1
|
Na ES. Epigenetic Mechanisms of Obesity: Insights from Transgenic Animal Models. Life (Basel) 2025; 15:653. [PMID: 40283207 PMCID: PMC12028693 DOI: 10.3390/life15040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Obesity is a chronic disease with prevalence rates that have risen dramatically over the past four decades. This increase is not due to changes in the human genome but rather to environmental factors that promote maladaptive physiological responses. Emerging evidence suggests that external influences, such as high-fat diets, modify the epigenome-the interface between genes and the environment-leading to persistent alterations in energy homeostasis. This review explores the role of epigenetic mechanisms in obesity, emphasizing insights from transgenic animal models and clinical studies. Additionally, we discuss the evolution of obesity research from homeostatic to allostatic frameworks, highlighting key neuroendocrine regulators of energy balance.
Collapse
Affiliation(s)
- Elisa S Na
- School of Social Work, Psychology, & Philosophy, Texas Woman's University, Denton, TX 76209, USA
| |
Collapse
|
2
|
Ganeyan A, Ganesh CB. Exposure to chronic stress impedes seasonal and gonadotropin-induced ovarian recrudescence in the gecko Hemidactylus frenatus. Reprod Biol 2024; 24:100957. [PMID: 39378728 DOI: 10.1016/j.repbio.2024.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
The neuroendocrine regulation of the stress-reproductive axis in reptiles is complex due to the diverse reproductive strategies adopted by these animals. Consequently, the underlying mechanisms by which stress can affect the reproductive axis remain opaque in reptiles. In the present study, we examined the effect of stress on the seasonal and FSH-induced ovarian recrudescence during the breeding and non-breeding phases of the cycle in the tropical and subtropical house gecko Hemidactylus frenatus. During the recrudescence phase of the ovarian cycle, exposure of lizards to various stressors (handling, confinement, chasing, and noise) caused a significant increase in the percentage of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH)-immunoreactive (ir) content in the median eminence (ME) and/or pars distalis of the pituitary gland (PD), concomitant with a significant decrease in the release of gonadotropin-releasing hormone (GnRH)-ir content into the ME and PD, and number of oogonia in the germinal bed and absence of the stage IV and V (vitellogenic) follicles in the ovary compared to experimental controls. During the non-breeding phase, treatment of stressed lizards with FSH did not stimulate the development of stage IV and V follicles, in contrast to their appearance in FSH-only-treated lizards. Collectively, these findings suggest that exposure to stressors prevents the seasonal ovarian recrudescence, possibly mediated through the suppression of hypothalamic GnRH release into the ME and PD and/or directly at the level of the ovary.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580003, India.
| |
Collapse
|
3
|
Galichet C, Rizzoti K, Lovell-Badge R. Hypopituitarism in Sox3 null mutants correlates with altered NG2-glia in the median eminence and is influenced by aspirin and gut microbiota. PLoS Genet 2024; 20:e1011395. [PMID: 39325695 PMCID: PMC11426531 DOI: 10.1371/journal.pgen.1011395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The median eminence (ME), located at the base of the hypothalamus, is an essential centre of information exchange between the brain and the pituitary. We and others previously showed that mutations and duplications affecting the transcription factor SOX3/Sox3 result in hypopituitarism, and this is likely of hypothalamic origin. We demonstrate here that the absence of Sox3 predominantly affects the ME with phenotypes that first occur in juvenile animals, despite the embryonic onset of SOX3 expression. In the pituitary, reduction in hormone levels correlates with a lack of endocrine cell maturation. In parallel, ME NG2-glia renewal and oligodendrocytic differentiation potential are affected. We further show that low-dose aspirin treatment, which is known to affect NG2-glia, or changes in gut microbiota, rescue both proliferative defects and hypopituitarism in Sox3 mutants. Our study highlights a central role of NG2-glia for ME function during a transitional period of post-natal development and indicates their sensitivity to extrinsic signals.
Collapse
Affiliation(s)
- Christophe Galichet
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
- Neurobiological Research Facility, UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, United Kingdom
| | - Karine Rizzoti
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
4
|
Parmaksiz D, Kim Y. Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories. Neuroscientist 2024:10738584241268754. [PMID: 39113465 DOI: 10.1177/10738584241268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Complex mechanisms govern the transport and action of oxytocin (Oxt), a neuropeptide and hormone that mediates diverse physiologic processes. While Oxt exerts site-specific and rapid effects in the brain via axonal and somatodendritic release, volume transmission via CSF and the neurovascular interface can act as an additional mechanism to distribute Oxt signals across distant brain regions on a slower timescale. This review focuses on modes of Oxt transport and action in the CNS, with particular emphasis on the roles of perivascular spaces, the blood-brain barrier (BBB), and circumventricular organs in coordinating the triadic interaction among circulating blood, CSF, and parenchyma. Perivascular spaces, critical conduits for CSF flow, play a pivotal role in Oxt diffusion and distribution within the CNS and reciprocally undergo Oxt-mediated structural and functional reconstruction. While the BBB modulates the movement of Oxt between systemic and cerebral circulation in a majority of brain regions, circumventricular organs without a functional BBB can allow for diffusion, monitoring, and feedback regulation of bloodborne peripheral signals such as Oxt. Recognition of these additional transport mechanisms provides enhanced insight into the systemic propagation and regulation of Oxt activity.
Collapse
Affiliation(s)
- Deniz Parmaksiz
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Ganeyan A, Ganesh CB. Organization of enkephalinergic neuronal system in the central nervous system of the gecko Hemidactylus frenatus. Brain Struct Funct 2024; 229:1365-1395. [PMID: 38713249 DOI: 10.1007/s00429-024-02805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Enkephalins are endogenous opioid pentapeptides that play a role in neurotransmission and pain modulation in vertebrates. However, the distribution pattern of enkephalinergic neurons in the brains of reptiles has been understudied. This study reports the organization of the methionine-enkephalin (M-ENK) and leucine-enkephalin (L-ENK) neuronal systems in the central nervous system of the gecko Hemidactylus frenatus using an immunofluorescence labeling method. Although M-ENK and L-ENK-immunoreactive (ir) fibers extended throughout the pallial and subpallial subdivisions, including the olfactory bulbs, M-ENK and L-ENK-ir cells were found only in the dorsal septal nucleus. Enkephalinergic perikarya and fibers were highly concentrated in the periventricular and lateral preoptic areas, as well as in the anterior and lateral subdivisions of the hypothalamus, while enkephalinergic innervation was observed in the hypothalamic periventricular nucleus, infundibular recess nucleus and median eminence. The dense accumulation of enkephalinergic content was noticed in the pars distalis of the hypophysis. In the thalamus, the nucleus rotundus and the dorsolateral, medial, and medial posterior thalamic nuclei contained M-ENK and L-ENK-ir fibers, whereas clusters of M-ENK and L-ENK-ir neurons were observed in the pretectum, mesencephalon, and rhombencephalon. The enkephalinergic fibers were also seen in the area X around the central canal, as well as the dorsal and ventral horns. The widespread distribution of enkephalin-containing neurons within the central nervous system implies that enkephalins regulate a variety of functions in the gecko, including sensory, behavioral, hypophysiotropic, and neuroendocrine functions.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
6
|
Szabó F, Köves K, Gál L. History of the Development of Knowledge about the Neuroendocrine Control of Ovulation-Recent Knowledge on the Molecular Background. Int J Mol Sci 2024; 25:6531. [PMID: 38928237 PMCID: PMC11203711 DOI: 10.3390/ijms25126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.
Collapse
Affiliation(s)
- Flóra Szabó
- Division of Gastroenterology and Nutrition, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Levente Gál
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
7
|
Pan S, A.C. Souza L, Worker CJ, Reyes Mendez ME, Gayban AJB, Cooper SG, Sanchez Solano A, Bergman RN, Stefanovski D, Morton GJ, Schwartz MW, Feng Earley Y. (Pro)renin receptor signaling in hypothalamic tyrosine hydroxylase neurons is required for obesity-associated glucose metabolic impairment. JCI Insight 2024; 9:e174294. [PMID: 38349753 PMCID: PMC11063935 DOI: 10.1172/jci.insight.174294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Glucose homeostasis is achieved via complex interactions between the endocrine pancreas and other peripheral tissues and glucoregulatory neurocircuits in the brain that remain incompletely defined. Within the brain, neurons in the hypothalamus appear to play a particularly important role. Consistent with this notion, we report evidence that (pro)renin receptor (PRR) signaling within a subset of tyrosine hydroxylase (TH) neurons located in the hypothalamic paraventricular nucleus (PVNTH neurons) is a physiological determinant of the defended blood glucose level. Specifically, we demonstrate that PRR deletion from PVNTH neurons restores normal glucose homeostasis in mice with diet-induced obesity (DIO). Conversely, chemogenetic inhibition of PVNTH neurons mimics the deleterious effect of DIO on glucose. Combined with our finding that PRR activation inhibits PVNTH neurons, these findings suggest that, in mice, (a) PVNTH neurons play a physiological role in glucose homeostasis, (b) PRR activation impairs glucose homeostasis by inhibiting these neurons, and (c) this mechanism plays a causal role in obesity-associated metabolic impairment.
Collapse
Affiliation(s)
- Shiyue Pan
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Caleb J. Worker
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Miriam E. Reyes Mendez
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Ariana Julia B. Gayban
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Silvana G. Cooper
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Alfredo Sanchez Solano
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Darko Stefanovski
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Gregory J. Morton
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Michael W. Schwartz
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
8
|
Ganeyan A, Ganesh CB. The influence of the opioid pentapeptide methionine-enkephalin on seasonal and FSH-induced ovarian recrudescence in the gecko Hemidactylus frenatus. Gen Comp Endocrinol 2023; 342:114353. [PMID: 37536461 DOI: 10.1016/j.ygcen.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Although methionine-enkephalin (M-ENK) is implicated in the regulation of reproductive functions in vertebrates, its function in reptiles is little understood. This study aims to elucidate the role of M-ENK on seasonal and follicle stimulating hormone (FSH)-induced ovarian recrudescence in the gecko Hemidactylus frenatus. In the first experiment, administration of 5 µg M-ENK did not affect germinal bed activity or follicular developmental stages I, II, and III (previtellogenic) and IV (vitellogenic), but there were no stage V (vitellogenic) follicles in the ovary. However, there was a significant decrease in the mean numbers of oogonia and primary oocytes in the germinal bed associated with the complete absence of stage IV and V follicles in 25 µg M-ENK-treated lizards in contrast to experimental controls. Furthermore, there was a significant decrease in gonadotropin-releasing hormone - immunoreactive (GnRH-ir) content in the median eminence (ME) and pars distalis (PD) of the pituitary gland and sparse labelling of hypothalamic GnRH-ir neurons in 25 µg M-ENK-treated lizards. In the second experiment, treatment with FSH during the regression phase of the ovarian cycle resulted in the appearance of stage IV and V follicles, in contrast to their absence in the initial controls and treatment controls. However, treatment with 25 µg M-ENK + FSH did not result in the appearance of these follicles, indicating the inhibitory effect of M-ENK on FSH-induced ovarian recrudescence. These findings suggest that M-ENK inhibits the germinal bed and vitellogenic follicular growth in a dose-dependent manner, possibly mediated through the suppression of GnRH release in the ME and PD. In addition, M-ENK may also act at the level of the ovary in the gecko.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
9
|
Ganeyan A, Ganesh CB. The opioid peptide leucine-enkephalin disrupts seasonal and gonadotropin-induced ovarian recrudescence in the gecko Hemidactylus frenatus. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111454. [PMID: 37263377 DOI: 10.1016/j.cbpa.2023.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
The enkephalins are known to regulate many physiological functions, including reproduction in vertebrates. However, the role of leucine-enkephalin (L-ENK) in the ovarian recrudescence activity of reptiles is not known. In the present study, we studied the influence of L-ENK on seasonal and FSH-induced ovarian recrudescence during the breeding and non-breeding phases of the cycle in the tropical and subtropical gecko Hemidactylus frenatus. In the first experiment, treatment with 5 and 25 μg L-ENK resulted in a dose-dependent inhibitory effect on the hypothalamic gonadotropin-releasing hormone (GnRH) neurons and ovary, as indicated by a significantly decreased percent area of GnRH-immunoreactive (GnRH-ir) fibres in the median eminence and pars distalis of the pituitary gland, concomitant with complete absence of stage V (late vitellogenic) follicles in the ovary compared to those of experimental controls. In the second experiment, administration of FSH to lizards in the regression phase stimulated the recruitment of stage IV and V (vitellogenic) follicles in contrast to their absence in initial controls or treatment controls. However, similar treatment of FSH in combination with 25 μg L-ENK did not result in the development of stage IV or V follicles. Together, these results suggest for the first time that treatment with 5 and 25 μg L-ENK exerts a dose-dependent inhibitory effect on the hypothalamic GnRH release into the median eminence and pituitary gland, leading to the blockade of ovarian recrudescence. These results also suggest a possible direct inhibitory effect of L-ENK at the level of the ovary in the gecko.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
10
|
Smith KB, Murack M, Ismail N. The sex-dependent and enduring impact of pubertal stress on health and disease. Brain Res Bull 2023; 200:110701. [PMID: 37422090 DOI: 10.1016/j.brainresbull.2023.110701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Illness is often predicated long before the manifestation of its symptoms. Exposure to stressful experiences particularly during critical periods of development, such as puberty and adolescence, can induce various physical and mental illnesses. Puberty is a critical period of maturation for neuroendocrine systems, such as the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Exposure to adverse experiences during puberty can impede normal brain reorganizing and remodelling and result in enduring consequences on brain functioning and behaviour. Stress responsivity differs between the sexes during the pubertal period. This sex difference is partly due to differences in circulating sex hormones between males and females, impacting stress and immune responses differently. The effects of stress during puberty on physical and mental health remains under-examined. The purpose of this review is to summarize the most recent findings pertaining to age and sex differences in HPA axis, HPG axis, and immune system development, and describe how disruption in the functioning of these systems can propagate disease. Lastly, we delve into the notable neuroimmune contributions, sex differences, and the mediating role of the gut microbiome on stress and health outcomes. Understanding the enduring consequences of adverse experiences during puberty on physical and mental health will allow a greater proficiency in treating and preventing stress-related diseases early in development.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Michael Murack
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada; LIFE Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Buller S, Kohnke S, Hansford R, Shimizu T, Richardson WD, Blouet C. Median eminence myelin continuously turns over in adult mice. Mol Metab 2023; 69:101690. [PMID: 36739968 PMCID: PMC9950957 DOI: 10.1016/j.molmet.2023.101690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Oligodendrocyte progenitor cell differentiation is regulated by nutritional signals in the adult median eminence (ME), but the consequences on local myelination are unknown. The aim of this study was to characterize myelin plasticity in the ME of adult mice in health or in response to chronic nutritional challenge and determine its relevance to the regulation of energy balance. METHODS We assessed new oligodendrocyte (OL) and myelin generation and stability in the ME of healthy adult male mice using bromodeoxyuridine labelling and genetic fate mapping tools. We evaluated the contribution of microglia to ME myelin plasticity in PLX5622-treated C57BL/6J mice and in Pdgfra-Cre/ERT2;R26R-eYFP;Myrffl/fl mice, where adult oligodendrogenesis is blunted. Next, we investigated how high-fat feeding or caloric restriction impact ME OL lineage progression and myelination. Finally, we characterized the functional relevance of adult oligodendrogenesis on energy balance regulation. RESULTS We show that myelinating OLs are continuously and rapidly generated in the adult ME. Paradoxically, OL number and myelin amounts remain remarkably stable in the adult ME. In fact, the high rate of new OL and myelin generation in the ME is offset by continuous turnover of both. We show that microglia are required for continuous OL and myelin production, and that ME myelin plasticity regulates the recruitment of local immune cells. Finally, we provide evidence that ME myelination is regulated by the body's energetic status and demonstrate that ME OL and myelin plasticity are required for the regulation of energy balance and hypothalamic leptin sensitivity. CONCLUSIONS This study identifies a new mechanism modulating leptin sensitivity and the central control of energy balance and uncovers a previously unappreciated form of structural plasticity in the ME.
Collapse
Affiliation(s)
- Sophie Buller
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Disease Unit, University of Cambridge, Cambridge, UK.
| | - Sara Kohnke
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Disease Unit, University of Cambridge, Cambridge, UK.
| | - Robert Hansford
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Disease Unit, University of Cambridge, Cambridge, UK.
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | - Clemence Blouet
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Disease Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Jensen VFH, Schefe LH, Jacobsen H, Mølck AM, Almholt K, Sjögren I, Dalsgaard CM, Kirk RK, Benie AJ, Petersen BO, Kyhn MS, Overgaard AJ, Bjørnsdottir I, Stannard DR, Offenberg HK, Egecioglu E. Normal Neurodevelopment and Fertility in Juvenile Male Rats Exposed to Polyethylene Glycol Following Dosing With PEGylated rFIX (Nonacog Beta Pegol, N9-GP): Evidence from a 10-Week Repeat-Dose Toxicity Study. Int J Toxicol 2022; 41:455-475. [DOI: 10.1177/10915818221121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
N9-GP/Rebinyn®/Refixia® is an approved PEGylated (polyethylene glycol-conjugated) recombinant human factor IX intended for prophylactic and/or on-demand treatment in adults and children with haemophilia B. A juvenile neurotoxicity study was conducted in male rats to evaluate effects on neurodevelopment, sexual maturation, and fertility following repeat-dosing of N9-GP. Male rats were dosed twice weekly from Day 21 of age with N9-GP or vehicle for 10 weeks, followed by a dosing-free recovery period for 13 weeks and terminated throughout the dosing and recovery periods. Overall, dosing N9-GP to juvenile rats did not result in any functional or pathological effects, as measured by neurobehavioural/neurocognitive tests, including motor activity, sensory function, learning and memory as well as growth, sexual maturation, and fertility. This was further supported by the extensive histopathologic evaluation of brain tissue. Exposure and distribution of polyethylene glycol was investigated in plasma, choroid plexus, cerebrospinal fluid, and brain sections. PEG did not cross the blood brain barrier and PEG exposure did not result in any effects on neurodevelopment. In conclusion, dosing of N9-GP to juvenile rats did not identify any effects on growth, sexual maturation and fertility, clinical and histological pathology, or neurodevelopment related to PEG exposure and supports the prophylactic use of N9-GP in children.
Collapse
Affiliation(s)
- Vivi F. H. Jensen
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Line H. Schefe
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| | - Helene Jacobsen
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| | - Anne-Marie Mølck
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Kasper Almholt
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Ingrid Sjögren
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | | | - Rikke K Kirk
- Department of Safety Sciences & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Andrew J. Benie
- Department of Biophysics & Formulation 1, Novo Nordisk A/S, Måløv, Denmark
| | - Bent O. Petersen
- Department of Biophysics & Formulation 1, Novo Nordisk A/S, Måløv, Denmark
| | - Mette S. Kyhn
- Department of Non-clinical and Clinical Assay Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Anne J. Overgaard
- Department of Non-clinical and Clinical Assay Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Inga Bjørnsdottir
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| | | | - Hanne K. Offenberg
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| | - Emil Egecioglu
- Department of DMPK (Drug Metabolism and Pharmacokinetics) and Non-clinical Project Management, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
13
|
Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr Rev 2022; 43:507-557. [PMID: 35552683 PMCID: PMC9113190 DOI: 10.1210/endrev/bnab034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
Recent insights into the pathophysiologic underlying mechanisms of obesity have led to the discovery of several promising drug targets and novel therapeutic strategies to address the global obesity epidemic and its comorbidities. Current pharmacologic options for obesity management are largely limited in number and of modest efficacy/safety profile. Therefore, the need for safe and more efficacious new agents is urgent. Drugs that are currently under investigation modulate targets across a broad range of systems and tissues, including the central nervous system, gastrointestinal hormones, adipose tissue, kidney, liver, and skeletal muscle. Beyond pharmacotherapeutics, other potential antiobesity strategies are being explored, including novel drug delivery systems, vaccines, modulation of the gut microbiome, and gene therapy. The present review summarizes the pathophysiology of energy homeostasis and highlights pathways being explored in the effort to develop novel antiobesity medications and interventions but does not cover devices and bariatric methods. Emerging pharmacologic agents and alternative approaches targeting these pathways and relevant research in both animals and humans are presented in detail. Special emphasis is given to treatment options at the end of the development pipeline and closer to the clinic (ie, compounds that have a higher chance to be added to our therapeutic armamentarium in the near future). Ultimately, advancements in our understanding of the pathophysiology and interindividual variation of obesity may lead to multimodal and personalized approaches to obesity treatment that will result in safe, effective, and sustainable weight loss until the root causes of the problem are identified and addressed.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew J Belanger
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Chrysi C Koliaki
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
15
|
Chen ZH, Li S, Xu M, Liu CC, Ye H, Wang B, Wu QF. Single-cell Transcriptomic Profiling of the Hypothalamic Median Eminence during Aging. J Genet Genomics 2022; 49:523-536. [PMID: 35032691 DOI: 10.1016/j.jgg.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Aging is a slow and progressive natural process that compromises the normal functions of cells, tissues, organs and systems. The aging of the hypothalamic median eminence (ME), a structural gate linking neural and endocrine systems, may impair hormone release, energy homeostasis and central sensing of circulating molecules, leading to systemic and reproductive aging. However, the molecular and cellular features of ME aging remain largely unknown. Here we describe the transcriptional landscape of young and middle-aged mouse ME at single-cell resolution, revealing the common and cell-type-specific transcriptional changes with age. The transcriptional changes in cell-intrinsic programs, cell-cell crosstalk and cell-extrinsic factors highlight five molecular features of ME aging and also implicate several potentially druggable targets at cellular, signaling and molecular levels. Importantly, our results suggest that vascular and leptomeningeal cells (VLMCs) may lead the asynchronized aging process among diverse cell types and drive local inflammation and cellular senescence via a unique secretome. Together, our study uncovers how intrinsic and extrinsic features of each cell type in the hypothalamic ME are changed by the aging process, which will facilitate our understanding of brain aging and provide clues for efficient anti-aging intervention at the middle-aged stage.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Si Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Candace C Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ben Wang
- Department of Obstetrics and Gynecology, Baoding Second Central Hospital, Baoding, Hebei 072750, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Institute for Brain Research, Beijing 102206, China; Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
16
|
Kohnke S, Buller S, Nuzzaci D, Ridley K, Lam B, Pivonkova H, Bentsen MA, Alonge KM, Zhao C, Tadross J, Holmqvist S, Shimizu T, Hathaway H, Li H, Macklin W, Schwartz MW, Richardson WD, Yeo GSH, Franklin RJM, Karadottir RT, Rowitch DH, Blouet C. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep 2021; 36:109362. [PMID: 34260928 PMCID: PMC8293628 DOI: 10.1016/j.celrep.2021.109362] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The mediobasal hypothalamus (MBH; arcuate nucleus of the hypothalamus [ARH] and median eminence [ME]) is a key nutrient sensing site for the production of the complex homeostatic feedback responses required for the maintenance of energy balance. Here, we show that refeeding after an overnight fast rapidly triggers proliferation and differentiation of oligodendrocyte progenitors, leading to the production of new oligodendrocytes in the ME specifically. During this nutritional paradigm, ME perineuronal nets (PNNs), emerging regulators of ARH metabolic functions, are rapidly remodeled, and this process requires myelin regulatory factor (Myrf) in oligodendrocyte progenitors. In genetically obese ob/ob mice, nutritional regulations of ME oligodendrocyte differentiation and PNN remodeling are blunted, and enzymatic digestion of local PNN increases food intake and weight gain. We conclude that MBH PNNs are required for the maintenance of energy balance in lean mice and are remodeled in the adult ME by the nutritional control of oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Sara Kohnke
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sophie Buller
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danae Nuzzaci
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine Ridley
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Brian Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Helena Pivonkova
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Marie A Bentsen
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Chao Zhao
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John Tadross
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Staffan Holmqvist
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Hannah Hathaway
- Department of Cell & Developmental Biology and Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Wendy Macklin
- Department of Cell & Developmental Biology and Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ragnhildur T Karadottir
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David H Rowitch
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
17
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
18
|
Miyai K, Kawauchi S, Kato T, Yamamoto T, Mukai Y, Yamamoto T, Sato S. Axonal damage and behavioral deficits in rats with repetitive exposure of the brain to laser-induced shock waves: Effects of inter-exposure time. Neurosci Lett 2021; 749:135722. [PMID: 33592306 DOI: 10.1016/j.neulet.2021.135722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Much attention has been given to effects of repeated exposure to a shock wave as a possible factor causing severe higher brain dysfunction and post-traumatic stress disorder (PTSD)-like symptoms in patients with mild to moderate blast-induced traumatic brain injury (bTBI). However, it is unclear how the repeated exposure and the inter-exposure time affect the brain. In this study, we topically applied low-impulse (∼54 Pa·s) laser-induced shock waves (LISWs; peak pressure, ∼75.7 MPa) to the rat brain once or twice with the different inter-exposure times (15 min, 1 h, 3 h, 24 h and 7 days) and examined anxiety-related behavior and motor dysfunction in the rats as well as expression of β-amyloid precursor protein (APP) as an axonal damage marker in the brains of the rats. The averaged APP expression scores for the rat brains doubly-exposed to LISWs with inter-exposure times from 15 min to 24 h were significantly higher than those for rats with a single exposure (P < 0.0001). The rats with double exposure to LISWs showed significantly more frequent anxiety-related behavior (P < 0.05) and poorer motor function (P < 0.01) than those of rats with a single exposure. When the inter-exposure time was extended to 7 days, however, the rats showed no significant differences either in axonal damage score or level of motor dysfunction. The results suggest that the cumulative effects of shock wave-related brain injury can be avoided with an appropriate inter-exposure time. However, clinical bTBI occurs in much more complex environments than those in our model. Further study considering other factors, such as the effects of acceleration, is needed to know the clinically-relevant, necessary inter-exposure time.
Collapse
Affiliation(s)
- Kosuke Miyai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Satoko Kawauchi
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Tamaki Kato
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Yasuo Mukai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Taisuke Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan.
| |
Collapse
|
19
|
The Future of Incretin-Based Approaches for Neurodegenerative Diseases in Older Adults: Which to Choose? A Review of their Potential Efficacy and Suitability. Drugs Aging 2021; 38:355-373. [PMID: 33738783 DOI: 10.1007/s40266-021-00853-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
The current treatment options for neurodegenerative diseases in older adults rely mainly on providing symptomatic relief. Yet, it remains imperative to identify agents that slow or halt disease progression to avoid the most disabling features often associated with advanced disease stages. A potential overlap between the pathological processes involved in diabetes and neurodegeneration has been established, raising the question of whether incretin-based therapies for diabetes may also be useful in treating neurodegenerative diseases in older adults. Here, we review the different agents that belong to this class of drugs (GLP-1 receptor agonists, dual/triple receptor agonists, DPP-4 inhibitors) and describe the data supporting their potential role in treating neurodegenerative conditions including Parkinson's disease and Alzheimer's disease. We further discuss whether there are any distinctive properties among them, particularly in the context of safety or tolerability and CNS penetration, that might facilitate their successful repurposing as disease-modifying drugs. Proof-of-efficacy data will obviously be of the greatest importance, and this is most likely to be demonstrable in agents that reach the central nervous system and impact on neuronal GLP-1 receptors. Additionally, however, the long-term safety and tolerability (including gastrointestinal side effects and unwanted weight loss) as well as the route of administration of this class of agents may also ultimately determine success and these aspects should be considered in prioritising which approaches to subject to formal clinical trial evaluations.
Collapse
|
20
|
Verdi A, Nasr-Esfahani MH, Forouzanfar M, Tavalaee M. The Effect of Recombinant Human Follicle-Stimulating Hormone on Sperm Quality, Chromatin Status and Clinical Outcomes of Infertile Oligozoospermic Men Candidate for Intracytoplasmic Sperm Injection: A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:1-7. [PMID: 33497040 PMCID: PMC7838760 DOI: 10.22074/ijfs.2021.6210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/11/2020] [Indexed: 01/18/2023]
Abstract
Background Follicle-stimulating hormone (FSH) plays a crucial role in spermatogenesis; in this study, we assessed
the effect of recombinant human FSH (rhFSH) on sperm parameters, chromatin status and clinical outcomes of infer-
tile oligozoospermic men candidates for intracytoplasmic sperm injection (ICSI). Materials and Methods This interventional randomized clinical trials (IRCT) included 40 infertile oligozoospermic
men undergoing ICSI. These individuals were randomized into two groups: 20 men received rhFSH drug for three
months and the other 20 men who did not receive rhFSH drug were considered the control group. Before and 3 months
after treatment initiation, sperm parameters (using computer-assisted semen analysis) and chromatin status [using
chromomycin A3, aniline blue, and sperm chromatin dispersion (SCD) tests] were assessed in these individuals. Fur-
thermore, hormonal profile was assessed using enzyme-linked immunosorbent assay (ELISA). Clinical outcomes of
ICSI were also compared between the two groups.
Results The rhFSH treated group showed a significant increase in the level of FSH, luteinizing hormone (LH), tes-
tosterone (T) and prolactin (PRL), as well as significant improvements in sperm parameters compared to the control
group. Also, after administration of rhFSH, there was asignificant reduction in the percentage of sperm DNA damage,
protamine deficiency and chromatin immaturity, while such a reduction in these parameters was not observed in the
control group. Moreover, the percentage of embryos with grade Aquality, was significantly higher in the rhFSH group
compared to the control group. The pregnancy rate in the rhFSH group was higher than the control group but the dif-
ference was insignificant. Conclusion Administration of rhFSH improves sperm quality in infertile oligozoospermic men and results in higher
rates of good quality embryos post-ICSI (Registration number: IRCT20170923036334N2).
Collapse
Affiliation(s)
- Atefeh Verdi
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran. Electronic Address:
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
21
|
Tanycytes in the infundibular nucleus and median eminence and their role in the blood-brain barrier. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:253-273. [PMID: 34225934 DOI: 10.1016/b978-0-12-820107-7.00016-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier is generally attributed to endothelial cells. However, in circumventricular organs, such as the median eminence, tanycytes take over the barrier function. These ependymoglial cells form the wall of the third ventricle and send long extensions into the parenchyma to contact blood vessels and hypothalamic neurons. The shape and location of tanycytes put them in an ideal position to connect the periphery with central nervous compartments. In line with this, tanycytes control the transport of hormones and key metabolites in and out of the hypothalamus. They function as sensors of peripheral homeostasis for central regulatory networks. This chapter discusses current evidence that tanycytes play a key role in regulating glucose balance, food intake, endocrine axes, seasonal changes, reproductive function, and aging. The understanding of how tanycytes perform these diverse tasks is only just beginning to emerge and will probably lead to a more differentiated view of how the brain and the periphery interact.
Collapse
|
22
|
Transcriptomic analysis reveals gender differences in gene expression profiling of the hypothalamus of rhesus macaque with aging. Aging (Albany NY) 2020; 12:18251-18273. [PMID: 32986013 PMCID: PMC7585077 DOI: 10.18632/aging.103682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Due to the current delay in childbearing, the importance of elucidating the underlying mechanisms for reproductive aging has increased. Human fertility is considered to be controlled by hormones secreted by the hypothalamic-pituitary-gonadal axis. To clarify the changes in hypothalamic gene expression with increasing age, we performed paired-end strand-specific total RNA sequencing for the hypothalamus tissues of rhesus. We found that hypothalamic gene expression in females was more susceptible to aging than that in males, and reproductive aging in females and males might have different regulatory mechanisms. Intriguingly, the expression of most of the hormones secreted by hypothalamus showed no significant difference among the macaques grouped by age and gender. Moreover, the age-related housekeeping genes in females were enriched in neurodegenerative disorders- and metabolic-related pathways. This study provides evidence that aging may influence hypothalamic gene expression through different mechanisms in females and males and may involve some nonhormonal pathways, which helps further elucidate the process of reproductive aging and improve clinical fertility assessment in mid-aged women.
Collapse
|
23
|
Trudeau VL, Somoza GM. Multimodal hypothalamo-hypophysial communication in the vertebrates. Gen Comp Endocrinol 2020; 293:113475. [PMID: 32240708 DOI: 10.1016/j.ygcen.2020.113475] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
The vertebrate pituitary is arguably one of the most complex endocrine glands from the evolutionary, anatomical and functional perspectives. The pituitary plays a master role in endocrine physiology for the control of growth, metabolism, reproduction, water balance, and the stress response, among many other key processes. The synthesis and secretion of pituitary hormones are under the control of neurohormones produced by the hypothalamus. Under this conceptual framework, the communication between the hypophysiotropic brain and the pituitary gland is at the foundation of our understanding of endocrinology. The anatomy of the connections between the hypothalamus and the pituitary gland has been described in different vertebrate classes, revealing diverse modes of communication together with varying degrees of complexity. In this context, the evolution and variation in the neuronal, neurohemal, endocrine and paracrine modes will be reviewed in light of recent discoveries, and a re-evaluation of earlier observations. There appears to be three main hypothalamo-pituitary communication systems: 1. Diffusion, best exemplified by the agnathans; 2. Direct innervation of the adenohypophysis, which is most developed in teleost fish, and 3. The median eminence/portal blood vessel system, most conspicuously developed in tetrapods, showing also considerable variation between classes. Upon this basic classification, there exists various combinations possible, giving rise to taxon and species-specific, multimodal control over major physiological processes. Intrapituitary paracrine regulation and communication between folliculostellate cells and endocrine cells are additional processes of major importance. Thus, a more complex evolutionary picture of hypothalamo-hypophysial communication is emerging. There is currently little direct evidence to suggest which neuroendocrine genes may control the evolution of one communication system versus another. However, studies at the developmental and intergenerational timescales implicate several genes in the angiogenesis and axonal guidance pathways that may be important.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| |
Collapse
|
24
|
Gosztonyi G, Ludwig H, Bode L, Kao M, Sell M, Petrusz P, Halász B. Obesity induced by Borna disease virus in rats: key roles of hypothalamic fast-acting neurotransmitters and inflammatory infiltrates. Brain Struct Funct 2020; 225:1459-1482. [PMID: 32394093 DOI: 10.1007/s00429-020-02063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022]
Abstract
Human obesity epidemic is increasing worldwide with major adverse consequences on health. Among other possible causes, the hypothesis of an infectious contribution is worth it to be considered. Here, we report on an animal model of virus-induced obesity which might help to better understand underlying processes in human obesity. Eighty Wistar rats, between 30 and 60 days of age, were intracerebrally inoculated with Borna disease virus (BDV-1), a neurotropic negative-strand RNA virus infecting an unusually broad host spectrum including humans. Half of the rats developed fatal encephalitis, while the other half, after 3-4 months, continuously gained weight. At tripled weights, rats were sacrificed by trans-cardial fixative perfusion. Neuropathology revealed prevailing inflammatory infiltrates in the median eminence (ME), progressive degeneration of neurons of the paraventricular nucleus, the entorhinal cortex and the amygdala, and a strikingly high-grade involution of the hippocampus with hydrocephalus. Immune histology revealed that major BDV-1 antigens were preferentially present at glutamatergic receptor sites, while GABAergic areas remained free from BDV-1. Virus-induced suppression of the glutamatergic system caused GABAergic predominance. In the hypothalamus, this shifted the energy balance to the anabolic appetite-stimulating side governed by GABA, allowing for excessive fat accumulation in obese rats. Furthermore, inflammatory infiltrates in the ME and ventro-medial arcuate nucleus hindered free access of appetite-suppressing hormones leptin and insulin. The hormone transport system in hypothalamic areas outside the ME became blocked by excessively produced leptin, leading to leptin resistance. The resulting hyperleptinemic milieu combined with suppressed glutamatergic mechanisms was a characteristic feature of the found metabolic pathology. In conclusion, the study provided clear evidence that BDV-1 induced obesity in the rat model is the result of interdependent structural and functional metabolic changes. They can be explained by an immunologically induced hypothalamic microcirculation-defect, combined with a disturbance of neurotransmitter regulatory systems. The proposed mechanism may also have implications for human health. BDV-1 infection has been frequently found in depressive patients. Independently, comorbidity between depression and obesity has been reported, either. Future studies should address the exciting question of whether BDV-1 infection could be a link, whatsoever, between these two conditions.
Collapse
Affiliation(s)
- Georg Gosztonyi
- Institute of Neuropathology, Charité, University Medicine Berlin, 10117, Berlin, Germany.
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Liv Bode
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Moujahed Kao
- Landesbetrieb Hessisches Landeslabor, 35392, Giessen, Germany
| | - Manfred Sell
- Division of Pathology, Martin Luther Hospital, 12351, Berlin, Germany
| | - Peter Petrusz
- Department of Cell and Developmental Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Béla Halász
- Neuromorphological and Neuroendocrine Research Laboratory, Semmelweis University, 1094, Budapest, Hungary
| |
Collapse
|
25
|
Dagbasi A, Lett AM, Murphy K, Frost G. Understanding the interplay between food structure, intestinal bacterial fermentation and appetite control. Proc Nutr Soc 2020; 79:1-17. [PMID: 32383415 DOI: 10.1017/s0029665120006941] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological and clinical evidence highlight the benefit of dietary fibre consumption on body weight. This benefit is partly attributed to the interaction of dietary fibre with the gut microbiota. Dietary fibre possesses a complex food structure which resists digestion in the upper gut and therefore reaches the distal gut where it becomes available for bacterial fermentation. This process yields SCFA which stimulate the release of appetite-suppressing hormones glucagon-like peptide-1 and peptide YY. Food structures can further enhance the delivery of fermentable substrates to the distal gut by protecting the intracellular nutrients during upper gastrointestinal digestion. Domestic and industrial processing can disturb these food structures that act like barriers towards digestive enzymes. This leads to more digestible products that are better absorbed in the upper gut. As a result, less resistant material (fibre) and intracellular nutrients may reach the distal gut, thus reducing substrates for bacterial fermentation and its subsequent benefits on the host metabolism including appetite suppression. Understanding this link is essential for the design of diets and food products that can promote appetite suppression and act as a successful strategy towards obesity management. This article reviews the current evidence in the interplay between food structure, bacterial fermentation and appetite control.
Collapse
Affiliation(s)
- A Dagbasi
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| | - A M Lett
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| | - K Murphy
- Department of Medicine, Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - G Frost
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
26
|
van Esdonk MJ, Burggraaf J, van der Graaf PH, Stevens J. Model informed quantification of the feed-forward stimulation of growth hormone by growth hormone-releasing hormone. Br J Clin Pharmacol 2020; 86:1575-1584. [PMID: 32087619 PMCID: PMC7373696 DOI: 10.1111/bcp.14265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/27/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Aims Growth hormone (GH) secretion is pulsatile and secretion varies highly between individuals. To understand and ultimately predict GH secretion, it is important to first delineate and quantify the interaction and variability in the biological processes underlying stimulated GH secretion. This study reports on the development of a population nonlinear mixed effects model for GH stimulation, incorporating individual GH kinetics and the stimulation of GH by GH‐releasing hormone (GHRH). Methods Literature data on the systemic circulation, the median eminence, and the anterior pituitary were included as system parameters in the model. Population parameters were estimated on data from 8 healthy normal weight and 16 obese women who received a 33 μg recombinant human GH dose. The next day, a bolus injection of 100 μg GHRH was given to stimulate GH secretion. Results The GH kinetics were best described with the addition of 2 distribution compartments with a bodyweight dependent clearance (increasing linearly from 24.7 L/h for a 60‐kg subject to 32.1 L/h for a 100‐kg subject). The model described the data adequately with high parameter precision and significant interindividual variability on the GH clearance and distribution volume. Additionally, high variability in the amount of secreted GH, driven by GHRH receptor activation, was identified (coefficient of variation = 90%). Conclusion The stimulation of GH by GHRH was quantified and significant interindividual variability was identified on multiple parameters. This model sets the stage for further development of by inclusion of additional physiological components to quantify GH secretion in humans.
Collapse
Affiliation(s)
- Michiel J van Esdonk
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | - Jacobus Burggraaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Certara QSP, Canterbury, UK
| | - Jasper Stevens
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Di Giorgio NP, Bizzozzero Hiriart M, Surkin PN, López PV, Bourguignon NS, Dorfman VB, Bettler B, Libertun C, Lux-Lantos V. Multiple failures in the lutenising hormone surge generating system in GABAB1KO female mice. J Neuroendocrinol 2019; 31:e12765. [PMID: 31269532 DOI: 10.1111/jne.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and β and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERβ was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Pablo N Surkin
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula V López
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Sufieva DA, Kirik OV, Korzhevskii DE. Astrocyte Markers in the Tanycytes of the Third Brain Ventricle in Postnatal Development and Aging in Rats. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419030068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Rodríguez-Rodríguez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, Charli JL. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front Endocrinol (Lausanne) 2019; 10:401. [PMID: 31293518 PMCID: PMC6603095 DOI: 10.3389/fendo.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of β2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, β2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making β2-tanycytes a hub for energy-related regulation of HPT axis activity. β2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of β2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, β2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.
Collapse
Affiliation(s)
- Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
30
|
Bernstein C, Shifren J, Maleki N. Need for Migraine/Perimenopausal Research. Headache 2018; 58:1670-1674. [PMID: 30194719 DOI: 10.1111/head.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2018] [Indexed: 01/26/2023]
Affiliation(s)
| | - Jan Shifren
- Massachusetts General Hospital - Obstetrics and Gynecology, Boston, MA, USA
| | - Nasim Maleki
- Massachusetts General Hospital - Psychiatric Neuroimaging, Charlestown, MA, USA
| |
Collapse
|
31
|
Lahiri AK, Sundareyan R, Jenkins D, Nilak A. MRI of ectopic posterior pituitary gland with dysgenesis of pituitary stalk in a patient with hypogonadotropic hypogonadism. Radiol Case Rep 2018; 13:764-766. [PMID: 29887929 PMCID: PMC5991898 DOI: 10.1016/j.radcr.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 11/28/2022] Open
Abstract
The ectopic posterior pituitary is a rare condition which is characterized by the ectopic location of posterior lobe of pituitary, pituitary stalk abnormalities, and associated clinical manifestations of anterior lobe related growth hormone dysfunction or less commonly multiple anterior pituitary dysfunctions. We present a rare case of posterior ectopic pituitary and pituitary stalk hypoplasia with isolated hypogonadotropic hypogonadism in a 36-year-old female patient.
Collapse
Affiliation(s)
- Ashim Kumar Lahiri
- Consultant Radiologist, Department of Radiology, Worcestershire Royal Hospital, Worcester WR5 1DD, UK
- Corresponding author.
| | | | | | | |
Collapse
|
32
|
Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 2018; 39:333-368. [PMID: 29351662 DOI: 10.1210/er.2017-00235] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Ariane Sharif
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Philippe Ciofi
- Inserm, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| |
Collapse
|
33
|
Clasadonte J, Prevot V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 2018; 14:25-44. [PMID: 29076504 DOI: 10.1038/nrendo.2017.124] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural fluctuations in physiological conditions require adaptive responses involving rapid and reversible structural and functional changes in the hypothalamic neuroendocrine circuits that control homeostasis. Here, we discuss the data that implicate hypothalamic glia in the control of hypothalamic neuroendocrine circuits, specifically neuron-glia interactions in the regulation of neurosecretion as well as neuronal excitability. Mechanistically, the morphological plasticity displayed by distal processes of astrocytes, pituicytes and tanycytes modifies the geometry and diffusion properties of the extracellular space. These changes alter the relationship between glial cells of the hypothalamus and adjacent neuronal elements, especially at specialized intersections such as synapses and neurohaemal junctions. The structural alterations in turn lead to functional plasticity that alters the release and spread of neurotransmitters, neuromodulators and gliotransmitters, as well as the activity of discrete glial signalling pathways that mediate feedback by peripheral signals to the hypothalamus. An understanding of the contributions of these and other non-neuronal cell types to hypothalamic neuroendocrine function is thus critical both to understand physiological processes such as puberty, the maintenance of bodily homeostasis and ageing and to develop novel therapeutic strategies for dysfunctions of these processes, such as infertility and metabolic disorders.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| |
Collapse
|
34
|
Koopman ACM, Taziaux M, Bakker J. Age-related changes in the morphology of tanycytes in the human female infundibular nucleus/median eminence. J Neuroendocrinol 2017; 29. [PMID: 28295754 DOI: 10.1111/jne.12467] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/21/2023]
Abstract
Tanycytes are emerging as key players in the neuroendocrine control of gonadotrophin-releasing hormone (GnRH) release. Rodent studies have demonstrated that the structural relationship between tanycytes and GnRH terminals in the median eminence is highly dynamic, regulated by gonadal steroids and undergoes age-related changes. The present study aimed to determine whether the number and organisation of tanycytes changes throughout life in the female infundibular nucleus/median eminence (INF/ME) region. Post-mortem hypothalamic tissues were collected at the Netherlands Brain Bank and were stained for vimentin by immunohistochemistry. Hypothalami of 22 control female subjects were categorised into three periods: infant/prepubertal, adult and elderly. We measured the fractional area covered by vimentin immunoreactivity in the INF. Qualitative analysis demonstrated a remarkable parallel organisation of vimentin-immunoreactive processes during the infant/prepubertal and adult periods. During the elderly period, this organisation was largely lost. Semi-quantitatively, the fractional area covered in vimentin immunoreactivity was significantly higher at the infant/prepubertal compared to the adult period and almost reached statistical significance compared to the elderly period. By contrast, the number of tanycyte cell bodies did not appear to change throughout life. The results of the present study thus demonstrate that the number and structure of tanycytic processes are altered during ageing, suggesting that tanycytes might be involved in the age-related changes observed in GnRH release.
Collapse
Affiliation(s)
- A C M Koopman
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | - M Taziaux
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | - J Bakker
- GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
35
|
Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol 2016; 54:7483-7496. [DOI: 10.1007/s12035-016-0251-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/23/2016] [Indexed: 01/08/2023]
|
36
|
Bisht K, Sharma KP, Lecours C, Sánchez MG, El Hajj H, Milior G, Olmos-Alonso A, Gómez-Nicola D, Luheshi G, Vallières L, Branchi I, Maggi L, Limatola C, Butovsky O, Tremblay MÈ. Dark microglia: A new phenotype predominantly associated with pathological states. Glia 2016; 64:826-39. [PMID: 26847266 PMCID: PMC4949554 DOI: 10.1002/glia.22966] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/06/2015] [Accepted: 12/28/2015] [Indexed: 12/24/2022]
Abstract
The past decade has witnessed a revolution in our understanding of microglia. These immune cells were shown to actively remodel neuronal circuits, leading to propose new pathogenic mechanisms. To study microglial implication in the loss of synapses, the best pathological correlate of cognitive decline across chronic stress, aging, and diseases, we recently conducted ultrastructural analyses. Our work uncovered the existence of a new microglial phenotype that is rarely present under steady state conditions, in hippocampus, cerebral cortex, amygdala, and hypothalamus, but becomes abundant during chronic stress, aging, fractalkine signaling deficiency (CX3 CR1 knockout mice), and Alzheimer's disease pathology (APP-PS1 mice). Even though these cells display ultrastructural features of microglia, they are strikingly distinct from the other phenotypes described so far at the ultrastructural level. They exhibit several signs of oxidative stress, including a condensed, electron-dense cytoplasm and nucleoplasm making them as "dark" as mitochondria, accompanied by a pronounced remodeling of their nuclear chromatin. Dark microglia appear to be much more active than the normal microglia, reaching for synaptic clefts, while extensively encircling axon terminals and dendritic spines with their highly ramified and thin processes. They stain for the myeloid cell markers IBA1 and GFP (in CX3 CR1-GFP mice), and strongly express CD11b and microglia-specific 4D4 in their processes encircling synaptic elements, and TREM2 when they associate with amyloid plaques. Overall, these findings suggest that dark microglia, a new phenotype that we identified based on their unique properties, could play a significant role in the pathological remodeling of neuronal circuits, especially at synapses.
Collapse
Affiliation(s)
- Kanchan Bisht
- Axe Neurosciences, Centre De Recherche Du CHU De Québec, Québec, Québec, Canada
| | - Kaushik P Sharma
- Axe Neurosciences, Centre De Recherche Du CHU De Québec, Québec, Québec, Canada
| | - Cynthia Lecours
- Axe Neurosciences, Centre De Recherche Du CHU De Québec, Québec, Québec, Canada
| | | | - Hassan El Hajj
- Axe Neurosciences, Centre De Recherche Du CHU De Québec, Québec, Québec, Canada
| | - Giampaolo Milior
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Adrián Olmos-Alonso
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Diego Gómez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Giamal Luheshi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Luc Vallières
- Axe Neurosciences, Centre De Recherche Du CHU De Québec, Québec, Québec, Canada
| | - Igor Branchi
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore Di Sanità, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre De Recherche Du CHU De Québec, Québec, Québec, Canada
| |
Collapse
|
37
|
Naugle MM, Lozano SA, Guarraci FA, Lindsey LF, Kim JE, Morrison JH, Janssen WG, Yin W, Gore AC. Age and Long-Term Hormone Treatment Effects on the Ultrastructural Morphology of the Median Eminence of Female Rhesus Macaques. Neuroendocrinology 2016; 103:650-64. [PMID: 26536204 PMCID: PMC4860175 DOI: 10.1159/000442015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022]
Abstract
The median eminence (ME) of the hypothalamus comprises the hypothalamic nerve terminals, glia (especially tanycytes) and the portal capillary vasculature that transports hypothalamic neurohormones to the anterior pituitary gland. The ultrastructure of the ME is dynamically regulated by hormones and undergoes organizational changes during development and reproductive cycles in adult females, but relatively little is known about the ME during aging, especially in nonhuman primates. Therefore, we used a novel transmission scanning electron microscopy technique to examine the cytoarchitecture of the ME of young and aged female rhesus macaques in a preclinical monkey model of menopausal hormone treatments. Rhesus macaques were ovariectomized and treated for 2 years with vehicle, estradiol (E2), or estradiol + progesterone (E2 + P4). While the overall cytoarchitecture of the ME underwent relatively few changes with age and hormones, changes to some features of neural and glial components near the portal capillaries were observed. Specifically, large neuroterminal size was greater in aged compared to young adult animals, an effect that was mitigated or reversed by E2 alone but not by E2 + P4 treatment. Overall glial size and the density and tissue fraction of the largest subset of glia were greater in aged monkeys, and in some cases reversed by E2 treatment. Mitochondrial size was decreased by E2, but not E2 + P4, only in aged macaques. These results contrast substantially with work in rodents, suggesting that the ME of aging macaques is less vulnerable to age-related disorganization, and that the effects of E2 on monkeys' ME are age specific.
Collapse
Affiliation(s)
| | - Sateria A. Lozano
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - Fay A. Guarraci
- Department of Psychology, Southwestern University, Georgetown, TX
| | - Larry F. Lindsey
- Center for Learning and Memory, University of Texas at Austin, Austin, TX
| | - Ji E. Kim
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - John H. Morrison
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - William G.M. Janssen
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Weiling Yin
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - Andrea C. Gore
- Institute for Neuroscience, University of Texas at Austin, Austin, TX
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX
- Correspondence: Andrea C Gore, PhD, The University of Texas at Austin, 107 West Dean Keeton, C0875, Austin, TX, 78712, USA, ; Tel: +1-512-471-3669; Fax: +1-512-471-5002
| |
Collapse
|
38
|
Eftekhari S, Gaspar RC, Roberts R, Chen TB, Zeng Z, Villarreal S, Edvinsson L, Salvatore CA. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 2015; 524:90-118. [PMID: 26105175 DOI: 10.1002/cne.23828] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/11/2015] [Accepted: 06/04/2015] [Indexed: 11/05/2022]
Abstract
Functional imaging studies have revealed that certain brainstem areas are activated during migraine attacks. The neuropeptide calcitonin gene-related peptide (CGRP) is associated with activation of the trigeminovascular system and transmission of nociceptive information and plays a key role in migraine pathophysiology. Therefore, to elucidate the role of CGRP, it is critical to identify the regions within the brainstem that process CGRP signaling. In situ hybridization and immunofluorescence were performed to detect mRNA expression and define cellular localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary nucleus, median eminence, infundibular stem, periaqueductal gray, area postrema, pontine raphe nucleus, gracile nucleus, spinal trigeminal nucleus, and spinal cord. RAMP1 mRNA expression was also detected in the posterior hypothalamic area, trochlear nucleus, dorsal raphe nucleus, medial lemniscus, pontine nuclei, vagus nerve, inferior olive, abducens nucleus, and motor trigeminal nucleus; protein coexpression of CLR and RAMP1 was observed in these areas via immunofluorescence. [(3)H]MK-3207 showed high binding densities concordant with mRNA and protein expression. The present study suggests that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood-brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous system to antagonize receptors in these brain regions.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, SE-22184, Lund, Sweden
| | - Renee C Gaspar
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Rhonda Roberts
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Tsing-Bau Chen
- Department of Imaging, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Zhizhen Zeng
- Department of Imaging, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Stephanie Villarreal
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, SE-22184, Lund, Sweden
| | - Christopher A Salvatore
- Department of Pain and Migraine Research, Merck Research Laboratories, West Point, Pennsylvania, 19486
| |
Collapse
|
39
|
Steyn FJ. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release. J Neuroendocrinol 2015; 27:577-87. [PMID: 25808924 DOI: 10.1111/jne.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 12/14/2022]
Abstract
Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.
Collapse
Affiliation(s)
- F J Steyn
- The University of Queensland Centre for Clinical Research and The School of Biomedical Sciences, University of Queensland, Herston, 4029, Australia
| |
Collapse
|
40
|
Fredrich M, Christ E, Derouiche A, Korf HW. Impact of Melatonin on Zeitgeber Time-Dependent Changes in Cell Proliferation and Apoptosis in the Adult Murine Hypothalamic-Hypophyseal System. Neuroendocrinology 2015; 102:311-326. [PMID: 26044072 DOI: 10.1159/000433440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Cell proliferation and apoptosis are known to adjust neuroendocrine circuits to the photoperiod. The latter is communicated by melatonin, the hormone secreted by the pineal organ. The present study investigated zeitgeber time (ZT)-dependent changes in cell proliferation and apoptosis in the adult murine neuroendocrine system and their regulation by melatonin. METHODS Adult melatonin-proficient (C3H/HeN) and melatonin-deficient (C57Bl/6J) mice, as well as melatonin-proficient (C3H/HeN) mice with targeted deletion of both melatonin receptor types (MT1 and MT2) were adapted to a 12-hour light, 12-hour dark photoperiod and were sacrificed at ZT00, ZT06, ZT12, and ZT18. Immunohistochemistry for Ki67 and activated caspase-3 served to identify and quantify proliferating and apoptotic cells in the median eminence (ME), hypophyseal pars tuberalis, and pars distalis (PD). RESULTS ZT-dependent changes in cell proliferation and apoptosis were found exclusively in melatonin-proficient mice with functional MTs. Cell proliferation in the ME and PD showed ZT-dependent changes indicated by an increase at ZT12 (ME) and a decrease at ZT06 (PD). Apoptosis showed ZT-dependent changes in all regions analyzed, indicated by an increase at ZT06. Proliferating and apoptotic cells were found in nearly all cell types residing in the regions analyzed. CONCLUSIONS Our results indicate that ZT-dependent changes in cell proliferation are counterbalanced by ZT-dependent changes in apoptosis exclusively in melatonin-proficient mice with functional MTs. Melatonin signaling appears to be crucial in both the generation and timing of proliferation and apoptosis that serve the high rate of physiological cell turnover in the adult neuroendocrine system.
Collapse
Affiliation(s)
- Michaela Fredrich
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universitx00E4;t, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
41
|
Nassar M, Halle I, Plagemann A, Tzschentke B. Detection of long-term influence of prenatal temperature stimulation on hypothalamic type-II iodothyronine deiodinase in juvenile female broiler chickens using a novel immunohistochemical amplification protocol. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:120-4. [PMID: 25289994 DOI: 10.1016/j.cbpa.2014.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
Abstract
It has been clearly shown that early environmental stimulation may have long-lasting influence on body functions. Because of the strong relationship between thermoregulation and other homeostatic linked physiological parameters, perinatal thermal manipulation will also have an impact on other body functions like reproduction. As a maturation stimulant for later reproductive performance, hypothalamic type-2 iodothyronine deiodinase (Dio2) expression was investigated in 35day old immature female broilers with and without embryonic temperature stimulation. For the first time, human-specific Dio2 primary antibodies combined with additional amplification enabled the immunohistochemical detection of hypothalamic Dio2 protein in birds. The novel protocol includes an additional amplification step involving swine-anti-rabbit/mouse/goat antibodies against both goat anti-Dio2 primary and rabbit anti-goat biotinylated secondary commercial antibodies in the standard diaminobenzidine protocol. However, significant Dio2 expression was exclusively found in perinatally short-term temperature stimulated hens. Caudal but not rostral hypothalamic slices revealed that elevating incubation temperature by 1°C for 2h daily, from day 18 of embryonic development until hatching, induced a statistical significant expression of Dio2 within the subcommisural organ and the median eminence. This ample expression of Dio2 protein within caudal but not rostral hypothalamic slices of embryonic temperature stimulated chickens, leads to the assumption of a novel physiological prospective for embryonic thermal manipulation involving the suppression of thyroid hormone and the boosting of hypothalamic Dio2-induced FSH secretion to considerably advance the age of photoinduced egg production. It could be also of practicable relevance for broiler breeder females, and needs further investigations.
Collapse
Affiliation(s)
- Maaly Nassar
- Humboldt University of Berlin, Institute of Biology, Philippstr. 13, 10115 Berlin, Germany.
| | - Ingrid Halle
- Friedrich-Loeffler-Institute for Animal Health, Institute of Animal Nutrition, 38226 Braunschweig, Germany.
| | - Andreas Plagemann
- Charité Unversitätsmedizin Berlin, Campus Virchow-Klinikum, Department of Obstetrics, Division of Perinatal Programming, Augustenburger Platz, 113353 Berlin, Germany.
| | - Barbara Tzschentke
- Humboldt University of Berlin, Institute of Biology, Philippstr. 13, 10115 Berlin, Germany.
| |
Collapse
|
42
|
Xue H, Gai X, Sun W, Li C, Liu Q. Morphological changes of gonadotropin-releasing hormone neurons in the rat preoptic area across puberty. Neural Regen Res 2014; 9:1303-12. [PMID: 25221583 PMCID: PMC4160857 DOI: 10.4103/1673-5374.137578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the preoptic area may undergo morphological changes during the pubertal period when their activities are upregulated. To clarify the regulatory mechanism of puberty onset, this study aimed to investigate the morphological changes of GnRH neurons in the preoptic area of GnRH-enhanced green fluorescent protein transgenic rats. Under confocal laser microscopy, pubertal GnRH neurons exhibited an inverted Y distribution pattern. Prepubertal GnRH neurons were generally unipolar and bipolar, and were distinguished as smooth type cells with few small processes or irregular type cells with many spine-like processes in the proximal dendrites. The number of GnRH neurons in the preoptic area and spine-like processes were increased during the course of reproductive maturation. There was no significant difference between male and female rats. Immunofluorescence staining revealed synaptophysin punctae close to the distal end of GnRH neurons, indicating that some presynaptic terminals may form a synaptic linkage with these neurons.
Collapse
Affiliation(s)
- Haogang Xue
- Department of Orthopedic Surgery, Affiliated Hospital of Beihua University, Changchun, Jilin Province, China
| | - Xiaodong Gai
- Department of Pathology, Beihua University, Changchun, Jilin Province, China
| | - Weiqi Sun
- College of Public Health, Beihua University, Changchun, Jilin Province, China
| | - Chun Li
- Department of Pathology, Beihua University, Changchun, Jilin Province, China
| | - Quan Liu
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
43
|
Naugle MM, Gore AC. GnRH neurons of young and aged female rhesus monkeys co-express GPER but are unaffected by long-term hormone replacement. Neuroendocrinology 2014; 100:334-46. [PMID: 25428637 PMCID: PMC4329056 DOI: 10.1159/000369820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022]
Abstract
Menopause is caused by changes in the function of the hypothalamic-pituitary-gonadal axis that controls reproduction. Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus orchestrate the activity of this axis and are regulated by hormonal feedback loops. The mechanisms by which GnRH responds to the primary regulatory sex steroid hormone, estradiol (E2), are still poorly understood in the context of menopause. Our goal was to determine whether the G protein-coupled estrogen receptor (GPER) is co-expressed in adult primate GnRH neurons and whether this changes with aging and/or E2 treatment. We used immunofluorescence double-labeling to characterize the co-expression of GPER in GnRH perikarya and terminals in the hypothalamus. Young and aged rhesus macaques were ovariectomized and given long-term (~2-year) hormone treatments (E2, E2 + progesterone, or vehicle) selected to mimic currently prescribed hormone replacement therapies used for the alleviation of menopausal symptoms in women. We found that about half of GnRH perikarya co-expressed GPER, while only about 12% of GnRH processes and terminals in the median eminence (ME) were double-labeled. Additionally, many GPER-labeled processes were in direct contact with GnRH neurons, often wrapped around the perikarya and processes and in close proximity in the ME. These results extend prior work by showing robust co-localization of GPER in GnRH in a clinically relevant model, and they support the possibility that GPER-mediated E2 regulation of GnRH occurs both in the soma and terminals in nonhuman primates.
Collapse
Affiliation(s)
- Michelle M. Naugle
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712
| | - Andrea C. Gore
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712
- Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, 78712
- Correspondence: Andrea C Gore, PhD, The University of Texas at Austin, 107 West Dean Keeton, C0875, Austin, TX, 78712, USA, ; Tel: +1-512-471-3669; Fax: +1-512-471-5002
| |
Collapse
|
44
|
Walker DM, Kermath BA, Woller MJ, Gore AC. Disruption of reproductive aging in female and male rats by gestational exposure to estrogenic endocrine disruptors. Endocrinology 2013; 154:2129-43. [PMID: 23592748 PMCID: PMC3740483 DOI: 10.1210/en.2012-2123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are industrial contaminants and known endocrine-disrupting chemicals. Previous work has shown that gestational exposure to PCBs cause changes in reproductive neuroendocrine processes. Here we extended work farther down the life spectrum and tested the hypothesis that early life exposure to Aroclor 1221 (A1221), a mixture of primarily estrogenic PCBs, results in sexually dimorphic aging-associated alterations to reproductive parameters in rats, and gene expression changes in hypothalamic nuclei that regulate reproductive function. Pregnant Sprague Dawley rats were injected on gestational days 16 and 18 with vehicle (dimethylsulfoxide), A1221 (1 mg/kg), or estradiol benzoate (50 μg/kg). Developmental parameters, estrous cyclicity (females), and timing of reproductive senescence were monitored in the offspring through 9 months of age. Expression of 48 genes was measured in 3 hypothalamic nuclei: the anteroventral periventricular nucleus (AVPV), arcuate nucleus (ARC), and median eminence (females only) by real-time RT-PCR. Serum LH, testosterone, and estradiol were assayed in the same animals. In males, A1221 had no effects; however, prenatal estradiol benzoate increased serum estradiol, gene expression in the AVPV (1 gene), and ARC (2 genes) compared with controls. In females, estrous cycles were longer in the A1221-exposed females throughout the life cycle. Gene expression was not affected in the AVPV, but significant changes were caused by A1221 in the ARC and median eminence as a function of cycling status. Bionetwork analysis demonstrated fundamental differences in physiology and gene expression between cycling and acyclic females independent of treatment. Thus, gestational exposure to biologically relevant levels of estrogenic endocrine-disrupting chemicals has sexually dimorphic effects, with an altered transition to reproductive aging in female rats but relatively little effect in males.
Collapse
Affiliation(s)
- Deena M Walker
- The University of Texas at Austin, The Institute for Neuroscience, 1 University Station, C0875, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Steinman MQ, Knight JA, Trainor BC. Effects of photoperiod and food restriction on the reproductive physiology of female California mice. Gen Comp Endocrinol 2012; 176:391-9. [PMID: 22245263 PMCID: PMC3334427 DOI: 10.1016/j.ygcen.2011.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/24/2011] [Accepted: 12/27/2011] [Indexed: 12/21/2022]
Abstract
Many temperate-zone animals use changes in photoperiod to time breeding. Shorter term cues, like food availability, are integrated with photoperiod to adjust reproductive timing under unexpected conditions. Many mice of the genus Peromyscus breed in the summer. California mice (Peromyscus californicus), however, can breed year round, but tend to begin breeding in the winter. Glial cells may be involved in transduction of environmental signals that regulate gonadotrophin releasing hormone I (GnRH) activity. We examined the effects of diet and photoperiod on reproduction in female California mice. Mice placed on either short days (8L:16D) or long days (16L:8D) were food restricted (80% of normal intake) or fed ad libitum. Short day-food restricted mice showed significant regression of the reproductive system. GnRH-immunoreactivity was increased in the tuberal hypothalamus of long day-food restricted mice. This may be associated with the sparing effect long days have when mice are food restricted. The number of GFAP-immunoreactive fibers in proximity to GnRH nerve terminals correlated negatively with uterine size in ad libitum but not food restricted mice, suggesting diet may alter glial regulation of the reproductive axis. There was a trend towards food restriction increasing uterine expression of c-fos mRNA, an estrogen dependent gene. Similar to other seasonally breeding rodents, short days render the reproductive system of female California mice more susceptible to effects of food restriction. This may be vestigial, or it may have evolved to mitigate consequences of unexpectedly poor winter food supplies.
Collapse
Affiliation(s)
- Michael Q Steinman
- Molecular, Cellular and Integrative Physiology Graduate Group, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
47
|
Kermath BA, Gore AC. Neuroendocrine control of the transition to reproductive senescence: lessons learned from the female rodent model. Neuroendocrinology 2012; 96:1-12. [PMID: 22354218 PMCID: PMC3574559 DOI: 10.1159/000335994] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/06/2011] [Indexed: 01/19/2023]
Abstract
The natural transition to reproductive senescence is an important physiological process that occurs with aging, resulting in menopause in women and diminished or lost fertility in most mammalian species. This review focuses on how rodent models have informed our knowledge of age-related changes in gonadotropin-releasing hormone (GnRH) neurosecretory function and the subsequent loss of reproductive capacity. Studies in rats and mice have shown molecular, morphological and functional changes in GnRH cells. Furthermore, during reproductive aging altered sex steroid feedback to the hypothalamus contributes to a decrease of stimulatory signaling and increase in inhibitory tone onto GnRH neurons. At the site of the GnRH terminals where the peptide is released into the portal vasculature, the cytoarchitecture of the median eminence becomes disorganized with aging, and mechanisms of glial-GnRH neuronal communication may be disrupted. These changes can result in the dysregulation of GnRH secretion with reproductive decline. Interestingly, reproductive aging effects on the GnRH circuitry are observed in middle age even prior to any obvious physiological changes in cyclicity. We speculate that the hypothalamus may play a critical role in this mid-life transition. Because there are substantial species differences in these aging processes, we also compare and contrast rodent aging to that in primates. Work discussed herein shows that in order to understand neuroendocrine mechanisms of reproductive senescence, further research needs to be conducted in ovarian-intact models.
Collapse
Affiliation(s)
- Bailey A. Kermath
- Institute for Neurosciences; The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea C. Gore
- Institute for Neurosciences; The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Pharmacology & Toxicology; The University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular & Molecular Biology; The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
48
|
Gore AC, Walker DM, Zama AM, Armenti AE, Uzumcu M. Early life exposure to endocrine-disrupting chemicals causes lifelong molecular reprogramming of the hypothalamus and premature reproductive aging. Mol Endocrinol 2011; 25:2157-68. [PMID: 22016562 DOI: 10.1210/me.2011-1210] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors re-programs expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16-17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence.
Collapse
Affiliation(s)
- Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | |
Collapse
|
49
|
Clasadonte J, Sharif A, Baroncini M, Prevot V. Gliotransmission by prostaglandin e(2): a prerequisite for GnRH neuronal function? Front Endocrinol (Lausanne) 2011; 2:91. [PMID: 22649391 PMCID: PMC3355930 DOI: 10.3389/fendo.2011.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/17/2011] [Indexed: 02/06/2023] Open
Abstract
Over the past four decades it has become clear that prostaglandin E(2) (PGE(2)), a phospholipid-derived signaling molecule, plays a fundamental role in modulating the gonadotropin-releasing hormone (GnRH) neuroendocrine system and in shaping the hypothalamus. In this review, after a brief historical overview, we highlight studies revealing that PGE(2) released by glial cells such as astrocytes and tanycytes is intimately involved in the active control of GnRH neuronal activity and neurosecretion. Recent evidence suggests that hypothalamic astrocytes surrounding GnRH neuronal cell bodies may respond to neuronal activity with an activation of the erbB receptor tyrosine kinase signaling, triggering the release of PGE(2) as a chemical transmitter from the glia themselves, and, in turn, leading to the feedback regulation of GnRH neuronal activity. At the GnRH neurohemal junction, in the median eminence of the hypothalamus, PGE(2) is released by tanycytes in response to cell-cell signaling initiated by glial cells and vascular endothelial cells. Upon its release, PGE(2) causes the retraction of the tanycyte end-feet enwrapping the GnRH nerve terminals, enabling them to approach the adjacent pericapillary space and thus likely facilitating neurohormone diffusion from these nerve terminals into the pituitary portal blood. In view of these new insights, we suggest that synaptically associated astrocytes and perijunctional tanycytes are integral modulatory elements of GnRH neuronal function at the cell soma/dendrite and nerve terminal levels, respectively.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
| | - Ariane Sharif
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
| | - Marc Baroncini
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
- Department of Neurosurgery, CHULilleLille, France
| | - Vincent Prevot
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
- *Correspondence: Vincent Prevot, INSERM U837, Bâtiment Biserte, Place de Verdun, 59045 Lille Cedex, France. e-mail:
| |
Collapse
|
50
|
Haaga J, O'Connor K, Weinstein M, Wise P. Reproductive aging: theoretical perspectives, mechanisms, nonhuman models, and health correlates. Ann N Y Acad Sci 2010; 1204:1-10. [PMID: 20738270 DOI: 10.1111/j.1749-6632.2010.05700.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Every 365.2421999 days--more or less--the earth rotates, revolves, wobbles, and precesses along an elliptical path around the sun. Those of us who survive the journey are a year older: we have aged one solar year. Some years we seem to age faster than other years; some people seem to age faster than other people; some systems seem to age faster than other systems. As we begin to mature, reach our middle years, and become elderly, reproductive changes are among the markers of aging that are most notable, particularly among women. What--if anything--can we learn about more general processes of aging from reproductive aging? Does our postreproductive survival contribute to our fitness, or is it just a chance event, a result of selection on other characteristics? Can our insights and research be translated into improved clinical practice? We explore reproductive aging with a wide-angle multidisciplinary lens that we use to focus on four articulating areas: theoretical perspectives, mechanisms, nonhuman models, and health correlates. We propose directions for future work.
Collapse
Affiliation(s)
- John Haaga
- Division of Behavioral and Social Research, National Institute on Aging, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|