1
|
Zhang X, Zhong G, Jiang C, Ha X, Yang Q, Wu H. Exploring the potential anti-diabetic peripheral neuropathy mechanisms of Huangqi Guizhi Wuwu Decoction by network pharmacology and molecular docking. Metab Brain Dis 2024; 40:20. [PMID: 39565454 DOI: 10.1007/s11011-024-01474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/02/2024] [Indexed: 11/21/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is the most prevalent microvascular complication of diabetes and Huangqi Guizhi Wuwu Decoction (HGWD) is frequently employed in classical Chinese medicine for treating DPN. This study aims to investigate the potential therapeutic targets and mechanisms of HGWD for treating DPN using network pharmacology and molecular docking methodologies. The intersection targets of DPN and HGWD were retrieved from the databases, with the resulting intersection targets being imported into the STRING database to construct the protein-protein interaction (PPI) network. Cytoscape 3.9.1 was used to screen the core targets and plot the herb-active ingredient-target (H-A-T) network. To identify the pivotal signaling pathways, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on intersection targets. Molecular docking was subsequently conducted with AutoDock Vina to validate the binding energy between the core active ingredients and the core targets. 91 potential targets of HGWD were identified for the treatment of DPN. Topological analysis revealed core targets, including AKT1, TNF, PPARG, NFKB1, TP53, STAT3, PTGS2, HIF1A, ESR1, and GSK3B, alongside core active ingredients such as protoporphyrin, jaranol, kaempferol, quercetin, and isorhamnetin. GO and KEGG analyses indicated that PI3K/AKT, HIF-1, and AGE/RAGE signaling pathways could be crucial in treating DPN using HGWD. Furthermore, molecular docking results demonstrated robust binding activities between the active ingredients in HGWD and the identified core targets. The above results indicated that HGWD may exerting an anti-DPN effect by modulating the PI3K/AKT, HIF-1, and AGE/RAGE signaling pathways.
Collapse
Affiliation(s)
- Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Jiang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaojun Ha
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Qingjiang Yang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Haike Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China.
| |
Collapse
|
2
|
Mert T, Sahin E, Yaman S, Sahin M. Pulsed magnetic field treatment ameliorates the progression of peripheral neuropathy by modulating the neuronal oxidative stress, apoptosis and angiogenesis in a rat model of experimental diabetes. Arch Physiol Biochem 2022; 128:1658-1665. [PMID: 32633145 DOI: 10.1080/13813455.2020.1788098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present study aimed to investigate the possible anti-neuropathic effects of daily pulsed magnetic field treatments (PMF) in streptozotocin (60 mg/kg) induced 4 weeks diabetic (type-1) wistar rats (6-8 months). MATERIALS AND METHODS Body mass, blood glucose and thermal and mechanical sensations were evaluated during the PMF or sham-PMF in diabetic or non-diabetic rats (n = 7/group). After the measurements of motor nerve conduction velocities (MNCV), the levels of several biomarkers for oxidative stress, apoptosis and angiogenesis in spinal cord and sciatic nerve were measured. RESULTS PMF for 4 weeks significantly recovered the MCNV (96.9% and 63.9%) and almost fully (100%) restored to the latency and threshold. PMF also significantly suppressed the diabetes induced enhances in biochemical markers of both neuronal tissues. CONCLUSIONS Findings suggested that PMF might prevent the development of functional abnormalities in diabetic rats due to its anti-oxidative, anti-apoptotic and anti-angiogenic actions in neuronal tissues.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Emel Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
3
|
Malfunctioning CD106-positive, short-term hematopoietic stem cells trigger diabetic neuropathy in mice by cell fusion. Commun Biol 2021; 4:575. [PMID: 33990693 PMCID: PMC8121918 DOI: 10.1038/s42003-021-02082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic neuropathy is an incurable disease. We previously identified a mechanism by which aberrant bone marrow-derived cells (BMDCs) pathologically expressing proinsulin/TNF-α fuse with residential neurons to impair neuronal function. Here, we show that CD106-positive cells represent a significant fraction of short-term hematopoietic stem cells (ST-HSCs) that contribute to the development of diabetic neuropathy in mice. The important role for these cells is supported by the fact that transplantation of either whole HSCs or CD106-positive ST-HSCs from diabetic mice to non-diabetic mice produces diabetic neuronal dysfunction in the recipient mice via cell fusion. Furthermore, we show that transient episodic hyperglycemia produced by glucose injections leads to abnormal fusion of pathological ST-HSCs with residential neurons, reproducing neuropathy in nondiabetic mice. In conclusion, we have identified hyperglycemia-induced aberrant CD106-positive ST-HSCs underlie the development of diabetic neuropathy. Aberrant CD106-positive ST-HSCs constitute a novel therapeutic target for the treatment of diabetic neuropathy. Katagi et al. show that abnormal bone marrow-derived cells originated from hematopoietic stem cells (CD106-positive short-term HSCs) aberrantly fuse with neurons to develop diabetic neuropathy. This study suggests that the pathological abnormality is memorized in the bone marrow and that it cannot be erased by conventional therapy.
Collapse
|
4
|
Liu Y, Shang Y, Yan Z, Li H, Wang Z, Li Z, Liu Z. Pim1 kinase provides protection against high glucose-induced stress and apoptosis in cultured dorsal root ganglion neurons. Neurosci Res 2020; 169:9-16. [PMID: 32593591 DOI: 10.1016/j.neures.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023]
Abstract
The pathogenesis of diabetic peripheral neuropathy (DPN) is complex and not well understood. Recently, oxidative stress and endoplasmic reticulum (ER) stress induced by hyperglycemia have been demonstrated to play a critical role in neuronal apoptosis, which then contributing to DPN. However, the specific molecular mechanism that underlies the hyperglycemia-induced neuronal stresses and apoptosis remains largely unknown. In this study, we demonstrated for the first time that Pim1 kinase is a positive modulator of dorsal root ganglion (DRG) neuron survival in vitro. Hyperglycemia causes compensatory upregulation of Pim1 kinase in the DRG neurons, which provides protection against high glucose-induced oxidative stress and ER stress. Pharmacological inhibition of Pim1 not only sensitizes the stress response to high glucose in the DRG neurons, but also accelerates the apoptosis of DRG neurons in vitro. Therefore, our work provides experimental evidence for the prevention of high glucose-induced neuronal stress and apoptosis by targeting Pim1 kinase.
Collapse
Affiliation(s)
- Yuantong Liu
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China; Department of Spine Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yue Shang
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Zihan Yan
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Zhen Wang
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Zhen Liu
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China.
| |
Collapse
|
5
|
Sadeghiyan Galeshkalami N, Abdollahi M, Najafi R, Baeeri M, Jamshidzade A, Falak R, Davoodzadeh Gholami M, Hassanzadeh G, Mokhtari T, Hassani S, Rahimifard M, Hosseini A. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci 2019; 216:101-110. [DOI: 10.1016/j.lfs.2018.10.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/25/2023]
|
6
|
Carvalho FR, Fernandes AR, Cancela ML, Gavaia PJ. Improved regeneration and de novo bone formation in a diabetic zebrafish model treated with paricalcitol and cinacalcet. Wound Repair Regen 2017; 25:432-442. [PMID: 28380670 DOI: 10.1111/wrr.12536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
Bone changes related to diabetes have been well stablished, but few strategies have been developed to prevent this growing health problem. In our work, we propose to investigate the effects of calcitriol as well as of a vitamin D analog (paricalcitol) and a calcimimetic (cinacalcet), in fin regeneration and de novo mineralization in a zebrafish model of diabetes. Following exposure of diabetic transgenic Tg(ins:nfsb-mCherry) zebrafish to calcitriol, paricalcitol and cinacalcet, caudal fins were amputated to assess their effects on tissue regeneration. Caudal fin mineralized and regenerated areas were quantified by in vivo alizarin red staining. Quantitative real-time PCR was performed using RNA from the vertebral column. Diabetic fish treated with cinacalcet and paricalcitol presented increased regenerated and mineralized areas when compared with non-treated diabetic group, while no significant increase was observed in non-diabetic fish treated with both drugs. Gene expression analysis showed an up-regulation for runt-related transcription factor 2b (runx2b), bone gamma-carboxyglutamic acid-containing protein (bglap), insulin a (insa) and insulin b (insb) and a trend of increase for sp7 transcription factor (sp7) in diabetic groups treated with cinacalcet and paricalcitol. Expression of insra and vdra was up-regulated in both diabetic and nondiabetic fish treated with cinacalcet. In nondiabetic fish treated with paricalcitol and cinacalcet a similar increase in gene expression could be observed but not so pronounced. The increased mineralization and regeneration in diabetic zebrafish treated with cinacalcet and paricalcitol can be explained by increased osteoblastic differentiation and increased insulin expression indicating pro-osteogenic potential of both drugs.
Collapse
Affiliation(s)
- Filipe R Carvalho
- Center of Marine Sciences (CCMAR), Faro, Portugal.,PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Ana R Fernandes
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Center of Marine Sciences (CCMAR), Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Paulo J Gavaia
- Center of Marine Sciences (CCMAR), Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| |
Collapse
|
7
|
Tangluoning, a traditional Chinese medicine, attenuates in vivo and in vitro diabetic peripheral neuropathy through modulation of PERK/Nrf2 pathway. Sci Rep 2017; 7:1014. [PMID: 28432299 PMCID: PMC5430716 DOI: 10.1038/s41598-017-00936-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/20/2017] [Indexed: 01/06/2023] Open
Abstract
Prolonged hyperglycemia-induced oxidative stress and endoplasmic reticulum stress have been demonstrated to play a key role in progression of diabetic peripheral neuropathy (DPN). PERK/ Nrf2 pathway plays a predominant role in oxidative and endoplasmic reticulum (ER) stress which is associated with cell survival. This study examined the modulation of the PERK/Nrf2 pathway and apoptosis by a traditional Chinese medicine Tangluoning (TLN) in streptozotocin-induced DPN rat models and the effects of serum TLN on the PERK/Nrf2 pathway, apoptosis, intracellular reactive oxygen species and mitochondrial membrane potential in Schwann cells cultured in 150 mM glucose. It is found that TLN attenuated oxidative and ER stress and apoptosis through the PERK/Nrf2 pathway by upregulating p-PERK, Nrf2/ARE pathways and downregulating the CHOP-related apoptosis pathways in the experimental DPN models both in vivo and in vitro.
Collapse
|
8
|
Chen L, Li B, Chen B, Shao Y, Luo Q, Shi X, Chen Y. Thymoquinone Alleviates the Experimental Diabetic Peripheral Neuropathy by Modulation of Inflammation. Sci Rep 2016; 6:31656. [PMID: 27545310 PMCID: PMC4992870 DOI: 10.1038/srep31656] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022] Open
Abstract
Thymoquinone has been reported to exhibit antioxidant and anti-inflammatory effects. Inflammation plays an important role in pathogenesis of diabetic peripheral neuropathy. This study investigated the effects of TQ on proliferation and apoptosis of Schwann cells exposed to high glucose conditions and electrophysiological and morphological changes of the sciatic nerve in a DPN rat model as well as relevant inflammatory mechanism. Cell proliferation and apoptosis of Schwann cells were measured using the Cell Counting Kit-8 and flow cytometry. DPN model was established in streptozotocin-induced diabetic rats. Nerve conduction velocity was measured before and after treatment. Morphologic changes were observed by H&E staining and transmission electron microscopy. COX-2, IL-1β, IL-6, and Caspase-3 expression was investigated by western blotting and Bio-Plex ProTM Assays. Finally, TQ alleviated the inhibition of Schwann cell proliferation and protected against Schwann cell apoptosis. It improved nerve conduction velocity, and alleviated the DPN-induced morphological changes and demyelination of the sciatic nerve. COX-2, IL-1β, IL-6 and Caspase-3 expression in sciatic nerve or isolated cultured Schwann cells, were also decreased by TQ. These results indicate TQ has a protective effect on peripheral nerves in a DPN rat model. The mechanism may be mediated partly by the modulation of the inflammatory reaction.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R. China.,Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Bing Li
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P. R.China
| | - Biqin Chen
- Department of Pediatric, Jinshan Hospital, Fudan University, Shanghai 201508, P. R.China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R. China.,Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Qiong Luo
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R. China.,Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R.China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P. R. China.,Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Fateh HR, Madani SP, Heshmat R, Larijani B. Correlation of Michigan neuropathy screening instrument, United Kingdom screening test and electrodiagnosis for early detection of diabetic peripheral neuropathy. J Diabetes Metab Disord 2016; 15:8. [PMID: 27019831 PMCID: PMC4807585 DOI: 10.1186/s40200-016-0229-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/13/2016] [Indexed: 12/14/2022]
Abstract
Background Almost half of Diabetic Peripheral Neuropathies (DPNs) are symptom-free. Methods including questionnaires and electrodiagnosis (EDx) can be fruitful for easy reach to early diagnosis, correct treatments of diabetic neuropathy, and so decline of complications for instance diabetic foot ulcer and prevention of high costs. The goal of our study was to compare effectiveness of the Michigan neuropathy screening instrument (MNSI), United Kingdom screening test (UKST) and electrophysiological evaluation in confirming diabetic peripheral neuropathy. Methods One hundred twenty five known diabetes mellitus male and female subjects older than 18 with or without symptoms of neuropathy comprised in this research. All of them were interviewed in terms of demographic data, lipid profile, HbA1C, duration of disease, and history of retinopathy, so examined by Michigan neuropathy screening instrument (MNSI), United Kingdom screening test (UKST), and nerve conduction studies (NCS). The collected data were analyzed by SPSS software 18. Results One hundred twenty five diabetic patients (70 female, 55 male) were recruited in this study with a mean age of 58.7 ± 10.2, and mean duration of diabetes was 10.17 ± 6.9 years. The mean neuropathy score of MNSI and UKST were 2.3 (1.7) and 4.16 (2.9), respectively. Each instrument detected the peripheral neuropathy in 78 (69 %) and 91 (73 %) of patients, respectively. There was a significant relationship between number of neuropathies and mean of diabetes duration and development of retinopathy in both questionnaire evaluations and NCS. By nerve conduction study, neuropathy was detected in 121 (97 %) diabetic patients were reported in order 15 (12 %) mononeuropathy (as 33 % sensory and 67 % motor neuropathy) and 106 (85 %) polyneuropathy (as 31 % motor and 69 % sensorimotor neuropathy). Conclusions As regards NCS is an objective, simple, and non-invasive tool and also can determine level of damage and regeneration in peripheral nerves, this study suggests electrodiagnosis as a convenient option for screening, confirming, and follow up of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Hamid R Fateh
- Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Pezhman Madani
- Hazrat Fateme Reconstruction Surgery Hospital, Physical Medicine and Rehabilitation Department, Iran University of Medical Sciences (IUMS), Tehran, Iran ; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
10
|
Bak DH, Zhang E, Yi MH, Kim DK, Lim K, Kim JJ, Kim DW. High ω3-polyunsaturated fatty acids in fat-1 mice prevent streptozotocin-induced Purkinje cell degeneration through BDNF-mediated autophagy. Sci Rep 2015; 5:15465. [PMID: 26503303 PMCID: PMC4621527 DOI: 10.1038/srep15465] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/17/2015] [Indexed: 12/14/2022] Open
Abstract
Loss of Purkinje cells has been implicated in the development of diabetic neuropathy, and this degeneration is characterized by impairment of autophagic processes. We evaluated whether fat-1 transgenic mice, a well-established animal model that endogenously synthesizes ω3 polyunsaturated fatty acids (ω3-PUFA), are protected from Purkinje cell degeneration in streptozotocin (STZ)-treated model with fat-1 mice. STZ-treated fat-1 mice did not develop hyperglycemia, motor deficits, or Purkinje cell loss. The expression of LC3 I, II, Beclin-1 and p62 were increased in the cerebellum of STZ-treated wild-type mice, and these expressions were more increased in STZ-treated fat-1 mice, but not of p62. Moreover, cerebellar Rab7, Cathepsin D, and ATP6E were increased in STZ-treated fat-1 mice. There was also increased BDNF expression in Purkinje cells without any changes in TrkB, and phosphorylation of Akt and CREB in the cerebellums of fat-1 mice. Collectively, these findings indicate that STZ-treated fat-1 mice were protected from Purkinje cell loss and exhibited increased BDNF signaling, enhancing autophagic flux activity in cerebellar Purkinje neurons. These processes may underlie Purkinje cell survival and may be potential therapeutic targets for treatment of motor deficits related to diabetic neuropathy.
Collapse
Affiliation(s)
- Dong Ho Bak
- Department of Anatomy, College of Medicine, Konyang University of Korea, Daejeon, South Korea
| | - Enji Zhang
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Anesthesiology, Yanbian University Hospital, Yanbian, 133000, China
| | - Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Do-Kyung Kim
- Department of Pharmacology, College of Medicine, Konyang University of Korea, Daejeon, South Korea
| | - Kyu Lim
- Department of Biochemistry, Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jwa-Jin Kim
- Department of Anatomy, College of Medicine, Konyang University of Korea, Daejeon, South Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
11
|
Cinci L, Corti F, Di Cesare Mannelli L, Micheli L, Zanardelli M, Ghelardini C. Oxidative, metabolic, and apoptotic responses of Schwann cells to high glucose levels. J Biochem Mol Toxicol 2015; 29:274-9. [PMID: 25683646 DOI: 10.1002/jbt.21695] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/10/2022]
Abstract
The specific response of murine Schwann cells IMS32 to acute and chronic hyperglycemia conditions was evaluated. The pathophysiological alterations were studied to deepening the role of Schwann cells in diabetes-related neurotoxicity and to assess a model to screen new protective molecules. IMS32 were incubated with 30 and 56 mM glucose for 48 h and 7 and 14 days, and markers of oxidative stress, apoptosis, and polyol pathway were evaluated. High glucose induced O(2) -production and lipid peroxidation at all time point whereas Caspase 3 activity was induced only after 14 days. Aldose reductase activity and expression were significantly increased after 48 h and 14 days, respectively. Our results describe the response of Schwann cells to high glucose conditions and suggest the use of IMS32 for the screening of protective molecules in diabetes-induced neuropathy.
Collapse
Affiliation(s)
- Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy.
| | - Francesca Corti
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
12
|
Urabe H, Terashima T, Lin F, Kojima H, Chan L. Bone marrow-derived TNF-α causes diabetic neuropathy in mice. Diabetologia 2015; 58:402-10. [PMID: 25399355 PMCID: PMC4289451 DOI: 10.1007/s00125-014-3440-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/14/2014] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Dysregulation of biochemical pathways in response to hyperglycaemia in cells intrinsic to the nervous system (Schwann cells, neurons, vasa nervorum) are thought to underlie diabetic peripheral neuropathy (DPN). TNF-α is a known aetiological factor; Tnf-knockout mice are protected against DPN. We hypothesised that TNF-α produced by a small but specific bone marrow (BM) subpopulation marked by proinsulin production (proinsulin-producing BM-derived cells, PI-BMDCs) is essential for DPN development. METHODS We produced mice deficient in TNF-α, globally in BM and selectively in PI-BMDCs only, by gene targeting and BM transplantation, and induced diabetes by streptozotocin. Motor and sensory nerve conduction velocities were used to gauge nerve dysfunction. Immunocytochemistry, fluorescence in situ hybridisation (FISH) and PCR analysis of dorsal root ganglia (DRG) were employed to monitor outcome. RESULTS We found that loss of TNF-α in BM only protected mice from DPN. We developed a strategy to delete TNF-α specifically in PI-BMDCs, and found that PI-BMDC-specific loss of TNF-α protected against DPN as robustly as loss of total BM TNF-α. Selective loss of PI-BMDC-derived TNF-α downregulated TUNEL-positive DRG neurons. FISH revealed PI-BMDC-neuron fusion cells in the DRG in mice with DPN; fusion cells were undetectable in non-diabetic mice or diabetic mice that had lost TNF-α expression selectively in the PI-BMDC subpopulation. CONCLUSIONS/INTERPRETATION BMDC-specific TNF-α is essential for DPN development; its selective removal from a small PI-BMDC subpopulation protects against DPN. The pathogenicity of PI-BMDC-derived TNF-α may have important therapeutic implications.
Collapse
Affiliation(s)
- Hiroshi Urabe
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza (MS: BCM185), Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model. Cell Death Dis 2014; 5:e1217. [PMID: 24810053 PMCID: PMC4047887 DOI: 10.1038/cddis.2014.184] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
Abstract
Diabetic neuropathy develops on a background of hyperglycemia and an entangled metabolic imbalance. There is increasing evidence of central nervous system involvement in diabetic neuropathy and no satisfactory treatment except maintenance of good glycemic control, thereby highlighting the importance of identifying novel therapeutic targets. Purkinje cells are a class of metabolically specialized active neurons, and degeneration of Purkinje cells is a common feature of inherited ataxias in humans and mice. However, whether Purkinje cells are implicated in diabetic neuropathy development under metabolic stress remains poorly defined. Here, we revealed a novel leucine-rich repeat kinase 2 (LRRK2)-mediated pathway in Purkinje cells that is involved in the pathogenesis of diabetic neuropathy from a 24-week long study of streptozotocin (STZ)-diabetic rats. We found that hyperglycemia, cerebellum proinflammatory cytokines, and chemokines increased markedly in 24-week STZ-diabetic rats. Furthermore, we demonstrated that degeneration of Purkinje cells is characterized by progressive swellings of axon terminals, no autophagosome formation, the reduction of LC3II/LC3I and Lamp2, and accumulation of p62 puncta in 24-week STZ-diabetic rats. Importantly, a higher expression level of LRRK2-mediated hyperphosphorylation of tau along with increased mitochondrial dynamin-like protein (mito-DLP1) was demonstrated in 24-week STZ-diabetic rats. This effect of LRRK2 overexpression induced mitochondrial fragmentation, and reduced mitochondrial protein degradation rates were confirmed in vitro. As a consequence, 24-week STZ-diabetic rats showed mitochondrial dysfunction in cerebellar Purkinje neurons and coordinated motor deficits evaluated by rotarod test. Our findings are to our knowledge the first to suggest that the LRRK2-mediated pathway induces mitochondrial dysfunction and loss of cerebellar Purkinje neurons and, subsequently, may be associated with motor coordination deficits in STZ-diabetic rats. These data may indicate a novel cellular therapeutic target for diabetic neuropathy.
Collapse
|
14
|
Kojima H, Kim J, Chan L. Emerging roles of hematopoietic cells in the pathobiology of diabetic complications. Trends Endocrinol Metab 2014; 25:178-87. [PMID: 24507996 PMCID: PMC3975817 DOI: 10.1016/j.tem.2014.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/21/2013] [Accepted: 01/09/2014] [Indexed: 02/08/2023]
Abstract
Diabetic complications encompass macrovascular events, mainly the result of accelerated atherosclerosis, and microvascular events that strike the eye (retinopathy), kidney (nephropathy), and nervous system (neuropathy). The traditional view is that hyperglycemia-induced dysregulated biochemical pathways cause injury and death of cells intrinsic to the organs affected. There is emerging evidence that diabetes compromises the function of the bone marrow (BM), producing a stem cell niche-dependent defect in hematopoietic stem cell mobilization. Furthermore, dysfunctional BM-derived hematopoietic cells contribute to diabetic complications. Thus, BM cells are not only a victim but also an accomplice in diabetes and diabetic complications. Understanding the underlying molecular mechanisms may lead to the development of new therapies to prevent and/or treat diabetic complications by specifically targeting these perpetrators.
Collapse
Affiliation(s)
- Hideto Kojima
- Departments of Medicine and Molecular and Cellular Biology, and the Diabetes and Endocrinology Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Jongoh Kim
- Departments of Medicine and Molecular and Cellular Biology, and the Diabetes and Endocrinology Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lawrence Chan
- Departments of Medicine and Molecular and Cellular Biology, and the Diabetes and Endocrinology Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
15
|
Katagi M, Terashima T, Okano J, Urabe H, Nakae Y, Ogawa N, Udagawa J, Maegawa H, Matsumura K, Chan L, Kojima H. Hyperglycemia induces abnormal gene expression in hematopoietic stem cells and their progeny in diabetic neuropathy. FEBS Lett 2014; 588:1080-6. [PMID: 24583009 DOI: 10.1016/j.febslet.2014.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/29/2014] [Accepted: 02/14/2014] [Indexed: 01/21/2023]
Abstract
Diabetic peripheral neuropathy is a major chronic diabetic complication. We have previously shown that in type 1 diabetic streptozotocin-treated mice, insulin- and TNF-α co-expressing bone marrow-derived cells (BMDCs) induced by hyperglycemia travel to nerve tissues where they fuse with nerve cells, causing premature apoptosis and nerve dysfunction. Here we show that similar BMDCs also occur in type 2 diabetic high-fat diet (HFD) mice. Furthermore, we found that hyperglycemia induces the co-expression of insulin and TNF-α in c-kit(+)Sca-1(+)lineage(-) (KSL) progenitor cells, which maintain the same expression pattern in the progeny, which in turn participates in the fusion with neurons when transferred to normoglycemic animals.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Bone Marrow Transplantation
- Cell Fusion
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diet, High-Fat/adverse effects
- Ganglia, Spinal/pathology
- Gene Expression
- Hematopoietic Stem Cells/physiology
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Hyperglycemia/pathology
- Insulin/metabolism
- Mice
- Mice, Inbred C57BL
- Neurons/physiology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoya Terashima
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Junko Okano
- Department of Division of Anatomy and Cell Biology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Urabe
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yuki Nakae
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nobuhiro Ogawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Udagawa
- Department of Division of Anatomy and Cell Biology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazuhiro Matsumura
- Department of Critical and Intensive Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Lawrence Chan
- Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, and Biochemistry, Baylor College of Medicine, Houston, Texas, United States
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.
| |
Collapse
|
16
|
Jia J, Zhao J, Hu Z, Lindberg D, Li Z. Age-dependent regulation of synaptic connections by dopamine D2 receptors. Nat Neurosci 2013; 16:1627-36. [PMID: 24121738 PMCID: PMC3832846 DOI: 10.1038/nn.3542] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/12/2013] [Indexed: 12/14/2022]
Abstract
Dopamine D2 receptors (D2R) are G protein-coupled receptors that modulate synaptic transmission and are important for various brain functions, including learning and working memory. Abnormal D2R signaling has been implicated in psychiatric disorders such as schizophrenia. Here we report a new function of D2R in dendritic spine morphogenesis. Activation of D2R reduced spine number via GluN2B- and cAMP-dependent mechanisms in mice. Notably, this regulation occurred only during adolescence. During this period, D2R overactivation caused by mutations in the schizophrenia risk gene Dtnbp1 led to spine deficiency, dysconnectivity in the entorhinal-hippocampal circuit and impairment of spatial working memory. Notably, these defects could be ameliorated by D2R blockers administered during adolescence. Our findings suggest an age-dependent function of D2R in spine development, provide evidence that D2R dysfunction during adolescence impairs neuronal circuits and working memory, and indicate that adolescent interventions to prevent aberrant D2R activity protect against cognitive impairment.
Collapse
Affiliation(s)
- Jie–Min Jia
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhao
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhonghua Hu
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Lindberg
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Chilelli NC, Burlina S, Lapolla A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view. Nutr Metab Cardiovasc Dis 2013; 23:913-919. [PMID: 23786818 DOI: 10.1016/j.numecd.2013.04.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/18/2013] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
AIMS Advanced glycation end products (AGE) excess is one of the most important mechanisms involved in the pathophysiology of chronic diabetic complications. This review first summarizes the role of these compounds in microvascular pathogenesis, particularly in the light of recently proposed biochemical mechanisms for diabetic retinopathy, nephropathy and neuropathy. Then we focus on the relationship between AGE and metabolic memory, trying to clarify the former's role in the missing link between micro- and macrovascular complications. DATA SYNTHESIS An excessive AGE formation has been demonstrated in the newly disclosed biochemical pathways involved in the microvascular pathobiology of type 2 diabetes, confirming the central role of AGE in the progression of diabetic neuropathy, retinopathy and nephropathy. As shown by recent studies, AGE seem to be not "actors", but "directors" of processes conducting to these complications, for at least two main reasons: first, AGE have several intra- and extracellular targets, so they can be seen as a "bridge" between intracellular and extracellular damage; secondly, whatever the level of hyperglycemia, AGE-related intracellular glycation of the mitochondrial respiratory chain proteins has been found to produce more reactive oxygen species, triggering a vicious cycle that amplifies AGE formation. This may help to explain the clinical link between micro- and macrovascular disease in diabetes, contributing to clarify the mechanisms behind metabolic memory. CONCLUSIONS The pathophysiological cascades triggered by AGE have a dominant, hyperglycemia-independent role in the onset of the microvascular complications of diabetes. An effective approach to prevention and treatment must therefore focus not only on early glycemic control, but also on reducing factors related to oxidative stress, and the dietary intake of exogenous AGE in particular.
Collapse
Affiliation(s)
- N C Chilelli
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani n 2, 35128 Padova, Italy
| | | | | |
Collapse
|
18
|
Djiogue S, Nwabo Kamdje AH, Vecchio L, Kipanyula MJ, Farahna M, Aldebasi Y, Seke Etet PF. Insulin resistance and cancer: the role of insulin and IGFs. Endocr Relat Cancer 2013; 20:R1-R17. [PMID: 23207292 DOI: 10.1530/erc-12-0324] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin, IGF1, and IGF2 are the most studied insulin-like peptides (ILPs). These are evolutionary conserved factors well known as key regulators of energy metabolism and growth, with crucial roles in insulin resistance-related metabolic disorders such as obesity, diseases like type 2 diabetes mellitus, as well as associated immune deregulations. A growing body of evidence suggests that insulin and IGF1 receptors mediate their effects on regulating cell proliferation, differentiation, apoptosis, glucose transport, and energy metabolism by signaling downstream through insulin receptor substrate molecules and thus play a pivotal role in cell fate determination. Despite the emerging evidence from epidemiological studies on the possible relationship between insulin resistance and cancer, our understanding on the cellular and molecular mechanisms that might account for this relationship remains incompletely understood. The involvement of IGFs in carcinogenesis is attributed to their role in linking high energy intake, increased cell proliferation, and suppression of apoptosis to cancer risks, which has been proposed as the key mechanism bridging insulin resistance and cancer. The present review summarizes and discusses evidence highlighting recent advances in our understanding on the role of ILPs as the link between insulin resistance and cancer and between immune deregulation and cancer in obesity, as well as those areas where there remains a paucity of data. It is anticipated that issues discussed in this paper will also recover new therapeutic targets that can assist in diagnostic screening and novel approaches to controlling tumor development.
Collapse
Affiliation(s)
- Sefirin Djiogue
- Department of Animal Biology and Physiology, University of Yaoundé 1, PO Box 812, Yaoundé, Cameroon
| | | | | | | | | | | | | |
Collapse
|
19
|
Fadini GP, Avogaro A. It is all in the blood: the multifaceted contribution of circulating progenitor cells in diabetic complications. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:742976. [PMID: 22548049 PMCID: PMC3324138 DOI: 10.1155/2012/742976] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/27/2012] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus (DM) is a worldwide growing disease and represents a huge social and healthcare problem owing to the burden of its complications. Micro- and macrovascular diabetic complications arise from excess damage through well-known biochemical pathways. Interestingly, microangiopathy hits the bone marrow (BM) microenvironment with features similar to retinopathy, nephropathy and neuropathy. The BM represents a reservoir of progenitor cells for multiple lineages, not limited to the hematopoietic system and including endothelial cells, smooth muscle cells, cardiomyocytes, and osteogenic cells. All these multiple progenitor cell lineages are profoundly altered in the setting of diabetes in humans and animal models. Reduction of endothelial progenitor cells (EPCs) along with excess smooth muscle progenitor (SMP) and osteoprogenitor cells creates an imbalance that promote the development of micro- and macroangiopathy. Finally, an excess generation of BM-derived fusogenic cells has been found to contribute to diabetic complications in animal models. Taken together, a growing amount of literature attributes to circulating progenitor cells a multi-faceted role in the pathophysiology of DM, setting a novel scenario that puts BM and the blood at the centre of the stage.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padua, 35100 Padua, Italy
- Laboratory of Experimental Diabetology, Venetian Institute of Molecular Medicine (VIMM), 35100 Padua, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padua, 35100 Padua, Italy
| |
Collapse
|