1
|
Guo H, Li Z, Wang Y. BCL3, GBP1, IFI16, and CCR1 as potential brain-derived biomarkers for parietal grey matter lesions in multiple sclerosis. Sci Rep 2024; 14:28543. [PMID: 39557900 PMCID: PMC11574279 DOI: 10.1038/s41598-024-76949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, progressing from Relapsing-Remitting MS (RRMS) to Secondary Progressive MS (SPMS) in many cases. The transition involves complex biological changes. Our study aims to identify potential biomarkers for distinguishing SPMS by analyzing gene expression differences between normal-appearing and lesioned parietal grey matter, which may also contribute to understand the pathogenesis of SPMS. We utilized public datasets from the Gene Expression Omnibus (GEO), applying bioinformatics and machine learning techniques including Weighted Gene Co-expression Network Analysis (WGCNA), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) enrichment analysis, protein-protein interaction (PPI) networks, the Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF) for predictive model construction. Our study also included analyses of immune cell infiltration. The study identified 359 DEGs, with 105 up-regulated and 254 down-regulated. WGCNA identified 264 common genes, which were subjected to KEGG and GO enrichment analyses, highlighting their role in immune response and viral infection pathways. Four genes (BCL3, GBP1, IFI16, and CCR1) were identified as key biomarkers for SPMS, supported by LASSO regression and RF analyses. These genes were further validated through receiver operating characteristic (ROC) curves, demonstrating significant predictive potential for SPMS. Our study provides a novel set of biomarkers for SPMS from lesioned grey matter of SPMS cases, offering potential for diagnosis and targeted therapeutic strategies. The identified biomarkers link closely with SPMS pathology, especially regarding immune system modulation.
Collapse
Affiliation(s)
- Hua Guo
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaocheng Li
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanqing Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
2
|
Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer 2024; 23:7. [PMID: 38195591 PMCID: PMC10775530 DOI: 10.1186/s12943-023-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/β-catenin, AKT, TGFβ/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.
Collapse
Affiliation(s)
- Gillian Seaton
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Hannah Smith
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrea Brancale
- UCT Prague, Technická 5, 166 28, 6 - Dejvice, IČO: 60461337, Prague, Czech Republic
| | - Andrew D Westwell
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
3
|
Liu H, Zeng L, Pan M, Huang L, Li H, Liu M, Niu X, Zhang C, Wang H. Bcl-3 regulates T cell function through energy metabolism. BMC Immunol 2023; 24:35. [PMID: 37794349 PMCID: PMC10552310 DOI: 10.1186/s12865-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Bcl-3 is a member of the IκB protein family and an essential modulator of NF-κB activity. It is well established that Bcl-3 is critical for the normal development, survival and differentiation of adaptive immune cells, especially T cells. However, the regulation of immune cell function by Bcl-3 through metabolic pathways has rarely been studied. RESULTS In this study, we explored the role of Bcl-3 in the metabolism and function of T cells via the mTOR pathway. We verified that the proliferation of Bcl-3-deficient Jurkat T cells was inhibited, but their activation was promoted, and Bcl-3 depletion regulated cellular energy metabolism by reducing intracellular ATP and ROS production levels and mitochondrial membrane potential. Bcl-3 also regulates cellular energy metabolism in naive CD4+ T cells. In addition, the knockout of Bcl-3 altered the expression of mTOR, Akt, and Raptor, which are metabolism-related genes, in Jurkat cells. CONCLUSIONS This finding indicates that Bcl-3 may mediate the energy metabolism of T cells through the mTOR pathway, thereby affecting their function. Overall, we provide novel insights into the regulatory role of Bcl-3 in T-cell energy metabolism for the prevention and treatment of immune diseases.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Pan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hanying Li
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengxia Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinqing Niu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
4
|
Liu H, Zeng L, Yang Y, Huang Z, Guo C, Huang L, Niu X, Zhang C, Wang H. Bcl-3 regulates the function of Th17 cells through raptor mediated glycolysis metabolism. Front Immunol 2022; 13:929785. [PMID: 36159779 PMCID: PMC9500237 DOI: 10.3389/fimmu.2022.929785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Bcl-3 is an atypical IκB family member that regulates transcription in the nucleus by binding to the p50/p52 homologous dimer subunit. Although various studies illustrate the important role of Bcl-3 in physiological function, its role in metabolism is still unclear. We found that Bcl-3 has a metabolic regulatory effect on autoimmunity. Bcl-3-depleted mice are unable to develop experimental autoimmune encephalomyelitis. The disease resistance was linked to an increase in lactate levels in Th17 cells, and lactate could alleviate EAE development in WT mice. Bcl-3 deficient mice had more differentiated Th17 cells and an increased extracellular acidification rate in these cells. Concurrently, their ultimate respiration rate and respiratory reserve capacity were significantly lower than wild-type mice. However, adding GNE-140 (LADH inhibitor) to Bcl-3-deficient Th17 cells could reverse the phenomenon, and lactate supplementation could increase the glycolysis metabolism of Th17 cells in WT mice. Mechanically, Bcl-3 could interact with Raptor through ANK and RNC domains. Therefore, Bcl-3 regulates Th17 pathogenicity by promoting Raptor mediated energy metabolism, revealing a novel regulation of adaptive immunity.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinqing Niu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
MaruYama T. The nuclear IκB family of proteins controls gene regulation and immune homeostasis. Int Immunopharmacol 2015; 28:836-40. [DOI: 10.1016/j.intimp.2015.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/07/2015] [Accepted: 03/28/2015] [Indexed: 01/12/2023]
|
7
|
Collins PE, Grassia G, Colleran A, Kiely PA, Ialenti A, Maffia P, Carmody RJ. Mapping the Interaction of B Cell Leukemia 3 (BCL-3) and Nuclear Factor κB (NF-κB) p50 Identifies a BCL-3-mimetic Anti-inflammatory Peptide. J Biol Chem 2015; 290:15687-15696. [PMID: 25922067 DOI: 10.1074/jbc.m115.643700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/06/2022] Open
Abstract
The NF-κB transcriptional response is tightly regulated by a number of processes including the phosphorylation, ubiquitination, and subsequent proteasomal degradation of NF-κB subunits. The IκB family protein BCL-3 stabilizes a NF-κB p50 homodimer·DNA complex through inhibition of p50 ubiquitination. This complex inhibits the binding of the transcriptionally active NF-κB subunits p65 and c-Rel on the promoters of NF-κB target genes and functions to suppress inflammatory gene expression. We have previously shown that the direct interaction between p50 and BCL-3 is required for BCL-3-mediated inhibition of pro-inflammatory gene expression. In this study we have used immobilized peptide array technology to define regions of BCl-3 that mediate interaction with p50 homodimers. Our data show that BCL-3 makes extensive contacts with p50 homodimers and in particular with ankyrin repeats (ANK) 1, 6, and 7, and the N-terminal region of Bcl-3. Using these data we have designed a BCL-3 mimetic peptide based on a region of the ANK1 of BCL-3 that interacts with p50 and shares low sequence similarity with other IκB proteins. When fused to a cargo carrying peptide sequence this BCL-3-derived peptide, but not a mutated peptide, inhibited Toll-like receptor-induced cytokine expression in vitro. The BCL-3 mimetic peptide was also effective in preventing inflammation in vivo in the carrageenan-induced paw edema mouse model. This study demonstrates that therapeutic strategies aimed at mimicking the functional activity of BCL-3 may be effective in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Patricia E Collins
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Amy Colleran
- Department of Biochemistry, University College Cork, Cork, Ireland
| | - Patrick A Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Armando Ialenti
- Department of Pharmacy, University of Napoli Federico II, Naples 80131, Italy
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; Department of Pharmacy, University of Napoli Federico II, Naples 80131, Italy
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
8
|
Out-of-sequence signal 3 as a mechanism for virus-induced immune suppression of CD8 T cell responses. PLoS Pathog 2014; 10:e1004357. [PMID: 25255454 PMCID: PMC4177909 DOI: 10.1371/journal.ppat.1004357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/28/2014] [Indexed: 12/15/2022] Open
Abstract
Virus infections are known to induce a transient state of immune suppression often associated with an inhibition of T cell proliferation in response to mitogen or cognate-antigen stimulation. Recently, virus-induced immune suppression has been linked to responses to type 1 interferon (IFN), a signal 3 cytokine that normally can augment the proliferation and differentiation of T cells exposed to antigen (signal 1) and co-stimulation (signal 2). However, pre-exposure of CD8 T cells to IFN-inducers such as viruses or poly(I∶C) prior to antigen signaling is inhibitory, indicating that the timing of IFN exposure is of essence. We show here that CD8 T cells pretreated with poly(I∶C) down-regulated the IFN receptor, up-regulated suppressor of cytokine signaling 1 (SOCS1), and were refractory to IFNβ-induced signal transducers and activators of transcription (STAT) phosphorylation. When exposed to a viral infection, these CD8 T cells behaved more like 2-signal than 3-signal T cells, showing defects in short lived effector cell differentiation, reduced effector function, delayed cell division, and reduced levels of survival proteins. This suggests that IFN-pretreated CD8 T cells are unable to receive the positive effects that type 1 IFN provides as a signal 3 cytokine when delivered later in the signaling process. This desensitization mechanism may partially explain why vaccines function poorly in virus-infected individuals.
Collapse
|
9
|
Maldonado V, Melendez-Zajgla J. Role of Bcl-3 in solid tumors. Mol Cancer 2011; 10:152. [PMID: 22195643 PMCID: PMC3258214 DOI: 10.1186/1476-4598-10-152] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Bcl-3 is an established oncogene in hematologic malignancies, such as B-cell chronic lymphocytic leukemias. Nevertheless, recent research has shown that it also participates in progression of diverse solid tumors. The present review summarizes the current knowledge of Bcl3 role in solid tumors progression, including some new insights in its possible molecular mechanisms of action.
Collapse
|
10
|
Abstract
Nuclear factor κB (NF-κB) is an inducible transcription factor that tightly regulates the expression of a large cohort of genes. As a key component of the cellular machinery NF-κB is involved in a wide range of biological processes including innate and adaptive immunity, inflammation, cellular stress responses, cell adhesion, apoptosis and proliferation. Appropriate regulation of NF-κB is critical for the proper function and survival of the cell. Aberrant NF-κB activity has now been implicated in the pathogenesis of several diseases ranging from inflammatory bowel disease to autoimmune conditions such as rheumatoid arthritis. Systems governing NF-κB activity are complex and there is an increased understanding of the importance of nuclear events in regulating NF-κB's activities as a transcription factor. A number of novel nuclear regulators of NF-κB such as IκB-ζ and PDZ and LIM domain 2 (PDLIM2) have now been identified, adding another layer to the mechanics of NF-κB regulation. Further insight into the functions of these molecules raises the prospect for better understanding and rational design of therapeutics for several important diseases.
Collapse
Affiliation(s)
- Arun K Mankan
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
11
|
Goetz CA, Baldwin AS. NF-kappaB pathways in the immune system: control of the germinal center reaction. Immunol Res 2009; 41:233-47. [PMID: 18670738 DOI: 10.1007/s12026-008-8033-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The NF-kappaB signaling pathway plays a critical role in regulating innate and adaptive immunity. This is clearly evident as mouse models deficient for numerous NF-kappaB subunits and upstream activators exhibit defects in the immune system ranging from impaired development of lymphocytes to defective adaptive immune responses. In this review, we focus on the role that NF-kappaB plays in the germinal center (GC) reaction. Specifically, we discuss the major NF-kappaB subunits and the IkappaB homolog, Bcl-3. Recent findings reveal that Bcl-6, an unrelated transcriptional repressor, is functionally similar to Bcl-3 as both factors may suppress p53 activity to allow for efficient GC formation to occur. We discuss potential mechanisms of action for Bcl-3 and Bcl-6 in this highly complex, but important process of B-cell affinity maturation.
Collapse
Affiliation(s)
- Christine A Goetz
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 405 West Dr., Room 213, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
12
|
Abstract
Immunological adjuvants, such as bacterial LPS, increase the mRNA levels of the IkB-related NF-κB transcriptional transactivator, Bcl-3, in activated T cells. Adjuvants also increase the life expectancy of activated T cells, as does over-expression of Bcl-3, suggesting that Bcl-3 is part of the pathway whereby adjuvants affect T cell lifespans. However, previous reports, confirmed here, show that adjuvants also increase the life expectancies of Bcl-3-deficient T cells, making Bcl-3’s role and effects in adjuvant-induced survival uncertain. To investigate the functions of Bcl-3 further, here we confirm the adjuvant-induced expression of Bcl-3 mRNA and show Bcl-3 induction at the protein level. Bcl-3 was expressed in mice via a transgene driven by the human CD2 promoter. Like other protective events, over-expression of Bcl-3 slows T cell activation very early in T cell responses to antigen, both in vitro and in vivo. This property was intrinsic to the T cells over-expressing the Bcl-3 and did not require Bcl-3 expression by other cells such as antigen-presenting cells.
Collapse
Affiliation(s)
- Michael F J Bassetti
- Integrated Department of Immunology, University of Colorado Denver Health Sciences Center, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
13
|
Gao M, Yeh PY, Lu YS, Chang WC, Kuo ML, Cheng AL. NF-κB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells. Biochem Biophys Res Commun 2008; 376:283-7. [DOI: 10.1016/j.bbrc.2008.08.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 08/25/2008] [Indexed: 11/30/2022]
|
14
|
|
15
|
Sengupta S, Jayaraman P, Chilton PM, Casella CR, Mitchell TC. Unrestrained glycogen synthase kinase-3 beta activity leads to activated T cell death and can be inhibited by natural adjuvant. THE JOURNAL OF IMMUNOLOGY 2007; 178:6083-91. [PMID: 17475833 DOI: 10.4049/jimmunol.178.10.6083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activated T cell death (ATCD) after peak clonal expansion is required for effective homeostasis of the immune system. Using a mouse model of T cell clonal expansion and contraction, we found that regulation of the proapoptotic kinase glycogen synthase kinase (GSK)-3beta plays a decisive role in determining the extent to which T cells are eliminated after activation. Involvement of GSK-3beta in ATCD was tested by measuring T cell survival after GSK-3beta inhibition, either ex vivo with chemical and pharmacological inhibitors or in vivo by retroviral expression of a dominant-negative form of GSK-3. We also measured amounts of inactivating phosphorylation of GSK-3beta (Ser9) in T cells primed in the presence or absence of LPS. Our results show that GSK-3beta activity is required for ATCD and that its inhibition promoted T cell survival. Adjuvant treatment in vivo maintained GSK-3beta (Ser9) phosphorylation in activated T cells, whereas with adjuvant-free stimulation it peaked and then decayed as the cells became susceptible to ATCD. We conclude that the duration of GSK-3beta inactivation determines activated T cell survival and that natural adjuvant stimulation decreases the severity of clonal contraction in part by keeping a critical proapoptotic regulatory factor, GSK-3beta, inactivated.
Collapse
Affiliation(s)
- Sadhak Sengupta
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40202, USA
| | | | | | | | | |
Collapse
|
16
|
Chilton PM, Mitchell TC. CD8 T cells require Bcl-3 for maximal gamma interferon production upon secondary exposure to antigen. Infect Immun 2006; 74:4180-9. [PMID: 16790793 PMCID: PMC1489710 DOI: 10.1128/iai.01749-05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adjuvant-induced survival of T cells after antigen activation correlates with increased expression of Bcl-3. Bcl-3 is an NF-kappaB/IkappaB family member and has been implicated in transcriptional regulation in several cell types. We tested the ability of mice deficient in Bcl-3 (Bcl-3 KO) to exhibit T-cell adjuvant-induced survival after challenge with the superantigen staphylococcal enterotoxin B (SEB), using lipopolysaccharide (LPS) as a natural adjuvant. These studies showed that Bcl-3 is required for secondary gamma interferon (IFN-gamma) production by CD8 T cells but not for adjuvant-induced survival effects. Specifically, wild-type and Bcl-3 KO mice exhibited comparable long-term increases in the Vbeta8(+) T-cell populations, indicating no lack of survival in response to adjuvant stimulation in the Bcl-3 KO activated T cells. Ectopic expression of the Bcl-3-related molecules IkappaBalpha, IkappaBbeta, and IkappaBepsilon in SEB-activated T cells increased survival during in vitro culture in the absence of adjuvant, suggesting that these IkappaB molecules could exert a survival function in antigen-activated T cells in place of Bcl-3. However, Vbeta8(+) CD8 T cells from SEB- plus LPS-treated Bcl-3 KO mice produced less IFN-gamma upon in vitro restimulation than Vbeta8(+) CD8 T cells from wild-type mice. Therefore, Bcl-3 plays a unique role in the regulation of IFN-gamma production in this model system.
Collapse
Affiliation(s)
- Paula M Chilton
- Institute for Cellular Therapeutics, University of Louisville, 570 South Preston Street, Suite 404, Louisville, KY 40202-1760, USA
| | | |
Collapse
|
17
|
Yeh PY, Kuo SH, Yeh KH, Chuang SE, Hsu CH, Chang WC, Lin HI, Gao M, Cheng AL. A pathway for tumor necrosis factor-alpha-induced Bcl10 nuclear translocation. Bcl10 is up-regulated by NF-kappaB and phosphorylated by Akt1 and then complexes with Bcl3 to enter the nucleus. J Biol Chem 2006; 281:167-175. [PMID: 16280327 DOI: 10.1074/jbc.m511014200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcl10 overexpression and nuclear translocation were originally identified in mucosa-associated lymphoid tissue lymphoma with t(1;14)(p32;q32) chromosome translocation. DNA amplification of Bcl10 was also found in other solid tumors. We have recently shown that nuclear translocation of Bcl10 is a specific molecular determinant of Helicobacter pylori-independent mucosa-associated lymphoid tissue lymphoma (Kuo, S.-H., Chen, L. T., Yeh, K.-H., Wu, M. S., Hsu, H. C., Yeh, P. Y., Mao, T. L., Chen, C. L., Doong, S. L., Lin, J. T., and Cheng, A.-L. (2004) J. Clin. Oncol. 22, 3491-3497). However, the molecular mechanism of Bcl10 nuclear translocation remains unknown. In this study, we observed that tumor necrosis factor-alpha (TNFalpha) up-regulates the expression of Bcl10 and induces a fraction of Bcl10 nuclear translocation in human breast carcinoma MCF7 cells. Chromatin immunoprecipitation assays and electrophoretic mobility shift assays indicated that an NF-kappaB-binding site resides in the Bcl10 5 '-untranslated region. This study also demonstrates that Akt1, activated by TNFalpha, phosphorylates Bcl10 at Ser218 and Ser231 and that phosphorylated Bcl10 subsequently complexes with Bcl3 to enter the nucleus. Either inhibition of Akt1 or depletion of Bcl3 blocks Bcl10 nuclear translocation. In summary, these findings characterize a molecular linkage that directs Bcl10 nuclear translocation in response to TNFalpha treatment.
Collapse
Affiliation(s)
- Pei Yen Yeh
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kucharczak J, Simmons MJ, Fan Y, Gélinas C. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2004; 22:8961-82. [PMID: 14663476 DOI: 10.1038/sj.onc.1207230] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During their lifetime, cells encounter many life or death situations that challenge their very own existence. Their survival depends on the interplay within a complex yet precisely orchestrated network of proteins. The Rel/NF-kappaB signaling pathway and the transcription factors that it activates have emerged as critical regulators of the apoptotic response. These proteins are best known for the key roles that they play in normal immune and inflammatory responses, but they are also implicated in the control of cell proliferation, differentiation, apoptosis and oncogenesis. In recent years, there has been remarkable progress in understanding the pathways that activate the Rel/NF-kappaB factors and their role in the cell's decision to either fight or surrender to apoptotic challenge. Whereas NF-kappaB is most commonly involved in suppressing apoptosis by transactivating the expression of antiapoptotic genes, it can promote programmed cell death in response to certain death-inducing signals and in certain cell types. This review surveys our current understanding of the role of NF-kappaB in the apoptotic response and focuses on many developments since this topic was last reviewed in Oncogene 4 years ago. These recent findings shed new light on the activity of NF-kappaB as a critical regulator of apoptosis in the immune, hepatic, epidermal and nervous systems, on the mechanisms through which it operates and on its role in tissue development, homoeostasis and cancer.
Collapse
Affiliation(s)
- Jérôme Kucharczak
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ, USA
| | | | | | | |
Collapse
|