1
|
Kolašinac S, Pećinar I, Cvetković M, Gođevac D, Stanisavljević N, Veljović M, Šoštarić I, Aćić S, Rančić D, Mačukanović-Jocić M, Kolašinac J, Dajić Stevanović Z. Carotenoids in Paprika Fruits and Ajvar: Chemical Characterization and Biological Activity. Foods 2025; 14:914. [PMID: 40231912 PMCID: PMC11941188 DOI: 10.3390/foods14060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 04/16/2025] Open
Abstract
In this study, carotenoids from four different paprika genotypes were analyzed at various maturation stages, as well as in Ajvar, a traditional Balkan product made from fully matured roasted paprika fruits. For this purpose, the HPTLC analytical method was used, and five dominant carotenoids were analyzed: β-carotene, lutein, zeaxanthin, capsanthin, and β-cryptoxanthin. Additionally, total carotenoids were analyzed spectrophotometrically, antioxidant capacity was determined, and their bioavailability was assayed using in vitro digestion. Finally, Raman spectroscopy, a non-destructive analytical method, was used to estimate the total carotenoid content. The results showed that the amount of all investigated carotenoids is the highest in the final maturity stage (0.38 g/100 g DM to 1.55 g/100 g DM). On the other hand, the lowest concentration of all investigated carotenoids was detected at the first stage of maturation, ranging from 0.01 g/100 g DM to 0.25 g/100 g DM. However, the analysis of carotenoid content in Ajvar showed a tendency for a decrease in concentration compared to their quantity in fresh fruits, although this was also dependent on the genotype (1.9-66.98% according to HPTLC results and 16.14-82.36% according to spectrophotometry). Antioxidant tests indicated an increase in antioxidant capacity with the ripening of paprika fruits, confirming the role of carotenoids as compounds capable of neutralizing harmful oxygen species (DPPH ranged from 0.21 to 1.50 µmol/g TEAC, CUPRAC ranged from 0.185 to 0.297 mg AsA/g DM, FRP ranged from 9.33 to 25.66 mg AsA/g DM). Quantification of total carotenoids by Raman spectroscopy showed that results were highly correlated with those obtained by HPTLC and the spectrophotometric method, highlighting the potential of Raman spectroscopy for carotenoid quantification. Based on the obtained results, it can be concluded that the traditional product Ajvar represents an important source of carotenoids, which are preserved after heat treatment with high biological activity relative to the final ripening stage of the paprika. Furthermore, the bioavailability of carotenoids from Ajvar is significantly higher compared to the results from fresh paprika analysis.
Collapse
Affiliation(s)
- Stefan Kolašinac
- Department of Agrobotany, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (I.Š.); (S.A.); (D.R.); (M.M.-J.)
| | - Ilinka Pećinar
- Department of Agrobotany, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (I.Š.); (S.A.); (D.R.); (M.M.-J.)
| | - Mirjana Cvetković
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.C.); (D.G.)
| | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.C.); (D.G.)
| | - Nemanja Stanisavljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia;
| | - Mile Veljović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.V.); (J.K.)
| | - Ivan Šoštarić
- Department of Agrobotany, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (I.Š.); (S.A.); (D.R.); (M.M.-J.)
| | - Svetlana Aćić
- Department of Agrobotany, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (I.Š.); (S.A.); (D.R.); (M.M.-J.)
| | - Dragana Rančić
- Department of Agrobotany, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (I.Š.); (S.A.); (D.R.); (M.M.-J.)
| | - Marina Mačukanović-Jocić
- Department of Agrobotany, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (I.Š.); (S.A.); (D.R.); (M.M.-J.)
| | - Jelena Kolašinac
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.V.); (J.K.)
| | - Zora Dajić Stevanović
- Department of Agrobotany, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (I.P.); (I.Š.); (S.A.); (D.R.); (M.M.-J.)
| |
Collapse
|
2
|
Chen QB, Sun XY, Zheng MY, Liu YN, Zhang JX, Zhou QF, Pei DL, Liu DM, Chen YW, Gao H, Xing XL, Jiang H, Wang XL, Yuan L, Wang WJ. Transcription factor CaPHR3 enhances phosphate starvation tolerance by up-regulating the expression of the CaPHT1;4 phosphate transporter gene in pepper. Int J Biol Macromol 2025; 292:139315. [PMID: 39740702 DOI: 10.1016/j.ijbiomac.2024.139315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Plants frequently encounter phosphate (Pi) starvation due to its scarce availability in soil, necessitating an adaptive phosphate starvation response (PSR). This study explores this adaptation in pepper (Capsicum annuum L.) under low-Pi stress, focusing on the PHOSPHATE STARVATION RESPONSE (PHR) gene family. We observably halted shoot growth but promoted root elongation in pepper seedlings under low-Pi conditions, significantly impacting regulatory networks. Our research identified 13 PHR transcription factors in pepper, particularly noting that CaPHR3 rapidly up-regulates in response to low-Pi stress. Overexpressing CaPHR3 in Arabidopsis thaliana enhanced Pi starvation tolerance by modulating PSR-related genes and mitigated hypersensitivity in the Atphr1phl1 double mutant. Furthermore, CaPHR3 binds to the P1BS motif in the pepper PHOSPHATE TRANSPORTER 1;4 (PHT1;4) promoter to boost its expression under Pi deficiency. This activation increased Pi uptake and starvation tolerance when overexpressed. Overall, we pinpointed key players in the PSR mechanism through the CaPHR3-CaPHT1;4 pathway, contributing significantly to our understanding of Pi homeostasis and adaptive strategies in pepper under Pi-deficient conditions.
Collapse
Affiliation(s)
- Qing-Bin Chen
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Xiao-Yu Sun
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Meng-Yao Zheng
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Ya-Nan Liu
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Jin-Xiu Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Qing-Feng Zhou
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Dong-Li Pei
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China; Zhongcheng Guolian (Henan) Biotechnology Co., Ltd. Shangqiu, Henan 476000, China
| | - Dong-Mei Liu
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Ya-Wei Chen
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Hang Gao
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Xiao-Long Xing
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Hao Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xue-Ling Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Li Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| | - Wen-Jing Wang
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, Dried Chili Industry Technology Research Center, Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| |
Collapse
|
3
|
Yang Y, Gao C, Ye Q, Liu C, Wan H, Ruan M, Zhou G, Wang R, Li Z, Diao M, Cheng Y. The Influence of Different Factors on the Metabolism of Capsaicinoids in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2887. [PMID: 39458834 PMCID: PMC11511365 DOI: 10.3390/plants13202887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pepper is a globally cultivated vegetable known for its distinct pungent flavor, which is derived from the presence of capsaicinoids, a class of unique secondary metabolites that accumulate specifically in pepper fruits. Since the accumulation of capsaicinoids is influenced by various factors, it is imperative to comprehend the metabolic regulatory mechanisms governing capsaicinoids production. This review offers a thorough examination of the factors that govern the metabolism of capsaicinoids in pepper fruit, with a specific focus on three primary facets: (1) the impact of genotype and developmental stage on capsaicinoids metabolism, (2) the influence of environmental factors on capsaicinoids metabolism, and (3) exogenous substances like methyl jasmonate, chlorophenoxyacetic acid, gibberellic acid, and salicylic acid regulate capsaicinoid metabolism. The findings of this study are expected to enhance comprehension of capsaicinoids metabolism and aid in the improvement of breeding and cultivation practices for high-quality pepper in the future.
Collapse
Affiliation(s)
- Yuanling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Chengan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
- College of Horticultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Chenxu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Zhimiao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| | - Ming Diao
- College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.G.); (Q.Y.); (C.L.); (H.W.); (M.R.); (G.Z.); (R.W.); (Z.L.)
| |
Collapse
|
4
|
Angouti F, Nourafcan H, Saeedi Sar S, Assadi A, Ebrahimi R. Optimizing antidiabetic properties of Galega officinalis extract: Investigating the effects of foliar application of chitosan and salicylic acid. Food Sci Nutr 2024; 12:5844-5857. [PMID: 39139975 PMCID: PMC11317664 DOI: 10.1002/fsn3.4204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetes poses a significant global health burden, demanding safe and effective therapeutic interventions. Medicinal plants offer promising avenues for natural diabetic management. Galega officinalis (goat's rue) has long been recognized for its hypoglycemic potential, but optimizing its phytochemical content and antidiabetic activity remains a key challenge. This study aimed to address this aspect by investigating the impact of foliar application of chitosan and salicylic acid on the physiological and phytochemical properties of G. officinalis, and subsequently evaluating its antidiabetic efficacy compared to that of the established drug metformin. A randomized complete block design with three replications was employed. Laboratory mice were divided into treatment groups receiving G. officinalis extract from plants sprayed with four salicylic acid concentrations (0.5-3 mM/L) and four chitosan concentrations (0-0.8 g/L). Blood glucose levels and various physiological parameters were assessed. Chitosan at 0.4 g/L and salicylic acid at 2 mM significantly enhanced the growth, photosynthetic pigments, and antioxidant activity of G. officinalis. Notably, the extract from plants treated with 3 mM salicylic acid exhibited the highest total alkaloid content, a potential contributor to antidiabetic activity. In a separate study, diabetic mice treated with this optimized G. officinalis extract (50 mg/kg) exhibited significantly greater blood glucose reductions compared to those treated with metformin (500 mg). This study demonstrates the potential of chitosan and salicylic acid in optimizing the beneficial properties of G. officinalis. The extract derived from plants treated with 3 mM salicylic acid displayed superior blood glucose-lowering efficacy compared to metformin, suggesting its promising role as a potential natural antidiabetic therapy. Further research is warranted to elucidate the specific bioactive compounds responsible for this enhanced activity and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Farinaz Angouti
- Department of Horticultural Science and Agronomy, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Hassan Nourafcan
- Department of Horticulture, Medicinal Plants and Organic Products Research Center, Miyaneh BranchIslamic Azad UniversityMiyanehIran
| | - Sakineh Saeedi Sar
- Department of Agricultural ScienceTechnical and Vocational University (TVU)TehranIran
| | - Assad Assadi
- Department of Veterinary Medicine, Miyaneh BranchIslamic Azad UniversityMiyanehIran
| | - Raheleh Ebrahimi
- Department of Horticultural Science and Agronomy, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
5
|
Zhao W, Xu Y, Kim J, Lee JW, Jung MY, Moon B. Effects of cooking methods on antioxidant activity and acrylamide formation in red bell pepper ( Capsicum annuum L.). Food Sci Biotechnol 2024; 33:2323-2331. [PMID: 39145123 PMCID: PMC11319575 DOI: 10.1007/s10068-024-01623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Red bell pepper (Capsicum annuum L.) is a popular and nutritious vegetable. In this study, oven cooking (OV), air-frying (AF), and infrared grilling (IR) were used to cook red bell peppers at different temperatures (170, 180, 190, and 200 °C). Changes in the total phenolic content, ascorbic acid content, antioxidant activity, and sugar and acrylamide content in red bell peppers were evaluated before and after cooking. The total phenolic and ascorbic acid contents decreased significantly after cooking (p < 0.05). Among the three evaluated methods, OV-cooked red bell peppers exhibited the highest antioxidant activity. The acrylamide content showed the lowest levels in OV 170 °C (93.67 ± 3.22 μg/kg dw) and the highest in AF 200 °C (1985.38 ± 76.39 μg/kg dw) samples. Compared to the AF and IR methods, OV was identified as the best way to preserve the antioxidant activity of red bell peppers while reducing acrylamide production. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01623-y.
Collapse
Affiliation(s)
- WanTing Zhao
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseoung, Gyeonggi 17546 Republic of Korea
| | - YangJian Xu
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseoung, Gyeonggi 17546 Republic of Korea
| | - JeongYeon Kim
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseoung, Gyeonggi 17546 Republic of Korea
| | - Jo-Won Lee
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseoung, Gyeonggi 17546 Republic of Korea
| | - Mun Yhung Jung
- Department of Food Science and Biotechnology, Woosuk University, Samnye, Wanju, Jeonbuk 55338 Republic of Korea
| | - BoKyung Moon
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseoung, Gyeonggi 17546 Republic of Korea
| |
Collapse
|
6
|
Almatroodi SA, Almatroudi A, Alharbi HOA, Khan AA, Rahmani AH. Effects and Mechanisms of Luteolin, a Plant-Based Flavonoid, in the Prevention of Cancers via Modulation of Inflammation and Cell Signaling Molecules. Molecules 2024; 29:1093. [PMID: 38474604 DOI: 10.3390/molecules29051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/β-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Olędzki R, Harasym J. Assessment of the Effects of Roasting, Contact Grilling, Microwave Processing, and Steaming on the Functional Characteristics of Bell Pepper ( Capsicum annuum L.). Molecules 2023; 29:77. [PMID: 38202659 PMCID: PMC10779832 DOI: 10.3390/molecules29010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Bell peppers (Capsicum annuum L.) in various stages of maturity are widely used in the diets of individuals and in the food industry; they are consumed both fresh and after thermal processing. However, every type of processing impacts the overall textural and bioactive characteristics of this plant-based food. In order to quantify the changes in the bioactive substances and color-structural characteristics that occur during selected heat treatments (contact grilling, roasting, roasting combined with microwaving, and steam cooking) of bell peppers at three maturity stages (green, yellow, and red), analyses of antioxidant activity, reducing sugar content, polyphenolic compound content, textural properties, and color coordinates in the L*a*b* system were carried out. Some of the processes used, such as contact grilling (15.43 mg GAE/g d.b.) and roasting combined with microwaving (15.24 mg GAE/g d.b.), proved to be beneficial as the total polyphenol content of green peppers (2.75 mg GAE/g d.b.) increased. The roasting (3.49 mg TE/g d.b.) and steaming (6.45 mg TE/g d.b.) methods decreased the antioxidant activity of yellow bell peppers (14.29 mg TE/g d.b.). Meanwhile, the roasting (0.88 mg Glc/g d.b.), contact-grilling (2.19 mg Glc/g d.b.), simultaneous microwaving and roasting (0.66 mg Glc/g d.b.), and steaming (1.30 mg Glc/g d.b.) methods significantly reduced the content of reducing sugars and reducing substances in red bell peppers (4.41 mg Glc/g d.b.). The studies proved that in order to preserve the antioxidant and bioactive properties of bell peppers, it is necessary to consider the use of appropriately selected heat treatments, depending on the different stages of maturity. The proper selection of adequate thermal treatment can not only increase digestibility, but also improve the bioavailability of bioactive substances from this raw material.
Collapse
Affiliation(s)
- Remigiusz Olędzki
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| |
Collapse
|
8
|
Del Giúdice LZ, Falquetto-Gomes P, de Almeida Costa PM, Martins AO, Omena-Garcia RP, Araújo WL, Zsögön A, Picoli EADT, Nunes-Nesi A. Dynamic shifts in primary metabolism across fruit development stages in Capsicum chinense (cv. Habanero). JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154121. [PMID: 37924627 DOI: 10.1016/j.jplph.2023.154121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
The development of fleshy fruits involves changes in size and mass, followed by cell differentiation, which is associated with anatomical and histological changes. Parallel to these changes, metabolic alterations lead to the production of osmolytes and energy that modify cell turgor pressure, thereby promoting cell expansion and fruit growth. Detailed information is known about these processes in climacteric fruits (e.g. tomato); however, the regulation of metabolism and its association with anatomical changes in non-climacteric fruit development are poorly understood. In this study, we used detailed anatomical and histological analyses to define three developmental phases of chili pepper (Capsicum chinense cv. Habanero): cell division, cell expansion, and ripening. We showed that each was marked by distinct metabolic profiles, underpinning the switches in energy metabolism to support cellular processes. Interestingly, mitochondrial activity was high in the early stages of development and declined over time, with a modest increase in O2 consumption by pericarp tissues at the beginning of the ripening stage. This respiratory-like burst was associated with the degradation of starch and malate, which are the sources of energy and carbon required for other processes associated with fruit maturation.
Collapse
Affiliation(s)
- Luciana Zacour Del Giúdice
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Priscilla Falquetto-Gomes
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | | | - Auxiliadora O Martins
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rebeca Patrícia Omena-Garcia
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | | | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Salama MF, Mahmoud KF, Amin AA, Abd El- Rahman NM, Seliem EI. The Influence of green extraction methods on the municipal onion extracts nano-capsules and their application in beef burger. FOOD AND HUMANITY 2023; 1:471-481. [DOI: 10.1016/j.foohum.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Sidhic J, George S, Alfarhan A, Rajagopal R, Olatunji OJ, Narayanankutty A. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Humboldtia sanjappae Sasidh. & Sujanapal, an Endemic Medicinal Plant to the Western Ghats. Molecules 2023; 28:6875. [PMID: 37836717 PMCID: PMC10574196 DOI: 10.3390/molecules28196875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Ethnomedicinal plants are important sources of drug candidates, and many of these plants, especially in the Western Ghats, are underexplored. Humboldtia, a genus within the Fabaceae family, thrives in the biodiversity of the Western Ghats, Kerala, India, and holds significant ethnobotanical importance. However, many Humboldtia species remain understudied in terms of their biological efficacy, while some lack scientific validation for their traditional uses. However, Humboldtia sanjappae, an underexplored plant, was investigated for the phytochemical composition of the plant, and its antioxidant, enzyme-inhibitory, anti-inflammatory, and antibacterial activities were assessed. The LC-MS analysis indicated the presence of several bioactive substances, such as Naringenin, Luteolin, and Pomiferin. The results revealed that the ethanol extract of H. sanjappae exhibited significant in vitro DPPH scavenging activity (6.53 ± 1.49 µg/mL). Additionally, it demonstrated noteworthy FRAP (Ferric Reducing Antioxidant Power) activity (8.46 ± 1.38 µg/mL). Moreover, the ethanol extract of H. sanjappae exhibited notable efficacy in inhibiting the activities of α-amylase (47.60 ± 0.19µg/mL) and β-glucosidase (32.09 ± 0.54 µg/mL). The pre-treatment with the extract decreased the LPS-stimulated release of cytokines in the Raw 264.7 macrophages, demonstrating the anti-inflammatory potential. Further, the antibacterial properties were also evident in both Gram-positive and Gram-negative bacteria. The observed high zone of inhibition in the disc diffusion assay and MIC values were also promising. H. sanjappae displays significant anti-inflammatory, antioxidant, antidiabetic, and antibacterial properties, likely attributable to its rich composition of various biological compounds such as Naringenin, Luteolin, Epicatechin, Maritemin, and Pomiferin. Serving as a promising reservoir of these beneficial molecules, the potential of H. sanjappae as a valuable source for bioactive ingredients within the realms of nutraceutical and pharmaceutical industries is underscored, showcasing its potential for diverse applications.
Collapse
Affiliation(s)
- Jameema Sidhic
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Satheesh George
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (R.R.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (R.R.)
| | | | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
| |
Collapse
|
11
|
Bouchab H, Essadek S, El Kamouni S, Moustaid K, Essamadi A, Andreoletti P, Cherkaoui-Malki M, El Kebbaj R, Nasser B. Antioxidant Effects of Argan Oil and Olive Oil against Iron-Induced Oxidative Stress: In Vivo and In Vitro Approaches. Molecules 2023; 28:5924. [PMID: 37570894 PMCID: PMC10420636 DOI: 10.3390/molecules28155924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023] Open
Abstract
Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Soukaina Essadek
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Soufiane El Kamouni
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Khadija Moustaid
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco;
| | - Abdelkhalid Essamadi
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| |
Collapse
|
12
|
Allal H, Nemdili H, Zerizer MA, Zouchoune B. Molecular structures, chemical descriptors, and pancreatic lipase (1LPB) inhibition by natural products: a DFT investigation and molecular docking prediction. Struct Chem 2023; 35:1-17. [PMID: 37363042 PMCID: PMC10148582 DOI: 10.1007/s11224-023-02176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
Density functional theory (DFT) calculations and molecular docking have been carried out on natural products containing eugenol, gingerol, ascorbic acid, oleurpoein, piperine, hesperidin, quercetin, Luteolin, and curcumin in order to predict their biological activities and to analyze their pancreatic lipase inhibition. The biological activity predictions are based on the global and local chemical descriptors, namely, HOMO-LUMO gaps, chemical hardness, chemical potential, electrophilicity, dipole moment, and Fukui functions. Our findings show that the studied compounds can be divided into two groups based on the chemical descriptors; the first group is composed of eugenol, gingerol, ascorbic acid, and oleuropein and the second one is composed of piperine, hesperidin, quercetin, Luteolin, and curcumin depending on the HOMO-LUMO gaps and electrophilicity values predicting best reactivity for the second group than the first one. The frontier orbitals offer a deeper insight concerning the electron donor and electron acceptor capabilities, whereas the local descriptors resulting from Fukui functions put emphasis on the active sites of different candidate ligands. The molecular docking was performed in order to compare and identify the inhibition activity of the natural candidate ligands against pancreatic lipase which were compared to that of synthesized ones. The molecular docking results revealed that the Luteolin compound has the best binding affinity of -8.56 kcal/mol due to their unique molecular structure and the position of -OH aromatic substituents. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-023-02176-2.
Collapse
Affiliation(s)
- Hamza Allal
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Département de Génie Des Procédés, Faculté de Génie Des Procédés, Université Salah Boubnider Constantine 3, Constantine, Algeria
| | - Hacene Nemdili
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
| | - Mohamed Amine Zerizer
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Laboratoire de Chimie Appliquée Et Technologie Des Matériaux, Université Larbi Ben M’hidi Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
| | - Bachir Zouchoune
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Laboratoire de Chimie Appliquée Et Technologie Des Matériaux, Université Larbi Ben M’hidi Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
| |
Collapse
|
13
|
Karaman K, Pinar H, Ciftci B, Kaplan M. Characterization of phenolics and tocopherol profile, capsaicinoid composition and bioactive properties of fruits in interspecies (Capsicum annuum X Capsicum frutescens) recombinant inbred pepper lines (RIL). Food Chem 2023; 423:136173. [PMID: 37209546 DOI: 10.1016/j.foodchem.2023.136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/22/2023]
Abstract
In this study, 104 RIL (Recombinant Inbred Pepper Lines: F6) populations which generated by selfing Capsicum annuum (Long pepper) × Capsicum frutescens (PI281420) F6 population were characterized in terms of detailed bioactive properties, major phenolic composition, tocopherol and capsaicinoid profile. Total phenolics, flavonoid and total anthocyanin contents of the red pepper lines were in the range of 7.06-17.15 mg gallic acid equivalent (GAE)/g dw, 1.10-5.46 mg catechin equivalent (CE)/g dw and 7.9-516.6 mg/kg dw extract, respectively. Antiradical activity and antioxidant capacity values also ranged between 18.99 and 49.73% and 6.97-16.47 mg ascorbic acid equivalent (AAE)/kg dw, respectively. Capsaicin and dihydrocapsaicin levels showed a wide variance with the range of 27.9-1405.9 and 12.3-640.4 mg/100 g dw, respectively. Scoville heat unit revealed that the 95% of the peppers were highly pungent. The major tocopherol was alpha tocopherol for the pepper samples with the highest level of 1078.4 µg/g dw. The major phenolics were detected as p-coumaric acid, ferulic acid, myricetin, luteolin and quercetin. Pepper genotypes showed significant differences in terms of the characterized properties and principal component analysis was applied successfully to reveal the similar genotypes.
Collapse
Affiliation(s)
- Kevser Karaman
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye.
| | - Hasan Pinar
- Department of Horticulture, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| | - Beyza Ciftci
- Department of Field Crops, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| | - Mahmut Kaplan
- Department of Field Crops, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| |
Collapse
|
14
|
Zhao Y, Sun C, Wang S, Zhang M, Li Y, Xue Q, Guo Q, Lai H. Widely targeted metabolomic, transcriptomic, and metagenomic profiling reveal microbe-plant-metabolic reprogramming patterns mediated by Streptomyces pactum Act12 enhance the fruit quality of Capsicum annuum L. Food Res Int 2023; 166:112587. [PMID: 36914318 DOI: 10.1016/j.foodres.2023.112587] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Plant growth-promoting rhizobacteria, such as Streptomyces pactum Act12, promote crop growth and stress resistance, but their contribution to fruit quality is still poorly understood. Herein we conducted a field experiment to ascertain the effects of S. pactum Act12-mediated metabolic reprogramming and underlying mechanisms in pepper (Capsicum annuum L.) fruit based on widely targeted metabolomic and transcriptomic profiling. We additionally performed metagenomic analysis to elucidate the potential relationship between S. pactum Act12-mediated reshaping of rhizosphere microbial communities and pepper fruit quality. Soil inoculation with S. pactum Act12 considerably increased the accumulation of capsaicinoids, carbohydrates, organic acids, flavonoids, anthraquinones, unsaturated fatty acids, vitamins, and phenolic acids in pepper fruit samples. Consequently, fruit flavor, taste, and color were modified, accompanied by elevated contents of nutrients and bioactive compounds. Increased microbial diversity and recruitment of potentially beneficial taxa were observed in inoculated soil samples, with crosstalk between microbial gene functions and pepper fruit metabolism. The reformed structure and function of rhizosphere microbial communities were closely associated with pepper fruit quality. Our findings indicate that S. pactum Act12-mediated interactions between rhizosphere microbial communities and pepper plants are responsible for intricate fruit metabolic reprogramming patterns, which enhance not only overall fruit quality but also consumer acceptability.
Collapse
Affiliation(s)
- Yisen Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Suzhen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Meilin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yulong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Mandal SK, Rath SK, Logesh R, Mishra SK, Devkota HP, Das N. Capsicum annuum L. and its bioactive constituents: A critical review of a traditional culinary spice in terms of its modern pharmacological potentials with toxicological issues. Phytother Res 2023; 37:965-1002. [PMID: 36255140 DOI: 10.1002/ptr.7660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
Capsicum annuum L., commonly known as chili pepper, is used as an important spice globally and as a crude drug in many traditional medicine systems. The fruits of C. annuum have been used as a tonic, antiseptic, and stimulating agent, to treat dyspepsia, appetites, and flatulence, and to improve digestion and circulation. The article aims to critically review the phytochemical and pharmacological properties of C. annuum and its major compounds. Capsaicin, dihydrocapsaicin, and some carotenoids are reported as the major active compounds with several pharmacological potentials especially as anticancer and cardioprotectant. The anticancer effect of capsaicinoids is mainly mediated through mechanisms involving the interaction of Ca2+ -dependent activation of the MAPK pathway, suppression of NOX-dependent reactive oxygen species generation, and p53-mediated activation of mitochondrial apoptosis in cancer cells. Similarly, the cardioprotective effects of capsaicinoids are mediated through their interaction with cellular transient receptor potential vanilloid 1 channel, and restoration of calcitonin gene-related peptide via Ca2+ -dependent release of neuropeptides and suppression of bradykinin. In conclusion, this comprehensive review presents detailed information about the traditional uses, phytochemistry, and pharmacology of major bioactive principles of C. annuum with special emphasis on anticancer, cardioprotective effects, and plausible toxic adversities along with food safety.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, India
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Rajan Logesh
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, India
| | | | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Niranjan Das
- Department of Chemistry, Ramthakur College, Agartala, India
| |
Collapse
|
16
|
Gola F, Gaiaschi L, Roda E, De Luca F, Ferulli F, Vicini R, Rossi P, Bottone MG. Voghera Sweet Pepper: A Potential Ally against Oxidative Stress and Aging. Int J Mol Sci 2023; 24:ijms24043782. [PMID: 36835192 PMCID: PMC9959306 DOI: 10.3390/ijms24043782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In the present study, the potential functional properties of the extracts from the edible part of Capsicum annuum L. var. Peperone di Voghera (VP) were studied. The phytochemical analysis revealed a high amount of ascorbic acid, paralleled by a low carotenoid content. Normal human diploid fibroblasts (NHDF) were chosen as the in vitro model models to investigate the effects of the VP extract on oxidative stress and aging pathways. The extract of Carmagnola pepper (CP), another important Italian variety, was used as the reference vegetable. The cytotoxicity evaluation was performed firstly, using a 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the VP potential antioxidant and antiaging activity was investigated by immunofluorescence staining focusing on specifically selected proteins. The MTT data revealed the highest cell viability at a concentration of up to 1 mg/mL. The immunocytochemical analyses highlighted an increased expression of transcription factors and enzymes involved in redox homeostasis (Nrf2, SOD2, catalase), improved mitochondrial functionality, and the up-regulation of the longevity gene SIRT1. The present results supported the functional role of the VP pepper ecotype, suggesting a feasible use of its derived products as valuable food supplements.
Collapse
Affiliation(s)
- Federica Gola
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ludovica Gaiaschi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Elisa Roda
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Laboratory of Clinical and Experimental Toxicology, Pavia Poison Centre—National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | | | - Riccardo Vicini
- Bio Basic Europe S.R.L., Via Taramelli 24, 27100 Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Correspondence: ; Tel.: +0039-0382986319
| |
Collapse
|
17
|
do Rosário Palma AL, Santos PBDRED, Pereira TC, Marcucci MC, Sawaya ACHF, de Oliveira LD. Effects of Calendula officinalis and Capsicum annum glycolic extracts on planktonic cells and biofilms of multidrug-resistant strains of Klebsiella pneumoniae and Pseudomonas aeruginosa. BIOFOULING 2023; 39:145-156. [PMID: 36971265 DOI: 10.1080/08927014.2023.2192406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Empirical knowledge of natural plant extracts is increasingly proving to be a promising field. The effect of Calendula officinalis L. (CO) and Capsicum annum (CA) glycolic extracts (GlExt) have potential that should be further developed in microbial tests. The effect of CO-GlExt and CA-GlExt was evaluated on eight multidrug-resistant clinical strains of Klebsiella pneumoniae and Pseudomonas aeruginosa, as well as collection strains for each bacterial. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extract were determined in comparison with 0.12% chlorhexidine. The tests were performed on single species biofilms, at 5 min and 24 h, using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. The MIC and MBC of the extract ranged from 1.56 to 50 mg mL-1 for all strains evaluated. Analysis of the MTT assay revealed a strong antimicrobial potential of CA-GlExt, comparable to chlorhexidine. The findings suggest that CA-GlExt is effective against multidrug-resistant strains of K. pneumoniae and P. aeruginosa in planktonic state and biofilms.
Collapse
Affiliation(s)
- Ana Luiza do Rosário Palma
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
- School of Biological Sciences and Health, Anhembi Morumbi University (UAM), São José dos Campos, São Paulo, Brazil
| | - Pamela Beatriz do Rosário Estevam Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
- Health Sciences Institute, Universidade Paulista (UNIP), São José dos Campos, São Paulo, Brazil
| | - Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | | | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
18
|
Cai Z, Mao C, Wang Y, Zhu Z, Xu S, Chen D, Chen Y, Ruan W, Fang B. Research Progress with Luteolin as an Anti-Tumor Agent. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221133579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this review, we outline the new expertise and research progress with luteolin as an antitumor agent, and clarify the related results from the aspects of tumor proliferation, apoptosis, invasion, metastasis, sensitivity to radiotherapy and chemotherapy, angiogenesis, and immunotherapy. In recent years, with the development of medical technology, the early detection rate of tumors has increased significantly. However, the number of cancer patients remains high. Therefore, a new and reasonably effective tumor therapeutic drug is urgently demanded. Luteolin, a flavonoid and widespread in nature, attracts more and more attention due to its universal biological utility, especially in the study of antitumor activity. This article reviews the work published in the past 20 years on the role and mechanism of luteolin as an antitumor agent, showing that this compound has a variety of effects for antitumor treatment by acting on different cytokines. Although clinical studies have not yet been widely carried out, a series of basic studies have confirmed that luteolin is a reasonably effective antineoplastic agent or anticancer adjuvant. Besides, derivatives of luteolin have good application prospects.
Collapse
Affiliation(s)
- Zhun Cai
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Chenyang Mao
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Yeqing Wang
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Zheyi Zhu
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Sisi Xu
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Dongqing Chen
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Yufeng Chen
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Wenjie Ruan
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Binbo Fang
- Department of Medicine, Taizhou University, Jiaojiang, China
| |
Collapse
|
19
|
Protective Effects of Orange Sweet Pepper Juices Prepared by High-Speed Blender and Low-Speed Masticating Juicer against UVB-induced Skin Damage in SKH-1 Hairless Mice. Molecules 2022; 27:molecules27196394. [PMID: 36234931 PMCID: PMC9572457 DOI: 10.3390/molecules27196394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Sweet pepper fruits (Capsicum annuum L.) contain various nutrients and phytochemicals that enhance human health and prevent the pathogenesis of certain diseases. Here, we report that oral administration of orange sweet pepper juices prepared by a high-speed blender and low-speed masticating juicer reduces UVB-induced skin damage in SKH-1 hairless mice. Sweet pepper juices reduced UVB-induced skin photoaging by the regulation of genes involved in dermal matrix production and maintenance such as collagen type I α 1 and matrix metalloproteinase-2, 3, 9. Administration of sweet pepper juices also restored total collagen levels in UVB-exposed mice. In addition, sweet pepper juices downregulated the expression of pro-inflammatory proteins such as cyclooxygenase-2, interleukin (IL)-1β, IL-17, and IL-23, which was likely via inhibiting the NF-κB pathway. Moreover, primary antioxidant enzymes in the skin were enhanced by oral supplementation of sweet pepper juices, as evidenced by increased expression of catalase, glutathione peroxidase, and superoxide dismutase-2. Immunohistochemical staining showed that sweet pepper juices reduced UVB-induced DNA damage by preventing 8-OHdG formation. These results suggest that sweet pepper juices may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, inflammatory response, and DNA damage as well as enhancing antioxidant defense, which leads to an overall reduction in skin damage.
Collapse
|
20
|
Bal S, Sharangi AB, Upadhyay TK, Khan F, Pandey P, Siddiqui S, Saeed M, Lee HJ, Yadav DK. Biomedical and Antioxidant Potentialities in Chilli: Perspectives and Way Forward. Molecules 2022; 27:6380. [PMID: 36234927 PMCID: PMC9570844 DOI: 10.3390/molecules27196380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide, since ages and nowadays, traditional medicine is well known, owing to its biodiversity, which immensely contributed to the advancement and development of complementary and alternative medicines. There is a wide range of spices, herbs, and trees known for their medicinal uses. Chilli peppers, a vegetable cum spice crop, are bestowed with natural bioactive compounds, flavonoids, capsaicinoids, phytochemicals, phytonutrients, and pharmacologically active compounds with potential health benefits. Such compounds manifest their functionality over solo-treatment by operating in synergy and consortium. Co-action of these compounds and nutrients make them potentially effective against coagulation, obesity, diabetes, inflammation, dreadful diseases, such as cancer, and microbial diseases, alongside having good anti-oxidants with scavenging ability to free radicals and oxygen. In recent times, capsaicinoids especially capsaicin can ameliorate important viral diseases, such as SARS-CoV-2. In addition, capsaicin provides an ability to chilli peppers to ramify as topical agents in pain-relief and also benefitting man as a potential effective anesthetic agent. Such phytochemicals involved not only make them useful and a much economical substitute to wonder/artificial drugs but can be exploited as obscene drugs for the production of novel stuffs. The responsibility of the TRPV1 receptor in association with capsaicin in mitigating chronic diseases has also been justified in this study. Nonetheless, medicinal studies pertaining to consumption of chilli peppers are limited and demand confirmation of the findings from animal studies. In this artifact, an effort has been made to address in an accessible format the nutritional and biomedical perspectives of chilli pepper, which could precisely upgrade and enrich our pharmaceutical industries towards human well-being.
Collapse
Affiliation(s)
- Solanki Bal
- Department of Vegetable Science, BCKV-Agricultural University, Mohanpur 741252, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal & Aromatic Crops, BCKV-Agricultural University, Mohanpur 741252, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
| | - Samra Siddiqui
- Department Health Services Management, College of Public Health and Health Informatics, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Hae-Jeung Lee
- Department of Food & Nutrition, College of Bionano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Korea
| | - Dharmendra K. Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Hambakmoeiro 191, Gachon University, Incheon 21924, Korea
| |
Collapse
|
21
|
Exogenous Application of Melatonin to Green Horn Pepper Fruit Reduces Chilling Injury during Postharvest Cold Storage by Regulating Enzymatic Activities in the Antioxidant System. PLANTS 2022; 11:plants11182367. [PMID: 36145768 PMCID: PMC9505764 DOI: 10.3390/plants11182367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Chilling injury (CI) caused by exposure to low temperatures is a serious problem in the postharvest cold storage of pepper fruit. Melatonin (MT) has been reported to minimize CI in several plants. To evaluate the effectiveness of MT to minimize CI in green horn pepper and the possible mechanism involved, freshly picked green horn peppers were treated with MT solution at 100 μmol L−1 or water and then stored at 4 °C for 25 d. Results showed that MT treatment reduced CI in green horn pepper fruit, as evidenced by lower CI rate and CI index. MT treatment maintained lower postharvest metabolism rate and higher fruit quality of green horn peppers, as shown by reduced weight loss and respiratory rate, maintened fruit firmness and higher contents of chlorophyll, total phenols, flavonoids, total soluble solids and ATP. Additionally, the contents of hydrogen peroxide, superoxide radical, and malondialdehyde were kept low in the MT-treated fruit, and the activities of the enzymes peroxidase, superoxide dismutase, and catalase were significantly elevated. Similarly, the ascorbate–glutathione cycle was enhanced by elevating the activities of ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, to increase the regeneration of ascorbic acid and glutathione. Our results show that MT treatment protected green horn pepper fruit from CI and maintained high fruit quality during cold storage by triggering the antioxidant system
Collapse
|
22
|
Özcan MM, Uslu N. Quantitative changes of bioactive properties and phenolic compounds in capia pepper (
Capsicum annuum
L.) fruits dried by the air, conventional heater and microwave. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture Selcuk University Konya Turkey
| | - Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture Selcuk University Konya Turkey
| |
Collapse
|
23
|
Batista-Silva W, Carvalho de Oliveira A, Martins AO, Siqueira JA, Rodrigues-Salvador A, Omena-Garcia RP, Medeiros DB, Peres LEP, Ribeiro DM, Zsögön A, Fernie AR, Nunes-Nesi A, Araújo WL. Reduced auxin signalling through the cyclophilin gene DIAGEOTROPICA impacts tomato fruit development and metabolism during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4113-4128. [PMID: 35383842 DOI: 10.1093/jxb/erac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively]. Altered auxin sensitivity modifies metabolism, through direct impacts on fruit respiration and fruit growth. We verified that the dgt mutant plants exhibit reductions in fruit set, total fruit dry weight, fruit size, number of seeds per fruit, and fresh weight loss during post-harvest. Sugar accumulation was associated with delayed fruit ripening in dgt, probably connected with reduced ethylene levels and respiration, coupled with a lower rate of starch degradation. In contrast, despite exhibiting parthenocarpy, increased auxin perception (entire) did not alter fruit ripening, leading to only minor changes in primary metabolism. By performing a comprehensive analysis, our results connect auxin signalling and metabolic changes during tomato fruit development, indicating that reduced auxin signalling led to extensive changes in sugar concentration and starch metabolism during tomato fruit ripening.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David Barbosa Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lázaro Eustáquio Pereira Peres
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Dimas Mendes Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
24
|
Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 2022; 48:611-633. [PMID: 35229925 DOI: 10.1002/biof.1831] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
Free radicals are a group of damaging molecules produced during the normal metabolism of cells in the human body. Exposure to ultraviolet radiation, cigarette smoking, and other environmental pollutants enhances free radicals in the human body. The destructive effects of free radicals may also cause harm to membranes, enzymes, and DNA, leading to several human diseases such as cancer, atherosclerosis, malaria, coronavirus disease (COVID-19), rheumatoid arthritis, and neurodegenerative illnesses. This process occurs when there is an imbalance between free radicals and antioxidant defenses. Since antioxidants scavenge free radicals and repair damaged cells, increasing the consumption of fruits and vegetables containing high antioxidant values is recommended to slow down oxidative stress in the body. Additionally, natural products demonstrated a wide range of biological impacts such as anti-inflammatory, anti-aging, anti-atherosclerosis, and anti-cancer properties. Hence, in this review article, our goal is to explore the role of natural therapeutic antioxidant effects to reduce oxidative stress in the diseases.
Collapse
Affiliation(s)
- Behnaz Akbari
- School of Medicine, Department of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Namdar Baghaei-Yazdi
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Manochehr Bahmaie
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | |
Collapse
|
25
|
Changes in Selected Properties of Cold-Pressed Oils Induced by Natural Plant Additives. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cold-pressed oils are becoming increasingly popular. The stability of these oils is the main concern, as changes occur in their organoleptic characteristics during storage, which could affect their suitability for consumption. Various natural plant components with antioxidant properties are added to cold-pressed oils to preserve their freshness for as long as possible. The present study assessed the effect of addition of garlic and chili pepper on the chemical properties of cold-pressed oil extracted from seeds of flax, hemp, and black cumin. First, the moisture level and the fat and protein content in the seeds were determined, and the oil was then extracted. The oil extraction yield was calculated, and the oil was analyzed to determine its fatty acid composition, acid value, peroxide value, and oxidative stability. Three samples were prepared for further analyses: a control sample with pure oil and two samples supplemented with 1 g/100 g of garlic or chili pepper. Changes in the oil samples stored for 2, 4, and 6 weeks were assessed based on the values of some parameters. The additives were found to exert antioxidant properties, as they caused effective inhibition of oxidative changes occurring during storage of the oils. The additives also extended the induction time.
Collapse
|
26
|
Kovács Z, Bedő J, Pápai B, Tóth-Lencsés AK, Csilléry G, Szőke A, Bányai-Stefanovits É, Kiss E, Veres A. Ripening-Induced Changes in the Nutraceutical Compounds of Differently Coloured Pepper (Capsicum annuum L.) Breeding Lines. Antioxidants (Basel) 2022; 11:antiox11040637. [PMID: 35453324 PMCID: PMC9027134 DOI: 10.3390/antiox11040637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
To date, several research studies addressed the topic of phytochemical analysis of the different coloured pepper berries during ripening, but none discussed it in the case of purple peppers. In this study we examine whether the anthocyanin accumulation of the berries in the early stages of ripening could result in a higher antioxidant capacity due to the elevated amount of polyphenolic compounds. Therefore, enzymatic and non-enzymatic antioxidant capacity was measured in four distinct phenophases of fruit maturity. Furthermore, the expression of structural and regulatory genes of the anthocyanin biosynthetic pathway was also investigated. An overall decreasing trend was observed in the polyphenolic and flavonoid content and antioxidant capacity of the samples towards biological ripeness. Significant changes both in between the genotypes and in between the phenophases were scored, with the genotype being the most affecting factor on the phytonutrients. An extreme purple pepper yielded outstanding results compared to the other genotypes, with its polyphenolic and flavonoid content as well as its antioxidant capacity being the highest in every phenophase studied. Based on our results, besides MYBa (Ca10g11650) two other putative MYBs participate in the regulation of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Zsófia Kovács
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
- Correspondence:
| | - Janka Bedő
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | - Bánk Pápai
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | - Andrea Kitti Tóth-Lencsés
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | | | - Antal Szőke
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | - Éva Bányai-Stefanovits
- Institute of Food Science and Technology, Hungarian University of Agricultural Sciences, 1118 Budapest, Hungary;
| | - Erzsébet Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | - Anikó Veres
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| |
Collapse
|
27
|
Quality of Pepper Seed By-Products: A Review. Foods 2022; 11:foods11050748. [PMID: 35267381 PMCID: PMC8908976 DOI: 10.3390/foods11050748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Peppers are grown all around the world, usually for fresh consumption, as well as for the industrial production of different products. Pepper (Capsicum annuum L.) seeds are mostly considered a by-product. Recent investigations have shown that pepper seeds have the potential to be a valuable source of edible oil and fiber-rich flour and protein after processing. Pepper seed oil is a high-quality edible oil according to quality analysis (nutritional, chemical, sensory and antioxidant characteristics) and is suitable as an ingredient for use in the food and nonfood industries (pharmaceutical, chemical, cosmetic industries). The literature review presented in this paper revealed the high quality of two pepper seed by-products (pepper seed oil and pepper seed flour (Capsicum annuum L.)), which could guide the food industry toward new product development based on the circular bioeconomy.
Collapse
|
28
|
Leng Z, Zhong B, Wu H, Liu Z, Rauf A, Bawazeer S, Suleria HAR. Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential. ACS OMEGA 2022; 7:4563-4576. [PMID: 35155947 PMCID: PMC8829910 DOI: 10.1021/acsomega.1c06532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 05/05/2023]
Abstract
Bell peppers are widely considered as healthy foods that can provide people with various phytochemicals, especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography photodiode array (HPLC-PDA) quantification, respectively. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35 μg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2'-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds. These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products.
Collapse
Affiliation(s)
- Zexing Leng
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ziyao Liu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Sami Bawazeer
- Department
of Pharmacognosy, Faculty of Pharmacy, Umm
Al-Qura University, P.O. Box 42, Makkah 21421, Kingdom of Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
29
|
Zhou D, Bai Z, Guo T, Li J, Li Y, Hou Y, Chen G, Li N. Dietary flavonoids and human top-ranked diseases: The perspective of in vivo bioactivity and bioavailability. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Effects of Different Solvents Extractions on Total Polyphenol Content, HPLC Analysis, Antioxidant Capacity, and Antimicrobial Properties of Peppers (Red, Yellow, and Green ( Capsicum annum L.)). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7372101. [PMID: 35096116 PMCID: PMC8791725 DOI: 10.1155/2022/7372101] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
Plants possessing various bioactive compounds and antioxidant components have gained enormous attention because of their efficacy in enhancing human health and nutrition. Peppers (Capsicum annuum L.), because of their color, flavor, and nutritional value, are considered as one of the most popular vegetables around the world. In the present investigation, the effect of different solvents extractions (methanol, ethanol, and water) and oven drying on the antioxidant and antimicrobial properties was studied of red, yellow, and green peppers. The green pepper water extract showed the highest total polyphenol content (30.15 mg GAE/g DW) followed by red pepper water extract (28.73 mg GAE/g DW) and yellow pepper water extract (27.68 mg GAE/g DW), respectively. The methanol extracts of all the pepper samples showed higher TPC as compared to the ethanol extract. A similar trend was observed with the total flavonoid content (TFC). The antioxidant assays (DPPH scavenging and reducing power) echoed the findings of TPC and TFC. In both antioxidant assays, the highest antioxidant activity was shown by the water extract of green pepper, which was followed by the water extract of red pepper and yellow pepper. Furthermore, all extracts were assessed for their potential antimicrobial activity against bacterial and fungal pathogens. Aqueous extracts of all three pepper samples exhibited slightly higher inhibition zones as compared to their corresponding ethanolic and methanolic extract. Minimum inhibitory concentration (MIC) values ranged from 0.5 to 8.0 mg/ml. The lowest MIC values ranging from 0.5 to 2.0 mg/ml concentration were recorded for aqueous extracts of green pepper. High-performance liquid chromatography (HPLC) analysis revealed tannic acid as the major phenolic compound in all three pepper samples. Thus, it is envisaged that the microwave drying/heating technique can improve the antioxidant and antimicrobial activity of the pepper.
Collapse
|
31
|
QTL Mapping of Resistance to Bacterial Wilt in Pepper Plants (Capsicum annuum) Using Genotyping-by-Sequencing (GBS). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial wilt (BW) disease, which is caused by Ralstonia solanacearum, is one globally prevalent plant disease leading to significant losses of crop production and yield with the involvement of a diverse variety of monocot and dicot host plants. In particular, the BW of the soil-borne disease seriously influences solanaceous crops, including peppers (sweet and chili peppers), paprika, tomatoes, potatoes, and eggplants. Recent studies have explored genetic regions that are associated with BW resistance for pepper crops. However, owing to the complexity of BW resistance, the identification of the genomic regions controlling BW resistance is poorly understood and still remains to be unraveled in the pepper cultivars. In this study, we performed the quantitative trait loci (QTL) analysis to identify genomic loci and alleles, which play a critical role in the resistance to BW in pepper plants. The disease symptoms and resistance levels for BW were assessed by inoculation with R. solanacearum. Genotyping-by-sequencing (GBS) was utilized in 94 F2 segregating populations originated from a cross between a resistant line, KC352, and a susceptible line, 14F6002-14. A total of 628,437 single-nucleotide polymorphism (SNP) was obtained, and a pepper genetic linkage map was constructed with putative 1550 SNP markers via the filtering criteria. The linkage map exhibited 16 linkage groups (LG) with a total linkage distance of 828.449 cM. Notably, QTL analysis with CIM (composite interval mapping) method uncovered pBWR-1 QTL underlying on chromosome 01 and explained 20.13 to 25.16% by R2 (proportion of explained phenotyphic variance by the QTL) values. These results will be valuable for developing SNP markers associated with BW-resistant QTLs as well as for developing elite BW-resistant cultivars in pepper breeding programs.
Collapse
|
32
|
Kapoor L, Simkin AJ, George Priya Doss C, Siva R. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC PLANT BIOLOGY 2022; 22:27. [PMID: 35016620 PMCID: PMC8750800 DOI: 10.1186/s12870-021-03411-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/21/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fruits are vital food resources as they are loaded with bioactive compounds varying with different stages of ripening. As the fruit ripens, a dynamic color change is observed from green to yellow to red due to the biosynthesis of pigments like chlorophyll, carotenoids, and anthocyanins. Apart from making the fruit attractive and being a visual indicator of the ripening status, pigments add value to a ripened fruit by making them a source of nutraceuticals and industrial products. As the fruit matures, it undergoes biochemical changes which alter the pigment composition of fruits. RESULTS The synthesis, degradation and retention pathways of fruit pigments are mediated by hormonal, genetic, and environmental factors. Manipulation of the underlying regulatory mechanisms during fruit ripening suggests ways to enhance the desired pigments in fruits by biotechnological interventions. Here we report, in-depth insight into the dynamics of a pigment change in ripening and the regulatory mechanisms in action. CONCLUSIONS This review emphasizes the role of pigments as an asset to a ripened fruit as they augment the nutritive value, antioxidant levels and the net carbon gain of fruits; pigments are a source for fruit biofortification have tremendous industrial value along with being a tool to predict the harvest. This report will be of great utility to the harvesters, traders, consumers, and natural product divisions to extract the leading nutraceutical and industrial potential of preferred pigments biosynthesized at different fruit ripening stages.
Collapse
Affiliation(s)
- Leepica Kapoor
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andrew J Simkin
- School of Biosciences, University of Kent, United Kingdom, Canterbury, CT2 7NJ, UK
| | - C George Priya Doss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ramamoorthy Siva
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
33
|
Metabolic shifts during fruit development in pungent and non-pungent peppers. Food Chem 2021; 375:131850. [PMID: 34953242 DOI: 10.1016/j.foodchem.2021.131850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
Abstract
Fruit pungency is caused by the accumulation of capsaicinoids, secondary metabolites whose relation to primary metabolism remains unclear. We have selected ten geographically diverse accessions of Capsicum chinense Jacq with different pungency levels. A detailed metabolic profile was conducted in the fruit placenta and pericarp at 20, 45, and 60 days after anthesis aiming at increasing our understanding of the metabolic changes in these tissues across fruit development and their potential connection to capsaicin metabolism. Overall, despite the variation in fruit pungency among the ten accessions, the composition and metabolite levels in both placenta and pericarp were uniformly stable across accessions. Most of the metabolite variability occurred between the fruit developmental stages rather than among the accessions. Interestingly, different metabolite adjustments in the placenta were observed among pungent and non-pungent accessions, which seem to be related to differences in the genetic background. Furthermore, we observed high coordination between metabolites and capsaicin production in C. chinense fruits, suggesting that pungency in placenta is adjusted with primary metabolism.
Collapse
|
34
|
Kheto A, Dhua S, Nema PK, Sharanagat VS. Influence of drying temperature on quality attributes of bell pepper (
Capsicum annuum
L
.): Drying kinetics and modeling, rehydration, color, and antioxidant analysis. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ankan Kheto
- Department of Food Engineering NIFTEM Sonepat India
| | | | | | | |
Collapse
|
35
|
Qin T, Zhao J, Liu X, Li L, Zhang X, Shi X, Ke Y, Liu W, Huo J, Dong Y, Shen Y, Li Y, He M, Han S, Li L, Pan C, Wang C. Luteolin combined with low-dose paclitaxel synergistically inhibits epithelial-mesenchymal transition and induces cell apoptosis on esophageal carcinoma in vitro and in vivo. Phytother Res 2021; 35:6228-6240. [PMID: 34494324 DOI: 10.1002/ptr.7267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 02/05/2023]
Abstract
Although paclitaxel is a promising frontline chemotherapy agent for various malignancies, the clinical applications have been restricted by side effects, drug resistance, and cancer metastasis. The combination of paclitaxel and other agents could be the promising strategies against malignant tumor, which enhances the antitumor effect through synergistic effects, reduces required drug concentrations, and also suppresses tumorigenesis in multiple ways. In this study, we found that luteolin, a natural flavonoid compound, combined with low-dose paclitaxel synergistically regulated the proliferation, migration, epithelial-mesenchymal transition (EMT), and apoptosis of esophageal cancer cells in vitro, as well as synergistically inhibited tumor growth without obvious toxicity in vivo. The molecular mechanism of inhibiting cell migration and EMT processes may be related to the inhibition of SIRT1, and the mechanism of apoptosis induction is associated with the reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK) pathway-mediated activation of mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Tiantian Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Jinzhu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Xiaojie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Leilei Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Xueyan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Xiaoli Shi
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Weihua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Junfeng Huo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Yalong Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Yiwei Shen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingjing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuhua Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Linlin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and treatment, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, China
| |
Collapse
|
36
|
Patel DK. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab Lett 2021; 14:117-125. [PMID: 34313205 DOI: 10.2174/1872312814666210726112910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUNDS Plants and their derived products have been used in the traditional system of medicine for the treatment of various forms of human disorders since very ancient time. In the traditional system of medicine and modern allopathic medicine, numerous phytoconstituents have been used for the preparation of various types of formulation. Flavonoidal class phytochemicals are the main active phytoconstituents of plants, fruit, vegetables and beverages. Flavonoidal class phytochemicals are more referred as "nutraceuticals" due to their important pharmacological activities in the mammalian body. METHODS In order to understand the health beneficial effects of flavonoidal class chemical, present work summarized the health beneficial aspects of pectolinarin. Present work summarized the medicinal importance, pharmacological activities and analytical aspects of pectolinarin with various experimental models and advance analytical methods. However, all the collected scientific information's have been analyzed in the present work for their health beneficial potential. RESULTS From the analysis of all the collected scientific information in the present work it was found that pectolinarin is an important phytochemical found to be present in the numerous medicinal plants but especially found in Cirsium japonicum which is an important medicinal herb of Korea, China and Japan. Pharmacological activities data analysis signified the health beneficial potential of pectolinarin for their anti-rheumatoid arthritis, analgesic, anti-inflammatory, hepatoprotective, anti-diabetic, anti-tumor, anti-dengue, antiviral, neuroprotective and antidepressant activity. However effectiveness of pectolinarin in central nervous system, bone, liver and cancerous disorders have been also reported in the literature. Analysis of present scientific information revealed the health beneficial potential of pectolinarin in the modern medicine due to their numerous pharmacological activities in different part of biological systems. Due to their biological importance in food and human health, a better understanding of their biological activities indicates their potentials as therapeutic agents. CONCLUSION Scientific data of the present work signified the biological potential and therapeutic benefit of pectolinarin.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Prayagraj, 211007, Uttar Pradesh, Poland
| |
Collapse
|
37
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Chelliah R, Shin S, Park S, Oh DH, Wang MH. Slightly acidic electrolyzed water combination with antioxidants and fumaric acid treatment to maintain the quality of fresh-cut bell peppers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Özcan MM, Uslu N, Efe NS, Erdem AN, Değerli Z, Kulluk DA, Can Sağlık N. Effect of thermal processing on the bioactive compounds and color parameters of types of three sweet pepper. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mehmet Musa Özcan
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Nurhan Uslu
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Nazife Sultan Efe
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Ayşe Nur Erdem
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Zeliha Değerli
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Duygu Akçay Kulluk
- Department of Soil Science Faculty of Agriculture Selcuk University Konya Turkey
| | - Nazlı Can Sağlık
- Department of Soil Science Faculty of Agriculture Selcuk University Konya Turkey
| |
Collapse
|
39
|
Ghidoli M, Colombo F, Sangiorgio S, Landoni M, Giupponi L, Nielsen E, Pilu R. Food Containing Bioactive Flavonoids and Other Phenolic or Sulfur Phytochemicals With Antiviral Effect: Can We Design a Promising Diet Against COVID-19? Front Nutr 2021; 8:661331. [PMID: 34222300 PMCID: PMC8247467 DOI: 10.3389/fnut.2021.661331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Since in late 2019, when the coronavirus 2 (SARS-CoV-2) pathogen of coronavirus disease 2019 (COVID-19) started to spread all over the world, causing the awful global pandemic we are still experiencing, an impressive number of biologists, infectious disease scientists, virologists, pharmacologists, molecular biologists, immunologists, and other researchers working in laboratories of all the advanced countries focused their research on the setting up of biotechnological tools, namely vaccines and monoclonal antibodies, as well as of rational design of drugs for therapeutic approaches. While vaccines have been quickly obtained, no satisfactory anti-Covid-19 preventive, or therapeutic approach has so far been discovered and approved. However, among the possible ways to achieve the goal of COVID-19 prevention or mitigation, there is one route, i.e., the diet, which until now has had little consideration. In fact, in the edible parts of plants supplying our food, there are a fair number of secondary metabolites mainly belonging to the large class of the flavonoids, endowed with antiviral or other health beneficial activities such as immunostimulating or anti-inflammatory action that could play a role in contributing to some extent to prevent or alleviate the viral infection and/or counteract the development of SARS induced by the novel coronavirus. In this review, a number of bioactive phytochemicals, in particular flavonoids, proven to be capable of providing some degree of protection against COVID-19, are browsed, illustrating their beneficial properties and mechanisms of action as well as their distribution in cultivated plant species which supply food for the human diet. Furthermore, room is also given to information regarding the amount in food, the resistance to cooking processes and, as a very important feature, the degree of bioavailability of these compounds. Concluding, remarks and perspectives for future studies aimed at increasing and improving knowledge and the possibility of using this natural complementary therapy to counteract COVID-19 and other viral pathologies are discussed.
Collapse
Affiliation(s)
- Martina Ghidoli
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Federico Colombo
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Stefano Sangiorgio
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Michela Landoni
- Department of Bioscience, Università degli Studi di Milano, Milan, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas – CRC Ge.S.Di.Mont., Università degli Studi di Milano, Edolo, Italy
| | - Erik Nielsen
- Department of Biology and Biotechnology Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas – CRC Ge.S.Di.Mont., Università degli Studi di Milano, Edolo, Italy
| |
Collapse
|
40
|
Ahmad R, Ahmad N, Alkhars S, Alkhars A, Alyousif M, Bukhamseen A, Abuthayn S, Aqeel M, Aljamea A. Green accelerated solvent extraction (ASE) with solvent and temperature effect and green UHPLC-DAD analysis of phenolics in pepper fruit (Capsicum annum L.). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Effects of yellow and red bell pepper (paprika) extracts on pathogenic microorganisms, cancerous cells and inhibition of survivin. Journal of Food Science and Technology 2021; 58:1499-1510. [PMID: 33746278 DOI: 10.1007/s13197-020-04663-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
The present work examined the biomedical value of red and yellow bell pepper extracts (YME and RME) in terms of antioxidant, antibacterial and anticancer activities by in vitro and virtual studies. The yield of extract was 3.49% for RME and 2.92% for YME. The level of total phenols and total flavonoids significantly varied between the type of extracts, and it was higher in RME than that in YME. The extracts showed promising DPPH and ABTS free radical scavenging rates. The extracts showed an excellent antibacterial activity. The minimal inhibitory concentration (MIC) of RME was 0.20 mg mL-1 for Bacillus cereus, 0.30 mg mL-1 for Escherichia coli, 0.50 mg mL-1 for Staphylococcus aureus and 0.60 mg mL-1 and for Pseudomonas aeruginosa, while the MIC of YME was 0.40 mg mL-1 for B. cereus, 0.40 mg mL-1 for E. coli, 0.50 mg mL-1 for S. aureus, and 0.60 mg mL-1 for P. aeruginosa. TEM results demonstrated the cellular damage induced by RME in B. cereus biofilm. The RME did not show any cytotoxicity in normal NIH3T3 cells, but at 125 μg mL-1 did a strong cytotoxicity in human lung cancer cell line A549 as evident by cytotoxicity assay, ROS and AO/EB staining. The virtual biological examination indicated that β-carotene from RME was a potential compound with higher docking energy against both targeted enzymes and proteins as - 14.30 for LpxC and - 15.59 for survivin. Therefore, it is recommended that RME is a better functional food with novel biomedical properties and it deserves further evaluation for its the novel molecules against multidrug resistant pathogens.
Collapse
|
42
|
Dyachenko EA, Filyushin MA, Efremov GI, Dzhos EA, Shchennikova AV, Kochieva EZ. Structural and functional features of phytoene synthase isoforms PSY1 and PSY2 in pepper Capsicum annuum L. cultivars. Vavilovskii Zhurnal Genet Selektsii 2021; 24:687-696. [PMID: 33738386 PMCID: PMC7960444 DOI: 10.18699/vj20.663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fruits of various pepper cultivars are characterized by a different color, which is determined by the pigment ratio; carotenoids dominate in ripe fruits, while chlorophylls, in immature fruits. A key regulator of carotenoid biosynthesis is the phytoene synthase encoded by the PSY gene. The Capsicum annuum genome contains two isoforms of this enzyme, localized in leaf (PSY2) and fruit (PSY1) plastids. In this work, the complete PSY1 and PSY2 genes were identified in nine C. annuum cultivars, which differ in ripe fruit color. PSY1 and PSY2 sequence variability was 2.43 % (69 SNPs) and 1.21 % (36 SNPs). The most variable were PSY1 proteins of the cultivars 'Maria' (red-fruited) and 'Sladkij shokolad' (red-brown-fruited). All identified PSY1 and PSY2 homologs contained the phytoene synthase domain HH-IPPS and the transit peptide. In the PSY1 and PSY2 HH-IPPS domains, functionally significant sites were determined. For all accessions studied, the active sites (YAKTF and RAYV), aspartate-rich substrate-Mg2+-binding sites (DELVD and DVGED), and other functional residues were shown to be conserved. Transit peptides were more variable, and their similarity in the PSY1 and PSY2 proteins did not exceed 78.68 %. According to the biochemical data obtained, the largest amounts of chlorophylls and carotenoids across the cultivars studied were detected in immature and ripe fruits of the cv. 'Sladkij shokolad' and 'Shokoladnyj'. Also, ripe fruits of the cv. 'Nesozrevayuschij' (green-fruited) were marked by significant chlorophyll content, but a minimum of carotenoids. The PSY1 and PSY2 expression patterns were determined in the fruit pericarp at three ripening stages in 'Zheltyj buket', 'Sladkij shokolad', 'Karmin' and 'Nesozrevayuschij', which have different ripe fruit colors: yellow, red-brown, dark red and green, respectively. In the leaves of the cultivars studied, PSY1 expression levels varied significantly. All cultivars were characterized by increased PSY1 transcription as the fruit ripened; the maximum transcription level was found in the ripe fruit of 'Sladkij shokolad', and the lowest, in 'Nesozrevayuschij'. PSY2 transcripts were detected not only in the leaves and immature fruits, but also in ripe fruits. Assessment of a possible correlation of PSY1 and PSY2 transcription with carotenoid and chlorophyll content revealed a direct relationship between PSY1 expression level and carotenoid pigmentation during fruit ripening. It has been suggested that the absence of a typical pericarp pigmentation pattern in 'Nesozrevayuschij' may be associated with impaired chromoplast formation.
Collapse
Affiliation(s)
- E A Dyachenko
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - M A Filyushin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - G I Efremov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E A Dzhos
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia Federal Scientific Vegetable Center, VNIISSOK, Moscow region, Russia
| | - A V Shchennikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
43
|
Choy M, El Fassi S, Treur J. An adaptive network model for pain and pleasure through spicy food and its desensitization. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Bioactive Compounds and Antioxidant Capacity of Valencian Pepper Landraces. Molecules 2021; 26:molecules26041031. [PMID: 33672083 PMCID: PMC7919661 DOI: 10.3390/molecules26041031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
Sweet pepper is one of the most important economic fruits with nutritional attributes. In this sense, the nutraceutical value of consumed products is a major concern nowadays so the content of some bioactive compounds and antioxidants (phenols, ascorbic acid, lycopene, carotenoids, chlorophylls, and antioxidant activity) was monitored in 18 sweet pepper landraces at two maturity stages (green and red). All the traits except chlorophylls significantly increased in red fruits (between 1.5- and 2.3-fold for phenols, ascorbic acid, and 2-2-diphenyl-1-picrylhydrazyl (DPPH) inhibition activity, 4.8-fold for carotenoid and 27.4-fold for lycopene content), which suggests that ripening is key for obtaining desired fruit quality. Among landraces, P-44 in green fruits is highlighted for its content in carotenoids, chlorophylls, phenols, and ascorbic acid, and P-46 for its antioxidant capacity and lycopene content. Upon maturity, P-48, P-44, and P-41 presented higher levels of phenols and lycopene, and P-39 of phenols, carotenoid, and DPPH. This work reflects a wide variability in the 18 pepper landraces at bioactive compounds concentration and in relation to fruit ripeness. The importance of traditional landraces in terms of organoleptic properties is emphasized as they are the main source of agricultural biodiversity today and could be helpful for breeders to develop new functional pepper varieties.
Collapse
|
45
|
Kim HR, Kim S, Lee SW, Sin HS, Kim SY. Protective Effects of Fermented Paprika ( Capsicum annuum L.) on Sodium Iodate-Induced Retinal Damage. Nutrients 2020; 13:nu13010025. [PMID: 33374795 PMCID: PMC7824181 DOI: 10.3390/nu13010025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Diseases of the outer retina, including age-related macular degeneration (AMD), are major cause of permanent visual damage. The pathogenesis of AMD involves oxidative stress and damage of the retinal pigment epithelium. Capsicum annuum L. (paprika) fruits have been known as a source of vitamins, carotenoids, phenolic compounds, and metabolites with a well-known antioxidant activity, which have positive effects on human health and protection against AMD and cataracts. In this study, we investigated whether paprika (fermented (FP), yellow, and orange colored) fermented with Lactobacillus (L.) plantarum could increase the protective effect of retinal degeneration using in vitro and in vivo models. FP significantly increased cell survival and reduced levels of lactate dehydrogenase as well as intracellular reactive oxygen species (ROS) increase in SI (sodium iodate, NaIO3)-treated human retinal pigment epithelial (ARPE-19) cells. We developed a model of retinal damage in C57BL/6 mice using SI (30 mg/kg) via intraperitoneal injection. Seven days after SI administration, deformation and a decrease in thickness were observed in the outer nuclear layer, but improved by FP treatment. FP administration protected the SI-mediated reduction of superoxide dismutase and glutathione levels in the serum and ocular tissues of mice. The overproduction of cleaved poly(ADP-Ribose) Polymerase (PARP)1, caspase-3 and -8 proteins were significantly protected by FP in SI-treated cells and ocular tissues. In addition, we evaluated the potentiating effects of FP on antioxidants and their underlying mechanisms in RAW 264.7 cells. Lipopolysaccharide (LPS)-induced nitrite increase was markedly blocked by FP treatment in RAW 264.7 cells. Furthermore, FP reduced LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 activation. The FP also enhanced the inhibitory effects on mitogen activated kinase signaling protein activation in ARPE-19 and RAW 264.7 cells and ocular tissues. There was no significant difference in total phenol and flavonoid content in paprika by fermentation, but the vitamin C content was increased in orange colored paprika, and protective effect against oxidative stress-mediated retinal damage was enhanced after fermentation. These results suggest that FP may be a potential candidate to protect against retinal degenerative diseases through the regulation of oxidative stress.
Collapse
Affiliation(s)
- Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si, Jeollabuk-do 54810, Korea; (H.-R.K.); (S.K.)
| | - Sol Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si, Jeollabuk-do 54810, Korea; (H.-R.K.); (S.K.)
| | - Sang-Wang Lee
- Chebigen Co., Ltd., Jeonju 54853, Korea; (S.-W.L.); (H.-S.S.)
| | - Hong-Sig Sin
- Chebigen Co., Ltd., Jeonju 54853, Korea; (S.-W.L.); (H.-S.S.)
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si, Jeollabuk-do 54810, Korea; (H.-R.K.); (S.K.)
- Correspondence: ; Tel.: +82-63-711-1053
| |
Collapse
|
46
|
Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: In vitro and molecular docking analysis. Int J Biol Macromol 2020; 165:2275-2285. [PMID: 33058977 DOI: 10.1016/j.ijbiomac.2020.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
The post-translational modification of proteins by nonenzymatic glycation (NEG) and the accumulation of AGEs are the two underlying factors associated with the long-term pathogenesis in diabetes. Glyoxal (GO) is a reactive intermediate which has the ability to modify proteins and generate AGEs at a faster rate. Human serum albumin (HSA) being the most abundant serum protein has a higher chance to be modified by NEG. The key objective of the present study is to investigate the potency of chrysin and luteolin as antiglycating and antifibrillating agents in the GO-mediated glycation and fibril formation of HSA. AGEs formation were confirmed from the absorption and fluorescence spectral measurements. Both the flavonoids were able to quench the AGEs fluorescence intensity in vitro indicating the antiglycating nature of the molecules. The formation of fibrils in the GO-modified HSA was confirmed by the Thioflavin T (ThT) fluorescence assay and the flavonoids were found to exihibit the antifibrillation properties in vitro. Docking results suggested that both the flavonoids interact with various amino acid residues of subdomain IIA including glycation prone lysines and arginines via non-covalent forces and further stabilized the structure of HSA, which further explains their mechanisms of action as antiglycating and antifibrillating agents.
Collapse
|
47
|
Radenkovs V, Püssa T, Juhnevica-Radenkova K, Kviesis J, Salar FJ, Moreno DA, Drudze I. Wild apple (Malus spp.) by-products as a source of phenolic compounds and vitamin C for food applications. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Ademiluyi AO, Oyesomi AA, Ogunsuyi OB, Oyeleye SI, Oboh G. Influence of cooking on the neuroprotective properties of pepper (bird pepper and cayenne pepper) varieties in scopolamine‐induced neurotoxicity in rats. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Adeola A. Oyesomi
- Department of Biochemistry Federal University of Technology Akure Nigeria
| | - Opeyemi B. Ogunsuyi
- Department of Biochemistry Federal University of Technology Akure Nigeria
- Department of Biomedical Technology Federal University of Technology Akure Nigeria
| | - Sunday I. Oyeleye
- Department of Biochemistry Federal University of Technology Akure Nigeria
- Department of Biomedical Technology Federal University of Technology Akure Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry Federal University of Technology Akure Nigeria
| |
Collapse
|
49
|
Mariadoss AVA, Sathiyaseelan A, Saravanakumar K, Hu X, Wang M. Edible treatments of
Capsicum
extracts inactivate the microbial contaminations to improve the quality of fresh‐cut bell pepper (
Capsicum annuum
L. var. grossum (L.) Sendt). J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Arokia Vijaya Anand Mariadoss
- Department of Bio‐Health Convergence, College of Biomedical Sciences Kangwon National University Chuncheon Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio‐Health Convergence, College of Biomedical Sciences Kangwon National University Chuncheon Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio‐Health Convergence, College of Biomedical Sciences Kangwon National University Chuncheon Republic of Korea
| | - Xiaowen Hu
- Department of Bio‐Health Convergence, College of Biomedical Sciences Kangwon National University Chuncheon Republic of Korea
| | - Myeong‐Hyeon Wang
- Department of Bio‐Health Convergence, College of Biomedical Sciences Kangwon National University Chuncheon Republic of Korea
| |
Collapse
|
50
|
Optimization of starch-based candy supplemented with date palm (Phoenix dactylifera) and tamarind (Tamarindus indica L.). ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|