native LDL receptor and is recognized instead by scavenger receptors on both endothelial cells and macrophages, which can lead to endothelial dysfunction and foam cell formation, respectively; both of which are instrumental in the progression of the disease. Meanwhile, several studies have proposed MPO as a biomarker for cardiovascular diseases where high levels of this enzyme were linked to an increased risk of developing coronary artery disease. Overall, there is sufficient evidence supporting the value of MPO as a crucial player in health and disease. Thus, future research should be directed towards investigating the still unknown processes associated with this enzyme. This may assist in better understanding the pathophysiological role of MPO, as well in the development of therapeutic strategies for protecting against the deleterious effects of MPO in numerous pathologies such as atherosclerosis.
Collapse
Affiliation(s)
- Christian Frangie
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El‑Koura 100, Lebanon
| | - Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El‑Koura 100, Lebanon
| |
Collapse
|
26
|
Azari ZD, Aljubran F, Nothnick WB. Inflammatory MicroRNAs and the Pathophysiology of Endometriosis and Atherosclerosis: Common Pathways and Future Directions Towards Elucidating the Relationship. Reprod Sci 2022; 29:2089-2104. [PMID: 35476352 DOI: 10.1007/s43032-022-00955-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Emerging data indicates an association between endometriosis and subclinical atherosclerosis, with women with endometriosis at a higher risk for cardiovascular disease later in life. Inflammation is proposed to play a central role in the pathophysiology of both diseases and elevated levels of systemic pro-inflammatory cytokines including macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) are well documented. However, a thorough understanding on the mediators and mechanisms which contribute to altered cytokine expression in both diseases remain poorly understood. MicroRNAs (miRNAs) are important post-transcriptional regulators of inflammatory pathways and numerous studies have reported altered circulating levels of miRNAs in both endometriosis and atherosclerosis. Potential contribution of miRNA-mediated inflammatory cascades common to the pathophysiology of both diseases has not been evaluated but could offer insight into common pathways and early manifestation relevant to both diseases which may help understand cause and effect. In this review, we discuss and summarize differentially expressed inflammatory circulating miRNAs in endometriosis subjects, compare this profile to that of circulating levels associated with atherosclerosis when possible, and then discuss mechanistic studies focusing on these miRNAs in relevant cell, tissue, and animal models. We conclude by discussing the potential utility of targeting the relevant miRNAs in the MIF-IL-6-TNF-α pathway as therapeutic options and offer insight into future studies which will help us better understand not only the role of these miRNAs in the pathophysiology of both endometriosis and atherosclerosis but also commonality between both diseases.
Collapse
Affiliation(s)
- Zubeen D Azari
- Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Fatimah Aljubran
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Obstetrics and Gynecology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
27
|
Jing L, Shu-xu D, Yong-xin R. A review: Pathological and molecular biological study on atherosclerosis. Clin Chim Acta 2022; 531:217-222. [DOI: 10.1016/j.cca.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
28
|
Huang X, Zhao Y, Zhou H, Li Y. Circular RNAs in atherosclerosis. Clin Chim Acta 2022; 531:71-80. [PMID: 35339453 DOI: 10.1016/j.cca.2022.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory lesion of the arterial vessel wall caused by a variety of complex factors. Furthermore, it is a major cause of cardiovascular disease and a leading cause of death. Circular RNAs (circRNAs) are a new family of endogenous non-coding RNAs with unique covalently closed loops that have sparked interest due to their unique characteristics and potential diagnostic and therapeutic applications in various diseases. A growing number of studies have shown that circRNAs can be used as biomarkers for the diagnosis and treatment of AS. In this article, we review the biogenesis, classification as well as functions of circRNA and summarize the research on circRNA as a diagnostic biomarker for AS. Finally, we describe the regulatory capacity of circRNA in AS pathogenesis through its pathogenesis and demonstrate the potential therapeutic role of circRNA for AS.
Collapse
Affiliation(s)
- Xiaoni Huang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yuwen Zhao
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Huijiao Zhou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yongqiang Li
- Department of General Practice, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China.
| |
Collapse
|
29
|
Hamelin Morrissette J, Tremblay D, Marcotte-Chénard A, Lizotte F, Brunet MA, Laurent B, Riesco E, Geraldes P. Transcriptomic modulation in response to high-intensity interval training in monocytes of older women with type 2 diabetes. Eur J Appl Physiol 2022; 122:1085-1095. [PMID: 35182182 DOI: 10.1007/s00421-022-04911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/04/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Type 2 diabetes is associated with a higher risk of cardiovascular diseases, lowering the quality of life and increasing mortality rates of affected individuals. Circulating monocytes are tightly involved in the atherosclerosis process leading to cardiovascular diseases (CVD), and their inflammatory profile can be modified by exercise. The objective was to exploratory identify genes associated with CVD that could be regulated by high-intensity interval training (HIIT) in monocytes of type 2 diabetes patients. METHODS Next-generation RNA sequencing (RNA-seq) analyses were conducted on isolated circulating monocytes (CD14+) of six women aged 60 and over with type 2 diabetes who completed a 12-week supervised HIIT intervention on a treadmill. RESULTS Following the intervention, a reduction of resting diastolic blood pressure was observed. Concomitant with this result, 56 genes were found to be downregulated following HIIT intervention in isolated monocytes. A large proportion of the regulated genes was involved in cellular adhesion, migration and differentiation into an "atherosclerosis-specific" macrophage phenotype. CONCLUSION The downregulation of transcripts in monocytes globally suggests a favorable cardiovascular effect of the HIIT in older women with type 2 diabetes. In the context of precision medicine and personalized exercise prescription, shedding light on the fundamental mechanisms underlying HIIT effects on the gene profile of immune cells is essential to develop efficient nonpharmacological strategies to prevent CVD in high-risk population.
Collapse
Affiliation(s)
| | - Dominic Tremblay
- Faculty of Medicine and Health Sciences, Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 12e Avenue N, Sherbrooke, QC, J1H 5H3, Canada
| | | | - Farah Lizotte
- Faculty of Medicine and Health Sciences, Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 12e Avenue N, Sherbrooke, QC, J1H 5H3, Canada
| | - Marie A Brunet
- Faculty of Medicine and Health Sciences, Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 12e Avenue N, Sherbrooke, QC, J1H 5H3, Canada.,Medical Genetics Service, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, J1H 4C4, Canada.,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Eléonor Riesco
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, J1H 4C4, Canada.,Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Pedro Geraldes
- Faculty of Medicine and Health Sciences, Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 12e Avenue N, Sherbrooke, QC, J1H 5H3, Canada. .,Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
30
|
C1q tumor necrosis factor-related protein 1: a promising therapeutic target for atherosclerosis. J Cardiovasc Pharmacol 2021; 79:273-280. [PMID: 34840267 DOI: 10.1097/fjc.0000000000001186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Atherosclerosis serves as the pathological basis of most cardiovascular and cerebrovascular diseases. C1q tumor necrosis factor-related protein (CTRP1) is a 35-kDa glycoprotein synthesized by various tissues and cells, such as adipose tissue and macrophages. As an adiponectin paralog, CTRP1 signals through adiponectin receptor 1 (AdipoR1) and participates in a variety of pathophysiological processes. Circulating CTRP1 levels are significantly increased in patients with coronary artery disease. Importantly, CTRP1 was shown to accelerate the development of atherosclerosis by promoting vascular inflammation, macrophage foam cell formation and endothelial barrier dysfunction. This review focused on recent advances regarding the role of CTRP1 in atherogenesis with an emphasis on its potential as a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases.
Collapse
|
31
|
Dai S, Liu F, Ren M, Qin Z, Rout N, Yang XF, Wang H, Tomlinson S, Qin X. Complement Inhibition Targeted to Injury Specific Neoepitopes Attenuates Atherogenesis in Mice. Front Cardiovasc Med 2021; 8:731315. [PMID: 34651027 PMCID: PMC8505745 DOI: 10.3389/fcvm.2021.731315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Rationale: Previous studies have indicated an important role for complement in atherosclerosis, a lipid-driven chronic inflammatory disease associated to oxidative stress in the vessel wall. However, it remains unclear how complement is activated in the process of atherogenesis. An accepted general model for complement activation in the context of ischemia reperfusion injury is that ischemia induces the exposure of neoepitopes that are recognized by natural self-reactive IgM antibodies, and that in turn activate complement. Objective: We investigated whether a similar phenomenon may be involved in the pathogenesis of atherosclerosis, and whether interfering with this activation event, together with inhibition of subsequent amplification of the cascade at the C3 activation step, can provide protection against atherogenesis. Methods and Results: We utilized C2scFv-Crry, a novel construct consisting of a single chain antibody (scFv) linked to Crry, a complement inhibitor that functions at C3 activation. The scFv moiety was derived from C2 IgM mAb that specifically recognizes phospholipid neoepitopes known to be expressed after ischemia. C2scFv-Crry targeted to the atherosclerotic plaque of Apoe -/- mice, demonstrating expression of the C2 neoepitope. C2scFv-Crry administered twice per week significantly attenuated atherosclerotic plaque in the aorta and aortic root of Apoe -/- mice fed with a high-fat diet (HFD) for either 2 or 4 months, and treatment reduced C3 deposition and membrane attack complex formation as compared to vehicle treated mice. C2scFv-Crry also inhibited the uptake of oxidized low-density-lipoprotein (oxLDL) by peritoneal macrophages, which has been shown to play a role in pathogenesis, and C2scFv-Crry-treated mice had decreased lipid content in the lesion with reduced oxLDL levels in serum compared to vehicle-treated mice. Furthermore, C2scFv-Crry reduced the deposition of endogenous total IgM in the plaque, although it did not alter serum IgM levels, further indicating a role for natural IgM in initiating complement activation. Conclusion: Neoepitope targeted complement inhibitors represent a novel therapeutic approach for atherosclerosis.
Collapse
Affiliation(s)
- Shen Dai
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neuroscience, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fengming Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neuroscience, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Mi Ren
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Zhongnan Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Namita Rout
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research and Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neuroscience, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
32
|
Fowler J, Tsui MTK, Chavez J, Khan S, Ahmed H, Smith L, Jia Z. Methyl mercury triggers endothelial leukocyte adhesion and increases expression of cell adhesion molecules and chemokines. Exp Biol Med (Maywood) 2021; 246:2522-2532. [PMID: 34308659 DOI: 10.1177/15353702211033812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity, mortality, and health care costs in the USA, and around the world. Among the various risk factors of cardiovascular disease, environmental and dietary exposures to methyl mercury, a highly toxic metal traditionally labeled as a neurotoxin, have been epidemiologically linked to human cardiovascular disease development. However, its role in development and promotion of atherosclerosis, an initial step in more immediately life-threatening cardiovascular diseases, remains unclear. This study was conducted to examine the role that methyl mercury plays in the adhesion of monocytes to human microvascular endothelial cells (HMEC-1), and the underlying mechanisms. Methyl mercury treatment significantly induced the adhesion of monocyte to HMEC-1 endothelial cells, a critical step in atherosclerosis, while also upregulating the expression of proinflammatory cytokines interleukin-6, interleukin-8. Further, methyl mercury treatment also upregulated the chemotactic cytokine monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. These molecules are imperative for the firm adhesion of leukocytes to endothelial cells. Additionally, our results further demonstrated that methyl mercury stimulated a significant increase in NF-κB activation. These findings suggest that NF-κB signaling pathway activation by methyl mercury is an important factor in the binding of monocytes to endothelial cells. Finally, by using flow cytometric analysis, methyl mercury treatment caused a significant increase in necrotic cell death only at higher concentrations without initiating apoptosis. This study provides new insights into the molecular actions of methyl mercury that can lead to endothelial dysfunction, inflammation, and subsequent atherosclerotic development.
Collapse
Affiliation(s)
- Joshua Fowler
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA.,School of Life Sciences, Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Jessica Chavez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Safeera Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Hassan Ahmed
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Lena Smith
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| |
Collapse
|
33
|
Ferryl Hemoglobin and Heme Induce A 1-Microglobulin in Hemorrhaged Atherosclerotic Lesions with Inhibitory Function against Hemoglobin and Lipid Oxidation. Int J Mol Sci 2021; 22:ijms22136668. [PMID: 34206377 PMCID: PMC8268598 DOI: 10.3390/ijms22136668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Infiltration of red blood cells into atheromatous plaques and oxidation of hemoglobin (Hb) and lipoproteins are implicated in the pathogenesis of atherosclerosis. α1-microglobulin (A1M) is a radical-scavenging and heme-binding protein. In this work, we examined the origin and role of A1M in human atherosclerotic lesions. Using immunohistochemistry, we observed a significant A1M immunoreactivity in atheromas and hemorrhaged plaques of carotid arteries in smooth muscle cells (SMCs) and macrophages. The most prominent expression was detected in macrophages of organized hemorrhage. To reveal a possible inducer of A1M expression in ruptured lesions, we exposed aortic endothelial cells (ECs), SMCs and macrophages to heme, Oxy- and FerrylHb. Both heme and FerrylHb, but not OxyHb, upregulated A1M mRNA expression in all cell types. Importantly, only FerrylHb induced A1M protein secretion in aortic ECs, SMCs and macrophages. To assess the possible function of A1M in ruptured lesions, we analyzed Hb oxidation and heme-catalyzed lipid peroxidation in the presence of A1M. We showed that recombinant A1M markedly inhibited Hb oxidation and heme-driven oxidative modification of low-density lipoproteins as well plaque lipids derived from atheromas. These results demonstrate the presence of A1M in atherosclerotic plaques and suggest its induction by heme and FerrylHb in the resident cells.
Collapse
|
34
|
Amar Z, Talpur AS, Zafar S, Memon A, Nazary K, Esmati S, Hashim S, Maqsood H, Hafizyar F, Kumar B. Comparison of Iron Profile in Patients With and Without Coronary Heart Disease. Cureus 2021; 13:e15613. [PMID: 34277231 PMCID: PMC8275058 DOI: 10.7759/cureus.15613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/05/2022] Open
Abstract
Introduction Atherosclerosis is considered a major cause of coronary artery disease (CAD). Pathogenesis of atherosclerosis involves the oxidation of low-density lipoprotein (LDL) within the lysosomes of macrophages. Ferritin and iron have pro-oxidant properties, and ferritin is an independent positive determinant of oxidized LDL level. In this study, we will determine the association between ferritin and serum iron levels and CAD. Methods This case-control study was conducted in the cardiology unit of a tertiary care hospital in Pakistan from December 2020 to April 2021. After taking informed consent, 400 patients with a confirmed diagnosis of CAD were enrolled. Another set of 400 patients without a history of CAD were included in the control group. A blood sample of 5 ml was drawn and sent to the laboratory to test for ferritin, serum iron, and total iron-binding capacity (TIBC). Ferritin, serum iron, and iron-binding capacity were compared between the case and control groups. Results Serum ferritin was significantly higher in patients with CAD compared to patients without CAD (921.21 ± 201.21 ug/L vs. 101.21 ± 92.21 ug/L; p-value: <0.0001). Serum TIBC was significantly lower in patients with CAD compared to patients without CAD (302.12 ± 101.75 umol/L vs. 362.12 ± 82.16 umol/L). Conclusion Patients with raised levels of ferritin should consult a physician to manage their ferritin levels since they are at a greater risk of CAD. Treatment ranges from lifestyle changes to pharmacological therapy, thus reducing the overall risk and normalizing the ferritin levels.
Collapse
Affiliation(s)
- Zain Amar
- Internal Medicine, Isra University, Hyderabad, PAK
| | - Abdul Subhan Talpur
- Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | | | | | | | - Saliman Esmati
- Internal Medicine, Jamaica Hospital Medical Center, New York City, USA
| | - Sara Hashim
- Pathology and Laboratory Medicine, Bolan Medical College, Quetta, PAK
| | - Hamza Maqsood
- Internal Medicine, Nishtar Medical University, Multan, PAK
| | | | - Besham Kumar
- Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| |
Collapse
|
35
|
Ahmadi R, Fadaei R, Shokoohi Nahrkhalaji A, Panahi G, Fallah S. The impacts of C1q/TNF-related protein-15 and adiponectin on Interleukin-6 and tumor necrosis factor-α in primary macrophages of patients with coronary artery diseases. Cytokine 2021; 142:155470. [PMID: 33676229 DOI: 10.1016/j.cyto.2021.155470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a progressive inflammatory disease characterized by the accumulation of lipids in the arterial wall. Inflammation plays a key role in the pathogenesis of atherosclerosis and some previous studies have shown the role of adipokines during the inflammatory process of atherosclerosis. Therefore, the present study aimed to evaluate the impacts of adiponectin and CTRP15 on inflammatory cytokines secretions from THP1 and primary macrophages. METHODS THP1 monocytes were differentiated to macrophages and primary monocytes were then isolated from patients with coronary artery disease and controls who were differentiated to macrophages. Macrophages were treated with LPS, LPS+adiponectin, and LPS+CTRP15. RESULTS Adiponectin and CTRP15 have reduced IL-6 and TNF-α secretions from LPS-induced THP1 macrophages, and the CTRP15 indicated a more potent anti-inflammatory property compared to adiponectin. In addition, adiponectin reduced cytokines' expressions and secretions in primary macrophages of both patient and control groups. However, CTRP15 has only reduced cytokines' expressions and secretions in controls and it was not able to ameliorate inflammation in macrophages of CAD patients. CONCLUSION The results of the present study indicate anti-inflammatory impact of adiponectin and CTRP15, while this property was stronger for CTRP15. In addition, it seems likely that anti-inflammatory CTRP15's impact on macrophages in the CAD patients was weaker than macrophages from the controls.
Collapse
Affiliation(s)
- Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Takahashi T, Huang Y, Yamamoto K, Hamano G, Kakino A, Kang F, Imaizumi Y, Takeshita H, Nozato Y, Nozato S, Yokoyama S, Nagasawa M, Kawai T, Takeda M, Fujimoto T, Hongyo K, Nakagami F, Akasaka H, Takami Y, Takeya Y, Sugimoto K, Gaisano HY, Sawamura T, Rakugi H. The endocytosis of oxidized LDL via the activation of the angiotensin II type 1 receptor. iScience 2021; 24:102076. [PMID: 33659870 PMCID: PMC7890409 DOI: 10.1016/j.isci.2021.102076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
Arrestin-dependent activation of a G-protein-coupled receptor (GPCR) triggers endocytotic internalization of the receptor complex. We analyzed the interaction between the pattern recognition receptor (PRR) lectin-like oxidized low-density lipoprotein (oxLDL) receptor (LOX-1) and the GPCR angiotensin II type 1 receptor (AT1) to report a hitherto unidentified mechanism whereby internalization of the GPCR mediates cellular endocytosis of the PRR ligand. Using genetically modified Chinese hamster ovary cells, we found that oxLDL activates Gαi but not the Gαq pathway of AT1 in the presence of LOX-1. Endocytosis of the oxLDL-LOX-1 complex through the AT1-β-arrestin pathway was demonstrated by real-time imaging of the membrane dynamics of LOX-1 and visualization of endocytosis of oxLDL. Finally, this endocytotic pathway involving GPCR kinases (GRKs), β-arrestin, and clathrin is relevant in accumulating oxLDL in human vascular endothelial cells. Together, our findings indicate that oxLDL activates selective G proteins and β-arrestin-dependent internalization of AT1, whereby the oxLDL-LOX-1 complex undergoes endocytosis. The binding of oxidized LDL (oxLDL) to LOX-1 induces selective activation of AT1 oxLDL and angiotensin II additively or competitively activate AT1 in different cells oxLDL promotes β-arrestin-dependent internalization of oxLDL-LOX-1-AT1 complex
Collapse
Affiliation(s)
- Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Yibin Huang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Corresponding author
| | - Go Hamano
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Fei Kang
- Department of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Yuki Imaizumi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoko Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Serina Yokoyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motonori Nagasawa
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Kawai
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masao Takeda
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Hongyo
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Futoshi Nakagami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken Sugimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Herbert Y. Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Marchini T, Mitre LS, Wolf D. Inflammatory Cell Recruitment in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:635527. [PMID: 33681219 PMCID: PMC7930487 DOI: 10.3389/fcell.2021.635527] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, the main underlying pathology for myocardial infarction and stroke, is a chronic inflammatory disease of middle-sized to large arteries that is initiated and maintained by leukocytes infiltrating into the subendothelial space. It is now clear that the accumulation of pro-inflammatory leukocytes drives progression of atherosclerosis, its clinical complications, and directly modulates tissue-healing in the infarcted heart after myocardial infarction. This inflammatory response is orchestrated by multiple soluble mediators that enhance inflammation systemically and locally, as well as by a multitude of partially tissue-specific molecules that regulate homing, adhesion, and transmigration of leukocytes. While numerous experimental studies in the mouse have refined our understanding of leukocyte accumulation from a conceptual perspective, only a few anti-leukocyte therapies have been directly validated in humans. Lack of tissue-tropism of targeted factors required for leukocyte accumulation and unspecific inhibition strategies remain the major challenges to ultimately translate therapies that modulate leukocytes accumulation into clinical practice. Here, we carefully describe receptor and ligand pairs that guide leukocyte accumulation into the atherosclerotic plaque and the infarcted myocardium, and comment on potential future medical therapies.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Lucía Sol Mitre
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Cornwell A, Palli R, Singh MV, Benoodt L, Tyrell A, Abe JI, Schifitto G, Maggirwar SB, Thakar J. Molecular characterization of atherosclerosis in HIV positive persons. Sci Rep 2021; 11:3232. [PMID: 33547350 PMCID: PMC7865026 DOI: 10.1038/s41598-021-82429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
People living with HIV are at higher risk of atherosclerosis (AS). The pathogenesis of this risk is not fully understood. To assess the regulatory networks involved in AS we sequenced mRNA of the peripheral blood mononuclear cells (PBMCs) and measured cytokine and chemokine levels in the plasma of 13 persons living with HIV and 12 matched HIV-negative persons with and without AS. microRNAs (miRNAs) are known to play a role in HIV infection and may modulate gene regulation to drive AS. Hence, we further assessed miRNA expression in PBMCs of a subset of 12 HIV+ people with and without atherosclerosis. We identified 12 miRNAs differentially expressed between HIV+ AS+ and HIV+ , and validated 5 of those by RT-qPCR. While a few of these miRNAs have been implicated in HIV and atherosclerosis, others are novel. Integrating miRNA measurements with mRNA, we identified 27 target genes including SLC4A7, a critical sodium and bicarbonate transporter, that are potentially dysregulated during atherosclerosis. Additionally, we uncovered that levels of plasma cytokines were associated with transcription factor activity and miRNA expression in PBMCs. For example, BACH2 activity was associated with IL-1β, IL-15, and MIP-1α. IP10 and TNFα levels were associated with miR-124-3p. Finally, integration of all data types into a single network revealed increased importance of miRNAs in network regulation of the HIV+ group in contrast with increased importance of cytokines in the HIV+ AS+ group.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester, Rochester, NY, USA
- Biophysics, Structural, and Computational Biology PhD Program, University of Rochester, Rochester, NY, USA
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Lauren Benoodt
- Biophysics, Structural, and Computational Biology PhD Program, University of Rochester, Rochester, NY, USA
| | - Alicia Tyrell
- Department of Neurology, General Neurology, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Jun-Ichi Abe
- Department of Cardiology-Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, USA
| | - Giovanni Schifitto
- Department of Neurology, General Neurology, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, George Washing University, Washington, DC, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
- Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, , Box 672, Rochester, NY, 14642, USA.
| |
Collapse
|
39
|
Takebayashi K, Suzuki T, Yamauchi M, Hara K, Tsuchiya T, Inukai T, Hashimoto K. Association of circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 with inflammatory markers and urinary albumin excretion in patients with type 2 diabetes. SAGE Open Med 2021; 9:20503121211064468. [PMID: 34992779 PMCID: PMC8724995 DOI: 10.1177/20503121211064468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The main purpose of the study was to study the association between circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels and various markers, including inflammatory markers such as high-sensitivity C-reactive protein and fibrinogen, serum lipids, and renal function, in patients with poorly controlled type 2 diabetes. METHODS The subjects were 70 patients (men 45, women 25) who were hospitalized for treatment of poor glycemic control. Plasma soluble lectin-like oxidized low-density lipoprotein receptor-1 levels were assayed using a sandwich chemiluminescence enzyme immunoassay. RESULTS Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 was significantly positively correlated with lectin-like oxidized low-density lipoprotein-1 ligands containing apolipoprotein B, reflecting modified low-density lipoprotein, and with inflammatory markers such as high-sensitivity C-reactive protein and fibrinogen. In addition, there was a significant positive correlation between soluble lectin-like oxidized low-density lipoprotein receptor-1 and urinary albumin excretion. CONCLUSIONS Soluble lectin-like oxidized low-density lipoprotein receptor-1 may serve as a marker reflecting the degrees of inflammation and albuminuria in patients with poorly controlled type 2 diabetes.
Collapse
Affiliation(s)
- Kohzo Takebayashi
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Tatsuhiko Suzuki
- Department of Emergency and Critical Care Medicine, Emergency and Critical Care Center, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Mototaka Yamauchi
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Kenji Hara
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Takafumi Tsuchiya
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Toshihiko Inukai
- Department of Internal Medicine, Seibu General Hospital, Omiya, Japan
| | - Koshi Hashimoto
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| |
Collapse
|
40
|
Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell Signal 2020; 76:109781. [DOI: 10.1016/j.cellsig.2020.109781] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 12/23/2022]
|
41
|
Liu D, Wang X, Zhang M, Tian J, Liu M, Jin T, Pan J, Gao M, An F. WISP1 alleviates lipid deposition in macrophages via the PPARγ/CD36 pathway in the plaque formation of atherosclerosis. J Cell Mol Med 2020; 24:11729-11741. [PMID: 32851768 PMCID: PMC7579692 DOI: 10.1111/jcmm.15783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid deposition in macrophages plays an important role in atherosclerosis. The WNT1-inducible signalling pathway protein 1(WISP1) can promote proliferation and migration of smooth muscle cells. Its expression is up-regulated in obesity, which is associated with atherosclerosis, but the effect of WISP1 on atherosclerosis remains unclear. Thus, the objective of our study was to elucidate the role of WISP and its mechanism of action in atherosclerosis via in vivo and in vitro experiments. In our experiment, ApoE-/- mice were divided into 5 groups: control, high-fat diet (HFD), null lentivirus (HFD + NC), lentivirus WISP1 (HFD + IvWISP1) and WISP1-shRNA (HFD + shWISP1). Oil Red O staining, immunofluorescence and immunohistochemistry of the aortic sinuses were conducted. Macrophages (RAW264.7 cell lines and peritoneal macrophages) were stimulated with 50 μg/mL oxidized low-density lipoprotein (ox-LDL); then, the reactive oxygen species (ROS) level was measured. Oil Red O staining and Dil-ox-LDL (ox-LDL with Dil dye) uptake measurements were used to test lipid deposition of peritoneal macrophages. WISP1, CD36, SR-A and PPARγ expression levels were measured via Western blotting and ELISA. The results showed that HFD mice had increased WISP1, CD36 and SR-A levels. The plaque lesion area increased when WISP1 was down-regulated, and lipid uptake and foam cell formation were inhibited when WISP1 was up-regulated. Treatment of RAW264.7 cell lines with ox-LDL increased WISP1 expression via activation of the Wnt5a/β-catenin pathway, whereas ROS inhibition reduced WISP1 expression. Moreover, WISP1 down-regulated CD36 and SR-A expression, and Oil Red O staining and Dil-ox-LDL uptake measurement showed that WISP1 down-regulated lipid deposition in macrophages. These results clearly demonstrate that WISP1 is activated by ox-LDL at high ROS levels and can alleviate lipid deposition in atherosclerosis through the PPARγ/CD36 pathway.
Collapse
Affiliation(s)
- Dian Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xuyang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Mingjun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Jingjing Tian
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Ming Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Tao Jin
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Jinyu Pan
- Department of CardiologyShandong Provincial The First Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | | | - Fengshuang An
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
42
|
Abstract
Proteins succumb to numerous post-translational modifications (PTMs). These relate to enzymatic or non-enzymatic reactions taking place in either the intracellular or extracellular compartment. While intracellular oxidative changes are mainly due to redox stress, extracellular PTMs may be induced in an inflammatory micro milieu that is rich in reactive species. The increasing recognition of oxidative modifications as a causing agent or side-effect of pathophysiological states and diseases puts oxidative PTMS (oxPTMs) into the spotlight of inflammation research. Pathological hyper-modification of proteins can lead to accumulation, aggregation, cell stress, altered antigenic peptides, and damage-associated molecular pattern (DAMP)-like recognition by host immunity. Such processes are linked to cardiovascular disease and autoinflammation. At the same time, a detailed understanding of the mechanisms governing inflammatory responses to oxPTMs may capitalize on new therapeutic routes for enhancing adaptive immune responses as needed, for instance, in oncology. We here summarize some of the latest developments of oxPTMs in disease diagnosis and therapy. Potential target proteins and upcoming technologies, such as gas plasmas, are outlined for future research that may aid in identifying the molecular basis of immunogenic vs. tolerogenic oxPTMs.
Collapse
|
43
|
Toualbi LA, Adnane M, Abderrezak K, Ballouti W, Arab M, Toualbi C, Chader H, Tahae R, Seba A. Oxidative stress accelerates the carotid atherosclerosis process in patients with chronic kidney disease. Arch Med Sci Atheroscler Dis 2020; 5:e245-e254. [PMID: 33305063 PMCID: PMC7717441 DOI: 10.5114/amsad.2020.98945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/15/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The atherosclerosis process is highly accelerated in patients with chronic kidney disease (CKD). Oxidative stress is considered as one of the pro-atherogenic factors involved in accelerating the atherosclerosis process of the carotid artery. The aim of the present study was to determine the relationship between oxidative stress markers and the progression of carotid atherosclerosis in CKD patients. MATERIAL AND METHODS The study was conducted on 162 patients with CKD and 40 controls, and the disease stage was scored between 2 and 5D. Blood samples were taken and advanced oxidative protein product, myeloperoxidases, malondialdehyde, nitric oxide, glutathione, and oxidised low-density lipoprotein were measured. Furthermore, we studied the correlations between these biomarkers and clinical and para-clinical cardiovascular complications. RESULTS The average age of patients was 56.5 years. The oxidative stress markers average ± SD levels in CKD groups compared to the control were as follows: advanced oxidation protein product (61.89 ±1.4 vs. 26.65 ±1.05 µmol/l), myeloperoxidase (59.89 ±1.98 vs. 38.45 ±1.98 UI/ml), malondialdehyde (6.1 ±0.12 vs. 3.26 ±0.03 µmol/l), nitric oxide (65.82 ±1.06 vs. 52.19 ±2.1 µmol/l), glutathione (52.21 ±1.3 vs. 89.4 ±2.6 IU/ml), and oxLDL (15.57 ±1.07 vs. 1.72 ±0.82 µmol/l). While the glutathione level decreased significantly in advanced CKD stage (p < 0.05), the concentrations of all the other biomarkers increased significantly in accordance with CKD score (p < 0.05). CONCLUSIONS Cardiovascular diseases, mainly atherosclerosis, can be diagnosed indirectly by measuring oxidative stress markers. Furthermore, theses markers can be used to predict the progression of CKD, for better management of the disease.
Collapse
Affiliation(s)
| | - Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret,
Tiaret, Algeria
| | - Khelfi Abderrezak
- Departement of Toxicology, Hospital University of Bab el oued, Algiers, Algeria
| | - Wafa Ballouti
- Department of Biochemistry, Hospital of Hussein Dey, Algiers, Algeria
| | - Medina Arab
- Department of Biochemestry, Hospital University of Mustapha Bacha, Algiers, Algeria
| | - Chahine Toualbi
- Department of Orthopedic Surgery, Hospital of Bejaia, Bejaia Algeria
| | - Henni Chader
- Department of Pharmacology, Pastor Institute, Algiers, Algeria
| | - Ryne Tahae
- Department of Nephrology, Hospital University of Hussein Dey, Algiers, Algeria
| | - Atmane Seba
- Department of Nephrology, Hospital University of Tizi ouzou, Tizi Ouzou, Algeria
| |
Collapse
|
44
|
Muramatsu M, Nakagawa S, Osawa T, Toyono T, Uemura A, Kidoya H, Takakura N, Usui T, Ryeom S, Minami T. Loss of Down Syndrome Critical Region-1 Mediated-Hypercholesterolemia Accelerates Corneal Opacity Via Pathological Neovessel Formation. Arterioscler Thromb Vasc Biol 2020; 40:2425-2439. [PMID: 32787520 DOI: 10.1161/atvbaha.120.315003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The calcineurin-NFAT (nuclear factor for activated T cells)-DSCR (Down syndrome critical region)-1 pathway plays a crucial role as the downstream effector of VEGF (vascular endothelial growth factor)-mediated tumor angiogenesis in endothelial cells. A role for DSCR-1 in different organ microenvironment such as the cornea and its role in ocular diseases is not well understood. Corneal changes can be indicators of various disease states and are easily detected through ocular examinations. Approach and Results: The presentation of a corneal arcus or a corneal opacity due to lipid deposition in the cornea often indicates hyperlipidemia and in most cases, hypercholesterolemia. Although the loss of Apo (apolipoprotein) E has been well characterized and is known to lead to elevated serum cholesterol levels, there are few corneal changes observed in ApoE-/- mice. In this study, we show that the combined loss of ApoE and DSCR-1 leads to a dramatic increase in serum cholesterol levels and severe corneal opacity with complete penetrance. The cornea is normally maintained in an avascular state; however, loss of Dscr-1 is sufficient to induce hyper-inflammatory and -oxidative condition, increased corneal neovascularization, and lymphangiogenesis. Furthermore, immunohistological analysis and genome-wide screening revealed that loss of Dscr-1 in mice triggers increased immune cell infiltration and upregulation of SDF (stromal derived factor)-1 and its receptor, CXCR4 (C-X-C motif chemokine ligand receptor-4), potentiating this signaling axis in the cornea, thereby contributing to pathological corneal angiogenesis and opacity. CONCLUSIONS This study is the first demonstration of the critical role for the endogenous inhibitor of calcineurin, DSCR-1, and pathological corneal angiogenesis in hypercholesterolemia induced corneal opacity.
Collapse
Affiliation(s)
- Masashi Muramatsu
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Japan (M.M., T.M.)
| | - Suguru Nakagawa
- Division of Genome Science (S.N.), RCAST, the University of Tokyo, Japan.,Department Ophthalmology, Graduate School of Medicine, the University of Tokyo, Japan (S.N., T.T., T.U.)
| | - Tsuyoshi Osawa
- Integrative Nutriomics (T.O.), RCAST, the University of Tokyo, Japan
| | - Tetsuya Toyono
- Department Ophthalmology, Graduate School of Medicine, the University of Tokyo, Japan (S.N., T.T., T.U.)
| | - Akiyoshi Uemura
- Department Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Japan (A.U.)
| | - Hiroyasu Kidoya
- Department Signal Transduction, RIMD, Osaka University, Japan (H.K., N.T.)
| | - Nobuyuki Takakura
- Department Signal Transduction, RIMD, Osaka University, Japan (H.K., N.T.)
| | - Tomohiko Usui
- Department Ophthalmology, Graduate School of Medicine, the University of Tokyo, Japan (S.N., T.T., T.U.)
| | - Sandra Ryeom
- Department Cancer Biology, University of Pennsylvania (S.R.)
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Japan (M.M., T.M.)
| |
Collapse
|
45
|
A small-molecule inhibitor of lectin-like oxidized LDL receptor-1 acts by stabilizing an inactive receptor tetramer state. Commun Chem 2020; 3:75. [PMID: 36703453 PMCID: PMC9814544 DOI: 10.1038/s42004-020-0321-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/15/2020] [Indexed: 01/29/2023] Open
Abstract
The C-type lectin family member lectin-like oxidized LDL receptor-1 (LOX-1) has been object of intensive research. Its modulation may offer a broad spectrum of therapeutic interventions ranging from cardiovascular diseases to cancer. LOX-1 mediates uptake of oxLDL by vascular cells and plays an important role in the initiation of endothelial dysfunction and its progression to atherosclerosis. So far only a few compounds targeting oxLDL-LOX-1 interaction are reported with a limited level of characterization. Here we describe the identification and characterization of BI-0115, a selective small molecule inhibitor of LOX-1 that blocks cellular uptake of oxLDL. Identified by a high throughput screening campaign, biophysical analysis shows that BI-0115 binding triggers receptor inhibition by formation of dimers of the homodimeric ligand binding domain. The structure of LOX-1 bound to BI-0115 shows that inter-ligand interactions at the receptor interfaces are key to the formation of the receptor tetramer thereby blocking oxLDL binding.
Collapse
|
46
|
Alamgeer, Asif H, Sandhu MZA, Aziz M, Irfan HM, Moreno KGT, Junior AG. Ameliorative Effects and Cellular Aspects of Phytoconstituents in Atherosclerosis. Curr Pharm Des 2020; 26:2574-2582. [PMID: 32056518 DOI: 10.2174/1381612826666200214161139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a cardiovascular disease that involves vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis by affecting various factors that are involved in the disease. The present review discusses our current knowledge of the major cellular and molecular mechanisms of phytotherapeutics for the treatment of atherosclerosis. Numerous studies have evaluated the antiatherosclerotic activity of phytoconstituents to provide preliminary evidence of efficacy, but only a few studies have delineated the underlying molecular mechanisms. Plant-derived phytotherapeutics primarily targets abnormal levels of lipoproteins, endothelial dysfunction, smooth muscle cell migration, foam cell development, and atheromatous plaque formation. Nonetheless, the principal mechanisms that are responsible for their therapeutic actions remain unclear. Further pharmacological studies are needed to elucidate the underlying molecular mechanisms of the antiatherosclerotic response to these phytoconstituents.
Collapse
Affiliation(s)
- Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hira Asif
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan,Department of Pharmacy, University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Muhammad Z A Sandhu
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Madiha Aziz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hafiz M Irfan
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Karyne G T Moreno
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
47
|
Liu L, Tan L, Yao J, Yang L. Long non‑coding RNA MALAT1 regulates cholesterol accumulation in ox‑LDL‑induced macrophages via the microRNA‑17‑5p/ABCA1 axis. Mol Med Rep 2020; 21:1761-1770. [PMID: 32319624 PMCID: PMC7057819 DOI: 10.3892/mmr.2020.10987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS), a major cause of cardiovascular disease, has developed into a serious challenge to the health system. The long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is associated with the pathogenesis of AS. However, whether MALAT1 can affect cholesterol accumulation in macrophages during AS progression, and the potential molecular mechanism involved in this progression have not been elucidated. In the present study, the mRNA expression level of MALAT1 was measured using reverse transcription-quantitative PCR (RT-qPCR) and the protein expression level was detected via western blot analysis. Oil Red O staining was used for detecting lipid accumulation in macrophages. Bioinformatics, dual-luciferase reporter and RT-qPCR assays were used to investigate the relationship between MALAT1 and the microRNA (miR)-17-5p/ATP-binding cassette transporter A1 (ABCA1) axis. The present results suggested that the MALAT1 expression level was significantly decreased in patients with AS and in oxidized low-density lipoprotein (ox-LDL)-stimulated macrophages. Knockdown of MALAT1 increased ox-LDL uptake, lipid accumulation and the total cholesterol (T-CHO) level in ox-LDL-induced macrophages. In addition, MALAT1 inhibition significantly decreased the mRNA and protein expression levels of scavenger receptor (SR) class B member 1, apolipoprotein E (ApoE) and ABCA1. However, MALAT1 increased the expression level of SR class A. Subsequently, the present study investigated whether MALAT1 could target miR-17-5p to regulate the expression level of ABCA1, which is involved in cholesterol efflux from macrophages. The present results suggested that inhibition of miR-17-5p reversed the effects of MALAT1 knockdown on T-CHO content, and protein expression levels of ApoE and ABCA1 in ox-LDL-stimulated macrophages. In summary, knockdown of MALAT1 may promote cholesterol accumulation by regulating the miR-17-5p/ABCA1 axis in ox-LDL-induced THP-1 macrophages.
Collapse
Affiliation(s)
- Limin Liu
- Department of Cardiology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110002, P.R. China
| | - Lili Tan
- Department of Cardiology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110002, P.R. China
| | - Jian Yao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110002, P.R. China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
48
|
Jiang T, Jiang D, You D, Zhang L, Liu L, Zhao Q. Agonism of GPR120 prevents ox-LDL-induced attachment of monocytes to endothelial cells. Chem Biol Interact 2020; 316:108916. [PMID: 31870843 DOI: 10.1016/j.cbi.2019.108916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation plays an important role in the development of cardiovascular diseases. G protein-coupled receptors (GPCR) are gaining traction as potential treatment targets due to their roles in mediating a wide range of physiological processes. GPR120 is a recently identified omega-3 fatty acid receptor. We hypothesized that agonism of GPR120 might attenuate ox-LDL-induced endothelial dysfunction. In the present study, we tested the effects of two GPR120 agonists-GW9508 and TUG-891-in mitigating endothelial insult induced by ox-LDL in human aortic endothelial cells (HAECs). Real-time PCR, western blot, and ELISA analyses were used in our experiments. Our findings demonstrate that GPR120 is downregulated by exposure to ox-LDL, suggesting a role for GPR120 in mediating ox-LDL insult. Furthermore, we found that agonism of GPR120 could suppress oxidative stress and inflammation by inhibiting the production of reactive oxygen species and the expression of proinflammatory cytokines. Importantly, we show that agonism of GPR120 prevents the attachment of monocytes to endothelial cells by suppressing the expression of VCAM-1 and E-selectin. Finally, we show that agonism of GPR120 exerts a remarkable atheroprotective effect by elevating the expression level of Krüppel-like factor 2 (KLF2). Together, our results demonstrate a potential role for specific agonism of GPR120 in the prevention of endothelial damages induced by ox-LDL.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China
| | - Dongli Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Dong You
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Long Liu
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| | - Qini Zhao
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| |
Collapse
|
49
|
Yoon BK, Kang YH, Oh WJ, Roh CR, Kim DK, Kang CD. 17β-Estradiol Inhibits Lysophosphatidylcholine-Induced Apoptosis in Cultured Vascular Smooth Muscle Cells. J Menopausal Med 2020; 26:1-8. [PMID: 32307944 PMCID: PMC7160586 DOI: 10.6118/jmm.19019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 11/12/2022] Open
Abstract
Objectives Coronary heart disease (CHD) risk increases in women after menopause, but menopausal hormone therapy (MHT) helps prevent CHD if started early after menopause. To explore the mechanism underlying the direct vascular actions of estrogen, the effects of 17β-estradiol (E2) on apoptosis of vascular smooth muscle cells (VSMCs) induced with lysophosphatidylcholine (lysoPC), an active component of oxidized low-density lipoprotein, were investigated in the present study. Methods VSMCs were isolated from rat aortas. Apoptosis and protein expression of caspases were assessed using propidium iodide staining and Western blot analysis, respectively. Intracellular formation of reactive oxygen species (ROS) was examined using dichlorofluorescein diacetate, a cell-permeable oxidation-sensitive probe, and quantitated with flow cytometry. Nuclear factor-κB (NF-κB) activation was determined after transfection with a reporter plasmid containing the luciferase reporter gene. Results After pre-treatment for 24 hours, 17β-E2 suppressed lysoPC-induced (15 µM) apoptotic cell death in a dose-dependent manner with statistical significance at near physiological concentration. 17β-E2 (10−6 M) also increased protein levels of caspase-9 and -8 precursors and decreased the active form of caspase-3. Western blot analysis using subcellular fractions showed that 17β-E2 decreased mitochondrial Bax levels and concomitantly increased cytosolic Bax expression. Furthermore, intracellular production of ROS and NF-κB-mediated transcriptional activity were reduced with 17β-E2. In addition, estrogen effects on apoptosis were partially blocked by ICI 182,780, a specific estrogen receptor antagonist. Conclusions In cultured VSMCs treated with lysoPC, 17β-E2 reduced apoptotic cell death by down-regulating both extrinsic and intrinsic apoptosis pathways, contributing to the preventive action of MHT against CHD.
Collapse
Affiliation(s)
- Byung Koo Yoon
- Department of Obstetrics, Gynecology and Women's Health, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.
| | - Young Hee Kang
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Won Jong Oh
- Korea Brain Research Institute, Daegu, Korea
| | - Cheong Rae Roh
- Department of Obstetrics, Gynecology and Women's Health, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk Kyung Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chi Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Korea.
| |
Collapse
|
50
|
Coronary Artery Disease: From Mechanism to Clinical Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1177:1-36. [PMID: 32246442 DOI: 10.1007/978-981-15-2517-9_1] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In most developed countries, coronary artery disease (CAD), mostly caused by atherosclerosis of coronary arteries, is one of the primary causes of death. From 1990s to 2000s, mortality caused by acute MI declined up to 50%. The incidence of CAD is related with age, gender, economic, etc. Atherosclerosis contains some highly correlative processes such as lipid disturbances, thrombosis, inflammation, vascular smooth cell activation, remodeling, platelet activation, endothelial dysfunction, oxidative stress, altered matrix metabolism, and genetic factors. Risk factors of CAD exist among many individuals of the general population, which includes hypertension, lipids and lipoproteins metabolism disturbances, diabetes mellitus, chronic kidney disease, age, genders, lifestyle, cigarette smoking, diet, obesity, and family history. Angina pectoris is caused by myocardial ischemia in the main expression of pain in the chest or adjoining area, which is usually a result of exertion and related to myocardial function disorder. Typical angina pectoris would last for minutes with gradual exacerbation. Rest, sit, or stop walking are the usual preference for patients with angina, and reaching the maximum intensity in seconds is uncommon. Rest or nitroglycerin usage can relieve typical angina pectoris within minutes. So far, a widely accepted angina pectoris severity grading system included CCS (Canadian Cardiovascular Society) classification, Califf score, and Goldman scale. Patients with ST-segment elevated myocardial infarction (STEMI) may have different symptoms and signs of both severe angina pectoris and various complications. The combination of rising usage of sensitive MI biomarkers and precise imaging techniques, including electrocardiograph (ECG), computed tomography, and cardiac magnetic resonance imaging, made the new MI criteria necessary. Complications of acute myocardial infarction include left ventricular dysfunction, cardiogenic shock, structural complications, arrhythmia, recurrent chest discomfort, recurrent ischemia and infarction, pericardial effusion, pericarditis, post-myocardial infarction syndrome, venous thrombosis pulmonary embolism, left ventricular aneurysm, left ventricular thrombus, and arterial embolism.
Collapse
|