1
|
Londoño AF, Scorpio DG, Dumler JS. Innate immunity in rickettsial infections. Front Cell Infect Microbiol 2023; 13:1187267. [PMID: 37228668 PMCID: PMC10203653 DOI: 10.3389/fcimb.2023.1187267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Rickettsial agents are a diverse group of alpha-proteobacteria within the order Rickettsiales, which possesses two families with human pathogens, Rickettsiaceae and Anaplasmataceae. These obligate intracellular bacteria are most frequently transmitted by arthropod vectors, a first step in the pathogens' avoidance of host cell defenses. Considerable study of the immune responses to infection and those that result in protective immunity have been conducted. Less study has focused on the initial events and mechanism by which these bacteria avoid the innate immune responses of the hosts to survive within and propagate from host cells. By evaluating the major mechanisms of evading innate immunity, a range of similarities among these bacteria become apparent, including mechanisms to escape initial destruction in phagolysosomes of professional phagocytes, those that dampen the responses of innate immune cells or subvert signaling and recognition pathways related to apoptosis, autophagy, proinflammatory responses, and mechanisms by which these microbes attach to and enter cells or those molecules that trigger the host responses. To illustrate these principles, this review will focus on two common rickettsial agents that occur globally, Rickettsia species and Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Andrés F. Londoño
- The Henry M. Jackson Foundation for Advancement in Military Medicine, Bethesda, MD, United States
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diana G. Scorpio
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - J. Stephen Dumler
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
2
|
Dumler JS, Lichay M, Chen WH, Rennoll-Bankert KE, Park JH. Anaplasma phagocytophilum Activates NF-κB Signaling via Redundant Pathways. Front Public Health 2020; 8:558283. [PMID: 33194960 PMCID: PMC7661751 DOI: 10.3389/fpubh.2020.558283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022] Open
Abstract
Anaplasma phagocytophilum subverts neutrophil function permitting intracellular survival, propagation and transmission. Sustained pro-inflammatory response, recruitment of new host cells for population expansion, and delayed apoptosis are associated with prolonged nuclear presence of NF-κB. We investigated NF-κB signaling and transcriptional activity with A. phagocytophilum infection using inhibitors of NF-κB signaling pathways, and through silencing of signaling pathway genes. How inhibitors or silencing affected A. phagocytophilum growth, inflammatory response (transcription of the κB-enhanced genes CXCL8 and MMP9), and NF-κB signaling pathway gene expression were tested. Among A. phagocytophilum-infected HL-60 cells, nuclear NF-κB p50, p65, and p52 were detected by immunoblots or iTRAQ proteomics. A. phagocytophilum growth was affected most by the IKKαβ inhibitor wedelolactone (reductions of 96 to 99%) as compared with SC-514 that selectively inhibits IKKβ, illustrating a role for the non-canonical pathway. Wedelolactone inhibited transcription of both CXCL8 (p = 0.001) and MMP9 (p = 0.002) in infected cells. Compared to uninfected THP-1 cells, A. phagocytophilum infection led to >2-fold down regulation of 64 of 92 NF-κB signaling pathway genes, and >2-fold increased expression in only 4. Wedelolactone and SC-514 reversed downregulation in all 64 and 45, respectively, of the genes down-regulated by infection, but decreased expression in 1 gene with SC-514 only. Silencing of 20 NF-κB signal pathway genes increased bacterial growth in 12 (IRAK1, MAP3K1, NFKB1B, MAP3K7, TICAM2, TLR3, TRADD, TRAF3, CHUK, IRAK2, LTBR, and MALT1). Most findings support canonical pathway activation; however, the presence of NFKB2 in infected cell nuclei, selective non-canonical pathway inhibitors that dampen CXCL8 and MMP9 transcription with infection, upregulation of non-canonical pathway target genes CCL13 and CCL19, enhanced bacterial growth with TRAF3 and LTBR silencing provide evidence for non-canonical pathway signaling. Whether this impacts distinct inflammatory processes that underlie disease, and whether and how A. phagocytophilum subverts NF-κB signaling via these pathways, need to be investigated.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University for the Health Sciences, Bethesda, MD, United States.,Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marguerite Lichay
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wan-Hsin Chen
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen E Rennoll-Bankert
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jin-Ho Park
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Dumler JS, Sinclair SH, Shetty AC. Alternative Splicing of Differentiated Myeloid Cell Transcripts after Infection by Anaplasma phagocytophilum Impacts a Selective Group of Cellular Programs. Front Cell Infect Microbiol 2018; 8:14. [PMID: 29456968 PMCID: PMC5801399 DOI: 10.3389/fcimb.2018.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic proteome diversity exceeds that encoded within individual genes, and results in part from alternative splicing events of pre-messenger RNA. The diversity of these splicing events can shape the outcome in development and differentiation of normal tissues, and is important in pathogenic circumstances such as cancer and some heritable conditions. A role for alternative splicing of eukaryotic genes in response to viral and intracellular bacterial infections has only recently been recognized, and plays an important role in providing fitness for microbial survival, while potentially enhancing pathogenicity. Anaplasma phagocytophilum survives within mammalian neutrophils by reshaping transcriptional programs that govern cellular functions. We applied next generation RNAseq to ATRA-differentiated HL-60 cells established to possess transcriptional and functional responses similar to A. phagocytophilum-infected human neutrophils. This demonstrated an increase in transcripts with infection and high proportion of alternatively spliced transcript events (ASEs) for which predicted gene ontology processes were in part distinct from those identified by evaluation of single transcripts or gene-level analyses alone. The alternative isoforms are not on average shorter, and no alternative splicing in genes encoding spliceosome components is noted. Although not evident at gene-level analyses, individual spliceosome transcripts that impact nearly all spliceosome components were significantly upregulated. How the distinct GO processes predicted by ASEs are regulated by infection and whether they are relevant to fitness or pathogenicity of A. phagocytophilum should be addressed in more detailed studies.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
4
|
Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Semin Immunol 2017; 35:19-28. [PMID: 29254756 DOI: 10.1016/j.smim.2017.12.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023]
Abstract
Neutrophils and polymorphonucler myeloid-derived suppressor cells (PMN-MDSC) share origin and many morphological and phenotypic features. However, they have different biological role. Neutrophils are one of the major mechanisms of protection against invading pathogens, whereas PMN-MDSC have immune suppressive activity and restrict immune responses in cancer, chronic infectious disease, trauma, sepsis, and many other pathological conditions. Although in healthy adult individuals, PMN-MDSC are not or barely detectable, in patients with cancer and many other diseases they accumulate at various degree and co-exist with neutrophils. Recent advances allow for better distinction of these cells and better understanding of their biological role. Accumulating evidence indicates PMN-MDSC as pathologically activated neutrophils, with important role in regulation of immune responses. In this review, we provide an overview on the definition and characterization of PMN-MDSC and neutrophils, their pathological significance in a variety of diseases, and their interaction with other stromal components.
Collapse
|
5
|
Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton. Vet Sci 2016; 3:vetsci3030025. [PMID: 29056733 PMCID: PMC5606578 DOI: 10.3390/vetsci3030025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV) is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Levi J May
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|
6
|
Anaplasma phagocytophilum up-regulates some anti-apoptotic genes in neutrophils and pro-inflammatory genes in mononuclear cells of sheep. J Comp Pathol 2014; 150:351-6. [PMID: 24602324 DOI: 10.1016/j.jcpa.2014.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/04/2013] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
Abstract
Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) in sheep and cattle and human granulocytic anaplasmosis, has the unique ability to selectively infect and multiply within the hostile environment of the neutrophil. Previous studies have shown that sheep with TBF are more susceptible to other infections and that infected neutrophils have reduced phagocytic ability and delayed apoptosis. This suggests that survival of A. phagocytophilum in these short-lived cells involves the ability to subvert or resist their bacterial killing, but also to modify the host cells such that the host cells survive long after infection. The present study shows that infection of sheep by A. phagocytophilum is characterized by up-regulation of some anti-apoptotic genes (BCL2, BIRC3 and CFLAR) in neutrophils and up-regulation of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-1β and IL-6 in mononuclear cells during the period of bacteraemia. Infection with A. phagocytophilum was also characterized by significant up-regulation of CYBB, which is associated with the respiratory burst of neutrophils.
Collapse
|
7
|
Rennoll-Bankert KE, Sinclair SH, Lichay MA, Dumler JS. Comparison and characterization of granulocyte cell models for Anaplasma phagocytophilum infection. Pathog Dis 2013; 71:55-64. [PMID: 24376092 DOI: 10.1111/2049-632x.12111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/03/2013] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum, an obligate intracellular bacterium, modifies functions of its in vivo host, the neutrophil. The challenges of using neutrophils ex vivo necessitate cell line models. However, cell line infections do not currently mimic ex vivo neutrophil infection characteristics. To understand these discrepancies, we compared infection of cell lines to ex vivo human neutrophils and differentiated hematopoietic stem cells with regard to infection capacity, oxidative burst, host defense gene expression, and differentiation. Using established methods, marked ex vivo neutrophil infection heterogeneity was observed at 24-48 h necessitating cell sorting to obtain homogeneously infected cells at levels observed in vivo. Moreover, gene expression of infected cell lines differed markedly from the prior standard of unsorted infected neutrophils. Differentiated HL-60 cells sustained similar infection levels to neutrophils in vivo and closely mimicked functional and transcriptional changes of sorted infected neutrophils. Thus, care must be exercised using ex vivo neutrophils for A. phagocytophilum infection studies because a major determinant of transcriptional and functional changes among all cells was the intracellular bacteria quantity. Furthermore, comparisons of ex vivo neutrophils and the surrogate HL-60 cell model allowed the determination that specific cellular functions and transcriptional programs are targeted by the bacterium without significantly modifying differentiation.
Collapse
Affiliation(s)
- Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
8
|
Drescher B, Bai F. Neutrophil in viral infections, friend or foe? Virus Res 2013; 171:1-7. [PMID: 23178588 PMCID: PMC3557572 DOI: 10.1016/j.virusres.2012.11.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/22/2022]
Abstract
Polymorphonuclear leukocytes or neutrophils are the first immune cells to the site of injury and microbial infection. Neutrophils are crucial players in controlling bacterial and fungal infections, and in particular secondary infections, by phagocytosis, degranulation and neutrophil extracellular traps (NETs). While neutrophils have been shown to play important roles in viral pathogenesis, there is a lack of detailed investigation. In this article, we will review recent progresses toward understanding the role of neutrophils in viral pathogenesis.
Collapse
Affiliation(s)
- Brandon Drescher
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | |
Collapse
|
9
|
Dumler JS. The biological basis of severe outcomes in Anaplasma phagocytophilum infection. ACTA ACUST UNITED AC 2011; 64:13-20. [PMID: 22098465 DOI: 10.1111/j.1574-695x.2011.00909.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/20/2011] [Accepted: 11/10/2011] [Indexed: 11/29/2022]
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an acute disease in humans that is also often subclinical. However, 36% are hospitalized, 7% need intensive care, and the case fatality rate is 0.6%. The biological basis for severe disease is not understood. Despite A. phagocytophilum's mechanisms to subvert neutrophil antimicrobial responses, whether these mechanisms lead to disease is unclear. In animals, inflammatory lesions track with IFNγ and IL-10 expression and infection of Ifng(-/-) mice leads to increased pathogen load but inhibition of inflammation. Suppression of STAT signaling in horses impacts IL-10 and IFN-γ expression, and also suppresses disease severity. Similar inhibition of inflammation with infection of NKT-deficient mice suggests that innate immune responses are key for disease. With severe disease, tissues can demonstrate hemophagocytosis, and measures of macrophage activation/hemophagocytic syndromes (MAS/HPS) support the concept of human granulocytic anaplasmosis as an immunopathologic disease. MAS/HPS are related to defective cytotoxic lymphocytes that ordinarily diminish inflammation. Pilot studies in mice show cytotoxic lymphocyte activation with A. phagocytophilum infection, yet suppression of cytotoxic responses from both NKT and CD8 cells, consistent with the development of MAS/HPS. Whether severity relates to microbial factors or genetically determined diversity in human immune and inflammatory response needs more investigation.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Grzeszczuk A, Milstone A, Choi K, Barat N, Garcia-Garcia J, Petrovec M, Dumler J. Differential impairment of neutrophil function by strains of Anaplasma phagocytophilum. Clin Microbiol Infect 2009; 15 Suppl 2:19-20. [DOI: 10.1111/j.1469-0691.2008.02136.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
Anaplasma phagocytophilum is the recently designated name replacing three species of granulocytic bacteria, Ehrlichia phagocytophila, Ehrlichia equi and the agent of human granulocytic ehrlichiosis, after the recent reorganization of the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales. Tick-borne fever (TBF), which is caused by the prototype of A. phagocytophilum, was first described in 1932 in Scotland. A similar disease caused by a related granulocytic agent was first described in horses in the USA in 1969; this was followed by the description of two distinct granulocytic agents causing similar diseases in dogs in the USA in 1971 and 1982. Until the discovery of human granulocytic anaplasmosis (HGA) in the USA in 1994, these organisms were thought to be distinct species of bacteria infecting specific domestic animals and free-living reservoirs. It is now widely accepted that the agents affecting different animal hosts are variants of the same Gram-negative obligatory intracellular bacterium, which is transmitted by hard ticks belonging to the Ixodes persulcatus complex. One of its fascinating features is that it infects and actively grows in neutrophils by employing an array of mechanisms to subvert their bactericidal activity. It is also able to survive within an apparently immune host by employing a complex mechanism of antigenic variation. Ruminants with TBF and humans with HGA develop severe febrile reaction, bacteraemia and leukopenia due to neutropenia, lymphocytopenia and thrombocytopenia within a week of exposure to a tick bite. Because of the severe haematological disorders lasting for several days and other adverse effects on the host's immune functions, infected animals and humans are more susceptible to other infections.
Collapse
Affiliation(s)
- Zerai Woldehiwet
- University of Liverpool, Department of Veterinary Pathology, Veterinary Teaching Hospital, Leahurst, Neston, South Wirral CH64 7TE, UK.
| |
Collapse
|
12
|
Chen T, Lin X, Xu J, Tan R, Ji J, Shen P. Redox imbalance provokes deactivation of macrophages in sepsis. Proteomics Clin Appl 2009; 3:1000-9. [DOI: 10.1002/prca.200800016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/31/2009] [Accepted: 04/08/2009] [Indexed: 11/08/2022]
|
13
|
Woldehiwet Z. Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Vet J 2007; 175:37-44. [PMID: 17275372 DOI: 10.1016/j.tvjl.2006.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/22/2006] [Accepted: 11/25/2006] [Indexed: 01/02/2023]
Abstract
Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) in sheep and cattle and human granulocytic anaplasmosis, has the unique ability to infect and multiply within neutrophils, eosinophils and monocytes, cells at the frontline of the immune system. Infection with A. phagocytophilum is also characterized by severe leukopenia due to lymphocytopenia, neutropenia and thrombocytopenia lasting for several days. By itself TBF does not cause high mortality rates but infected animals are more susceptible to other secondary infections, pregnant animals may abort and there is a severe reduction in milk yield in dairy cattle. The susceptibility to secondary infections can be attributed to the leukopenia that accompanies the disease and the organism's adverse effects on lymphocyte and neutrophil functions. One of its fascinating features is that it infects and actively grows in neutrophils by employing an array of mechanisms to subvert their bactericidal activity. These include its ability to inhibit phagosome-lysosome fusion, to suppress respiratory burst and to delay the apoptotic death of neutrophils. It is also able to survive within an apparently immune host by employing a complex mechanism of antigenic variation.
Collapse
Affiliation(s)
- Zerai Woldehiwet
- University of Liverpool, Department of Veterinary Pathology, Veterinary Teaching Hospital, Leahurst, Neston, Wirral CH64 7TE, UK.
| |
Collapse
|
14
|
Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, Grab DJ, Bakken JS. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 2006; 11:1828-34. [PMID: 16485466 PMCID: PMC3367650 DOI: 10.3201/eid1112.050898] [Citation(s) in RCA: 338] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human granulocytic anaplasmosis is a tickborne rickettsial infection of neutrophils caused by Anaplasma phagocytophilum. The human disease was first identified in 1990, although the pathogen was defined as a veterinary agent in 1932. Since 1990, US cases have markedly increased, and infections are now recognized in Europe. A high international seroprevalence suggests infection is widespread but unrecognized. The niche for A. phagocytophilum, the neutrophil, indicates that the pathogen has unique adaptations and pathogenetic mechanisms. Intensive study has demonstrated interactions with host-cell signal transduction and possibly eukaryotic transcription. This interaction leads to permutations of neutrophil function and could permit immunopathologic changes, severe disease, and opportunistic infections. More study is needed to define the immunology and pathogenetic mechanisms and to understand why severe disease develops in some persons and why some animals become long-term permissive reservoir hosts.
Collapse
Affiliation(s)
- J Stephen Dumler
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review summarizes recent knowledge regarding the strategies employed by Anaplasma phagocytophilum to evade or subvert neutrophil killing mechanisms and modify other neutrophil pathways to promote its survival. RECENT FINDINGS A. phagocytophilum evades neutrophil oxidative killing by preventing fusion of cytochrome b558-carrying specific granules and secretory vesicles with the membrane of its cytoplasmic compartment. It also directly detoxifies superoxide anion. Additionally, the bacterium alters the interaction of transcription factors with the CYYB promoter, which results in greatly reduced gp91phox levels and a consequent decline in respiratory burst capability. A. phagocytophilum not only fails to activate the normal neutrophil apoptosis differentiation program stimulated by bacterial uptake, but also delays spontaneous apoptosis by manipulating the expression of pro and antiapoptotic genes. Maintenance of the proapoptotic factor Bfl-1 contributes, at least in part, to the preservation of mitochondrial membrane integrity and inhibition of caspase 3 activation. SUMMARY A. phagocytophilum combats neutrophil oxidative killing by scavenging O2, inhibiting NADPH oxidase assembly on its vacuolar membrane, and modifying promoter activity for a key NADPH oxidase component, gp91phox. Uptake of this unique pathogen fails to induce neutrophil apoptosis. Furthermore, A. phagocytophilum extends the life of its otherwise short-lived host cell by dysregulating neutrophil gene expression and molecular machinery to potentially maximize its survival and dissemination within its mammalian host.
Collapse
Affiliation(s)
- Jason A Carlyon
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
16
|
Sukumaran B, Carlyon JA, Cai JL, Berliner N, Fikrig E. Early transcriptional response of human neutrophils to Anaplasma phagocytophilum infection. Infect Immun 2006; 73:8089-99. [PMID: 16299303 PMCID: PMC1307096 DOI: 10.1128/iai.73.12.8089-8099.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, an unusual obligate intracellular pathogen that persists within neutrophils, causes human anaplasmosis (previously known as human granulocytic ehrlichiosis). To study the effects of this pathogen on the transcriptional profile of its host cell, we performed a comprehensive DNA microarray analysis of the early (4-h) transcriptional response of human neutrophils to A. phagocytophilum infection. A. phagocytophilum infection resulted in the up- and down-regulation of 177 and 67 neutrophil genes, respectively. These data were verified by quantitative reverse transcription-PCR of selected genes. Notably, the up-regulation of many antiapoptotic genes, including the BCL2A1, BIRC3, and CFLAR genes, and the down-regulation of the proapoptotic TNFSF10 gene were observed. Genes involved in inflammation, innate immunity, cytoskeletal remodeling, and vesicular transport also exhibited differential expression. Vascular endothelial growth factor was also induced. These data suggest that A. phagocytophilum may alter selected host pathways in order to facilitate its survival within human neutrophils. To gain further insight into the bacterium's influence on host cell gene expression, this report presents a detailed comparative analysis of our data and other gene expression profiling studies of A. phagocytophilum-infected neutrophils and promyelocytic cell lines.
Collapse
Affiliation(s)
- Bindu Sukumaran
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center for Medical Research and Education, New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|
17
|
Rikihisa Y. Ehrlichia subversion of host innate responses. Curr Opin Microbiol 2006; 9:95-101. [PMID: 16406779 DOI: 10.1016/j.mib.2005.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/16/2005] [Indexed: 01/15/2023]
Abstract
Anaplasma (formerly Ehrlichia) phagocytophilum and Ehrlichia chaffeensis, upon infection of humans, replicate in host leukocyte granulocytes and monocytes/macrophages, respectively. These unusual Gram-negative bacteria lack genes for biosynthesis of the lipopolysaccharide and peptidoglycan that activate host leukocytes. Caveolae-mediated endocytosis directs A. phagocytophilum and E. chaffeensis to an intracellular compartment secluded from oxygen-dependent and -independent killing. Furthermore, these bacteria orchestrate a remarkable series of events that culminate in suppression of NADPH oxidase, phagocyte activation and differentiation pathways, apoptosis, and interferon-gamma signaling in host leukocytes. They offer a fascinating example of how pathogens employ intricate strategies to usurp and subvert host cell function.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Abbott JR, Palmer GH, Kegerreis KA, Hetrick PF, Howard CJ, Hope JC, Brown WC. Rapid and long-term disappearance of CD4+ T lymphocyte responses specific for Anaplasma marginale major surface protein-2 (MSP2) in MSP2 vaccinates following challenge with live A. marginale. THE JOURNAL OF IMMUNOLOGY 2005; 174:6702-15. [PMID: 15905510 DOI: 10.4049/jimmunol.174.11.6702] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In humans and ruminants infected with Anaplasma, the major surface protein 2 (MSP2) is immunodominant. Numerous CD4(+) T cell epitopes in the hypervariable and conserved regions of MSP2 contribute to this immunodominance. Antigenic variation in MSP2 occurs throughout acute and persistent infection, and sequentially emerging variants are thought to be controlled by variant-specific Ab. This study tested the hypothesis that challenge of cattle with Anaplasma marginale expressing MSP2 variants to which the animals had been immunized, would stimulate variant epitope-specific recall CD4(+) T cell and IgG responses and organism clearance. MSP2-specific T lymphocyte responses, determined by IFN-gamma ELISPOT and proliferation assays, were strong before and for 3 wk postchallenge. Surprisingly, these responses became undetectable by the peak of rickettsemia, composed predominantly of organisms expressing the same MSP2 variants used for immunization. Immune responsiveness remained insignificant during subsequent persistent A. marginale infection up to 1 year. The suppressed response was specific for A. marginale, as responses to Clostridium vaccine Ag were consistently observed. CD4(+)CD25(+) T cells and cytokines IL-10 and TGF-beta1 did not increase after challenge. Furthermore, a suppressive effect of nonresponding cells was not observed. Lymphocyte proliferation and viability were lost in vitro in the presence of physiologically relevant numbers of A. marginale organisms. These results suggest that loss of memory T cell responses following A. marginale infection is due to a mechanism other than induction of T regulatory cells, such as peripheral deletion of MSP2-specific T cells.
Collapse
Affiliation(s)
- Jeffrey R Abbott
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, 99164, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Garyu JWA, Choi KS, Grab DJ, Dumler JS. Defective phagocytosis in Anaplasma phagocytophilum-infected neutrophils. Infect Immun 2005; 73:1187-90. [PMID: 15664962 PMCID: PMC547103 DOI: 10.1128/iai.73.2.1187-1190.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Anaplasma phagocytophilum infection induces functional neutrophil changes. Using both Candida albicans and fluorescent-aggregate phagocytosis assays, we examined whether neutrophil and dimethyl sulfoxide-differentiated HL-60 cell infection impairs internalization. A. phagocytophilum infection significantly decreased phagocytosis compared to that of controls (P < 0.05). This further impairment of neutrophil function may promote opportunistic infections and exacerbate disease.
Collapse
Affiliation(s)
- Justin W A Garyu
- Department of Pathology, Division of Medical Microbiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 624, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
20
|
Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2004; 2:820-32. [PMID: 15378046 DOI: 10.1038/nrmicro1004] [Citation(s) in RCA: 1154] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phagocyte-derived reactive oxygen and nitrogen species are of crucial importance for host resistance to microbial pathogens. Decades of research have provided a detailed understanding of the regulation, generation and actions of these molecular mediators, as well as their roles in resisting infection. However, differences of opinion remain with regard to their host specificity, cell biology, sources and interactions with one another or with myeloperoxidase and granule proteases. More than a century after Metchnikoff first described phagocytosis, and more than four decades after the discovery of the burst of oxygen consumption that is associated with microbial killing, the seemingly elementary question of how phagocytes inhibit, kill and degrade microorganisms remains controversial. This review updates the reader on these concepts and the topical questions in the field.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, 1959 North East Pacific Street, Box 357242, Seattle, Washington 98195-7242, USA.
| |
Collapse
|
21
|
IJdo JW, Mueller AC. Neutrophil NADPH oxidase is reduced at the Anaplasma phagocytophilum phagosome. Infect Immun 2004; 72:5392-401. [PMID: 15322037 PMCID: PMC517486 DOI: 10.1128/iai.72.9.5392-5401.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intracellular organism Anaplasma phagocytophilum causes human granulocytic ehrlichiosis and specifically infects and multiplies in neutrophilic granulocytes. Previous reports have suggested that, for its survival, this bacterium suppresses the neutrophil respiratory burst. To investigate the mechanism of survival, we first assessed the kinetics of A. phagocytophilum entry into neutrophils by using double-labeling confocal microscopy. At 30, 60, 120, and 240 min of incubation, 25, 50, 55, and 70% of neutrophils contained bacteria, respectively. The neutrophil respiratory burst in the presence of A. phagocytophilum was assessed by a kinetic cytochrome c assay and by measurement of oxygen consumption. Neutrophils in the presence of A. phagocytophilum did not produce a significant respiratory burst, but A. phagocytophilum did not inhibit the neutrophil respiratory burst when phorbol myristate acetate was added. Immunoelectron microscopy of neutrophils infected with A. phagocytophilum or Escherichia coli revealed that NADPH oxidase subunits gp91(phox) and p22(phox) were significantly reduced at the A. phagocytophilum phagosome after 1 and 4 h of incubation. In neutrophils incubated simultaneously with A. phagocytophilum and E. coli for 30, 60, and 90 min, gp91(phox) was present on 20, 14, and 10% of the A. phagocytophilum phagosomes, whereas p22(phox) was present in 11, 5, and 4% of the phagosomes, respectively. Similarly, on E. coli phagosomes, gp91(phox) was present in 62, 64, and 65%, whereas p22(phox) was detected in 54, 48, and 48%. We conclude that A. phagocytophilum does not suppress a global respiratory burst and that, under identical conditions in the same cells, A. phagocytophilum, but not E. coli, significantly reduces gp91(phox) and p22(phox) from its phagosome membrane.
Collapse
Affiliation(s)
- Jacob W IJdo
- Inflammation Program, Department of Internal Medicine, Division of Rheumatology, C312GH, University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
22
|
Carlyon JA, Abdel-Latif D, Pypaert M, Lacy P, Fikrig E. Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect Immun 2004; 72:4772-83. [PMID: 15271939 PMCID: PMC470610 DOI: 10.1128/iai.72.8.4772-4783.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Revised: 03/18/2004] [Accepted: 05/04/2004] [Indexed: 01/02/2023] Open
Abstract
Anaplasma phagocytophilum, the etiologic agent of human anaplasmosis, is a bacterial pathogen that specifically colonizes neutrophils. Neutrophils utilize the NADPH oxidase complex to generate superoxide (O(2)(-)) and initiate oxidative killing of microorganisms. A. phagocytophilum's unique tropism for neutrophils, however, indicates that it subverts and/or avoids oxidative killing. We therefore examined the effects of A. phagocytophilum infection on neutrophil NADPH oxidase assembly and reactive oxygen species (ROS) production. Following neutrophil binding, Anaplasma invasion requires at least 240 min. During its prolonged association with the neutrophil plasma membrane, A. phagocytophilum stimulates NADPH oxidase assembly, as indicated by increased cytochrome b(558) mobilization to the membrane, as well as colocalization of Rac and p22(phox). This initial stimulation taxes the host neutrophil's finite oxidase reserves, as demonstrated by time- and bacterial-dose-dependent decreases in secondary activation by N-formyl-methionyl-leucyl-phenylalanine (FMLP) or phorbol myristate acetate (PMA). This stimulation is modest, however, and does not diminish oxidase stores to nearly the extent that Escherichia coli, serum-opsonized zymosan, FMLP, or PMA do. Despite the apparent activation of NADPH oxidase, no change in ROS-dependent chemiluminescence is observed upon the addition of A. phagocytophilum to neutrophils, indicating that the bacterium may scavenge exogenous O(2)(-). Indeed, A. phagocytophilum rapidly detoxifies O(2)(-) in a cell-free system. Once internalized, the bacterium resides within a protective vacuole that excludes p22(phox) and gp91(phox). Thus, A. phagocytophilum employs at least two strategies to protect itself from neutrophil NADPH oxidase-mediated killing.
Collapse
Affiliation(s)
- Jason A Carlyon
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
23
|
Choi KS, Grab DJ, Dumler JS. Anaplasma phagocytophilum infection induces protracted neutrophil degranulation. Infect Immun 2004; 72:3680-3. [PMID: 15155684 PMCID: PMC415649 DOI: 10.1128/iai.72.6.3680-3683.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Anaplasma phagocytophilum-infected neutrophil degranulation could exacerbate inflammation. Thus, the degranulation of infected neutrophils was assayed. Infected neutrophils expressed CD11b and CD66b, and supernatants of infected neutrophils showed more proMMP-9 and MMP-9 activity than controls and continued to do so for > or =18 h. Degranulation-related inflammatory tissue injury may account for some clinical manifestations in human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Kyoung-seong Choi
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review focuses on adaptive bacterial interactions with neutrophils, emphasizing information communicated within the past year about bacterial factors that respond to contact with or phagocytosis by PMN. RECENT FINDINGS Since the discovery of type III and IV secretion, progress in the analysis of bacterial interactions with host phagocytes has been extensive but largely focused on the macrophage. The remarkable growth of information about bacterial subversion of macrophage metabolism has been summarized in several excellent reviews. The scope of progress on neutrophil-bacteria interactions is more limited and dominated by recent studies of the granulocyte pathogen, Anaplasma phagocytophilum, the agent of granulocytic ehrlichiosis. SUMMARY For many pathogens, contact with or ingestion by phagocytes elicits a vigorous but varied microbial response. The response repertoire includes activation of type III and type IV secretion systems that inject effector molecules into the host cell. Effectors modify host cell signaling and metabolic pathways to favor survival of the microbe. Whereas microbial secretory structures are few in kind and relatively conserved, effector molecules are numerous and variable. Effectors may promote phagocytosis by nonphagocytic cells or suppress phagocytosis by macrophages and neutrophils. They may suppress assembly or misdirect localization of the phagocyte NADPH oxidase that is responsible for generating toxic oxidants, and they may suppress phagosome-lysosome fusion. Phagocytosed bacteria may also up-regulate the expression of defensive proteins that attenuate the effects of phagocyte-derived antimicrobial toxins. These pathogenic stratagems probably have their origins in the competition among single-celled organisms, eukaryotes versus prokaryotes, that arose early in evolution.
Collapse
Affiliation(s)
- Henry Rosen
- Department of Medicine, University of Washington, Seattle 98195, USA.
| |
Collapse
|