1
|
Gonzales S, Zhao JZ, Choi NY, Acharya P, Jeong S, Wang X, Lee MY. SOX7: Autism Associated Gene Identified by Analysis of Multi-Omics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.26.542456. [PMID: 37292933 PMCID: PMC10245991 DOI: 10.1101/2023.05.26.542456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome-wide association studies and next generation sequencing data analyses based on DNA information have identified thousands of mutations associated with autism spectrum disorder (ASD). However, more than 99% of identified mutations are non-coding. Thus, it is unclear which of these mutations might be functional and thus potentially causal variants. Transcriptomic profiling using total RNA-sequencing has been one of the most utilized approaches to link protein levels to genetic information at the molecular level. The transcriptome captures molecular genomic complexity that the DNA sequence solely does not. Some mutations alter a gene's DNA sequence but do not necessarily change expression and/or protein function. To date, few common variants reliably associated with the diagnosis status of ASD despite consistently high estimates of heritability. In addition, reliable biomarkers used to diagnose ASD or molecular mechanisms to define the severity of ASD do not exist. Therefore, it is necessary to integrate DNA and RNA testing together to identify true causal genes and propose useful biomarkers for ASD. We performed gene-based association studies with adaptive test using genome-wide association studies (GWAS) summary statistics with two large GWAS datasets (ASD 2019 data: 18,382 ASD cases and 27,969 controls [discovery data]; ASD 2017 data: 6,197 ASD cases and 7,377 controls [replication data]) which were obtained from the Psychiatric Genomics Consortium (PGC). In addition, we investigated differential expression between ASD cases and controls for genes identified in gene-based GWAS with two RNA-seq datasets (GSE211154: 20 cases and 19 controls; GSE30573: 3 cases and 3 controls). We identified 5 genes significantly associated with ASD in ASD 2019 data (KIZ-AS1, p=8.67×10-10; KIZ, p=1.16×10-9; XRN2, p=7.73×10-9; SOX7, p=2.22×10-7; LOC101929229 also known as PINX1-DT, p=2.14×10-6). Among these 5 genes, gene SOX7 (p=0.00087) and LOC101929229 (p=0.009) were replicated in ASD 2017 data. KIZ-AS1 (p=0.059) and KIZ (p=0.06) were close to the boundary of replication in ASD 2017 data. Genes SOX7 (p=0.036 in all samples; p=0.044 in white samples) indicated significant expression differences between cases and controls in the GSE211154 RNA-seq data. Furthermore, gene SOX7 was upregulated in cases than in controls in the GSE30573 RNA-seq data (p=0.0017; Benjamini-Hochberg adjusted p=0.0085). SOX7 encodes a member of the SOX (SRY-related HMG-box) family of transcription factors pivotally contributing to determining of the cell fate and identity in many lineages. The encoded protein may act as a transcriptional regulator after forming a protein complex with other proteins leading to autism. Gene SOX7 in the transcription factor family could be associated with ASD. This finding may provide new diagnostic and therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Samantha Gonzales
- Department of Biostatistics, Florida International University, Miami, FL 33199
| | - Jane Zizhen Zhao
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207
| | - Sehoon Jeong
- Department of Healthcare Information Technology Inje University, Gimhae, South Korea, 50834
| | - Xuexia Wang
- Department of Biostatistics, Florida International University, Miami, FL 33199
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207
| |
Collapse
|
2
|
Bamford RA, Zuko A, Eve M, Sprengers JJ, Post H, Taggenbrock RLRE, Fäβler D, Mehr A, Jones OJR, Kudzinskas A, Gandawijaya J, Müller UC, Kas MJH, Burbach JPH, Oguro-Ando A. CNTN4 modulates neural elongation through interplay with APP. Open Biol 2024; 14:240018. [PMID: 38745463 PMCID: PMC11293442 DOI: 10.1098/rsob.240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/16/2024] Open
Abstract
The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.
Collapse
Affiliation(s)
- Rosemary A. Bamford
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Madeline Eve
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Jan J. Sprengers
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Renske L. R. E. Taggenbrock
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Dominique Fäβler
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Annika Mehr
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Owen J. R. Jones
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Martien J. H. Kas
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Gonzales S, Zhao JZ, Choi NY, Acharya P, Jeong S, Lee MY. SOX7: Novel Autistic Gene Identified by Analysis of Multi-Omics Data. RESEARCH SQUARE 2023:rs.3.rs-3346245. [PMID: 37790478 PMCID: PMC10543249 DOI: 10.21203/rs.3.rs-3346245/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Despite thousands of variants identified by genome-wide association studies (GWAS) to be associated with autism spectrum disorder (ASD), it is unclear which mutations are causal because most are noncoding. Consequently, reliable diagnostic biomarkers are lacking. RNA-seq analysis captures biomolecular complexity that GWAS cannot by considering transcriptomic patterns. Therefore, integrating DNA and RNA testing may reveal causal genes and useful biomarkers for ASD. Methods We performed gene-based association studies using an adaptive test method with GWAS summary statistics from two large Psychiatric Genomics Consortium (PGC) datasets (ASD2019: 18,382 cases and 27,969 controls; ASD2017: 6,197 cases and 7,377 controls). We also investigated differential expression for genes identified with the adaptive test using an RNA-seq dataset (GSE30573: 3 cases and 3 controls) and DESeq2. Results We identified 5 genes significantly associated with ASD in ASD2019 (KIZ-AS1, p = 8.67×10- 10; KIZ, p = 1.16×10- 9; XRN2, p = 7.73×10- 9; SOX7, p = 2.22×10- 7; LOC101929229 (also known as PINX1-DT), p = 2.14×10- 6). Two of the five genes were replicated in ASD2017: SOX7 (p = 0.00087) and LOC101929229 (p = 0.009), and KIZ was close to the replication boundary of replication (p = 0.06). We identified significant expression differences for SOX7 (p = 0.0017, adjusted p = 0.0085), LOC101929229 (p = 5.83×10- 7, adjusted p = 1.18×10- 5), and KIZ (p = 0.00099, adjusted p = 0.0055). SOX7 encodes a transcription factor that regulates developmental pathways, alterations in which may contribute to ASD. Limitations The limitation of the gene-based analysis is the reliance on a reference population for estimating linkage disequilibrium between variants. The similarity of this reference population to the population of study is crucial to the accuracy of many gene-based analyses, including those performed in this study. As a result, the extent of our findings is limited to European populations, as this was our reference of choice. Future work includes a tighter integration of DNA and RNA information as well as extensions to non-European populations that have been under-researched. Conclusions These findings suggest that SOX7 and its related SOX family genes encode transcription factors that are critical to the downregulation of the canonical Wnt/β-catenin signaling pathway, an important developmental signaling pathway, providing credence to the biologic plausibility of the association between gene SOX7 and autism spectrum disorder.
Collapse
Affiliation(s)
| | - Jane Zizhen Zhao
- Miami Dade College Kendall Campus and School for Advanced Studies
| | | | | | | | | |
Collapse
|
4
|
Khan A, Kamal M, Alhothi A, Gad H, Adan MA, Ponirakis G, Petropoulos IN, Malik RA. Corneal confocal microscopy demonstrates sensory nerve loss in children with autism spectrum disorder. PLoS One 2023; 18:e0288399. [PMID: 37437060 DOI: 10.1371/journal.pone.0288399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by difficulty in communication and interaction with others. Postmortem studies have shown cerebral neuronal loss and neuroimaging studies show neuronal loss in the amygdala, cerebellum and inter-hemispheric regions of the brain. Recent studies have shown altered tactile discrimination and allodynia on the face, mouth, hands and feet and intraepidermal nerve fiber loss in the legs of subjects with ASD. Fifteen children with ASD (age: 12.00 ± 3.55 years) and twenty age-matched healthy controls (age: 12.83 ± 1.91 years) underwent corneal confocal microscopy (CCM) and quantification of corneal nerve fiber morphology. Corneal nerve fibre density (fibers/mm2) (28.61 ± 5.74 vs. 40.42 ± 8.95, p = 0.000), corneal nerve fibre length (mm/mm2) (16.61 ± 3.26 vs. 21.44 ± 4.44, p = 0.001), corneal nerve branch density (branches/mm2) (43.68 ± 22.71 vs. 62.39 ± 21.58, p = 0.018) and corneal nerve fibre tortuosity (0.037 ± 0.023 vs. 0.074 ± 0.017, p = 0.000) were significantly lower and inferior whorl length (mm/mm2) (21.06 ± 6.12 vs. 23.43 ± 3.95, p = 0.255) was comparable in children with ASD compared to controls. CCM identifies central corneal nerve fiber loss in children with ASD. These findings, urge the need for larger longitudinal studies to determine the utility of CCM as an imaging biomarker for neuronal loss in different subtypes of ASD and in relation to disease progression.
Collapse
Affiliation(s)
- Adnan Khan
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
- Faculty of Health Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Madeeha Kamal
- Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Abdula Alhothi
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Hoda Gad
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Marian A Adan
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | | | | | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
5
|
Al-Beltagi M, Saeed NK, Elbeltagi R, Bediwy AS, Aftab SAS, Alhawamdeh R. Viruses and autism: A Bi-mutual cause and effect. World J Virol 2023; 12:172-192. [PMID: 37396705 PMCID: PMC10311578 DOI: 10.5501/wjv.v12.i3.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 06/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous, multi-factorial, neurodevelopmental disorders resulting from genetic and environmental factors interplay. Infection is a significant trigger of autism, especially during the critical developmental period. There is a strong interplay between the viral infection as a trigger and a result of ASD. We aim to highlight the mutual relationship between autism and viruses. We performed a thorough literature review and included 158 research in this review. Most of the literature agreed on the possible effects of the viral infection during the critical period of development on the risk of developing autism, especially for specific viral infections such as Rubella, Cytomegalovirus, Herpes Simplex virus, Varicella Zoster Virus, Influenza virus, Zika virus, and severe acute respiratory syndrome coronavirus 2. Viral infection directly infects the brain, triggers immune activation, induces epigenetic changes, and raises the risks of having a child with autism. At the same time, there is some evidence of increased risk of infection, including viral infections in children with autism, due to lots of factors. There is an increased risk of developing autism with a specific viral infection during the early developmental period and an increased risk of viral infections in children with autism. In addition, children with autism are at increased risk of infection, including viruses. Every effort should be made to prevent maternal and early-life infections and reduce the risk of autism. Immune modulation of children with autism should be considered to reduce the risk of infection.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Pathology Department, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Microbiology Section, Pathology Department, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonolgy, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Syed A Saboor Aftab
- Endocrinology and DM, William Harvey Hospital (Paula Carr Centre), Ashford TN24 0LZ, Kent, United Kingdom
| | - Rawan Alhawamdeh
- Pediatrics Research and Development, Genomics Creativity and Play Center, Manama 0000, Bahrain
| |
Collapse
|
6
|
Sotelo-Orozco J, Schmidt RJ, Slupsky CM, Hertz-Picciotto I. Investigating the Urinary Metabolome in the First Year of Life and Its Association with Later Diagnosis of Autism Spectrum Disorder or Non-Typical Neurodevelopment in the MARBLES Study. Int J Mol Sci 2023; 24:9454. [PMID: 37298406 PMCID: PMC10254021 DOI: 10.3390/ijms24119454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Developmental disabilities are often associated with alterations in metabolism. However, it remains unknown how early these metabolic issues may arise. This study included a subset of children from the Markers of Autism Risks in Babies-Learning Early Signs (MARBLES) prospective cohort study. In this analysis, 109 urine samples collected at 3, 6, and/or 12 months of age from 70 children with a family history of ASD who went on to develop autism spectrum disorder (ASD n = 17), non-typical development (Non-TD n = 11), or typical development (TD n = 42) were investigated by nuclear magnetic resonance (NMR) spectroscopy to measure urinary metabolites. Multivariate principal component analysis and a generalized estimating equation were performed with the objective of exploring the associations between urinary metabolite levels in the first year of life and later adverse neurodevelopment. We found that children who were later diagnosed with ASD tended to have decreased urinary dimethylamine, guanidoacetate, hippurate, and serine, while children who were later diagnosed with Non-TD tended to have elevated urinary ethanolamine and hypoxanthine but lower methionine and homovanillate. Children later diagnosed with ASD or Non-TD both tended to have decreased urinary 3-aminoisobutyrate. Our results suggest subtle alterations in one-carbon metabolism, gut-microbial co-metabolism, and neurotransmitter precursors observed in the first year of life may be associated with later adverse neurodevelopment.
Collapse
Affiliation(s)
- Jennie Sotelo-Orozco
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA; (R.J.S.); (I.H.-P.)
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA; (R.J.S.); (I.H.-P.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, CA 95616, USA;
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA; (R.J.S.); (I.H.-P.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Jiang X, Shou XJ, Zhao Z, Chen Y, Meng FC, Le J, Song TJ, Xu XJ, Guo W, Ke X, Cai XE, Zhao W, Kou J, Huo R, Liu Y, Yuan HS, Xing Y, Han JS, Han SP, Li Y, Lai H, Zhang L, Jia MX, Liu J, Liu X, Kendrick KM, Zhang R. A brain structural connectivity biomarker for autism spectrum disorder diagnosis in early childhood. PSYCHORADIOLOGY 2023; 3:kkad005. [PMID: 38666122 PMCID: PMC11003421 DOI: 10.1093/psyrad/kkad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2024]
Abstract
Background Autism spectrum disorder (ASD) is associated with altered brain development, but it is unclear which specific structural changes may serve as potential diagnostic markers, particularly in young children at the age when symptoms become fully established. Furthermore, such brain markers need to meet the requirements of precision medicine and be accurate in aiding diagnosis at an individual rather than only a group level. Objective This study aimed to identify and model brain-wide differences in structural connectivity using diffusion tensor imaging (DTI) in young ASD and typically developing (TD) children. Methods A discovery cohort including 93 ASD and 26 TD children and two independent validation cohorts including 12 ASD and 9 TD children from three different cities in China were included. Brain-wide (294 regions) structural connectivity was measured using DTI (fractional anisotropy, FA) together with symptom severity and cognitive development. A connection matrix was constructed for each child for comparisons between ASD and TD groups. Pattern classification was performed on the discovery dataset and the resulting model was tested on the two independent validation datasets. Results Thirty-three structural connections showed increased FA in ASD compared to TD children and associated with both autistic symptom severity and impaired general cognitive development. The majority (29/33) involved the frontal lobe and comprised five different networks with functional relevance to default mode, motor control, social recognition, language and reward. Overall, classification achieved very high accuracy of 96.77% in the discovery dataset, and 91.67% and 88.89% in the two independent validation datasets. Conclusions Identified structural connectivity differences primarily involving the frontal cortex can very accurately distinguish novel individual ASD from TD children and may therefore represent a robust early brain biomarker which can address the requirements of precision medicine.
Collapse
Affiliation(s)
- Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao-Jing Shou
- Neuroscience Research Institute; Key Laboratory for Neuroscience, Ministry of Education of China; Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Cognitive Neuroscience and Learning; Beijing Key Laboratory of Brain Imaging and Connectomics; and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zhongbo Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuzhong Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan-Chao Meng
- Neuroscience Research Institute; Key Laboratory for Neuroscience, Ministry of Education of China; Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiao Le
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tian-Jia Song
- Neuroscience Research Institute; Key Laboratory for Neuroscience, Ministry of Education of China; Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xin-Jie Xu
- Neuroscience Research Institute; Key Laboratory for Neuroscience, Ministry of Education of China; Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weitong Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-E Cai
- Neuroscience Research Institute; Key Laboratory for Neuroscience, Ministry of Education of China; Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ran Huo
- Neuroscience Research Institute; Key Laboratory for Neuroscience, Ministry of Education of China; Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Radiology Department, Peking University Third Hospital, Beijing 100191, China
| | - Ying Liu
- Radiology Department, Peking University Third Hospital, Beijing 100191, China
| | - Hui-Shu Yuan
- Radiology Department, Peking University Third Hospital, Beijing 100191, China
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| | - Ji-Sheng Han
- Neuroscience Research Institute; Key Laboratory for Neuroscience, Ministry of Education of China; Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Song-Ping Han
- Wuxi Shenpingxintai Medical Technology Co., Ltd, Wuxi 214091, China
| | - Yun Li
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing 210029, China
| | - Hua Lai
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lan Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mei-Xiang Jia
- Mental Health Institute, Peking University, Key Laboratory of Ministry of Health, The Ministry of Public Health, Beijing 100191, China
| | - Jing Liu
- Mental Health Institute, Peking University, Key Laboratory of Ministry of Health, The Ministry of Public Health, Beijing 100191, China
| | - Xuan Liu
- Shandong Ke Luo Ni Ke (CLINIC) Medical Technology Co., Ltd, Dezhou 253011, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Rong Zhang
- Neuroscience Research Institute; Key Laboratory for Neuroscience, Ministry of Education of China; Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China; and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Autism Research Center of Peking University Health Science Center, Beijing 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 100191,Beijing, China
| |
Collapse
|
8
|
Geng X, Fan X, Zhong Y, Casanova MF, Sokhadze EM, Li X, Kang J. Abnormalities of EEG Functional Connectivity and Effective Connectivity in Children with Autism Spectrum Disorder. Brain Sci 2023; 13:130. [PMID: 36672111 PMCID: PMC9857308 DOI: 10.3390/brainsci13010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that interferes with normal brain development. Brain connectivity may serve as a biomarker for ASD in this respect. This study enrolled a total of 179 children aged 3-10 years (90 typically developed (TD) and 89 with ASD). We used a weighted phase lag index and a directed transfer function to investigate the functional and effective connectivity in children with ASD and TD. Our findings indicated that patients with ASD had local hyper-connectivity of brain regions in functional connectivity and simultaneous significant decrease in effective connectivity across hemispheres. These connectivity abnormalities may help to find biomarkers of ASD.
Collapse
Affiliation(s)
- Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Xiwang Fan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Yiwen Zhong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Manuel F. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC 29605, USA
| | - Estate M. Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC 29605, USA
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
| | - Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding 071000, China
| |
Collapse
|
9
|
Effects of Integrative Autism Therapy on Multiple Physical, Sensory, Cognitive, and Social Integration Domains in Children and Adolescents with Autism Spectrum Disorder: A 4-Week Follow-Up Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121971. [PMID: 36553414 PMCID: PMC9776954 DOI: 10.3390/children9121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This study aimed to compare the effects of conventional autism therapy (CAT) and integrative autism therapy (IAT) in children and adolescents with autism spectrum disorder (ASD). A convenience sample of 24 children with ASD was recruited and underwent either CAT or IAT for 60 min/day, twice a week, for 20 sessions over 10 weeks. Outcome measures included the following: (1) physical domain (pediatric balance scale, PBS), (2) sensory domain (short sensory profile), (3) cognitive domains (functional independence measure, FIM; and childhood autism rating scale), and (4) social integration domain (Canadian occupational performance measure, COPM; short falls efficacy scale; and pediatrics quality of life questionnaire). Two-way repeated analysis of variance (ANOVA) was used to determine the intervention-related changes in the four domains across the pre-test, post-test, and follow-up test at p < 0.05. ANOVA showed significant interaction effects on the PBS, FIM, and COPM (p < 0.05) variables. Moreover, time main effects (p < 0.05) were observed in all four domain variables, but no group main effect was noted. This study provides promising evidence that IAT is more effective than CAT for managing children and adolescents with ASD.
Collapse
|
10
|
Kang J, Li X, Casanova MF, Sokhadze EM, Geng X. Impact of repetitive transcranial magnetic stimulation on the directed connectivity of autism EEG signals: a pilot study. Med Biol Eng Comput 2022; 60:3655-3664. [DOI: 10.1007/s11517-022-02693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
|
11
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
12
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
13
|
Carpita B, Migli L, Chiarantini I, Battaglini S, Montalbano C, Carmassi C, Cremone IM, Dell’Osso L. Autism Spectrum Disorder and Fetal Alcohol Spectrum Disorder: A Literature Review. Brain Sci 2022; 12:brainsci12060792. [PMID: 35741677 PMCID: PMC9221419 DOI: 10.3390/brainsci12060792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of conditions associated with the effects of prenatal alcohol exposure and characterized by somatic and neuropsychological alterations. On the other hand, autism spectrum disorder (ASD) is characterized by a multifaceted neurobehavioral syndrome. Since alcohol can affect every stage of brain development, some authors hypothesized that in utero alcohol exposure might be linked to an increased risk of ASD in subjects with genetic vulnerability. The present review aimed to summarize the available literature on the possible association between FASD and ASD, also focusing on the reported clinical overlaps and on the possible shared pathogenic mechanisms. Studies in this field have stressed similarities and differences between the two conditions, leading to controversial results. The available literature also highlighted that both the disorders are often misdiagnosed or underdiagnosed, stressing the need to broaden the perspective, paying specific attention to milder presentations and sub-syndromic traits.
Collapse
|
14
|
Shah F, Dwivedi M. Pathophysiological Role of Gut Microbiota Affecting Gut–Brain Axis and Intervention of Probiotics and Prebiotics in Autism Spectrum Disorder. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:69-115. [DOI: 10.1007/978-981-16-6760-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Kang J, Zhang Z, Wan L, Casanova MF, Sokhadze EM, Li X. Effects of 1Hz repetitive transcranial magnetic stimulation on autism with intellectual disability: A pilot study. Comput Biol Med 2021; 141:105167. [PMID: 34959111 DOI: 10.1016/j.compbiomed.2021.105167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To explore whether 1 Hz repetitive transcranial magnetic stimulation (rTMS) has positive effects on brain activity and behavior of autistic children with intellectual disability. METHODS 32 autistic children with intellectual disability (26 boys and 6 girls) were recruited to participate in this feasibility study. The autistic children were divided randomly and equally into an experimental group and a control group. 16 children (three girls and 13 boys; mean ± SD age: 7.8 ± 2.1 years) who received rTMS treatment twice a week were served as the experimental group, while 16 children (three girls and 13 boys; mean ± SD age: 7.2 ± 1.6 years) with sham stimulation were considered as the control group. Recurrence quantification analysis (RQA) was employed to quantify the nonlinear features of electroencephalogram (EEG) signals recorded during the resting state. Three RQA measures, including recursive rate (RR), deterministic (DET) and mean diagonal length (L) were extracted from the EEG signals to characterize the deterministic features of cortical activity. RESULTS Significant differences in RR and DET were observed between the experimental group and the control group. We also found discernible discrepancies in the Autism Behavior Checklist (ABC) score pre- and post-rTMS for the experimental group. CONCLUSIONS 1 Hz repetitive transcranial magnetic stimulation (rTMS) could positively influence brain activity and behavior of autistic children with intellectual disability.
Collapse
Affiliation(s)
- Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Zhiming Zhang
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Lingyan Wan
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC, USA
| | - Estate M Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC, USA
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
16
|
Deckmann I, Santos-Terra J, Fontes-Dutra M, Körbes-Rockenbach M, Bauer-Negrini G, Schwingel GB, Riesgo R, Bambini-Junior V, Gottfried C. Resveratrol prevents brain edema, blood-brain barrier permeability, and altered aquaporin profile in autism animal model. Int J Dev Neurosci 2021; 81:579-604. [PMID: 34196408 DOI: 10.1002/jdn.10137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Marília Körbes-Rockenbach
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil
| | - Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,Department of Pediatrics, Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| |
Collapse
|
17
|
Casanova MF, Shaban M, Ghazal M, El-Baz AS, Casanova EL, Sokhadze EM. Ringing Decay of Gamma Oscillations and Transcranial Magnetic Stimulation Therapy in Autism Spectrum Disorder. Appl Psychophysiol Biofeedback 2021; 46:161-173. [PMID: 33877491 DOI: 10.1007/s10484-021-09509-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research suggest that in autism spectrum disorder (ASD) a disturbance in the coordinated interactions of neurons within local networks gives rise to abnormal patterns of brainwave activity in the gamma bandwidth. Low frequency transcranial magnetic stimulation (TMS) over the dorsolateral prefrontal cortex (DLPFC) has been proven to normalize gamma oscillation abnormalities, executive functions, and repetitive behaviors in high functioning ASD individuals. In this study, gamma frequency oscillations in response to a visual classification task (Kanizsa figures) were analyzed and compared in 19 ASD (ADI-R diagnosed, 14.2 ± 3.61 years old, 5 girls) and 19 (14.8 ± 3.67 years old, 5 girls) age/gender matched neurotypical individuals. The ASD group was treated with low frequency TMS (1.0 Hz, 90% motor threshold, 18 weekly sessions) targeting the DLPFC. In autistic subjects, as compared to neurotypicals, significant differences in event-related gamma oscillations were evident in amplitude (higher) pre-TMS. In addition, recordings after TMS treatment in our autistic subjects revealed a significant reduction in the time period to reach peak amplitude and an increase in the decay phase (settling time). The use of a novel metric for gamma oscillations. i.e., envelope analysis, and measurements of its ringing decay allowed us to characterize the impedance of the originating neuronal circuit. The ringing decay or dampening of gamma oscillations is dependent on the inhibitory tone generated by networks of interneurons. The results suggest that the ringing decay of gamma oscillations may provide a biomarker reflective of the excitatory/inhibitory balance of the cortex and a putative outcome measure for interventions in autism.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Mohamed Shaban
- Electrical and Computer Engineering, University of South Alabama, Mobile, AL, USA
| | - Mohammed Ghazal
- Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ayman S El-Baz
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Emily L Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Estate M Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA.
| |
Collapse
|
18
|
Prevention in Autism Spectrum Disorder: A Lifelong Focused Approach. Brain Sci 2021; 11:brainsci11020151. [PMID: 33498888 PMCID: PMC7911370 DOI: 10.3390/brainsci11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex highly heritable disorder, in which multiple environmental factors interact with the genes to increase its risk and lead to variable clinical presentations and outcomes. Furthermore, the inherent fundamental deficits of ASD in social attention and interaction critically diverge children from the typical pathways of learning, "creating" what we perceive as autism syndrome during the first three years of life. Later in life, training and education, the presence and management of comorbidities, as well as social and vocational support throughout the lifespan, will define the quality of life and the adaptation of an individual with ASD. Given the overall burden of ASD, prevention strategies seem like a cost-effective endeavour that we have to explore. In this paper, we take a life course approach to prevention. We will review the possibilities of the management of risk factors from preconception until the perinatal period, that of early intervention in the first three years of life and that of effective training and support from childhood until adulthood.
Collapse
|
19
|
The study of the differences between low-functioning autistic children and typically developing children in the processing of the own-race and other-race faces by the machine learning approach. J Clin Neurosci 2020; 81:54-60. [PMID: 33222968 DOI: 10.1016/j.jocn.2020.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder which affects the developmental trajectory in several behavioral domains, including impairments of social communication and stereotyped behavior. Unlike typically developing children who can successfully obtain the detailed facial information to decode the mental status with ease, autistic children cannot infer instant feelings and thoughts of other people due to their abnormal face processing. In the present study, we tested the other-race face, the own-race strange face and the own-race familiar face as stimuli material to explore whether ASD children would display different face fixation patterns for the different types of face compared to TD children. We used a machine learning approach based on eye tracking data to classify autistic children and TD children. METHODS Seventy-seven low-functioning autistic children and eighty typically developing children were recruited. They were required to watch a series face photos in a random order. According to the coordinate frequency distribution, the K-means clustering algorithm divided the image into 64 Area Of Interest (AOI) and selected the features using the minimal redundancy and maximal relevance (mRMR) algorithm. The Support Vector Machine (SVM) was used to classify to determine whether the scan patterns of different faces can be used to identify ASD, and to evaluate classification models from both accuracy and reliability. RESULTS The results showed that the maximum classification accuracy was 72.50% (AUC = 0.77) when 32 of the 64 features of unfamiliar other-race faces were selected; the maximum classification accuracy was 70.63% (AUC = 0.76) when 18 features of own-race strange faces were selected; the maximum classification accuracy was 78.33% (AUC = 0.84) when 48 features of own-race familiar faces were selected; The classification accuracy of combining three types of faces reached a maximum of 84.17% and AUC = 0.89 when 120 features were selected. CONCLUSIONS There are some differences between low-functioning autistic children and typically developing children in the processing of the own-race and other-race faces by the machine learning approach, which might be a useful tool for classifying low-functioning autistic children and TD children.
Collapse
|
20
|
Casanova MF, Sokhadze EM, Casanova EL, Li X. Transcranial Magnetic Stimulation in Autism Spectrum Disorders: Neuropathological Underpinnings and Clinical Correlations. Semin Pediatr Neurol 2020; 35:100832. [PMID: 32892959 PMCID: PMC7477302 DOI: 10.1016/j.spen.2020.100832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite growing knowledge about autism spectrum disorder (ASD), research findings have not been translated into curative treatment. At present, most therapeutic interventions provide for symptomatic treatment. Outcomes of interventions are judged by subjective endpoints (eg, behavioral assessments) which alongside the highly heterogeneous nature of ASD account for wide variability in the effectiveness of treatments. Transcranial magnetic stimulation (TMS) is one of the first treatments that targets a putative core pathologic feature of autism, specifically the cortical inhibitory imbalance that alters gamma frequency synchronization. Studies show that low frequency TMS over the dorsolateral prefrontal cortex of individuals with ASD decreases the power of gamma activity and increases the difference between gamma responses to target and nontarget stimuli. TMS improves executive function skills related to self-monitoring behaviors and the ability to apply corrective actions. These improvements manifest themselves as a reduction of stimulus bound behaviors and diminished sympathetic arousal. Results become more significant with increasing number of sessions and bear synergism when used along with neurofeedback. When applied at low frequencies in individuals with ASD, TMS appears to be safe and to improve multiple patient-oriented outcomes. Future studies should be conducted in large populations to establish predictors of outcomes (eg, genetic profiling), length of persistence of benefits, and utility of booster sessions.
Collapse
Affiliation(s)
- Manuel F. Casanova
- Director of Childhood Neurotherapeutics, Greenville Health System, Departments of Pediatrics, Division of Developmental Behavioral Pediatrics, Greenville, SC, USA and Professor of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Estate M. Sokhadze
- Research Professor, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Emily L. Casanova
- Research Assistant Professor, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Xiaoli Li
- Director, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
21
|
Casanova MF, Sokhadze EM, Casanova EL, Opris I, Abujadi C, Marcolin MA, Li X. Translational Neuroscience in Autism: From Neuropathology to Transcranial Magnetic Stimulation Therapies. Psychiatr Clin North Am 2020; 43:229-248. [PMID: 32439019 PMCID: PMC7245584 DOI: 10.1016/j.psc.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The presence of heterotopias, increased regional density of neurons at the gray-white matter junction, and focal cortical dysplasias all suggest an abnormality of neuronal migration in autism spectrum disorder (ASD). The abnormality is borne from a dissonance in timing between radial and tangentially migrating neuroblasts to the developing cortical plate. The uncoupling of excitatory and inhibitory cortical cells disturbs the coordinated interactions of neurons within local networks, thus providing abnormal patterns of brainwave activity in the gamma bandwidth. In ASD, gamma oscillation abnormalities and autonomic markers offer measures of therapeutic progress and help in the identification of subgroups.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Pediatrics, Division of Developmental Behavioral Pediatrics, Greenville Health System, 200 Patewood Drive, Suite A200, Greenville, SC 29615, USA.
| | - Estate M Sokhadze
- University of South Carolina School of Medicine Greenville, 200 Patewood Drive, Greenville, SC 29615, USA
| | - Emily L Casanova
- University of South Carolina School of Medicine Greenville, 200 Patewood Drive, Greenville, SC 29615, USA. https://twitter.com/EmLyWill
| | - Ioan Opris
- University of Miami, Miller School of Medicine, Department Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Caio Abujadi
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marco Antonio Marcolin
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
The role of neuroglia in autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:301-330. [PMID: 32711814 DOI: 10.1016/bs.pmbts.2020.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroglia are a large class of neural cells of ectodermal (astroglia, oligodendroglia, and peripheral glial cells) and mesodermal (microglia) origin. Neuroglial cells provide homeostatic support, protection, and defense to the nervous tissue. Pathological potential of neuroglia has been acknowledged since their discovery. Research of the recent decade has shown the key role of all classes of glial cells in autism spectrum disorders (ASD), although molecular mechanisms defining glial contribution to ASD are yet to be fully characterized. This narrative conceptualizes recent findings of the broader roles of glial cells, including their active participation in the control of cerebral environment and regulation of synaptic development and scaling, highlighting their putative involvement in the etiopathogenesis of ASD.
Collapse
|
23
|
Orozco JS, Hertz-Picciotto I, Abbeduto L, Slupsky CM. Metabolomics analysis of children with autism, idiopathic-developmental delays, and Down syndrome. Transl Psychiatry 2019; 9:243. [PMID: 31582732 PMCID: PMC6776514 DOI: 10.1038/s41398-019-0578-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Although developmental delays affect learning, language, and behavior, some evidence suggests the presence of disturbances in metabolism are associated with psychiatric disorders. Here, the plasma metabolic phenotype of children with autism spectrum disorder (ASD, n = 167), idiopathic-developmental delay (i-DD, n = 51), and Down syndrome (DS, n = 31), as compared to typically developed (TD, n = 193) controls was investigated in a subset of children from the case-control Childhood Autism Risk from Genetics and the Environment (CHARGE) Study. Metabolome profiles were obtained using nuclear magnetic resonance spectroscopy and analyzed in an untargeted manner. Forty-nine metabolites were identified and quantified in each sample that included amino acids, organic acids, sugars, and other compounds. Multiple linear regression analysis revealed significant associations between 11 plasma metabolites and neurodevelopmental outcome. Despite the varied origins of these developmental disabilities, we observed similar perturbation in one-carbon metabolism pathways among DS and ASD cases. Similarities were also observed in the DS and i-DD cases in the energy-related tricarboxylic acid cycle. Other metabolites and pathways were uniquely associated with DS or ASD. By comparing metabolic signatures between these conditions, the current study expands on extant literature demonstrating metabolic alterations associated with developmental disabilities and provides a better understanding of overlapping vs specific biological perturbations associated with these disorders.
Collapse
Affiliation(s)
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, 95616, USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, 95616, USA
- MIND Institute, University of California, Davis, CA, 95817, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
24
|
Glinton KE, Elsea SH. Untargeted Metabolomics for Autism Spectrum Disorders: Current Status and Future Directions. Front Psychiatry 2019; 10:647. [PMID: 31551836 PMCID: PMC6746843 DOI: 10.3389/fpsyt.2019.00647] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopment disorders characterized by childhood onset deficits in social communication and interaction. Although the exact etiology of most cases of ASDs is unknown, a portion has been proposed to be associated with various metabolic abnormalities including mitochondrial dysfunction, disorders of cholesterol metabolism, and folate abnormalities. Targeted biochemical testing like plasma amino acid and acylcarnitine profiles have demonstrated limited utility in helping to diagnose and manage such patients. Untargeted metabolomics has emerged, however, as a promising tool in screening for underlying biochemical abnormalities and managing treatment and as a means of investigating possible novel biomarkers for the disorder. Here, we review the principles and methodology behind untargeted metabolomics, recent pilot studies utilizing this technology, and areas in which it may be integrated into the care of children with this disorder in the future.
Collapse
Affiliation(s)
- Kevin E. Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
25
|
Kang JN, Song JJ, Casanova MF, Sokhadze EM, Li XL. Effects of repetitive transcranial magnetic stimulation on children with low-function autism. CNS Neurosci Ther 2019; 25:1254-1261. [PMID: 31228356 PMCID: PMC6834922 DOI: 10.1111/cns.13150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a very complex neurodevelopmental disorder, characterized by social difficulties and stereotypical or repetitive behavior. Some previous studies using low‐frequency repetitive transcranial magnetic stimulation (rTMS) have proven of benefit in ASD children. Methods In this study, 32 children (26 males and six females) with low‐function autism were enrolled, 16 children (three females and 13 males; mean ± SD age: 7.8 ± 2.1 years) received rTMS treatment twice every week, while the remaining 16 children (three females and 13 males; mean ± SD age: 7.2 ± 1.6 years) served as waitlist group. This study investigated the effects of rTMS on brain activity and behavioral response in the autistic children. Results Peak alpha frequency (PAF) is an electroencephalographic measure of cognitive preparedness and might be a neural marker of cognitive function for the autism. Coherence is one way to assess the brain functional connectivity of ASD children, which has proven abnormal in previous studies. The results showed significant increases in the PAF at the frontal region, the left temporal region, the right temporal region and the occipital region and a significant increase of alpha coherence between the central region and the right temporal region. Autism Behavior Checklist (ABC) scores were also compared before and after receiving rTMS with positive effects shown on behavior. Conclusion These findings supported our hypothesis by demonstration of positive effects of combined rTMS neurotherapy in active treatment group as compared to the waitlist group, as the rTMS group showed significant improvements in behavioral and functional outcomes as compared to the waitlist group.
Collapse
Affiliation(s)
- Jian-Nan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Jia-Jia Song
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, South Carolina
| | - Estate M Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, South Carolina
| | - Xiao-Li Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
26
|
Kelly RS, Boulin A, Laranjo N, Lee-Sarwar K, Chu SH, Yadama AP, Carey V, Litonjua AA, Lasky-Su J, Weiss ST. Metabolomics and Communication Skills Development in Children; Evidence from the Ages and Stages Questionnaire. Metabolites 2019; 9:E42. [PMID: 30841573 PMCID: PMC6468693 DOI: 10.3390/metabo9030042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
We hypothesized metabolomic profiling could be utilized to identify children who scored poorly on the communication component of the Ages and Stages Questionnaire (ASQ); which assesses development in childhood, and to provide candidate biomarkers for autism spectrum disorders (ASD). In a population of three-year-old children, 15 plasma metabolites, were significantly (p < 0.05) different between children who were categorized as having communication skills that were "on schedule" (n = 365 (90.6%)) as compared to those "requiring further monitoring/evaluation" (n = 38 (9.4%)) according to multivariable regression models. Five of these metabolites, including three endocannabinoids, were also dysregulated at age one (n = 204 "on schedule", n = 24 "further monitoring/evaluation") in the same children. Stool metabolomic profiling identified 11 significant metabolites. Both the plasma and stool results implicated a role for tryptophan and tyrosine metabolism; in particular, higher levels of N-formylanthranilic acid were associated with an improved communication score in both biosample types. A model based on the significant plasma metabolites demonstrated high sensitivity (88.9%) and specificity (84.5%) for the prediction of autism by age 8. These results provide evidence that ASQ communication score and metabolomic profiling of plasma and/or stool may provide alternative approaches for early diagnosis of ASD, as well as insights into the pathobiology of these conditions.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Adrianna Boulin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
- The Fenway Institute, Fenway Health, Boston, MA 02215, USA.
| | - Nancy Laranjo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Su H Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Aishwarya P Yadama
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Vincent Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Makowski C, Lepage M, Evans AC. Head motion: the dirty little secret of neuroimaging in psychiatry. J Psychiatry Neurosci 2019; 44:62-68. [PMID: 30565907 PMCID: PMC6306289 DOI: 10.1503/jpn.180022] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Psychiatry is at a crossroads when choosing final samples for analysis of neuroimaging data. Many patient populations exhibit significantly increased motion in the scanner compared with healthy controls, suggesting that more patients would need to be excluded to obtain a clean sample. However, this need is often overshadowed by the extensive amount of time and effort required to recruit these valuable and uncommon samples. This commentary sheds light on the impact of motion on imaging studies, drawing examples from psychiatric patient samples to better understand how head motion can confound interpretation of clinically oriented questions. We discuss the impact of even subtle motion artifacts on the interpretation of results as well as how different levels of stringency in quality control can affect findings within nearly identical samples. We also summarize recent initiatives toward harmonization of quality-control procedures as well as tools to prospectively and retrospectively correct for motion artifacts.
Collapse
Affiliation(s)
- Carolina Makowski
- From the McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que., Canada (Makowski, Evans); and the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Que., Canada (Makowski, Lepage)
| | - Martin Lepage
- From the McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que., Canada (Makowski, Evans); and the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Que., Canada (Makowski, Lepage)
| | - Alan C. Evans
- From the McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que., Canada (Makowski, Evans); and the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Que., Canada (Makowski, Lepage)
| |
Collapse
|
28
|
Smith RX, Jann K, Dapretto M, Wang DJJ. Imbalance of Functional Connectivity and Temporal Entropy in Resting-State Networks in Autism Spectrum Disorder: A Machine Learning Approach. Front Neurosci 2018; 12:869. [PMID: 30542259 PMCID: PMC6277800 DOI: 10.3389/fnins.2018.00869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Two approaches to understanding the etiology of neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) involve network level functional connectivity (FC) and the dynamics of neuronal signaling. The former approach has revealed both increased and decreased FC in individuals with ASD. The latter approach has found high frequency EEG oscillations and higher levels of epilepsy in children with ASD. Together, these findings have led to the hypothesis that atypical excitatory-inhibitory neural signaling may lead to imbalanced association pathways. However, simultaneously reconciling local temporal dynamics with network scale spatial connectivity remains a difficult task and thus empirical support for this hypothesis is lacking. Methods: We seek to fill this gap by combining two powerful resting-state functional MRI (rs-fMRI) methods-functional connectivity (FC) and wavelet-based regularity analysis. Wavelet-based regularity analysis is an entropy measure of the local rs-fMRI time series signal. We examined the relationship between the RSN entropy and integrity in individuals with ASD and controls from the Autism Brain Imaging Data Exchange (ABIDE) cohort using a putative set of 264 functional brain regions-of-interest (ROI). Results: We observed that an imbalance in intra- and inter-network FC across 11 RSNs in ASD individuals (p = 0.002) corresponds to a weakened relationship with RSN temporal entropy (p = 0.02). Further, we observed that an estimated RSN entropy model significantly distinguished ASD from controls (p = 0.01) and was associated with level of ASD symptom severity (p = 0.003). Conclusions: Imbalanced brain connectivity and dynamics at the network level coincides with their decoupling in ASD. The association with ASD symptom severity presents entropy as a potential biomarker.
Collapse
Affiliation(s)
- Robert X. Smith
- NeuroImaging Laboratories (NIL) at Washington University School of Medicine, Washington University in Saint Louis, Saint Louis, MO, United States
| | - Kay Jann
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Danny J. J. Wang
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
29
|
Lynch G. Using Pupillometry to Assess the Atypical Pupillary Light Reflex and LC-NE System in ASD. Behav Sci (Basel) 2018; 8:E108. [PMID: 30469373 PMCID: PMC6262612 DOI: 10.3390/bs8110108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 01/15/2023] Open
Abstract
With recent advances in technology, there has been growing interest in use of eye-tracking and pupillometry to assess the visual pathway in autism spectrum disorder (ASD). Within emerging literature, an atypical pupillary light reflex (PLR) has been documented, holding potential for use as a clinical screening biomarker for ASD. This review outlines dominant theories of neuropathology associated with ASD and integrates underlying neuroscience associated with the atypical PLR through a reciprocal model of brainstem involvement and cortical underconnectivity. This review draws from animal models of ASD demonstrating disruption of cranial motor nuclei and brain imaging studies examining arousal and the influence of the locus coeruleus norepinephrine (LC-NE) system on the pupillary response. Pupillometry methods are explained in relation to existing data examining the PLR in ASD and pupillary parameters of constriction latency and tonic pupil diameter as key parameters for investigation. This focused review provides preliminary data toward future work developing pupillometry metrics and offers direction for studies aimed at rigorous study replication using pupillometry with the ASD population. Experimental conditions and testing protocol for capturing pupil parameters with this clinical population are discussed to promote clinical research and translational application.
Collapse
Affiliation(s)
- Georgina Lynch
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210-1495, USA.
| |
Collapse
|
30
|
Quesnel-Vallières M, Weatheritt RJ, Cordes SP, Blencowe BJ. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet 2018; 20:51-63. [DOI: 10.1038/s41576-018-0066-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, Cataltepe D, Turner D, Han MJ, Woolf CJ, Hatten ME, Sahin M. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry 2018; 23:2167-2183. [PMID: 29449635 PMCID: PMC6093816 DOI: 10.1038/s41380-018-0018-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that cerebellar dysfunction early in life is associated with autism spectrum disorder (ASD), but the molecular mechanisms underlying the cerebellar deficits at the cellular level are unclear. Tuberous sclerosis complex (TSC) is a neurocutaneous disorder that often presents with ASD. Here, we developed a cerebellar Purkinje cell (PC) model of TSC with patient-derived human induced pluripotent stem cells (hiPSCs) to characterize the molecular mechanisms underlying cerebellar abnormalities in ASD and TSC. Our results show that hiPSC-derived PCs from patients with pathogenic TSC2 mutations displayed mTORC1 pathway hyperactivation, defects in neuronal differentiation and RNA regulation, hypoexcitability and reduced synaptic activity when compared with those derived from controls. Our gene expression analyses revealed downregulation of several components of fragile X mental retardation protein (FMRP) targets in TSC2-deficient hiPSC-PCs. We detected decreased expression of FMRP, glutamate receptor δ2 (GRID2), and pre- and post-synaptic markers such as synaptophysin and PSD95 in the TSC2-deficient hiPSC-PCs. The mTOR inhibitor rapamycin rescued the deficits in differentiation, synaptic dysfunction, and hypoexcitability of TSC2 mutant hiPSC-PCs in vitro. Our findings suggest that these gene expression changes and cellular abnormalities contribute to aberrant PC function during development in TSC affected individuals.
Collapse
Affiliation(s)
- Maria Sundberg
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ivan Tochitsky
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Buchholz
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Kellen Winden
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ville Kujala
- Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, USA
| | - Kush Kapur
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Deniz Cataltepe
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daria Turner
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Min-Joon Han
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Mustafa Sahin
- Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
García-Cabezas MÁ, Barbas H, Zikopoulos B. Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Front Neuroanat 2018; 12:70. [PMID: 30174592 PMCID: PMC6107687 DOI: 10.3389/fnana.2018.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
The phenotype of neurons and their connections depend on complex genetic and epigenetic processes that regulate the expression of genes in the nucleus during development and throughout life. Here we examined the distribution of nuclear chromatin patters in relation to the epigenetic landscape, phenotype and connections of neurons with a focus on the primate cerebral cortex. We show that nuclear patterns of chromatin in cortical neurons are related to neuron size and cortical connections. Moreover, we point to evidence that reveals an orderly sequence of events during development, linking chromatin and gene expression patterns, neuron morphology, function, and connections across cortical areas and layers. Based on this synthesis, we posit that systematic studies of changes in chromatin patterns and epigenetic marks across cortical areas will provide novel insights on the development and evolution of cortical networks, and their disruption in connectivity disorders of developmental origin, like autism. Achieving this requires embedding and interpreting genetic, transcriptional, and epigenetic studies within a framework that takes into consideration distinct types of neurons, local circuit interactions, and interareal pathways. These features vary systematically across cortical areas in parallel with laminar structure and are differentially affected in disorders. Finally, based on evidence that autism-associated genetic polymorphisms are especially prominent in excitatory neurons and connectivity disruption affects mostly limbic cortices, we employ this systematic approach to propose novel, targeted studies of projection neurons in limbic areas to elucidate the emergence and time-course of developmental disruptions in autism.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States.,Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
33
|
Tanigawa J, Kagitani-Shimono K, Matsuzaki J, Ogawa R, Hanaie R, Yamamoto T, Tominaga K, Nabatame S, Mohri I, Taniike M, Ozono K. Atypical auditory language processing in adolescents with autism spectrum disorder. Clin Neurophysiol 2018; 129:2029-2037. [PMID: 29934264 DOI: 10.1016/j.clinph.2018.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Individuals with autism spectrum disorder (ASD) often show characteristic differences in auditory processing. To clarify the mechanisms underlying communication impairment in ASD, we examined auditory language processing with both anatomical and functional methods. METHODS We assessed the language abilities of adolescents with ASD and typically developing (TD) adolescents, and analyzed the surface-based morphometric structure between the groups using magnetic resonance imaging. Furthermore, we measured cortical responses to an auditory word comprehension task with magnetoencephalography and performed network-based statistics using the phase locking values. RESULTS We observed no structural differences between the groups. However, the volume of the left ventral central sulcus (vCS) showed a significant correlation with linguistic scores in ASD. Moreover, adolescents with ASD showed weaker cortical activation in the left vCS and superior temporal sulcus. Furthermore, these regions showed differential correlations with linguistic scores between the groups. Moreover, the ASD group had an atypical gamma band (25-40 Hz) network centered on the left vCS. CONCLUSIONS Adolescents with ASD showed atypical responses on the auditory word comprehension task and functional brain differences. SIGNIFICANCE Our results suggest that phonological processing and gamma band cortical activity play a critical role in auditory language processing-related pathophysiology in adolescents with ASD.
Collapse
Affiliation(s)
- Junpei Tanigawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kuriko Kagitani-Shimono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Junko Matsuzaki
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Rei Ogawa
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ryuzo Hanaie
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tomoka Yamamoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Tominaga
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ikuko Mohri
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masako Taniike
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
34
|
Sokhadze EM, Lamina EV, Casanova EL, Kelly DP, Opris I, Tasman A, Casanova MF. Exploratory Study of rTMS Neuromodulation Effects on Electrocortical Functional Measures of Performance in an Oddball Test and Behavioral Symptoms in Autism. Front Syst Neurosci 2018; 12:20. [PMID: 29892214 PMCID: PMC5985329 DOI: 10.3389/fnsys.2018.00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
There is no accepted pathology to autism spectrum disorders (ASD) but research suggests the presence of an altered excitatory/inhibitory (E/I) bias in the cerebral cortex. Repetitive transcranial magnetic stimulation (rTMS) offers a non-invasive means of modulating the E/I cortical bias with little in terms of side effects. In this study, 124 high functioning ASD children (IQ > 80, <18 years of age) were recruited and assigned using randomization to either a waitlist group or one of three different number of weekly rTMS sessions (i.e., 6, 12, and 18). TMS consisted of trains of 1.0 Hz frequency pulses applied over the dorsolateral prefrontal cortex (DLPFC). The experimental task was a visual oddball with illusory Kanizsa figures. Behavioral response variables included reaction time and error rate along with such neurophysiological indices such as stimulus and response-locked event-related potentials (ERP). One hundred and twelve patients completed the assigned number of TMS sessions. Results showed significant changes from baseline to posttest period in the following measures: motor responses accuracy [lower percentage of committed errors, slower latency of commission errors and restored normative post-error reaction time slowing in both early and later-stage ERP indices, enhanced magnitude of error-related negativity (ERN), improved error monitoring and post-error correction functions]. In addition, screening surveys showed significant reductions in aberrant behavior ratings and in both repetitive and stereotypic behaviors. These differences increased with the total number of treatment sessions. Our results suggest that rTMS, particularly after 18 sessions, facilitates cognitive control, attention and target stimuli recognition by improving discrimination between task-relevant and task-irrelevant illusory figures in an oddball test. The noted improvement in executive functions of behavioral performance monitoring further suggests that TMS has the potential to target core features of ASD.
Collapse
Affiliation(s)
- Estate M. Sokhadze
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, United States
| | - Eva V. Lamina
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Emily L. Casanova
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Desmond P. Kelly
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
- Department of Pediatrics, Greenville Health System, Greenville, SC, United States
| | - Ioan Opris
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Allan Tasman
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, United States
| | - Manuel F. Casanova
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, United States
- Department of Pediatrics, Greenville Health System, Greenville, SC, United States
| |
Collapse
|
35
|
Padilla N, Eklöf E, Mårtensson GE, Bölte S, Lagercrantz H, Ådén U. Poor Brain Growth in Extremely Preterm Neonates Long Before the Onset of Autism Spectrum Disorder Symptoms. Cereb Cortex 2018; 27:1245-1252. [PMID: 26689588 DOI: 10.1093/cercor/bhv300] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Preterm infants face an increased risk of autism spectrum disorder (ASD). The relationship between autism during childhood and early brain development remains unexplored. We studied 84 preterm children born at <27 weeks of gestation, who underwent neonatal magnetic resonance imaging (MRI) at term and were screened for ASD at 6.5 years. Full-scale intelligence quotient was measured and neonatal morbidities were recorded. Structural brain morphometric studies were performed in 33 infants with high-quality MRI and no evidence of focal brain lesions. Twenty-three (27.4%) of the children tested ASD positive and 61 (72.6%) tested ASD negative. The ASD-positive group had a significantly higher frequency of neonatal complications than the ASD-negative group. In the subgroup of 33 children, the ASD infants had reduced volumes in the temporal, occipital, insular, and limbic regions and in the brain areas involved in social/behavior and salience integration. This study shows that the neonatal MRI scans of extremely preterm children, subsequently diagnosed with ASD at 6.5 years, showed brain structural alterations, localized in the regions that play a key role in the core features of autism. Early detection of these structural alterations may allow the early identification and intervention of children at risk of ASD.
Collapse
Affiliation(s)
| | - Eva Eklöf
- Department of Women's and Children's Health
| | | | - Sven Bölte
- Department of Women's and Children's Health.,Division of Child and Adolescent Psychiatry, Stockholm County Council, Karolinska Institutet, Stockholm, Sweden
| | - Hugo Lagercrantz
- Department of Women's and Children's Health.,Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrika Ådén
- Department of Women's and Children's Health.,Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Siemann JK, Muller CL, Forsberg CG, Blakely RD, Veenstra-VanderWeele J, Wallace MT. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl Psychiatry 2017; 7:e1067. [PMID: 28323282 PMCID: PMC5416665 DOI: 10.1038/tp.2017.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 01/29/2023] Open
Abstract
Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory development and function, and alterations of serotonergic signaling have been suggested to have a role in ASD. A gain-of-function coding variant in the serotonin transporter (SERT) associates with sensory aversion in humans, and when expressed in mice produces traits associated with ASD, including disruptions in social and communicative function and repetitive behaviors. The current study set out to test whether these mice also exhibit changes in multisensory function when compared with wild-type (WT) animals on the same genetic background. Mice were trained to respond to auditory and visual stimuli independently before being tested under visual, auditory and paired audiovisual (multisensory) conditions. WT mice exhibited significant gains in response accuracy under audiovisual conditions. In contrast, although the SERT mutant animals learned the auditory and visual tasks comparably to WT littermates, they failed to show behavioral gains under multisensory conditions. We believe these results provide the first behavioral evidence of multisensory deficits in a genetic mouse model related to ASD and implicate the serotonin system in multisensory processing and in the multisensory changes seen in ASD.
Collapse
Affiliation(s)
- J K Siemann
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - C L Muller
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - C G Forsberg
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - R D Blakely
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL, USA
- Florida Atlantic University Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - J Veenstra-VanderWeele
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, NY, USA
- Center for Autism and The Developing Brain, New York Presbyterian Hospital, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - M T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
37
|
Bonnet-Brilhault F. [Autism: An early neurodevelopmental disorder]. Arch Pediatr 2017; 24:384-390. [PMID: 28256376 DOI: 10.1016/j.arcped.2017.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/16/2022]
Abstract
With approximately 67 million individuals affected worldwide, autism spectrum disorder (ASD) is the fastest growing neurodevelopmental disorder (United Nations, 2011), with a prevalence estimated to be 1/100. In France ASD affects approximately 600,000 individuals (from childhood to adulthood, half of whom are also mentally retarded), who thus have a major handicap in communication and in adapting to daily life, which leads autism to be recognized as a national public health priority. ASD is a neurodevelopmental disorder that affects several domains (i.e., socio-emotional, language, sensori-motor, executive functioning). These disorders are expressed early in life with an age of onset around 18 months. Despite evidence suggesting a strong genetic link with ASD, the genetic determinant remains unclear. The clinical picture is characterized by impairments in social interaction and communication and the presence of restrictive and repetitive behaviors (DSM-5, ICD-10). However, in addition to these two main dimensions there is significant comorbidity between ASD and other neurodevelopmental disorders such as attention deficit hyperactivity disorder or with genetic and medical conditions. One of the diagnostic features of ASD is its early emergence: symptoms must begin in early childhood for a diagnosis to be given. Due to brain plasticity, early interventions are essential to facilitate clinical improvement. Therefore, general practitioners and pediatricians are on the front line to detect early signs of ASD and to guide both medical explorations and early rehabilitation.
Collapse
Affiliation(s)
- F Bonnet-Brilhault
- UMR Inserm U930, équipe autisme, centre universitaire de pédopsychiatrie, hôpital Bretonneau, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex 09, France.
| |
Collapse
|
38
|
Abstract
Autism Spectrum Disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders that are diagnosed solely on the basis of behaviour. A large body of work has reported neuroanatomical differences between individuals with ASD and neurotypical controls. Despite the huge clinical and genetic heterogeneity that typifies autism, some of these anatomical features appear to be either present in most cases or so dramatically altered in some that their presence is now reasonably well replicated in a number of studies. One such finding is the tendency towards overgrowth of the frontal cortex during the early postnatal period. Although these reports have been focused primarily on the presumed pathological anatomy, they are providing us with important insights into normal brain anatomy and are stimulating new ideas and hypotheses about the normal trajectory of brain development and the function of specific anatomical brain structures. The use of model systems that include genetic model organisms such as the mouse and, more recently, human induced pluripotent stem cell-derived brain organoids to model normal and pathological human cortical development, is proving particularly informative. Here we review some of the neuroanatomical alterations reported in autism, with a particular focus on well-validated findings and recent advances in the field, and ask what these observations can tell us about normal and abnormal brain development.
Collapse
Affiliation(s)
- Alex P. A. Donovan
- Department of Craniofacial Development and Stem Cell Biology, and MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - M. Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, and MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
39
|
Yeh E, Weiss LA. If genetic variation could talk: What genomic data may teach us about the importance of gene expression regulation in the genetics of autism. Mol Cell Probes 2016; 30:346-356. [PMID: 27751841 DOI: 10.1016/j.mcp.2016.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) has been long known to have substantial genetic etiology. Much research has attempted to identify specific genes contributing to ASD risk with the goal of tying gene function to a molecular pathological explanation for ASD. A unifying molecular pathology would potentially increase understanding of what is going wrong during development, and could lead to diagnostic biomarkers or targeted preventative or therapeutic directions. We review past and current genetic mapping approaches and discuss major results, leading to the hypothesis that global dysregulation of gene or protein expression may be implicated in ASD rather than disturbance of brain-specific functions. If substantiated, this hypothesis might indicate the need for novel experimental and analytical approaches in order to understand this neurodevelopmental disorder, develop biomarkers, or consider treatment approaches.
Collapse
Affiliation(s)
- Erika Yeh
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lauren A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
40
|
Forrest CM, Kennedy PGE, Rodgers J, Dalton RN, Turner C, Darlington LG, Cobb SR, Stone TW. Kynurenine pathway metabolism following prenatal KMO inhibition and in Mecp2 +/- mice, using liquid chromatography-tandem mass spectrometry. Neurochem Int 2016; 100:110-119. [PMID: 27623092 PMCID: PMC5115650 DOI: 10.1016/j.neuint.2016.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/22/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography – tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were significant increases in the levels of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (3-HK) in the maternal brain after 5 h but not 24 h, while the embryos exhibited high levels of kynurenine, kynurenic acid and anthranilic acid after 5 h which were maintained at 24 h post-treatment. At 24 h there was also a strong trend to an increase in quinolinic acid levels (P = 0.055). No significant changes were observed in any of the other kynurenine metabolites. The results confirm the marked increase in the accumulation of some neuroactive kynurenines when KMO is inhibited, and re-emphasise the potential importance of changes in anthranilic acid. The prolonged duration of metabolite accumulation in the embryo brains indicates a trapping of compounds within the embryonic CNS independently of maternal levels. When brains were examined from young mice heterozygous for the meCP2 gene – a potential model for Rett syndrome - no differences were noted from control mice, suggesting that the proposed roles for kynurenines in autism spectrum disorder are not relevant to Rett syndrome, supporting its recognition as a distinct, independent, condition. Pregnant rats were treated with an inhibitor of kynurenine-3-monoxygenase. Levels of several kynurenine metabolites increased in the maternal and foetal brains. The maternal changes at 5 h disappeared by 24 h, but were maintained in embryos. No changes were noted in the brains of Mecp2+/− mice. KMO inhibition but not Mecp2+/− suppression alters kynurenine metabolism.
Collapse
Affiliation(s)
- Caroline M Forrest
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Peter G E Kennedy
- Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - R Neil Dalton
- WellChild Laboratory, Evelina London Children's Hospital, King's College London, Lambeth Palace Road, London, SE1 7EH, UK
| | - Charles Turner
- WellChild Laboratory, Evelina London Children's Hospital, King's College London, Lambeth Palace Road, London, SE1 7EH, UK
| | - L Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, Surrey, KT21 2SB, UK
| | - Stuart R Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Trevor W Stone
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
41
|
Webb SJ, Garrison MM, Bernier R, McClintic AM, King BH, Mourad PD. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound. Autism Res 2016; 10:472-484. [PMID: 27582229 DOI: 10.1002/aur.1690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/07/2016] [Accepted: 07/21/2016] [Indexed: 01/13/2023]
Abstract
Current research suggests that incidence and heterogeneity of autism spectrum disorder (ASD) symptoms may arise through a variety of exogenous and/or endogenous factors. While subject to routine clinical practice and generally considered safe, there exists speculation, though no human data, that diagnostic ultrasound may also contribute to ASD severity, supported by experimental evidence that exposure to ultrasound early in gestation could perturb brain development and alter behavior. Here we explored a modified triple hit hypothesis [Williams & Casanova, ] to assay for a possible relationship between the severity of ASD symptoms and (1) ultrasound exposure (2) during the first trimester of pregnancy in fetuses with a (3) genetic predisposition to ASD. We did so using retrospective analysis of data from the SSC (Simon's Simplex Collection) autism genetic repository funded by the Simons Foundation Autism Research Initiative. We found that male children with ASD, copy number variations (CNVs), and exposure to first trimester ultrasound had significantly decreased non-verbal IQ and increased repetitive behaviors relative to male children with ASD, with CNVs, and no ultrasound. These data suggest that heterogeneity in ASD symptoms may result, at least in part, from exposure to diagnostic ultrasound during early prenatal development of children with specific genetic vulnerabilities. These results also add weight to on-going concerns expressed by the FDA about non-medical use of diagnostic ultrasound during pregnancy. Autism Res 2017, 10: 472-484. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Jane Webb
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington.,Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Michelle M Garrison
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington.,Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Raphael Bernier
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Abbi M McClintic
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Bryan H King
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington
| | - Pierre D Mourad
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington.,Division of Engineering and Mathematics, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Ewen JB, Lakshmanan BM, Pillai AS, McAuliffe D, Nettles C, Hallett M, Crone NE, Mostofsky SH. Decreased Modulation of EEG Oscillations in High-Functioning Autism during a Motor Control Task. Front Hum Neurosci 2016; 10:198. [PMID: 27199719 PMCID: PMC4858522 DOI: 10.3389/fnhum.2016.00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/19/2016] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorders (ASD) are thought to result in part from altered cortical excitatory-inhibitory balance; this pathophysiology may impact the generation of oscillations on electroencephalogram (EEG). We investigated premotor-parietal cortical physiology associated with praxis, which has strong theoretical and empirical associations with ASD symptomatology. Twenty five children with high-functioning ASD (HFA) and 33 controls performed a praxis task involving the pantomiming of tool use, while EEG was recorded. We assessed task-related modulation of signal power in alpha and beta frequency bands. Compared with controls, subjects with HFA showed 27% less left central (motor/premotor) beta (18–22 Hz) event-related desynchronization (ERD; p = 0.030), as well as 24% less left parietal alpha (7–13 Hz) ERD (p = 0.046). Within the HFA group, blunting of central ERD attenuation was associated with impairments in clinical measures of praxis imitation (r = −0.4; p = 0.04) and increased autism severity (r = 0.48; p = 0.016). The modulation of central beta activity is associated, among other things, with motor imagery, which may be necessary for imitation. Impaired imitation has been associated with core features of ASD. Altered modulation of oscillatory activity may be mechanistically involved in those aspects of motor network function that relate to the core symptoms of ASD.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimore, MD, USA
| | - Balaji M Lakshmanan
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute Baltimore, MD, USA
| | - Ajay S Pillai
- Department of Neurology and Developmental Medicine, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD, USA
| | - Danielle McAuliffe
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute Baltimore, MD, USA
| | - Carrie Nettles
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute Baltimore, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Stewart H Mostofsky
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Center for Neurodevelopmental and Imaging Research, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
43
|
Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17:174-86. [PMID: 26469219 DOI: 10.3109/15622975.2015.1085597] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Imbalance between excitation and inhibition and increased excitatory-inhibitory (E-I) ratio is a common mechanism in autism spectrum disorders (ASD) that is responsible for the learning and memory, cognitive, sensory, motor deficits, and seizures occurring in these disorders. ASD are very heterogeneous and better understanding of E-I imbalance in brain will lead to better diagnosis and treatments. METHODS We perform a critical literature review of the causes and presentations of E-I imbalance in ASD. RESULTS E-I imbalance in ASD is due primarily to abnormal glutamatergic and GABAergic neurotransmission in key brain regions such as neocortex, hippocampus, amygdala, and cerebellum. Other causes are due to dysfunction of neuropeptides (oxytocin), synaptic proteins (neuroligins), and immune system molecules (cytokines). At the neuropathological level E-I imbalance in ASD is presented as a "minicolumnopathy". E-I imbalance alters the manner by which the brain processes information and regulates behaviour. New developments for investigating E-I imbalance such as optogenetics and transcranial magnetic stimulation (TMS) are presented. Non-invasive brain stimulation methods such as TMS for treatment of the core symptoms of ASD are discussed. CONCLUSIONS Understanding E-I imbalance has important implications for developing better pharmacological and behavioural treatments for ASD, including TMS, new drugs, biomarkers and patient stratification.
Collapse
Affiliation(s)
- Genoveva Uzunova
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| | - Stefano Pallanti
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA.,b Psychiatry and Behavioural Sciences, UC Davis Health System , CA , USA.,c Department Psychiatry , University of Florence , Florence , Italy.,d Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Eric Hollander
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| |
Collapse
|
44
|
Packer A. Neocortical neurogenesis and the etiology of autism spectrum disorder. Neurosci Biobehav Rev 2016; 64:185-95. [PMID: 26949225 DOI: 10.1016/j.neubiorev.2016.03.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
Researchers have now identified many highly penetrant genetic risk factors for autism spectrum disorder (ASD). Some of these genes encode synaptic proteins, lending support to the hypothesis that ASD is a disorder of synaptic homeostasis. Less attention, however, has been paid to the genetic risk factors that converge on events that precede synaptogenesis, including the proliferation of neural progenitor cells and the migration of neurons to the appropriate layers of the developing neocortex. Here I review this evidence, focusing on studies of mutant mouse phenotypes, human postmortem data, systems biological analyses, and non-genetic risk factors. These findings highlight embryonic neurogenesis as a potentially important locus of pathology in ASD. In some instances, this pathology may be driven by alterations in chromatin biology and canonical Wnt signaling, which in turn affect fundamental cellular processes such as cell-cycle length and cell migration. This view of ASD suggests the need for a better understanding of the relationship between variation in neuron number, laminar composition, and the neural circuitry most relevant to the disorder.
Collapse
Affiliation(s)
- Alan Packer
- Simons Foundation Autism Research Initiative, 160 Fifth Avenue, New York, NY 10010, USA.
| |
Collapse
|
45
|
Lv MN, Zhang H, Shu Y, Chen S, Hu YY, Zhou M. The neonatal levels of TSB, NSE and CK-BB in autism spectrum disorder from Southern China. Transl Neurosci 2016; 7:6-11. [PMID: 28123815 DOI: 10.1515/tnsci-2016-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/23/2015] [Indexed: 01/05/2023] Open
Abstract
Background" Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that impairs a child's ability to communicate with others. It also includes restricted repetitive behaviors, interests and activities. Symptoms manifest before the age of 3. In the previous studies, we found structural abnormalities of the temporal lobe cortex. High spine densities were most commonly found in ASD subjects with lower levels of cognitive functioning. In the present study, we retrospectively analyzed medical records in relation to the neonatal levels of total serum bilirubin (TSB), neuron-specific enolase (NSE), creatine kinase brain band isoenzyme (CK-BB), and neonatal behavior in ASD patients from Southern China. METHODS A total of 80 patients with ASD (ASD group) were screened for this retrospective study. Among them, 34 were low-functioning ASD (L-ASD group) and 46 were high-functioning ASD (H-ASD group). Identification of the ASD cases was confirmed with a Revised Autism Diagnostic Inventory. For comparison with ASD cases, 80 normal neonates (control group) were selected from the same period. Biochemical parameters, including TSB, NSE and CK-BB in the neonatal period and medical records on neonatal behavior were collected. RESULTS The levels of serum TSB, NSE and CK-BB in the ASD group were significantly higher when compared with those from the control group (P < 0.01, or P < 0.05). The amounts of serum TSB, NSE and CK-BB in the L-ASD group were significantly higher when compared with those in the H-ASD group (P < 0.01, or P < 0.05). The Neonatal Behavioral Assessment Scale (NBAS) scores in the ASD group were significantly lower than that in the control group (P < 0.05). Likewise, the NBAS scores in the L-ASD group were significantly lower than that in the H-ASD group (P < 0.05). There was no association between serum TSB, NSE, CK-BB and NBAS scores (P > 0.05) in the ASD group. CONCLUSIONS The neonatal levels of TSB, NSE and CK-BB in ASD from Southern China were significantly higher than those of healthy controls. These findings need to be investigated thoroughly by future studies with large sample.
Collapse
Affiliation(s)
- Meng-Na Lv
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Hong Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China; Teaching and research section of Neuropsychiatry, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Yi Shu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Shan Chen
- Department of Pediatric, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Yuan-Yuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States of America
| | - Min Zhou
- Joint Sino-US Food Safety Research Center and Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P. R. China
| |
Collapse
|
46
|
Sundberg M, Sahin M. Cerebellar Development and Autism Spectrum Disorder in Tuberous Sclerosis Complex. J Child Neurol 2015; 30:1954-62. [PMID: 26303409 PMCID: PMC4644486 DOI: 10.1177/0883073815600870] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 01/08/2023]
Abstract
Approximately 50% of patients with the genetic disease tuberous sclerosis complex present with autism spectrum disorder. Although a number of studies have investigated the link between autism and tuberous sclerosis complex, the etiology of autism spectrum disorder in these patients remains unclear. Abnormal cerebellar function during critical phases of development could disrupt functional processes in the brain, leading to development of autistic features. Accordingly, the authors review the potential role of cerebellar dysfunction in the pathogenesis of autism spectrum disorder in tuberous sclerosis complex. The authors also introduce conditional knockout mouse models of Tsc1 and Tsc2 that link cerebellar circuitry to the development of autistic-like features. Taken together, these preclinical and clinical investigations indicate the cerebellum has a profound regulatory role during development of social communication and repetitive behaviors.
Collapse
Affiliation(s)
- Maria Sundberg
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Trontel HG, Duffield TC, Bigler ED, Abildskov TJ, Froehlich A, Prigge MBD, Travers BG, Anderson JS, Zielinski BA, Alexander AL, Lange N, Lainhart JE. Mesial temporal lobe and memory function in autism spectrum disorder: an exploration of volumetric findings. J Clin Exp Neuropsychol 2015; 37:178-92. [PMID: 25749302 DOI: 10.1080/13803395.2014.997677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typical developing individuals on standardized measures of memory, even when not significantly different on measures of IQ. The current study sought to examine within ASD whether anatomical correlates of memory performance differed between those with average-to-above-average IQ (AIQ group) and those with low-average to borderline ability (LIQ group) as well as in relations to typically developing comparisons (TDC). Using automated volumetric analyses, we examined regional volume of classic memory areas including the hippocampus, parahippocampal gyrus, entorhinal cortex, and amygdala in an all-male sample AIQ (n = 38) and LIQ (n = 18) individuals with ASD along with 30 typically developing comparisons (TDC). Memory performance was assessed using the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences on almost all facets of memory and learning as assessed by the various subtests of the TOMAL. The three groups did not differ on any region of interest (ROI) memory-related brain volumes. However, significant size-memory function interactions were observed. Negative correlations were found between the volume of the amygdala and composite, verbal, and delayed memory indices for the LIQ ASD group, indicating larger volume related to poorer performance. Implications for general memory functioning and dysfunctional neural connectivity in ASD are discussed.
Collapse
Affiliation(s)
- Haley G Trontel
- a Department of Psychology , Brigham Young University , Provo , UT , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 2015; 350:aab3897. [PMID: 26472761 PMCID: PMC4739545 DOI: 10.1126/science.aab3897] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in the genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. Although the exact identity of many of the genes remains to be discovered, genes identified to date encode proteins that play roles in certain conserved pathways: protein synthesis, transcriptional and epigenetic regulation, and synaptic signaling. The next generation of research in neurodevelopmental disorders must address the neural circuitry underlying the behavioral symptoms and comorbidities, the cell types playing critical roles in these circuits, and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we can leverage the heterogeneity of neurodevelopmental disorders into precision medicine will the mechanism-based therapeutics for these disorders start to unlock success.
Collapse
Affiliation(s)
- Mustafa Sahin
- F. M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Mriganka Sur
- Simons Center for the Social Brain, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
49
|
Varadinova M, Boyadjieva N. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders. Pharmacol Res 2015; 102:71-80. [PMID: 26408203 DOI: 10.1016/j.phrs.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 01/26/2023]
Abstract
The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Miroslava Varadinova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| | - Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| |
Collapse
|
50
|
Topoisomerases interlink genetic network underlying autism. Int J Dev Neurosci 2015; 47:361-8. [PMID: 26456455 DOI: 10.1016/j.ijdevneu.2015.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/20/2015] [Accepted: 07/12/2015] [Indexed: 12/31/2022] Open
Abstract
DNA topoisomerases belong to the group of proteins that play an important role in the organizational dynamics of the human genome. Their enzymatic activity solves topological strain rising from DNA supercoiling occurring during transcription. DNA topoisomerases are especially important for transcription of genes involved in neurodevelopment. Disruption of topoisomerase activity in animal models resulted in impaired neurodevelopment and changed brain architecture. Recent research revealed that topoisomerases induced expression of the same group of genes as those associated with autism. Transcriptional inhibition of neuronal genes during critical stages of brain development may be responsible for pathology of neurodevelopmental disorders such as autism. In this review we aim to outline the role of topoisomerase in neurodevelopment and its possible linkage to neuropathology of autism.
Collapse
|