1
|
Mora-Salguero D, Ranjard L, Morvan T, Dequiedt S, Jean-Baptiste V, Sadet-Bourgeteau S. Long-term effect of repeated application of pig slurry digestate on microbial communities in arable soils. Heliyon 2025; 11:e41117. [PMID: 39758392 PMCID: PMC11699314 DOI: 10.1016/j.heliyon.2024.e41117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments. Conducted from 2012 to 2022 at an experimental field site in France, the study involved plots with identical agricultural soil management practices, differing only in fertilization treatments: mineral fertilizer, three different OW (cattle manure, pig slurry, pig slurry digestate), and a control with no organic or mineral fertilizer input. Changes in soil microbial communities were analyzed through molecular microbial biomass and diversity assessments using high-throughput sequencing targeting 16S and 18S ribosomal RNA genes. DNA extraction and molecular analyses were performed on soil samples collected at the start of the trial in 2012 and subsequently in 2017 and 2022. The long-term effects of annual digestate application over a decade include a higher soil microbial diversity in digestate-treated plots than in pig slurry-treated plots, and changes in the soil's microbial community structure and taxonomic composition resembling those observed with mineral fertilizer. Differential abundance analysis at the phylum level revealed few significant differences between digestate- and mineral fertilizer-treated plots for both prokaryotic and fungal communities. Only plots amended with cattle manure exhibited higher soil organic carbon content. Agricultural practices, along with climatic and environmental fluctuations, can significantly influence the response of soil microbial communities, thereby buffering the effects of fertilization treatments. Further research is needed to better understand the effects on soil microbial communities, considering the interactions between repeated digestate applications, different pedological contexts, and agricultural practices.
Collapse
Affiliation(s)
- Daniela Mora-Salguero
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Lionel Ranjard
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Thierry Morvan
- French National Institute for Agriculture, Food, and Environment (INRAE), UMR Sol Agro el hydrosystème Spatialisation, Rennes, France
| | - Samuel Dequiedt
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Sophie Sadet-Bourgeteau
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Institut Agro Dijon, France
| |
Collapse
|
2
|
Cottin A, Dequiedt S, Djemiel C, Prévost-Bouré NC, Tripied J, Lelièvre M, Terreau L, Régnier T, Karimi B, Jolivet C, Bispo A, Saby N, Maron PA, Ranjard L, Terrat S. Harmonized Datasets of microbiological parameters from a French national-scale soil monitoring survey. Sci Data 2025; 12:34. [PMID: 39779689 PMCID: PMC11711283 DOI: 10.1038/s41597-024-04318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Microbiological datasets and associated environmental parameters from the French soil quality monitoring network (RMQS) offer an opportunity for long-term and large-scale soil quality monitoring. Soils supply important ecosystem services e.g. carbon dynamics/storage or mineral element recycling, supported by the soil microbial diversity (bacteria, archaea and fungi). Based on the 2,240 sites of the 2000-2015 RMQS, molecular tools were applied to characterize soil microbiota. Soil DNA analysis yielded molecular microbial biomass for 2,168 sites, bacterial and fungal qPCR for 2,073 sites, and high-throughput amplicon sequencing of targeted 16S rDNA bacterial and archaeal genes for 1,842 sites. All these datasets were partially or completely unavailable, so raw results files from RMQS microbiological studies were harmonized and published in a Dataverse repository to facilitate their reusability. Altogether, these datasets allow for in-depth studies of soil microbial ecology and biogeography, and will be updated with fungal datasets and the second currently ongoing monitoring campaign (2016-2027).
Collapse
Affiliation(s)
- Aurélien Cottin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Samuel Dequiedt
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christophe Djemiel
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | | | - Julie Tripied
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Mélanie Lelièvre
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lucie Terreau
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Tiffanie Régnier
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Battle Karimi
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | | | | | | | - Pierre-Alain Maron
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lionel Ranjard
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Sébastien Terrat
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
3
|
Mora-Salguero D, Montenach D, Gilles M, Jean-Baptiste V, Sadet-Bourgeteau S. Long-term effects of combining anaerobic digestate with other organic waste products on soil microbial communities. Front Microbiol 2025; 15:1490034. [PMID: 39845051 PMCID: PMC11752920 DOI: 10.3389/fmicb.2024.1490034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience. Material and methods This study presents provides a comparative analysis in long-term field conditions of fertilization strategies combining annual applications of raw digestate with biennial applications of different organic waste products (OWPs)-biowaste compost (BIO), farmyard manure (FYM), and urban sewage sludge (SLU)-and compares them to combinations of the same OWPs with mineral fertilizers. The cumulative effects of repeated OWP applications, paired with two nitrogen sources-organic (digestate) and chemical (mineral fertilizer)-were assessed through soil physicochemical and microbial analyses. We hypothesized that the combined effect varied according to the N-supply sources and that this effect also depended on the type of OWP applied. Soil microbial communities were characterized using high-throughput sequencing targeting 16S and 18S ribosomal RNA genes, following DNA extraction from soil samples collected in 2022, six years after the initial digestate application. Results The results indicated that combining OWPs rich in stable and recalcitrant organic matter, such as BIO and FYM, with raw digestate, offers an improved fertilization practice. This approach maintains soil organic carbon (SOC) levels, increases soil phosphorus and potassium content, and stimulates microbial communities differently than nitrogen supplied via mineral fertilizers. While microbial biomass showed no significant variation across treatments, microbial diversity indices exhibited differences based on the type of OWP and nitrogen source. The fertilization strategies moderately influenced prokaryotic and fungal community structures, with distinct patterns depending on the OWP and nitrogen source. Notably, fungal communities responded more strongly to treatment variations than prokaryotic communities. Discussion This study provides new insights into the cumulative effects of substituting mineral fertilizers with digestates on soil microbial communities and soil physicochemical parameters. The sustainable development of agroecosystems significantly depends on a better understanding of the complex responses of soil microbial communities to different fertilization regimes. Future research should continue to assess the long-term impact of digestate application on soil microbiota in real agronomic field conditions, considering associated agricultural practices.
Collapse
Affiliation(s)
- Daniela Mora-Salguero
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Denis Montenach
- French National Institute for Agriculture, Food, and Environment (INRAE), UE 0871 Service d’expérimentation Agronomique et Viticole, Colmar, France
| | - Manon Gilles
- French National Institute for Agriculture, Food, and Environment (INRAE), UE 0871 Service d’expérimentation Agronomique et Viticole, Colmar, France
| | | | - Sophie Sadet-Bourgeteau
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Institut Agro Dijon, France
| |
Collapse
|
4
|
Zancarini A, Le Signor C, Terrat S, Aubert J, Salon C, Munier-Jolain N, Mougel C. Medicago truncatula genotype drives the plant nutritional strategy and its associated rhizosphere bacterial communities. THE NEW PHYTOLOGIST 2025; 245:767-784. [PMID: 39610111 DOI: 10.1111/nph.20272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Harnessing the plant microbiome through plant genetics is of increasing interest to those seeking to improve plant nutrition and health. While genome-wide association studies (GWAS) have been conducted to identify plant genes driving the plant microbiome, more multidisciplinary studies are required to assess the relationships among plant genetics, plant microbiome and plant fitness. Using a metabarcoding approach, we characterized the rhizosphere bacterial communities of a core collection of 155 Medicago truncatula genotypes along with the plant phenotype and investigated the plant genetic effects through GWAS. The different genotypes within the M. truncatula core collection showed contrasting growth and nutritional strategies but few loci were associated with these ecophysiological traits. To go further, we described its associated rhizosphere bacterial communities, dominated by Proteobacteria, Actinobacteria and Bacteroidetes, and defined a core rhizosphere bacterial community. Next, the occurrences of bacterial candidates predicting plant ecophysiological traits of interest were identified using random forest analyses. Some of them were heritable and plant loci were identified, pinpointing genes related to response to hormone stimulus, systemic acquired resistance, response to stress, nutrient starvation or transport, and root development. Together, these results suggest that plant genetics can affect plant growth and nutritional strategies by harnessing keystone bacteria in a well-connected interaction network.
Collapse
Affiliation(s)
- Anouk Zancarini
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christine Le Signor
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Sébastien Terrat
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Julie Aubert
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Nathalie Munier-Jolain
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christophe Mougel
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
5
|
Fiard M, Militon C, Sylvi L, Migeot J, Michaud E, Jézéquel R, Gilbert F, Bihannic I, Devesa J, Dirberg G, Cuny P. Uncovering potential mangrove microbial bioindicators to assess urban and agricultural pressures on Martinique island in the eastern Caribbean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172217. [PMID: 38583633 DOI: 10.1016/j.scitotenv.2024.172217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Martinique's mangroves, which cover 1.85 ha of the island (<0.1 % of the total area), are considerably vulnerable to local urban, agricultural, and industrial pollutants. Unlike for temperate ecosystems, there are limited indicators that can be used to assess the anthropogenic pressures on mangroves. This study investigated four stations on Martinique Island, with each being subject to varying anthropogenic pressures. An analysis of mangrove sediment cores approximately 18 cm in depth revealed two primary types of pressures on Martinique mangroves: (i) an enrichment in organic matter in the two stations within the highly urbanized bay of Fort-de-France and (ii) agricultural pressure observed in the four studied mangrove stations. This pressure was characterized by contamination, exceeding the regulatory thresholds, with dieldrin, total DDT, and metals (As, Cu and Ni) found in phytosanitary products. The mangroves of Martinique are subjected to varying degrees of anthropogenic pressure, but all are subjected to contamination by organochlorine pesticides. Mangroves within the bay of Fort-de-France experience notably higher pressures compared to those in the island's northern and southern regions. In these contexts, the microbial communities exhibited distinct responses. The microbial biomass and the abundance of bacteria and archaea were higher in the two less-impacted stations, while in the mangrove of Fort-de-France, various phyla typically associated with polluted environments were more prevalent. These differences in the microbiota composition led to the identification of 65 taxa, including Acanthopleuribacteraceae, Spirochaetaceae, and Pirellulaceae, that could potentially serve as indicators of an anthropogenic influence on the mangrove sediments of Martinique Island.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Jonathan Migeot
- Impact Mer consulting, expertise, and R&D firm, 20 rue Karukéra, 97200 Fort de France, Martinique/FWI, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Ronan Jézéquel
- CEDRE, 715 rue Alain Colas, 29218 Brest CEDEX 2, France.
| | - Franck Gilbert
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier, Toulouse, France.
| | | | - Jeremy Devesa
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|
6
|
Galla G, Praeg N, Rzehak T, Sprecher E, Colla F, Seeber J, Illmer P, Hauffe HC. Comparison of DNA extraction methods on different sample matrices within the same terrestrial ecosystem. Sci Rep 2024; 14:8715. [PMID: 38622248 PMCID: PMC11018758 DOI: 10.1038/s41598-024-59086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
Metataxonomic studies of ecosystem microbiotas require the simultaneous processing of samples with contrasting physical and biochemical traits. However, there are no published studies of comparisons of different DNA extraction kits to characterize the microbiotas of the main components of terrestrial ecosystems. Here, and to our knowledge for the first time, five DNA extraction kits were used to investigate the composition and diversity of the microbiota of a subset of samples typically studied in terrestrial ecosystems such as bulk soil, rhizosphere soil, invertebrate taxa and mammalian feces. DNA extraction kit was associated with changes in the relative abundance of hundreds of ASVs, in the same samples, resulting in significant differences in alpha and beta diversity estimates of their microbiotas. Importantly, the impact of DNA extraction kit on sample diversity varies according to sample type, with mammalian feces and soil samples showing the most and least consistent diversity estimates across DNA extraction kits, respectively. We show that the MACHEREY-NAGEL NucleoSpin® Soil kit was associated with the highest alpha diversity estimates, providing the highest contribution to the overall sample diversity, as indicated by comparisons with computationally assembled reference communities, and is recommended to be used for any large-scale microbiota study of terrestrial ecosystems.
Collapse
Affiliation(s)
- Giulio Galla
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy.
| | - Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Theresa Rzehak
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Else Sprecher
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Filippo Colla
- Institute for Alpine Environment, EURAC Research, Bolzano, Italy
- Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| | - Julia Seeber
- Institute for Alpine Environment, EURAC Research, Bolzano, Italy
- Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Heidi C Hauffe
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
- National Biodiversity Future Center (NBFC), S.c.a.r.l., Palermo, Italy
| |
Collapse
|
7
|
Nosalova L, Mekadim C, Mrazek J, Pristas P. Thiothrix and Sulfurovum genera dominate bacterial mats in Slovak cold sulfur springs. ENVIRONMENTAL MICROBIOME 2023; 18:72. [PMID: 37730677 PMCID: PMC10512639 DOI: 10.1186/s40793-023-00527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Microbiota of sulfur-rich environments has been extensively studied due to the biotechnological potential of sulfur bacteria, or as a model of ancient life. Cold terrestrial sulfur springs are less studied compared to sulfur-oxidizing microbiota of hydrothermal vents, volcanic environments, or soda lakes. Despite that, several studies suggested that sulfur springs harbor diverse microbial communities because of the unique geochemical conditions of upwelling waters. In this study, the microbiota of five terrestrial sulfur springs was examined using a 16 S rRNA gene sequencing. The clear dominance of the Proteobacteria and Campylobacterota phyla of cold sulfur springs microbiota was observed. Contrary to that, the microbiota of the hot sulfur spring was dominated by the Aquificota and Firmicutes phylum respectively. Sulfur-oxidizing genera constituted a dominant part of the microbial populations with the Thiothrix and Sulfurovum genera identified as the core microbiota of cold sulfur terrestrial springs in Slovakia. Additionally, the study emphasizes that sulfur springs in Slovakia support unique, poorly characterized bacterial communities of sulfur-oxidizing bacteria.
Collapse
Affiliation(s)
- Lea Nosalova
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, Kosice, 041 54, Slovakia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Videnska, Prague, 1083, 14220, Czech Republic
| | - Jakub Mrazek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Videnska, Prague, 1083, 14220, Czech Republic
| | - Peter Pristas
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, Kosice, 041 54, Slovakia.
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Soltesovej 4-6, Kosice, 040 01, Slovakia.
| |
Collapse
|
8
|
Christel A, Dequiedt S, Chemidlin-Prevost-Bouré N, Mercier F, Tripied J, Comment G, Djemiel C, Bargeot L, Matagne E, Fougeron A, Mina Passi JB, Ranjard L, Maron PA. Urban land uses shape soil microbial abundance and diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163455. [PMID: 37062324 DOI: 10.1016/j.scitotenv.2023.163455] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/03/2023]
Abstract
Soil microbial biodiversity provides many useful services in cities. However, the ecology of microbial communities in urban soils remains poorly documented, and studies are required to better predict the impact of urban land use. We characterized microbial communities (archea/bacteria and fungi) in urban soils in Dijon (Burgundy, France). Three main land uses were considered - public leisure, traffic, and urban agriculture - sub-categorized in sub-land uses according to urban indexes and management practices. Microbial biomass and diversity were determined by quantifying and high-throughput sequencing of soil DNA. Variation partitioning analysis was used to rank soil physicochemical characteristics and land uses according to their relative contribution to the variation of soil microbial communities. Urban soils in Dijon harbored high levels of microbial biomass and diversity that varied according to land uses. Microbial biomass was 1.8 times higher in public leisure and traffic sites than in urban agriculture sites. Fungal richness increased by 25 % in urban agriculture soils, and bacterial richness was lower (by 20 %) in public leisure soils. Partitioning models explained 25.7 %, 46.2 % and 75.6 % of the variance of fungal richness, bacterial richness and microbial biomass, respectively. The organic carbon content and the C/N ratio were the best predictors of microbial biomass, whereas soil bacterial diversity was mainly explained by soil texture and land use. Neither metal trace elements nor polycyclic aromatic hydrocarbons contents explained variations of microbial communities, probably due to their very low concentration in the soils. The microbial composition results highlighted that leisure sites represented a stabilized habitat favoring specialized microbial groups and microbial plant symbionts, as opposed to urban agriculture sites that stimulated opportunistic populations able to face the impact of agricultural practices. Altogether, our results provide evidence that there is scope for urban planners to drive soil microbial diversity through sustainable urban land use and associated management practices.
Collapse
Affiliation(s)
- Amélie Christel
- AgroParisTech, 75732 Paris, France; Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Samuel Dequiedt
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | | | - Florian Mercier
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Julie Tripied
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Gwendoline Comment
- Platforme GenoSol, INRAE-Université de Bourgogne, CMSE, 21000 Dijon, France
| | - Christophe Djemiel
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | | | - Eric Matagne
- AGARIC-IG, 144 Rue Rambuteau, 71000 Macon, France
| | - Agnès Fougeron
- Jardin de l'Arquebuse Mairie de Dijon, CS 73310, 21033 Dijon Cedex, France
| | | | - Lionel Ranjard
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Alain Maron
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
9
|
Gallet A, Halary S, Duval C, Huet H, Duperron S, Marie B. Disruption of fish gut microbiota composition and holobiont's metabolome during a simulated Microcystis aeruginosa (Cyanobacteria) bloom. MICROBIOME 2023; 11:108. [PMID: 37194081 DOI: 10.1186/s40168-023-01558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cyanobacterial blooms are one of the most common stressors encountered by metazoans living in freshwater lentic systems such as lakes and ponds. Blooms reportedly impair fish health, notably through oxygen depletion and production of bioactive compounds including cyanotoxins. However, in the times of the "microbiome revolution", it is surprising that so little is still known regarding the influence of blooms on fish microbiota. In this study, an experimental approach is used to demonstrate that blooms affect fish microbiome composition and functions, as well as the metabolome of holobionts. To this end, the model teleost Oryzias latipes is exposed to simulated Microcystis aeruginosa blooms of various intensities in a microcosm setting, and the response of bacterial gut communities is evaluated in terms of composition and metabolome profiling. Metagenome-encoded functions are compared after 28 days between control individuals and those exposed to highest bloom level. RESULTS The gut bacterial community of O. latipes exhibits marked responses to the presence of M. aeruginosa blooms in a dose-dependent manner. Notably, abundant gut-associated Firmicutes almost disappear, while potential opportunists increase. The holobiont's gut metabolome displays major changes, while functions encoded in the metagenome of bacterial partners are more marginally affected. Bacterial communities tend to return to original composition after the end of the bloom and remain sensitive in case of a second bloom, reflecting a highly reactive gut community. CONCLUSION Gut-associated bacterial communities and holobiont functioning are affected by both short and long exposure to M. aeruginosa, and show evidence of post-bloom resilience. These findings point to the significance of bloom events to fish health and fitness, including survival and reproduction, through microbiome-related effects. In the context of increasingly frequent and intense blooms worldwide, potential outcomes relevant to conservation biology as well as aquaculture warrant further investigation. Video Abstract.
Collapse
Affiliation(s)
- Alison Gallet
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Sébastien Halary
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Charlotte Duval
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Hélène Huet
- UMR1161 Virologie, École Nationale Vétérinaire d'Alfort, INRA - ANSES - ENVA, Maisons-Alfort, France
| | - Sébastien Duperron
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
- Institut Universitaire de France, Paris, France.
| | - Benjamin Marie
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
| |
Collapse
|
10
|
Jaillard B, Razanamalala K, Violle C, Bernard L. Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils. Microorganisms 2023; 11:1106. [PMID: 37317080 DOI: 10.3390/microorganisms11051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/16/2023] Open
Abstract
The priming effect (PE) occurs when fresh organic matter (FOM) supplied to soil alters the rate of decomposition of older soil organic matter (SOM). The PE can be generated by different mechanisms driven by interactions between microorganisms with different live strategies and decomposition abilities. Among those, stoichiometric decomposition results from FOM decomposition, which induces the decomposition of SOM by the release of exoenzymes by FOM-decomposers. Nutrient mining results from the co-metabolism of energy-rich FOM with nutrient-rich SOM by SOM-decomposers. While existing statistical approaches enable measurement of the effect of community composition (linear effect) on the PE, the effect of interactions among co-occurring populations (non-linear effect) is more difficult to grasp. We compare a non-linear, clustering approach with a strictly linear approach to separately and comprehensively capture all linear and non-linear effects induced by soil microbial populations on the PE and to identify the species involved. We used an already published data set, acquired from two climatic transects of Madagascar Highlands, in which the high-throughput sequencing of soil samples was applied parallel to the analysis of the potential capacity of microbial communities to generate PE following a 13C-labeled wheat straw input. The linear and clustering approaches highlight two different aspects of the effects of microbial biodiversity on SOM decomposition. The comparison of the results enabled identification of bacterial and fungal families, and combinations of families, inducing either a linear, a non-linear, or no effect on PE after incubation. Bacterial families mainly favoured a PE proportional to their relative abundances in soil (linear effect). Inversely, fungal families induced strong non-linear effects resulting from interactions among them and with bacteria. Our findings suggest that bacteria support stoichiometric decomposition in the first days of incubation, while fungi support mainly the nutrient mining of soil's organic matter several weeks after the beginning of incubation. Used together, the clustering and linear approaches therefore enable the estimation of the relative importance of linear effects related to microbial relative abundances, and non-linear effects related to interactions among microbial populations on soil properties. Both approaches also enable the identification of key microbial families that mainly regulate soil properties.
Collapse
Affiliation(s)
- Benoît Jaillard
- Eco & Sols, University Montpellier, IRD, INRAE, CIRAD, Institut Agro, 2 place Viala, 34060 Montpellier, France
| | | | - Cyrille Violle
- CEFE, University Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, 34293 Montpellier, France
| | - Laetitia Bernard
- Eco & Sols, University Montpellier, IRD, INRAE, CIRAD, Institut Agro, 2 place Viala, 34060 Montpellier, France
| |
Collapse
|
11
|
Sadet-Bourgeteau S, Djemiel C, Chemidlin Prévost-Bouré N, Feder F. Dynamic of bacterial and archaeal diversity in a tropical soil over 6 years of repeated organic and inorganic fertilization. Front Microbiol 2022; 13:943314. [PMID: 36051761 PMCID: PMC9425033 DOI: 10.3389/fmicb.2022.943314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The soil microbial community plays important roles in nutrient cycling, plant pathogen suppression, decomposition of residues and degradation of pollutants; as such, it is often regarded as a good indicator of soil quality. Repeated applications of mixed organic and inorganic materials in agriculture improve the soil microbial quality and in turn crop productivity. The soil microbial quality following several years of repeated fertilizer inputs has received considerable attention, but the dynamic of this community over time has never been assessed. We used high-throughput sequencing targeting 16S ribosomal RNA genes to investigate the evolution of the bacterial and archaeal community throughout 6 years of repeated organic and inorganic fertilizer applications. Soils were sampled from a field experiment in La Mare (Reunion Island, France), where different mixed organic-inorganic fertilizer inputs characterized by more or less stable organic matter were applied regularly for 6 years. Soil samples were taken each year, more than 6 months after the latest fertilizer application. The soil molecular biomass significantly increased in some organically fertilized plots (by 35–45% on average), 3–5 years after the first fertilizers application. The significant variations in soil molecular microbial biomass were explained by the fertilization practices (cumulated organic carbon inputs) and sometimes by the soil parameters (sand and soil carbon contents). The structure of the bacterial and archaeal community was more influenced by time than by the fertilization type. However, repeated fertilizer applications over time tended to modify the abundance of the bacterial phyla Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. To conclude, the present study highlights that the soil bacterial and archaeal community is lastingly modified after 6 years of repeated fertilizer inputs. These changes depend on the nature of the organic input and on the fertilization practice (frequency and applied quantity).
Collapse
Affiliation(s)
- Sophie Sadet-Bourgeteau
- Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- *Correspondence: Sophie Sadet-Bourgeteau,
| | - Christophe Djemiel
- Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Frederic Feder
- CIRAD, UPR Recyclage et Risque, Montpellier, France
- Recyclage et risque, Univ Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
12
|
Djemiel C, Dequiedt S, Karimi B, Cottin A, Horrigue W, Bailly A, Boutaleb A, Sadet-Bourgeteau S, Maron PA, Chemidlin Prévost-Bouré N, Ranjard L, Terrat S. Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production. Front Microbiol 2022; 13:889788. [PMID: 35847063 PMCID: PMC9280627 DOI: 10.3389/fmicb.2022.889788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
Soils are fundamental resources for agricultural production and play an essential role in food security. They represent the keystone of the food value chain because they harbor a large fraction of biodiversity-the backbone of the regulation of ecosystem services and "soil health" maintenance. In the face of the numerous causes of soil degradation such as unsustainable soil management practices, pollution, waste disposal, or the increasing number of extreme weather events, it has become clear that (i) preserving the soil biodiversity is key to food security, and (ii) biodiversity-based solutions for environmental monitoring have to be developed. Within the soil biodiversity reservoir, microbial diversity including Archaea, Bacteria, Fungi and protists is essential for ecosystem functioning and resilience. Microbial communities are also sensitive to various environmental drivers and to management practices; as a result, they are ideal candidates for monitoring soil quality assessment. The emergence of meta-omics approaches based on recent advances in high-throughput sequencing and bioinformatics has remarkably improved our ability to characterize microbial diversity and its potential functions. This revolution has substantially filled the knowledge gap about soil microbial diversity regulation and ecology, but also provided new and robust indicators of agricultural soil quality. We reviewed how meta-omics approaches replaced traditional methods and allowed developing modern microbial indicators of the soil biological quality. Each meta-omics approach is described in its general principles, methodologies, specificities, strengths and drawbacks, and illustrated with concrete applications for soil monitoring. The development of metabarcoding approaches in the last 20 years has led to a collection of microbial indicators that are now operational and available for the farming sector. Our review shows that despite the recent huge advances, some meta-omics approaches (e.g., metatranscriptomics or meta-proteomics) still need developments to be operational for environmental bio-monitoring. As regards prospects, we outline the importance of building up repositories of soil quality indicators. These are essential for objective and robust diagnosis, to help actors and stakeholders improve soil management, with a view to or to contribute to combining the food and environmental quality of next-generation farming systems in the context of the agroecological transition.
Collapse
Affiliation(s)
- Christophe Djemiel
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Samuel Dequiedt
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Battle Karimi
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Novasol Experts, Dijon, France
| | - Aurélien Cottin
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Walid Horrigue
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Arthur Bailly
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Ali Boutaleb
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sophie Sadet-Bourgeteau
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Alain Maron
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Lionel Ranjard
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Terrat
- Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
13
|
Emmeline D, Alexandra L, Hervé C, Pierre G, Jean-Yves C, Thierry L. Effect of Pseudomonas putida-producing pyoverdine on copper uptake by Helianthus annuus cultivated on vineyard soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152113. [PMID: 34875330 DOI: 10.1016/j.scitotenv.2021.152113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation-assisted phytoextraction was used to reduce the Cu load in vineyard soils. While performance is usually the endpoint of such studies, here we identified some mechanisms underlying Cu soil to plant transfer, particularly the role of siderophores in the extraction of Cu from the soil-bearing phases and its phytoavailability. Carbonated vs. non‑carbonated vineyard soils were cultivated with sunflower in rhizoboxes bioaugmented with Pseudomonas putida. gfp-Tagged P. putida was monitored in the soil and pyoverdine (Pvd), Cu, Fe, Mn, and Zn were measured in the soil solution. Trace elements (TE) were analysed in the roots and shoots. Plant growth and nutritional status were also measured. With bioaugmentation, the concentration of total Cu (vs. Cu2+) in the soil solution increased (decreased) by a factor of 1.6 to 2.6 (7 to 13) depending on the soil. The almost 1:1 relationship between the excess of Fe + Cu mobilized from the solid phase and the amount of Pvd in the soil solution in bioaugmented treatments suggests that Pvd mobilized Fe and Cu mainly by ligand-controlled dissolution via a 1:1 metal-Pvd complex. Bioaugmentation increased the Cu concentration by 17% in the shoots and by 93% in the roots, and by 30% to 60% the sunflower shoot biomass leading to an increase in the amount of Cu phytoextracted by up to 87%. The amount of Fe, Mn, Zn, and P also increased in the roots and shoots. Contrary to what was expected, carbonated soil did not increase the mobilization of TE. Our results showed that bioaugmentation increased phytoextraction, and its performance can be further improved by promoting the dissociation of Pvd-Cu complex in the solution at the soil-root interface.
Collapse
Affiliation(s)
- D'Incau Emmeline
- LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France
| | - Lépinay Alexandra
- OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France
| | - Capiaux Hervé
- LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France; OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France
| | - Gaudin Pierre
- LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France; OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France
| | - Cornu Jean-Yves
- ISPA, Bordeaux Sciences Agro, INRA, 33140 Villenave d'Ornon, France
| | - Lebeau Thierry
- LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France; OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France.
| |
Collapse
|
14
|
Fiard M, Cuny P, Sylvi L, Hubas C, Jézéquel R, Lamy D, Walcker R, El Houssainy A, Heimbürger-Boavida LE, Robinet T, Bihannic I, Gilbert F, Michaud E, Dirberg G, Militon C. Mangrove microbiota along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America): Drivers and potential bioindicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150667. [PMID: 34599952 DOI: 10.1016/j.scitotenv.2021.150667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The microbial communities inhabiting the Atlantic-East Pacific (AEP) mangroves have been poorly studied, and mostly comprise chronically polluted mangroves. In this study, we characterized changes in the structure and diversity of microbial communities of mangroves along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America) that experience low human impact. The microbial communities were assigned into 50 phyla. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Planctomycetes were the most abundant taxa. The environmental determinants found to significantly correlated to the microbial communities at these mangroves were granulometry, dieldrin concentration, pH, and total carbon (TC) content. Furthermore, a precise analysis of the sediment highlights the existence of three types of anthropogenic pressure among the stations: (i) organic matter (OM) enrichment due to the proximity to the city and its wastewater treatment plant, (ii) dieldrin contamination, and (iii) naphthalene contamination. These forms of weak anthropogenic pressure seemed to impact the bacterial population size and microbial assemblages. A decrease in Bathyarchaeota, "Candidatus Nitrosopumilus", and Nitrospira genera was observed in mangroves subjected to OM enrichment. Mangroves polluted with organic contaminants were enriched in Desulfobacteraceae, Desulfarculaceae, and Acanthopleuribacteraceae (with dieldrin or polychlorobiphenyl contamination), and Chitinophagaceae and Geobacteraceae (with naphthalene contamination). These findings provide insights into the main environmental factors shaping microbial communities of mangroves in the AEP that experience low human impact and allow for the identification of several potential microbial bioindicators of weak anthropogenic pressure.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cédric Hubas
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Station Marine de Concarneau, 29900 Concarneau, France.
| | | | - Dominique Lamy
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France; Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Sorbonne Université, Univ Paris Est Créteil, IRD, CNRS, INRA, 4 place Jussieu, 75005 Paris, France.
| | - Romain Walcker
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| | - Amonda El Houssainy
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | | | - Tony Robinet
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Station Marine de Concarneau, 29900 Concarneau, France.
| | | | - Franck Gilbert
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|
15
|
Jouffret V, Miotello G, Culotta K, Ayrault S, Pible O, Armengaud J. Increasing the power of interpretation for soil metaproteomics data. MICROBIOME 2021; 9:195. [PMID: 34587999 PMCID: PMC8482631 DOI: 10.1186/s40168-021-01139-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Soil and sediment microorganisms are highly phylogenetically diverse but are currently largely under-represented in public molecular databases. Their functional characterization by means of metaproteomics is usually performed using metagenomic sequences acquired for the same sample. However, such hugely diverse metagenomic datasets are difficult to assemble; in parallel, theoretical proteomes from isolates available in generic databases are of high quality. Both these factors advocate for the use of theoretical proteomes in metaproteomics interpretation pipelines. Here, we examined a number of database construction strategies with a view to increasing the outputs of metaproteomics studies performed on soil samples. RESULTS The number of peptide-spectrum matches was found to be of comparable magnitude when using public or sample-specific metagenomics-derived databases. However, numbers were significantly increased when a combination of both types of information was used in a two-step cascaded search. Our data also indicate that the functional annotation of the metaproteomics dataset can be maximized by using a combination of both types of databases. CONCLUSIONS A two-step strategy combining sample-specific metagenome database and public databases such as the non-redundant NCBI database and a massive soil gene catalog allows maximizing the metaproteomic interpretation both in terms of ratio of assigned spectra and retrieval of function-derived information. Video abstract.
Collapse
Affiliation(s)
- Virginie Jouffret
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France
- Laboratoire des Sciences et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), CEA Saclay, Université Paris-Saclay, Orme des Merisiers, F-91191, Gif-sur-Yvette, France
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, F-30207, Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France
| | - Karen Culotta
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France
| | - Sophie Ayrault
- Laboratoire des Sciences et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), CEA Saclay, Université Paris-Saclay, Orme des Merisiers, F-91191, Gif-sur-Yvette, France
| | - Olivier Pible
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France.
| |
Collapse
|
16
|
Zhang W, Han J, Wu H, Zhong Q, Liu W, He S, Zhang L. Diversity patterns and drivers of soil microbial communities in urban and suburban park soils of Shanghai, China. PeerJ 2021; 9:e11231. [PMID: 33959419 PMCID: PMC8053383 DOI: 10.7717/peerj.11231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The rapid expansion of urbanization leads to significant losses of soil ecological functions. Microbes directly participate in key soil processes and play crucial roles in maintaining soil functions. However, we still have a limited understanding of underlying mechanisms shaping microbial communities and the interactions among microbial taxa in park soils. METHODS In this study, the community variations of bacteria and fungi in urban and suburban park soils were investigated in Shanghai, China. Real-time PCR and high-throughput Illumina sequencing were used to examine the microbial abundance and community composition, respectively. RESULTS The results showed that soil molecular biomass and fungal abundance in urban park soils were significantly higher than those in suburban park soils, while no significant difference was observed in the bacterial abundance between urban and suburban park soils. The alpha diversity of soil microbes in urban and suburban park soils was similar to each other, except for Chao1 index of fungal communities. The results of similarity analysis (ANOSIM) revealed remarkable differences in the composition of bacterial and fungal communities between urban and suburban park soils. Specifically, park soils in urban areas were enriched with the phyla Methylomirabilota and Verrucomicrobiota, while the relative abundance of Gemmatimonadota was higher in suburban park soils. Moreover, the fungal class Eurotiomycetes was also enriched in urban park soils. Compared with suburban park soils, nodes and average paths of the bacterial and fungal networks were higher in urban park soils, but the number of module hubs and connectors of the bacterial networks and negative interactions among bacterial taxa were lower. Compared with suburban park soils, Acidobacteriota bacterium and Mortierellomycota fungus played more important roles in the ecological networks of urban park soils. Soil available zinc (Zn), available nitrogen (N), pH, and total potassium (K) significantly affected fungal community composition in park soils in Shanghai. Soil available Zn was also the most important factor affecting the bacterial community composition in this study. CONCLUSION There were significant differences in the soil molecular biomass, fungal abundance, and the community composition and co-occurrence relations of both soil bacterial and fungal communities between urban and suburban park soils. Soil available Zn played an important part in shaping the structures of both the bacterial and fungal communities in park soils in Shanghai.
Collapse
Affiliation(s)
- Weiwei Zhang
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Jigang Han
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Haibing Wu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Qicheng Zhong
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Wen Liu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Shanwen He
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Lang Zhang
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| |
Collapse
|
17
|
Daval S, Gazengel K, Belcour A, Linglin J, Guillerm‐Erckelboudt A, Sarniguet A, Manzanares‐Dauleux MJ, Lebreton L, Mougel C. Soil microbiota influences clubroot disease by modulating Plasmodiophora brassicae and Brassica napus transcriptomes. Microb Biotechnol 2020; 13:1648-1672. [PMID: 32686326 PMCID: PMC7415369 DOI: 10.1111/1751-7915.13634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
The contribution of surrounding plant microbiota to disease development has led to the 'pathobiome' concept, which represents the interaction between the pathogen, the host plant and the associated biotic microbial community, resulting or not in plant disease. The aim herein is to understand how the soil microbial environment may influence the functions of a pathogen and its pathogenesis, and the molecular response of the plant to the infection, with a dual-RNAseq transcriptomics approach. We address this question using Brassica napus and Plasmodiophora brassicae, the pathogen responsible for clubroot. A time-course experiment was conducted to study interactions between P. brassicae, two B. napus genotypes and three soils harbouring high, medium or low microbiota diversities and levels of richness. The soil microbial diversity levels had an impact on disease development (symptom levels and pathogen quantity). The P. brassicae and B. napus transcriptional patterns were modulated by these microbial diversities, these modulations being dependent on the host genotype plant and the kinetic time. The functional analysis of gene expressions allowed the identification of pathogen and plant host functions potentially involved in the change of plant disease level, such as pathogenicity-related genes (NUDIX effector) in P. brassicae and plant defence-related genes (glucosinolate metabolism) in B. napus.
Collapse
Affiliation(s)
- Stéphanie Daval
- INRAEAgrocampus OuestUniversité de RennesIGEPPLe RheuF‐35650France
| | - Kévin Gazengel
- INRAEAgrocampus OuestUniversité de RennesIGEPPLe RheuF‐35650France
| | | | - Juliette Linglin
- INRAEAgrocampus OuestUniversité de RennesIGEPPPloudanielF‐29260France
| | | | - Alain Sarniguet
- INRAEAgrocampus OuestUniversité d'AngersIRHSBeaucouzéF‐49071France
| | | | - Lionel Lebreton
- INRAEAgrocampus OuestUniversité de RennesIGEPPLe RheuF‐35650France
| | | |
Collapse
|
18
|
Raiyani NM, Singh SP. Taxonomic and functional profiling of the microbial communities of Arabian Sea: A metagenomics approach. Genomics 2020; 112:4361-4369. [PMID: 32712295 DOI: 10.1016/j.ygeno.2020.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/13/2020] [Accepted: 07/11/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Nirali M Raiyani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
19
|
The Influence of DNA Extraction and Lipid Removal on Human Milk Bacterial Profiles. Methods Protoc 2020; 3:mps3020039. [PMID: 32429170 PMCID: PMC7359716 DOI: 10.3390/mps3020039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Culture-independent molecular techniques have advanced the characterization of environmental and human samples including the human milk (HM) bacteriome. However, extraction of high-quality genomic DNA that is representative of the bacterial population in samples is crucial. Lipids removal from HM prior to DNA extraction is common practice, but this may influence the bacterial population detected. The objective of this study was to compare four commercial DNA extraction kits and lipid removal in relation to HM bacterial profiles. Four commercial DNA extraction kits, QIAamp® DNA Microbiome Kit, ZR Fungal/Bacterial DNA MiniPrep™, QIAsymphony DSP DNA Kit and ZymoBIOMICS™ DNA Miniprep Kit, were assessed using milk collected from ten healthy lactating women. The kits were evaluated based on their ability to extract high quantities of pure DNA from HM and how well they extracted DNA from bacterial communities present in a commercial mock microbial community standard spiked into HM. Finally, the kits were evaluated by assessing their extraction repeatability. Bacterial profiles were assessed using Illumina MiSeq sequencing targeting the V4 region of the 16S rRNA gene. The ZR Fungal/Bacterial DNA MiniPrep™ and ZymoBIOMICS™ DNA Miniprep (Zymo Research Corp., Irvine, CA, USA) kits extracted the highest DNA yields with the best purity. DNA extracted using ZR Fungal/Bacterial DNA MiniPrep™ best represented the bacteria in the mock community spiked into HM. In un-spiked HM samples, DNA extracted using the QIAsymphony DSP DNA kit showed statistically significant differences in taxa prevalence from DNA extracted using ZR Fungal/Bacterial DNA MiniPrep™ and ZymoBIOMICS™ DNA Miniprep kits. The only difference between skim and whole milk is observed in bacterial profiles with differing relative abundances of Enhydrobacter and Acinetobacter. DNA extraction, but not lipids removal, substantially influences bacterial profiles detected in HM samples, emphasizing the need for careful selection of a DNA extraction kit to improve DNA recovery from a range of bacterial taxa.
Collapse
|
20
|
Venturini AM, Nakamura FM, Gontijo JB, da França AG, Yoshiura CA, Mandro JA, Tsai SM. Robust DNA protocols for tropical soils. Heliyon 2020; 6:e03830. [PMID: 32426533 PMCID: PMC7226647 DOI: 10.1016/j.heliyon.2020.e03830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 09/06/2019] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Studies in the Amazon are being intensified to evaluate the alterations in the microbial communities of soils and sediments in the face of increasing deforestation and land-use changes in the region. However, since these environments present highly heterogeneous physicochemical properties, including contaminants that hinder nucleic acids isolation and downstream techniques, the development of best molecular practices is crucial. This work aimed to optimize standard protocols for DNA extraction and gene quantification by quantitative real-time PCR (qPCR) based on natural and anthropogenic soils and sediments (primary forest, pasture, Amazonian Dark Earth, and várzea, a seasonally flooded area) of the Eastern Amazon. Our modified extraction protocol increased the fluorometric DNA concentration by 48%, reaching twice the original amount for most of the pasture and várzea samples, and the 260/280 purity ratio by 15% to values between 1.8 to 2.0, considered ideal for DNA. The addition of bovine serum albumin in the qPCR reaction improved the quantification of the 16S rRNA genes of Archaea and Bacteria and its precision among technical replicates, as well as allowed their detection in previously non-amplifiable samples. It is concluded that the changes made in the protocols improved the parameters of the DNA samples and their amplification, thus increasing the reliability of microbial communities' analysis and its ecological interpretations.
Collapse
Affiliation(s)
- Andressa Monteiro Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Fernanda Mancini Nakamura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Júlia Brandão Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Aline Giovana da França
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Caio Augusto Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Jéssica Adriele Mandro
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| |
Collapse
|
21
|
Djemiel C, Plassard D, Terrat S, Crouzet O, Sauze J, Mondy S, Nowak V, Wingate L, Ogée J, Maron PA. µgreen-db: a reference database for the 23S rRNA gene of eukaryotic plastids and cyanobacteria. Sci Rep 2020; 10:5915. [PMID: 32246067 PMCID: PMC7125122 DOI: 10.1038/s41598-020-62555-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/09/2020] [Indexed: 11/29/2022] Open
Abstract
Studying the ecology of photosynthetic microeukaryotes and prokaryotic cyanobacterial communities requires molecular tools to complement morphological observations. These tools rely on specific genetic markers and require the development of specialised databases to achieve taxonomic assignment. We set up a reference database, called µgreen-db, for the 23S rRNA gene. The sequences were retrieved from generalist (NCBI, SILVA) or Comparative RNA Web (CRW) databases, in addition to a more original approach involving recursive BLAST searches to obtain the best possible sequence recovery. At present, µgreen-db includes 2,326 23S rRNA sequences belonging to both eukaryotes and prokaryotes encompassing 442 unique genera and 736 species of photosynthetic microeukaryotes, cyanobacteria and non-vascular land plants based on the NCBI and AlgaeBase taxonomy. When PR2/SILVA taxonomy is used instead, µgreen-db contains 2,217 sequences (399 unique genera and 696 unique species). Using µgreen-db, we were able to assign 96% of the sequences of the V domain of the 23S rRNA gene obtained by metabarcoding after amplification from soil DNA at the genus level, highlighting good coverage of the database. µgreen-db is accessible at http://microgreen-23sdatabase.ea.inra.fr.
Collapse
Affiliation(s)
- Christophe Djemiel
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | | | - Sébastien Terrat
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Olivier Crouzet
- Univ. Paris Saclay, AgroParisTech, UMR ECOSYS, INRA, F-78206, Versailles, France
| | - Joana Sauze
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Samuel Mondy
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Virginie Nowak
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Lisa Wingate
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Jérôme Ogée
- INRA, Bordeaux Science Agro, UMR 1391 ISPA, 33140, Villenave d'Ornon, France
| | - Pierre-Alain Maron
- Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
22
|
Prudent M, Dequiedt S, Sorin C, Girodet S, Nowak V, Duc G, Salon C, Maron PA. The diversity of soil microbial communities matters when legumes face drought. PLANT, CELL & ENVIRONMENT 2020; 43:1023-1035. [PMID: 31884709 DOI: 10.1111/pce.13712] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 05/19/2023]
Abstract
The cultivation of legumes shows promise for the development of sustainable agriculture, but yield instability remains one of the main obstacles for its adoption. Here, we tested whether the yield stability (i.e., resistance and resilience) of pea plants subjected to drought could be enhanced by soil microbial diversity. We used a dilution approach to manipulate the microbial diversity, with a genotype approach to distinguish the effect of symbionts from that of microbial diversity as a whole. We investigated the physiology of plants in response to drought when grown on a soil containing high or low level of microbial diversity. Plants grown under high microbial diversity displayed higher productivity and greater resilience after drought. Yield losses were mitigated by 15% on average in the presence of high soil microbial diversity at sowing. Our study provides proof of concept that the soil microbial community as a whole plays a key role for yield stability after drought even in plant species living in relationships with microbial symbionts. These results emphasize the need to restore soil biodiversity for sustainable crop management and climate change adaptation.
Collapse
Affiliation(s)
- Marion Prudent
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne Franche-Comté, Dijon, France
| | - Samuel Dequiedt
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne Franche-Comté, Dijon, France
| | - Camille Sorin
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Girodet
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne Franche-Comté, Dijon, France
| | - Virginie Nowak
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne Franche-Comté, Dijon, France
| | - Gérard Duc
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne Franche-Comté, Dijon, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Alain Maron
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
23
|
Sáenz J, Roldan F, Junca H, Arbeli Z. Effect of the extraction and purification of soilDNAand pooling ofPCRamplification products on the description of bacterial and archaeal communities. J Appl Microbiol 2019; 126:1454-1467. [DOI: 10.1111/jam.14231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/22/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023]
Affiliation(s)
- J.S. Sáenz
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias Potificia Universidad Javeriana Bogotá Colombia
| | - F. Roldan
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias Potificia Universidad Javeriana Bogotá Colombia
| | - H. Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics & Holobionts Microbiomas Foundation Chía Colombia
| | - Z. Arbeli
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias Potificia Universidad Javeriana Bogotá Colombia
| |
Collapse
|
24
|
Lebreton L, Guillerm-Erckelboudt AY, Gazengel K, Linglin J, Ourry M, Glory P, Sarniguet A, Daval S, Manzanares-Dauleux MJ, Mougel C. Temporal dynamics of bacterial and fungal communities during the infection of Brassica rapa roots by the protist Plasmodiophora brassicae. PLoS One 2019; 14:e0204195. [PMID: 30802246 PMCID: PMC6388920 DOI: 10.1371/journal.pone.0204195] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/29/2019] [Indexed: 11/26/2022] Open
Abstract
The temporal dynamics of rhizosphere and root microbiota composition was compared between healthy and infected Chinese cabbage plants by the pathogen Plasmodiophora brassicae. When inoculated with P. brassicae, disease was measured at five sampling dates from early root hair infection to late gall development. The first symptoms of clubroot disease appeared 14 days after inoculation (DAI) and increased drastically between 14 and 35 DAI. The structure of microbial communities associated to rhizosphere soil and root from healthy and inoculated plants was characterized through high-throughput DNA sequencing of bacterial (16S) and fungal (18S) molecular markers and compared at each sampling date. In healthy plants, Proteobacteria and Bacteroidetes bacterial phyla dominated the rhizosphere and root microbiota of Chinese cabbage. Rhizosphere bacterial communities contained higher abundances of Actinobacteria and Firmicutes compared to the roots. Moreover, a drastic shift of fungal communities of healthy plants occurred between the two last sampling dates, especially in plant roots, where most of Ascomycota fungi dominated until they were replaced by a fungus assigned to the Chytridiomycota phylum. Parasitic invasion by P. brassicae disrupted the rhizosphere and root-associated community assembly at a late step during the root secondary cortical infection stage of clubroot disease. At this stage, Flavisolibacter and Streptomyces in the rhizosphere, and Bacillus in the roots, were drastically less abundant upon parasite invasion. Rhizosphere of plants colonized by P. brassicae was significantly more invaded by the Chytridiomycota fungus, which could reflect a mutualistic relationship in this compartment between these two microorganisms.
Collapse
Affiliation(s)
- Lionel Lebreton
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Le Rheu, France
- * E-mail:
| | | | - Kévin Gazengel
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Le Rheu, France
| | - Juliette Linglin
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Le Rheu, France
| | - Morgane Ourry
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Le Rheu, France
| | - Pascal Glory
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Le Rheu, France
| | - Alain Sarniguet
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Le Rheu, France
| | - Stéphanie Daval
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Le Rheu, France
| | | | | |
Collapse
|
25
|
Plassart P, Prévost-Bouré NC, Uroz S, Dequiedt S, Stone D, Creamer R, Griffiths RI, Bailey MJ, Ranjard L, Lemanceau P. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci Rep 2019; 9:605. [PMID: 30679566 PMCID: PMC6345909 DOI: 10.1038/s41598-018-36867-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/14/2018] [Indexed: 11/09/2022] Open
Abstract
To better understand the relationship between soil bacterial communities, soil physicochemical properties, land use and geographical distance, we considered for the first time ever a European transect running from Sweden down to Portugal and from France to Slovenia. We investigated 71 sites based on their range of variation in soil properties (pH, texture and organic matter), climatic conditions (Atlantic, alpine, boreal, continental, Mediterranean) and land uses (arable, forest and grassland). 16S rRNA gene amplicon pyrosequencing revealed that bacterial communities highly varied in diversity, richness, and structure according to environmental factors. At the European scale, taxa area relationship (TAR) was significant, supporting spatial structuration of bacterial communities. Spatial variations in community diversity and structure were mainly driven by soil physicochemical parameters. Within soil clusters (k-means approach) corresponding to similar edaphic and climatic properties, but to multiple land uses, land use was a major driver of the bacterial communities. Our analyses identified specific indicators of land use (arable, forest, grasslands) or soil conditions (pH, organic C, texture). These findings provide unprecedented information on soil bacterial communities at the European scale and on the drivers involved; possible applications for sustainable soil management are discussed.
Collapse
Affiliation(s)
- Pierre Plassart
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | | | - Stéphane Uroz
- UMR 1136 Interactions Arbres Micro-organismes, INRA Univ Lorraine, F-54280, Champenoux, France
| | - Samuel Dequiedt
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | | | - Rachel Creamer
- TEAGASC, Johnstown Castle, Wexford, Ireland.,Wageningen University and Research, Wageningen, The Netherlands
| | - Robert I Griffiths
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, UK
| | - Mark J Bailey
- Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, UK
| | - Lionel Ranjard
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
26
|
Mailhe M, Ricaboni D, Vitton V, Gonzalez JM, Bachar D, Dubourg G, Cadoret F, Robert C, Delerce J, Levasseur A, Fournier PE, Angelakis E, Lagier JC, Raoult D. Repertoire of the gut microbiota from stomach to colon using culturomics and next-generation sequencing. BMC Microbiol 2018; 18:157. [PMID: 30355340 PMCID: PMC6201554 DOI: 10.1186/s12866-018-1304-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Most studies on the human microbiota have analyzed stool samples, although a large proportion of the absorption of nutrients takes place in upper gut tract. We collected samples from different locations along the entire gastrointestinal tract from six patients who had simultaneously undergone upper endoscopy and colonoscopy, to perform a comprehensive analysis using culturomics with matrix assisted laser desorption ionisation - time of flight (MALDI-TOF) identification and by metagenomics targeting the 16S ribosomal ribonucleic acid (rRNA) gene. RESULTS Using culturomics, we isolated 368 different bacterial species, including 37 new species. Fewer species were isolated in the upper gut: 110 in the stomach and 106 in the duodenum, while 235 were isolated from the left colon (p < 0.02). We isolated fewer aero-intolerant species in the upper gut: 37 from the stomach and 150 from the left colon (p < 0.004). Using metagenomics, 1,021 species were identified. The upper gut microbiota was revealed to be less rich than the lower gut microbiota, with 37,622 reads from the stomach, 28,390 from the duodenum, and 79,047 from the left colon (p < 0.009). There were fewer reads for aero-intolerant species in the upper gut (8,656 in the stomach, 5,188 in the duodenum and 72,262 in the left colon, p < 0.02). Patients taking proton pump inhibitors (PPI) were then revealed to have a higher stomach pH and a greater diversity of species in the upper digestive tract than patients not receiving treatment (p < 0.001). CONCLUSION Significant modifications in bacterial composition and diversity exist throughout the gastrointestinal tract. We suggest that the upper gut may be key to understanding the relationship between the gut microbiota and health.
Collapse
Affiliation(s)
- Morgane Mailhe
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Davide Ricaboni
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Department of Clinical and Biomedical Sciences Luigi Sacco, III Division of Infectious Diseases, University of Milano, Via GB Grassi, 74, 20157 Milan, Italy
| | - Véronique Vitton
- Service de Gastroentérologie, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, 13915 Marseille, France
| | - Jean-Michel Gonzalez
- Service de Gastroentérologie, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, 13915 Marseille, France
| | - Dipankar Bachar
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Grégory Dubourg
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Frédéric Cadoret
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Catherine Robert
- Aix Marseille Univ, IRD, VITROME, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseillle, France
| | - Jérémy Delerce
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Anthony Levasseur
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, IRD, VITROME, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseillle, France
| | - Emmanouil Angelakis
- Aix Marseille Univ, IRD, VITROME, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseillle, France
| | - Jean-Christophe Lagier
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, MEPHI, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
27
|
Shen Y, Ji Y, Li C, Luo P, Wang W, Zhang Y, Nover D. Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102168. [PMID: 30279389 PMCID: PMC6211031 DOI: 10.3390/ijerph15102168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/09/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023]
Abstract
Increased exploitation and use of petroleum resources is leading to increased risk of petroleum contamination of soil and groundwater. Although phytoremediation is a widely-used and cost-effective method for rehabilitating soils polluted by petroleum, bacterial community structure and diversity in soils undergoing phytoremediation is poorly understood. We investigate bacterial community response to phytoremediation in two distinct petroleum-contaminated soils (add prepared petroleum-contaminated soils) from northwest China, Weihe Terrace soil and silty loam from loess tableland. High-throughput sequencing technology was used to compare the bacterial communities in 24 different samples, yielding 18,670 operational taxonomic units (OTUs). The dominant bacterial groups, Proteobacteria (31.92%), Actinobacteria (16.67%), Acidobacteria (13.29%) and Bacteroidetes (6.58%), increased with increasing petroleum concentration from 3000 mg/kg–10,000 mg/kg, while Crenarchaeota (13.58%) and Chloroflexi (4.7%) decreased. At the order level, RB41, Actinomycetales, Cytophagales, envOPS12, Rhodospirillales, MND1 and Xanthomonadales, except Nitrososphaerales, were dominant in Weihe Terrace soil. Bacterial community structure and diversity in the two soils were significantly different at similar petroleum concentrations. In addition, the dominant genera were affected by available nitrogen, which is strongly associated with the plants used for remediation. Overall, the bacterial community structure and diversity were markedly different in the two soils, depending on the species of plants used and the petroleum concentration.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
- School of Biological and Environmental, Xi'an University, Xi'an 710065, Shaanxi, China.
- Engineering Research Center for Groundwater and Eco-Environment of Shaanxi Province, Xi'an 710054, Shaanxi, China.
| | - Yu Ji
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Chunrong Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Pingping Luo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Yuan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Daniel Nover
- School of Engineering, University of California-Merced, Merced, CA 95343, USA.
| |
Collapse
|
28
|
Baveye PC, Otten W, Kravchenko A, Balseiro-Romero M, Beckers É, Chalhoub M, Darnault C, Eickhorst T, Garnier P, Hapca S, Kiranyaz S, Monga O, Mueller CW, Nunan N, Pot V, Schlüter S, Schmidt H, Vogel HJ. Emergent Properties of Microbial Activity in Heterogeneous Soil Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major Challenges Remain. Front Microbiol 2018; 9:1929. [PMID: 30210462 PMCID: PMC6119716 DOI: 10.3389/fmicb.2018.01929] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
Collapse
Affiliation(s)
- Philippe C. Baveye
- UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, rance
| | - Wilfred Otten
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Alexandra Kravchenko
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - María Balseiro-Romero
- UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, rance
- Department of Soil Science and Agricultural Chemistry, Centre for Research in Environmental Technologies, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Éléonore Beckers
- Soil–Water–Plant Exchanges, Terra Research Centre, BIOSE, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Maha Chalhoub
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christophe Darnault
- Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
| | - Thilo Eickhorst
- Faculty 2 Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Patricia Garnier
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Simona Hapca
- Dundee Epidemiology and Biostatistics Unit, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Serkan Kiranyaz
- Department of Electrical Engineering, Qatar University, Doha, Qatar
| | - Olivier Monga
- Institut de Recherche pour le Développement, Bondy, France
| | - Carsten W. Mueller
- Lehrstuhl für Bodenkunde, Technical University of Munich, Freising, Germany
| | - Naoise Nunan
- Institute of Ecology and Environmental Sciences – Paris, Sorbonne Universités, CNRS, IRD, INRA, P7, UPEC, Paris, France
| | - Valérie Pot
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Steffen Schlüter
- Soil System Science, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig, Germany
| | - Hannes Schmidt
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of Vienna, Vienna, Austria
| | - Hans-Jörg Vogel
- Soil System Science, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig, Germany
- Institute of Soil Science and Plant Nutrition, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
29
|
Ourry M, Lebreton L, Chaminade V, Guillerm-Erckelboudt AY, Hervé M, Linglin J, Marnet N, Ourry A, Paty C, Poinsot D, Cortesero AM, Mougel C. Influence of Belowground Herbivory on the Dynamics of Root and Rhizosphere Microbial Communities. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Le Guillou C, Chemidlin Prévost-Bouré N, Karimi B, Akkal-Corfini N, Dequiedt S, Nowak V, Terrat S, Menasseri-Aubry S, Viaud V, Maron PA, Ranjard L. Tillage intensity and pasture in rotation effectively shape soil microbial communities at a landscape scale. Microbiologyopen 2018; 8:e00676. [PMID: 29897676 PMCID: PMC6460278 DOI: 10.1002/mbo3.676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 11/11/2022] Open
Abstract
Soil microorganisms are essential to agroecosystem functioning and services. Yet, we still lack information on which farming practices can effectively shape the soil microbial communities. The aim of this study was to identify the farming practices, which are most effective at positively or negatively modifying bacterial and fungal diversity while considering the soil environmental variation at a landscape scale. A long‐term research study catchment (12 km2) representative of intensive mixed farming (livestock and crop) in Western Europe was investigated using a regular grid for soil sampling (n = 186). Farming systems on this landscape scale were described in terms of crop rotation, use of fertilizer, soil tillage, pesticides treatments, and liming. Molecular microbial biomass was estimated by soil DNA recovery. Bacterial and fungal communities were analyzed by 16S and 18S rRNA gene pyrosequencing. Microbial biomass was significantly stimulated by the presence of pasture during the crop rotation since temporary and permanent pastures, as compared to annual crops, increased the soil microbial biomass by +23% and +93% respectively. While soil properties (mainly pH) explained much of the variation in bacterial diversity, soil tillage seemed to be the most influential among the farming practices. A 2.4% increase in bacterial richness was observed along our gradient of soil tillage intensity. In contrast, farming practices were the predominant drivers of fungal diversity, which was mainly determined by the presence of pastures during the crop rotation. Compared to annual crops, temporary and permanent pastures increased soil fungal richness by +10% and +14.5%, respectively. Altogether, our landscape‐scale investigation allows the identification of farming practices that can effectively shape the soil microbial abundance and diversity, with the goal to improve agricultural soil management and soil ecological integrity.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Dequiedt
- INRA, UMR1347 Agroécologie, Dijon, France.,INRA, UMR1347 Agroécologie, Plateforme Genosol, Dijon, France
| | | | - Sébastien Terrat
- INRA, UMR1347 Agroécologie, Dijon, France.,Université de Bourgogne, UMR1347 Agroécologie, Dijon, France
| | - Safya Menasseri-Aubry
- INRA, UMR1069 Sol Agro et hydrosystème Spatialisation, Rennes, France.,Agrocampus Ouest, UMR1069 Sol Agro et hydrosystème Spatialisation, Rennes, France.,Université Européenne de Bretagne, Bretagne, France
| | - Valérie Viaud
- INRA, UMR1069 Sol Agro et hydrosystème Spatialisation, Rennes, France
| | | | | |
Collapse
|
31
|
Manaia CM, Rocha J, Scaccia N, Marano R, Radu E, Biancullo F, Cerqueira F, Fortunato G, Iakovides IC, Zammit I, Kampouris I, Vaz-Moreira I, Nunes OC. Antibiotic resistance in wastewater treatment plants: Tackling the black box. ENVIRONMENT INTERNATIONAL 2018; 115:312-324. [PMID: 29626693 DOI: 10.1016/j.envint.2018.03.044] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 05/20/2023]
Abstract
Wastewater is among the most important reservoirs of antibiotic resistance in urban environments. The abundance of carbon sources and other nutrients, a variety of possible electron acceptors such as oxygen or nitrate, the presence of particles onto which bacteria can adsorb, or a fairly stable pH and temperature are examples of conditions favouring the remarkable diversity of microorganisms in this peculiar habitat. The wastewater microbiome brings together bacteria of environmental, human and animal origins, many harbouring antibiotic resistance genes (ARGs). Although numerous factors contribute, mostly in a complex interplay, for shaping this microbiome, the effect of specific potential selective pressures such as antimicrobial residues or metals, is supposedly determinant to dictate the fate of antibiotic resistant bacteria (ARB) and ARGs during wastewater treatment. This paper aims to enrich the discussion on the ecology of ARB&ARGs in urban wastewater treatment plants (UWTPs), intending to serve as a guide for wastewater engineers or other professionals, who may be interested in studying or optimizing the wastewater treatment for the removal of ARB&ARGs. Fitting this aim, the paper overviews and discusses: i) aspects of the complexity of the wastewater system and/or treatment that may affect the fate of ARB&ARGs; ii) methods that can be used to explore the resistome, meaning the whole ARB&ARGs, in wastewater habitats; and iii) some frequently asked questions for which are proposed addressing modes. The paper aims at contributing to explore how ARB&ARGs behave in UWTPs having in mind that each plant is a unique system that will probably need a specific procedure to maximize ARB&ARGs removal.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Nazareno Scaccia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Roberto Marano
- Department of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Elena Radu
- University of Technology Vienna, Institute for Water Quality and Resources Management, Karlsplatz 13/226, A-1040 Vienna, Austria; AGES - Austrian Agency for Health and Food Safety, Spargelfeldstraße 191, A-1220 Vienna, Austria
| | - Francesco Biancullo
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Adventech-Advanced Environmental Technologies, Centro Empresarial e Tecnológico, Rua de Fundões 151, 3700-121 São João da Madeira, Portugal
| | - Francisco Cerqueira
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Gianuário Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Iakovos C Iakovides
- NIREAS-International Water Research Center and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Ian Zammit
- Department of Civil Engineering, University of Salerno, SP24a, 84084 Fisciano, SA, Italy
| | - Ioannis Kampouris
- Institute for Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
32
|
Siegel-Hertz K, Edel-Hermann V, Chapelle E, Terrat S, Raaijmakers JM, Steinberg C. Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region. Front Microbiol 2018; 9:568. [PMID: 29670584 PMCID: PMC5893819 DOI: 10.3389/fmicb.2018.00568] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022] Open
Abstract
Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic diversity of fungal and bacterial communities from suppressive and non-suppressive (conducive) soils as regards Fusarium wilts sampled from the Châteaurenard region (France). Bioassays based on Fusarium wilt of flax confirmed that disease incidence was significantly lower in the suppressive soil than in the conducive soil. Furthermore, we succeeded in partly transferring Fusarium wilt-suppressiveness to the conducive soil by mixing 10% (w/w) of the suppressive soil into the conducive soil. Fungal diversity differed significantly between the suppressive and conducive soils. Among dominant fungal operational taxonomic units (OTUs) affiliated to known genera, 17 OTUs were detected exclusively in the suppressive soil. These OTUs were assigned to the Acremonium, Chaetomium, Cladosporium, Clonostachys, Fusarium, Ceratobasidium, Mortierella, Penicillium, Scytalidium, and Verticillium genera. Additionally, the relative abundance of specific members of the bacterial community was significantly higher in the suppressive and mixed soils than in the conducive soil. OTUs found more abundant in Fusarium wilt-suppressive soils were affiliated to the bacterial genera Adhaeribacter, Massilia, Microvirga, Rhizobium, Rhizobacter, Arthrobacter, Amycolatopsis, Rubrobacter, Paenibacillus, Stenotrophomonas, and Geobacter. Several of the fungal and bacterial genera detected exclusively or more abundantly in the Fusarium wilt-suppressive soil included genera known for their activity against F. oxysporum. Overall, this study supports the potential role of known fungal and bacterial genera in Fusarium wilt suppressive soils from Châteaurenard and pinpoints new bacterial and fungal genera for their putative role in Fusarium wilt suppressiveness.
Collapse
Affiliation(s)
- Katarzyna Siegel-Hertz
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Véronique Edel-Hermann
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Emilie Chapelle
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Sébastien Terrat
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jos M Raaijmakers
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Christian Steinberg
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
33
|
Schneider AR, Gommeaux M, Duclercq J, Fanin N, Conreux A, Alahmad A, Lacoux J, Roger D, Spicher F, Ponthieu M, Cancès B, Morvan X, Marin B. Response of bacterial communities to Pb smelter pollution in contrasting soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:436-444. [PMID: 28672232 DOI: 10.1016/j.scitotenv.2017.06.159] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 05/20/2023]
Abstract
Anthropogenic inputs of trace elements (TE) into soils constitute a major public and environmental health problem. Bioavailability of TE is strongly related to the soil physicochemical parameters and thus to the ecosystem type. In order to test whether soil parameters influence the response of the bacterial community to TE pollution, we collected soil samples across contrasting ecosystems (hardwood, coniferous and hydromorphic soils), which have been contaminated in TE and especially lead (Pb) over several decades due to nearby industrial smelting activities. Bacterial community composition was analysed using high throughput amplicon sequencing and compared to the soil physicochemical parameters. Multivariate analyses of the pedological and biological data revealed that the bacterial community composition was affected by ecosystem type in the first place. An influence of the contamination level was also evidenced within each ecosystem. Despite the important variability in bacterial community structure, we found that specific bacterial groups such as γ-Proteobacteria, Verrucomicrobia and Chlamydiae showed a consistent response to Pb content across contrasting ecosystems. Verrucomicrobia were less abundant at high contamination level whereas Chlamydiae and γ-Proteobacteria were more abundant. We conclude that such groups and ratio's thereof can be considered as relevant bioindicators of Pb contamination.
Collapse
Affiliation(s)
- Arnaud R Schneider
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Maxime Gommeaux
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France.
| | - Jérôme Duclercq
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - Nicolas Fanin
- INRA, UMR 1391 ISPA, 71 avenue Edouard Bourlaux, CS 20032, F33882 Villenave-d'Ornon cedex, France
| | - Alexandra Conreux
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Abdelrahman Alahmad
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - Jérôme Lacoux
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - David Roger
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - Fabien Spicher
- CNRS FRE 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), UPJV, 33 rue St-Leu, 80039 Amiens, France
| | - Marie Ponthieu
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Benjamin Cancès
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Xavier Morvan
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| | - Béatrice Marin
- GEGENAA EA3795, SFR Condorcet FR CNRS3417, URCA, Université de Champagne, 2 Esplanade Roland Garros, 51100 Reims, France
| |
Collapse
|
34
|
Sauze J, Ogée J, Maron PA, Crouzet O, Nowak V, Wohl S, Kaisermann A, Jones SP, Wingate L. The interaction of soil phototrophs and fungi with pH and their impact on soil CO 2, CO 18O and OCS exchange. SOIL BIOLOGY & BIOCHEMISTRY 2017; 115:371-382. [PMID: 29200510 PMCID: PMC5666291 DOI: 10.1016/j.soilbio.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
The stable oxygen isotope composition of atmospheric CO2 and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO2 and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO2 and OCS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO2, CO18O and OCS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototrophs. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO2 sink and the CA-driven CO2-H2O isotopic exchange rates correlated with phototrophs abundance. OCS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. Our findings demonstrate that soil-atmosphere CO2, OCS and CO18O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and supports the idea that different members of the microbial community express different classes of CA, with different affinities to CO2 and OCS.
Collapse
Affiliation(s)
- Joana Sauze
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| | - Jérôme Ogée
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| | - Pierre-Alain Maron
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Olivier Crouzet
- INRA, UR 251 PESSAC, Centre Versailles-Grignon, RD 10, 78026 Versailles Cedex, France
| | - Virginie Nowak
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Steven Wohl
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| | | | - Sam P. Jones
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| | - Lisa Wingate
- ISPA, Bordeaux Science Agro, INRA, 33140 Villenave d’Ornon, France
| |
Collapse
|
35
|
Lachaise T, Ourry M, Lebreton L, Guillerm-Erckelboudt AY, Linglin J, Paty C, Chaminade V, Marnet N, Aubert J, Poinsot D, Cortesero AM, Mougel C. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape. INSECT SCIENCE 2017; 24:1045-1056. [PMID: 28544806 DOI: 10.1111/1744-7917.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/15/2017] [Accepted: 04/19/2017] [Indexed: 05/18/2023]
Abstract
Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground.
Collapse
Affiliation(s)
- Tom Lachaise
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Morgane Ourry
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Lionel Lebreton
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | | | - Juliette Linglin
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Chrystelle Paty
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Valérie Chaminade
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Nathalie Marnet
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
- INRA, UR1268 BIA-Le Rheu, France
| | - Julie Aubert
- INRA-AgroParisTech, UMR 518 Applied Mathematics and Computer Sciences-Paris, France
| | - Denis Poinsot
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Anne-Marie Cortesero
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Christophe Mougel
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
36
|
Terrat S, Horrigue W, Dequietd S, Saby NPA, Lelièvre M, Nowak V, Tripied J, Régnier T, Jolivet C, Arrouays D, Wincker P, Cruaud C, Karimi B, Bispo A, Maron PA, Chemidlin Prévost-Bouré N, Ranjard L. Mapping and predictive variations of soil bacterial richness across France. PLoS One 2017; 12:e0186766. [PMID: 29059218 PMCID: PMC5653302 DOI: 10.1371/journal.pone.0186766] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/07/2017] [Indexed: 11/18/2022] Open
Abstract
Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i) to describe the bacterial taxonomic richness variations across France, ii) to identify the ecological processes (i.e. selection by the environment and dispersal limitation) influencing this distribution, and iii) to develop a statistical predictive model of soil bacterial richness. We used the French Soil Quality Monitoring Network (RMQS), which covers all of France with 2,173 sites. The soil bacterial richness (i.e. OTU number) was determined by pyrosequencing 16S rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution, structured into patches of about 111km, where the main drivers were the soil physico-chemical properties (18% of explained variance), the spatial descriptors (5.25%, 1.89% and 1.02% for the fine, medium and coarse scales, respectively), and the land use (1.4%). Based on these drivers, a predictive model was developed, which allows a good prediction of the bacterial richness (R2adj of 0.56) and provides a reference value for a given pedoclimatic condition.
Collapse
Affiliation(s)
- Sébastien Terrat
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Walid Horrigue
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Samuel Dequietd
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | | | - Virginie Nowak
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | | | | | | | | | | | - Battle Karimi
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Pierre Alain Maron
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Lionel Ranjard
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
- * E-mail:
| |
Collapse
|
37
|
Djemiel C, Grec S, Hawkins S. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Front Microbiol 2017; 8:2052. [PMID: 29104570 PMCID: PMC5655573 DOI: 10.3389/fmicb.2017.02052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS) DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq) on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria) and Ascomycota, Basidiomycota, and Zygomycota (fungi) all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria), and Chytridiomycota (fungi). No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group) using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming to evaluate the effects of other parameters (e.g., year-to year and site variability etc.) on this complex process.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Simon Hawkins
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
38
|
Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME JOURNAL 2017; 12:451-462. [PMID: 29039844 PMCID: PMC5776458 DOI: 10.1038/ismej.2017.178] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 11/08/2022]
Abstract
The priming effect in soil is proposed to be generated by two distinct mechanisms: 'stoichiometric decomposition' and/or 'nutrient mining' theories. Each mechanism has its own dynamics, involves its own microbial actors, and targets different soil organic matter (SOM) pools. The present study aims to evaluate how climatic parameters drive the intensity of each priming effect generation mechanism via the modification of soil microbial and physicochemical properties. Soils were sampled in the center of Madagascar, along climatic gradients designed to distinguish temperature from rainfall effects. Abiotic and biotic soil descriptors were characterized including bacterial and fungal phylogenetic composition. Potential organic matter mineralization and PE were assessed 7 and 42 days after the beginning of incubation with 13C-enriched wheat straw. Both priming mechanisms were mainly driven by the mean annual temperature but in opposite directions. The priming effect generated by stoichiometric decomposition was fostered under colder climates, because of soil enrichment in less developed organic matter, as well as in fast-growing populations. Conversely, the priming effect generated by nutrient mining was enhanced under warmer climates, probably because of the lack of competition between slow-growing populations mining SOM and fast-growing populations for the energy-rich residue entering the soil. Our study leads to hypotheses about the consequences of climate change on both PE generation mechanisms and associated consequences on soil carbon sequestration.
Collapse
|
39
|
Comparison of two bacterial DNA extraction methods from non-polluted and polluted soils. Folia Microbiol (Praha) 2017; 63:85-92. [PMID: 28667598 DOI: 10.1007/s12223-017-0530-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
DNA extraction from soil samples is a critical step for molecular biology analyses. The present study compared the efficiency of two DNA isolation methods from non-polluted and polluted soils with or without the presence of a plant. Both applied methods used chemical and physical lyses, but method 1 had an additional physical disruption. The main difference between these two methods was the humic acid purification technique as it was carried out during cell lysis for method 1 and after cell lysis for method 2. Samples were assessed on the basis of their yield and DNA purity as well as their bacterial quantity and diversity. Based on our results, method 1 proved to be more effective at removing protein and RNA, whereas method 2 proved to be more effective at removing humic acids. Although no differences were obtained in terms of the DNA yield, both the bacterial quantity and community structure were affected by the method used. Method 1 allowed for the recovery of more information than method 2, and polluted soil was more sensitive to the DNA extraction procedure. We recommend carefully selecting the DNA extraction method, especially when soil is disturbed.
Collapse
|
40
|
Vollmers J, Wiegand S, Kaster AK. Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist's Perspective - Not Only Size Matters! PLoS One 2017; 12:e0169662. [PMID: 28099457 PMCID: PMC5242441 DOI: 10.1371/journal.pone.0169662] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
With the constant improvement in cost-efficiency and quality of Next Generation Sequencing technologies, shotgun-sequencing approaches -such as metagenomics- have nowadays become the methods of choice for studying and classifying microorganisms from various habitats. The production of data has dramatically increased over the past years and processing and analysis steps are becoming more and more of a bottleneck. Limiting factors are partly the availability of computational resources, but mainly the bioinformatics expertise in establishing and applying appropriate processing and analysis pipelines. Fortunately, a large diversity of specialized software tools is nowadays available. Nevertheless, choosing the most appropriate methods for answering specific biological questions can be rather challenging, especially for non-bioinformaticians. In order to provide a comprehensive overview and guide for the microbiological scientific community, we assessed the most common and freely available metagenome assembly tools with respect to their output statistics, their sensitivity for low abundant community members and variability in resulting community profiles as well as their ease-of-use. In contrast to the highly anticipated "Critical Assessment of Metagenomic Interpretation" (CAMI) challenge, which uses general mock community-based assembler comparison we here tested assemblers on real Illumina metagenome sequencing data from natural communities of varying complexity sampled from forest soil and algal biofilms. Our observations clearly demonstrate that different assembly tools can prove optimal, depending on the sample type, available computational resources and, most importantly, the specific research goal. In addition, we present detailed descriptions of the underlying principles and pitfalls of publically available assembly tools from a microbiologist's perspective, and provide guidance regarding the user-friendliness, sensitivity and reliability of the resulting phylogenetic profiles.
Collapse
Affiliation(s)
- John Vollmers
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sandra Wiegand
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
41
|
Grangeteau C, Roullier-Gall C, Rousseaux S, Gougeon RD, Schmitt-Kopplin P, Alexandre H, Guilloux-Benatier M. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb Biotechnol 2016; 10:354-370. [PMID: 27778455 PMCID: PMC5328833 DOI: 10.1111/1751-7915.12428] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/02/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023] Open
Abstract
The effects of different anthropic activities (vineyard: phytosanitary protection; winery: pressing and sulfiting) on the fungal populations of grape berries were studied. The global diversity of fungal populations (moulds and yeasts) was performed by pyrosequencing. The anthropic activities studied modified fungal diversity. Thus, a decrease in biodiversity was measured for three successive vintages for the grapes of the plot cultivated with Organic protection compared to plots treated with Conventional and Ecophyto protections. The fungal populations were then considerably modified by the pressing‐clarification step. The addition of sulfur dioxide also modified population dynamics and favoured the domination of the species Saccharomyces cerevisiae during fermentation. The non‐targeted chemical analysis of musts and wines by FT‐ICR‐MS showed that the wines could be discriminated at the end of alcoholic fermentation as a function of adding SO2 or not, but also and above all as a function of phytosanitary protection, regardless of whether these fermentations took place in the presence of SO2 or not. Thus, the existence of signatures in wines of chemical diversity and microbiology linked to vineyard protection has been highlighted.
Collapse
Affiliation(s)
- Cédric Grangeteau
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| | - Chloé Roullier-Gall
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354, Freising-Weihenstephan, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Sandrine Rousseaux
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| | - Régis D Gougeon
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe PAPC, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| | - Philippe Schmitt-Kopplin
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354, Freising-Weihenstephan, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| | - Michèle Guilloux-Benatier
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| |
Collapse
|
42
|
Keisam S, Romi W, Ahmed G, Jeyaram K. Quantifying the biases in metagenome mining for realistic assessment of microbial ecology of naturally fermented foods. Sci Rep 2016; 6:34155. [PMID: 27669673 PMCID: PMC5037447 DOI: 10.1038/srep34155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/08/2016] [Indexed: 01/06/2023] Open
Abstract
Cultivation-independent investigation of microbial ecology is biased by the DNA extraction methods used. We aimed to quantify those biases by comparative analysis of the metagenome mined from four diverse naturally fermented foods (bamboo shoot, milk, fish, soybean) using eight different DNA extraction methods with different cell lysis principles. Our findings revealed that the enzymatic lysis yielded higher eubacterial and yeast metagenomic DNA from the food matrices compared to the widely used chemical and mechanical lysis principles. Further analysis of the bacterial community structure by Illumina MiSeq amplicon sequencing revealed a high recovery of lactic acid bacteria by the enzymatic lysis in all food types. However, Bacillaceae, Acetobacteraceae, Clostridiaceae and Proteobacteria were more abundantly recovered when mechanical and chemical lysis principles were applied. The biases generated due to the differential recovery of operational taxonomic units (OTUs) by different DNA extraction methods including DNA and PCR amplicons mix from different methods have been quantitatively demonstrated here. The different methods shared only 29.9–52.0% of the total OTUs recovered. Although similar comparative research has been performed on other ecological niches, this is the first in-depth investigation of quantifying the biases in metagenome mining from naturally fermented foods.
Collapse
Affiliation(s)
- Santosh Keisam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795 001, Manipur, India.,Department of Biotechnology, Gauhati University, Guwahati 781 014, Assam, India
| | - Wahengbam Romi
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795 001, Manipur, India.,Department of Biotechnology, Gauhati University, Guwahati 781 014, Assam, India
| | - Giasuddin Ahmed
- Department of Biotechnology, Gauhati University, Guwahati 781 014, Assam, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795 001, Manipur, India
| |
Collapse
|
43
|
Gut microbiome and dietary patterns in different Saudi populations and monkeys. Sci Rep 2016; 6:32191. [PMID: 27578328 PMCID: PMC5006041 DOI: 10.1038/srep32191] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
Host genetics, environment, lifestyle and proximity between hosts strongly influence the composition of the gut microbiome. To investigate the association of dietary variables with the gut microbiota, we used 16S rDNA sequencing to test the fecal microbiome of Bedouins and urban Saudis and we compared it to the gut microbiome of baboons living in close contact with Bedouins and eating their leftovers. We also analyzed fermented dairy products commonly consumed by Bedouins in order to investigate their impact on the gut microbiome of this population. We found that the gut microbiomes of westernized urban Saudis had significantly lower richness and biodiversity than the traditional Bedouin population. The gut microbiomes of baboons were more similar to that of Bedouins compared to urban Saudis, probably due the dietary overlap between baboons and Bedouins. Moreover, we found clusters that were compositionally similar to clusters identified in humans and baboons, characterized by differences in Acinetobacter, Turicibacter and Collinsella. The fermented food presented significantly more bacteria genera common to the gut microbiome of Bedouins compared to urban Saudis. These results support the hypothesis that dietary habits influence the composition of the gut microbiome.
Collapse
|
44
|
Dubourg G, Lagier JC, Hüe S, Surenaud M, Bachar D, Robert C, Michelle C, Ravaux I, Mokhtari S, Million M, Stein A, Brouqui P, Levy Y, Raoult D. Gut microbiota associated with HIV infection is significantly enriched in bacteria tolerant to oxygen. BMJ Open Gastroenterol 2016; 3:e000080. [PMID: 27547442 PMCID: PMC4985784 DOI: 10.1136/bmjgast-2016-000080] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
Objectives Gut microbiota modifications occurring during HIV infection have recently been associated with inflammation and microbial translocation. However, discrepancies between studies justified a comprehensive analysis performed on a large sample size. Design and methods In a case–control study, next-generation sequencing of the 16S rRNA gene was applied to the faecal microbiota of 31 HIV-infected patients, of whom 18 were treated with antiretroviral treatment (ART), compared with 27 healthy controls. 21 sera samples from HIV-infected patients and 7 sera samples from control participants were used to test the presence of 25 markers of inflammation and/or immune activation. Results Diversity was significantly reduced in HIV individuals when compared with controls and was not restored in the ART group. The relative abundance of several members of Ruminococcaceae such as Faecalibacterium prausnitzii was critically less abundant in the HIV-infected group and inversely correlated with inflammation/immune activation markers. Members of Enterobacteriaceae and Enterococcaceae were found to be enriched and positively correlated with these markers. There were significantly more aerotolerant species enriched in HIV samples (42/52 species, 80.8%) when compared with the control group (14/87 species, 16.1%; χ2 test, p<10−5, conditional maximum-likelihood estimate (CMLE) OR=21.9). Conclusions Imbalance between aerobic and anaerobic flora observed in HIV faecal microbiota could be a consequence of the gut impairment classically observed in HIV infection via the production of oxygen. Overgrowth of proinflammatory aerobic species during HIV infection raises the question of antioxidant supplementation, such as vitamin C, E or N-acetylcysteine.
Collapse
Affiliation(s)
- Grégory Dubourg
- Faculté de Médecine, URMITE, UMR CNRS 6236-IRD 198, Aix-Marseille Université, Marseille, France; Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Jean-Christophe Lagier
- Faculté de Médecine, URMITE , UMR CNRS 6236-IRD 198, Aix-Marseille Université , Marseille , France
| | - Sophie Hüe
- INSERM, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, France; Vaccine Research Institute (VRI), Créteil, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie biologique, Créteil, France
| | - Mathieu Surenaud
- INSERM, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Dipankar Bachar
- Faculté de Médecine, URMITE , UMR CNRS 6236-IRD 198, Aix-Marseille Université , Marseille , France
| | - Catherine Robert
- Faculté de Médecine, URMITE , UMR CNRS 6236-IRD 198, Aix-Marseille Université , Marseille , France
| | - Caroline Michelle
- Faculté de Médecine, URMITE , UMR CNRS 6236-IRD 198, Aix-Marseille Université , Marseille , France
| | - Isabelle Ravaux
- Service de Maladies Infectieuses et tropicales, CHU de la Conception , 147, boulevard Baille, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection , Marseille , France
| | - Saadia Mokhtari
- Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection , Marseille , France
| | - Matthieu Million
- Faculté de Médecine, URMITE, UMR CNRS 6236-IRD 198, Aix-Marseille Université, Marseille, France; Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Andreas Stein
- Service de Maladies Infectieuses et tropicales, CHU de la Conception , 147, boulevard Baille, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection , Marseille , France
| | - Philippe Brouqui
- Faculté de Médecine, URMITE, UMR CNRS 6236-IRD 198, Aix-Marseille Université, Marseille, France; Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Yves Levy
- INSERM, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, France; Vaccine Research Institute (VRI), Créteil, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie biologique, Créteil, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Didier Raoult
- Faculté de Médecine, URMITE, UMR CNRS 6236-IRD 198, Aix-Marseille Université, Marseille, France; Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Bili M, Cortesero AM, Mougel C, Gauthier JP, Ermel G, Simon JC, Outreman Y, Terrat S, Mahéo F, Poinsot D. Bacterial Community Diversity Harboured by Interacting Species. PLoS One 2016; 11:e0155392. [PMID: 27258532 PMCID: PMC4892616 DOI: 10.1371/journal.pone.0155392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023] Open
Abstract
All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts.
Collapse
Affiliation(s)
- Mikaël Bili
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Anne Marie Cortesero
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | | | | | - Gwennola Ermel
- UMR CNRS 6026 Interactions Cellulaires et Moléculaires, Université de Rennes, Rennes, France
| | | | | | | | | | - Denis Poinsot
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
- * E-mail:
| |
Collapse
|
46
|
Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed. Appl Environ Microbiol 2016; 82:2595-2607. [PMID: 26896137 DOI: 10.1128/aem.00019-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/13/2016] [Indexed: 12/18/2022] Open
Abstract
Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actino bacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms.
Collapse
|
47
|
Grangeteau C, Gerhards D, Terrat S, Dequiedt S, Alexandre H, Guilloux-Benatier M, von Wallbrunn C, Rousseaux S. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must. J Microbiol Methods 2015; 121:50-8. [PMID: 26688103 DOI: 10.1016/j.mimet.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022]
Abstract
The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains.
Collapse
Affiliation(s)
- Cédric Grangeteau
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Daniel Gerhards
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sebastien Terrat
- INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000 Dijon, France
| | - Samuel Dequiedt
- INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000 Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Michèle Guilloux-Benatier
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Christian von Wallbrunn
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sandrine Rousseaux
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France.
| |
Collapse
|
48
|
Mougin C, Azam D, Caquet T, Cheviron N, Dequiedt S, Le Galliard JF, Guillaume O, Houot S, Lacroix G, Lafolie F, Maron PA, Michniewicz R, Pichot C, Ranjard L, Roy J, Zeller B, Clobert J, Chanzy A. A coordinated set of ecosystem research platforms open to international research in ecotoxicology, AnaEE-France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16215-28. [PMID: 26315587 DOI: 10.1007/s11356-015-5233-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/11/2015] [Indexed: 05/25/2023]
Abstract
The infrastructure for Analysis and Experimentation on Ecosystems (AnaEE-France) is an integrated network of the major French experimental, analytical, and modeling platforms dedicated to the biological study of continental ecosystems (aquatic and terrestrial). This infrastructure aims at understanding and predicting ecosystem dynamics under global change. AnaEE-France comprises complementary nodes offering access to the best experimental facilities and associated biological resources and data: Ecotrons, seminatural experimental platforms to manipulate terrestrial and aquatic ecosystems, in natura sites equipped for large-scale and long-term experiments. AnaEE-France also provides shared instruments and analytical platforms dedicated to environmental (micro) biology. Finally, AnaEE-France provides users with data bases and modeling tools designed to represent ecosystem dynamics and to go further in coupling ecological, agronomical, and evolutionary approaches. In particular, AnaEE-France offers adequate services to tackle the new challenges of research in ecotoxicology, positioning its various types of platforms in an ecologically advanced ecotoxicology approach. AnaEE-France is a leading international infrastructure, and it is pioneering the construction of AnaEE (Europe) infrastructure in the field of ecosystem research. AnaEE-France infrastructure is already open to the international community of scientists in the field of continental ecotoxicology.
Collapse
Affiliation(s)
- Christian Mougin
- INRA/AgroParisTech, UMR1402 ECOSYS, Platform Biochem-Env, Route de St-Cyr, 78026, Versailles cedex, France.
- INRA/AgroParisTech, UMR1402 ECOSYS, Platform Biochem-Env, 78026, Versailles cedex, France.
| | - Didier Azam
- INRA, UE 1036 U3E, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France
| | - Thierry Caquet
- INRA, UAR1275 Département EFPA, 54280, Champenoux, France
| | - Nathalie Cheviron
- INRA/AgroParisTech, UMR1402 ECOSYS, Platform Biochem-Env, Route de St-Cyr, 78026, Versailles cedex, France
| | - Samuel Dequiedt
- INRA/Université de Bourgogne/AgroSup Dijon, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon cedex, France
| | - Jean-François Le Galliard
- CNRS/UPMC - UMR 7618, IEES Paris, Université Pierre et Marie Curie, Case 237, 7 Quai St Bernard, 75005, Paris, France
- CNRS/ENS - UMS 3194, CEREEP - Ecotron Ile-De-France, École Normale Supérieure, 78 rue du Château, 77140, St-Pierre-lès-Nemours, France
| | | | - Sabine Houot
- INRA/AgroParisTech, UMR 1402 ECOSYS, 78850, Thiverval-Grignon, France
| | - Gérard Lacroix
- CNRS/UPMC - UMR 7618, IEES Paris, Université Pierre et Marie Curie, Case 237, 7 Quai St Bernard, 75005, Paris, France
- CNRS/ENS - UMS 3194, CEREEP - Ecotron Ile-De-France, École Normale Supérieure, 78 rue du Château, 77140, St-Pierre-lès-Nemours, France
| | - François Lafolie
- INRA/UAPV, UMR 1114 EMMAH, Site Agroparc, 228 route de l'aérodrome, CS 40509, 84914, Avignon Cédex 9, France
| | - Pierre-Alain Maron
- INRA/Université de Bourgogne/AgroSup Dijon, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon cedex, France
| | | | - Christian Pichot
- INRA, UR0629 URFM, Site Agroparc, 228 route de l'aérodrome, CS 40509, 84914, Avignon Cédex 9, France
| | - Lionel Ranjard
- INRA/Université de Bourgogne/AgroSup Dijon, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon cedex, France
| | - Jacques Roy
- CNRS, UPS 3248 Ecotron Européen de Montpellier, Campus de Baillarguet, 1 chemin du Rioux, 34980, Montferrier-sur-Lez, France
| | | | | | - André Chanzy
- INRA/UAPV, UMR 1114 EMMAH, Site Agroparc, 228 route de l'aérodrome, CS 40509, 84914, Avignon Cédex 9, France
| |
Collapse
|
49
|
Costa D, Mercier A, Gravouil K, Lesobre J, Delafont V, Bousseau A, Verdon J, Imbert C. Pyrosequencing analysis of bacterial diversity in dental unit waterlines. WATER RESEARCH 2015; 81:223-231. [PMID: 26072020 DOI: 10.1016/j.watres.2015.05.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/22/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
Some infections cases due to exposure to output water from dental unit waterlines (DUWL) have been reported in the literature. However, this type of healthcare-associated risk has remained unclear and up until now the overall bacterial composition of DUWL has been poorly documented. In this study, 454 high-throughput pyrosequencing was used to investigate the bacterial community in seven dental offices (N = 7) and to identify potential bacterial pathogenic sequences. Dental unit waters (DUW) were collected from the tap water supplying units (Incoming Water; IW) to the output exposure point of the turbine handpiece (Output water; OW) following a stagnation period (OWS), and immediately after the last patient of the sampling day (OWA). A high bacterial diversity was revealed in DUW with 394 operational taxonomic units detected at the genus level. In addition to the inter-unit variability observed, results showed increased total bacterial cell concentration and shifts in bacterial community composition and abundance at the genus level, mainly within the Gamma- and Alpha-Proteobacteria class, as water circulated in the dental unit (DU). Results showed that 96.7%, 96.8% and 97.4% of the total sequences from IW, OWS and OWA respectively were common to the 3 defined water groups, thereby highlighting a common core microbiome. Results also suggested that stagnation and DU maintenance practices were critical to composition of the bacterial community. The presence of potentially pathogenic genera was detected, including Pseudomonas and Legionella spp. Emerging and opportunistic pathogenic genera such as Mycobacterium, Propionibacterium and Stenotrophomonas were likewise recovered in DUW. For the first time, an exhaustive evaluation of the bacterial communities present in DUW was performed taking into account the circulation of water within the DU. This study highlights an ignored diversity of the DUWL bacterial community. Our findings also contribute to a better appreciation of the potential infectious risk associated with dental care and suggest the importance of better managing microbial quality in DUW.
Collapse
Affiliation(s)
- Damien Costa
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France; Bâtiment Urgences et Biologie Médicale (UBM), CHU de Poitiers, Poitiers, France.
| | - Anne Mercier
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Kevin Gravouil
- Laboratoire coopératif Thanaplast(SP)-Carbios Bioplastics, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Jérôme Lesobre
- Université Blaise Pascal, UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, 24 avenue des Landais, Aubière, France
| | - Vincent Delafont
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Anne Bousseau
- Bâtiment Urgences et Biologie Médicale (UBM), CHU de Poitiers, Poitiers, France
| | - Julien Verdon
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Christine Imbert
- Equipe Microbiologie de l'Eau, Ecologie et Biologie des Interactions, Centre National de la Recherche Scientifique UMR 7267, Université de Poitiers, Poitiers, France; Bâtiment Urgences et Biologie Médicale (UBM), CHU de Poitiers, Poitiers, France
| |
Collapse
|
50
|
Tardy V, Chabbi A, Charrier X, de Berranger C, Reignier T, Dequiedt S, Faivre-Primot C, Terrat S, Ranjard L, Maron PA. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil. PLoS One 2015; 10:e0130672. [PMID: 26102585 PMCID: PMC4478037 DOI: 10.1371/journal.pone.0130672] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/22/2015] [Indexed: 01/04/2023] Open
Abstract
Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland). Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.
Collapse
Affiliation(s)
| | - Abad Chabbi
- Centre de recherche Poitou-Charentes, INRA, Lusignan, France
| | - Xavier Charrier
- Centre de recherche Poitou-Charentes, INRA, Lusignan, France
| | | | | | - Samuel Dequiedt
- INRA, Plateforme GenoSol, UMR1347 Agroecology, Dijon, France
| | | | | | - Lionel Ranjard
- INRA, UMR 1347 Agroecology, Dijon, France
- INRA, Plateforme GenoSol, UMR1347 Agroecology, Dijon, France
| | - Pierre-Alain Maron
- INRA, UMR 1347 Agroecology, Dijon, France
- INRA, Plateforme GenoSol, UMR1347 Agroecology, Dijon, France
- * E-mail:
| |
Collapse
|