1
|
McGreevy TJ, Crawford NG, Legreneur P, Schneider CJ. Influence of geographic isolation and the environment on gene flow among phenotypically diverse lizards. Heredity (Edinb) 2024; 133:317-330. [PMID: 39266673 PMCID: PMC11528109 DOI: 10.1038/s41437-024-00716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Lizards in the genus Anolis comprise hundreds of species that display a wide range of phenotypic variation closely related to their environment. One example is the Guadeloupean anole (Anolis marmoratus ssp.) that display extreme phenotypic variation, primarily in adult male color and pattern, with twelve described subspecies on the archipelago. Here we examine the relationship between phenotypic and genetic divergence among five subspecies on the two main islands and test the role of geographic isolation and the environment in reducing gene flow. We also examined two offshore island populations to assess the impact of complete geographic isolation on gene flow. We analyzed color phenotypes by measuring spectral reflectance and genomic diversity using SNPs. Genetic divergence was correlated with dorsolateral head and body color phenotypes, and slope and geographic distance were nearly equivalent at explaining this divergence. There was minimal genome-wide divergence at neutral loci among phenotypically disparate subspecies on the two main islands and their differentiation is consistent with a model of divergence with gene flow. Our spatial visualization of gene flow showed an impact of environmental features consistent with a hypothesis of ecologically driven divergence. Nonetheless, subspecies on the two main islands remain interconnected by substantial gene flow and their phenotypic variation is likely maintained at selection-gene flow equilibrium by divergent selection at loci associated with their color phenotypes. Greater isolation, such as inhabiting a remote island, may be required for reducing gene flow. Our findings highlight the role of the environment, adaptation, and geographic isolation on gene flow.
Collapse
Affiliation(s)
- Thomas J McGreevy
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI, 02881, USA.
| | - Nicholas G Crawford
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | | | | |
Collapse
|
2
|
Morales CC, Gómez JP, Parra JL. Patterns of morphological differentiation within Manacus manacus (Aves: Pipridae) in Colombia: revisiting hypotheses of isolation and secondary contact. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Determining the factors responsible for phenotypic variation within species is a fundamental task in evolutionary ecology. Isolation by distance, isolation by environment and clines along secondary contact zones between formerly isolated populations are common patterns of morphological variation. In this study, we evaluated whether patterns of morphological variation exhibit association with isolation by distance, isolation by environment or secondary contact in populations of Manacus manacus with contrasting plumage colour. We used field and museum measurements of five morphological characters from 311 individuals from 88 localities distributed across a highly heterogeneous environmental range within Colombia. Climatic variables explained a higher proportion of the variation than geographic distance among localities. We found differences in wing and culmen length between white and yellow phenotypes of M. manacus in Colombia. Overall morphology did not change in a clinal fashion in relation to the contact zone and the few traits that exhibit clinal variation suggest a distant locality for the contact zone, not in line with our expectations by secondary contact between differentiated populations, suggesting alternative mechanisms for differentiation between subspecies. Our results suggest that this species exhibits marked morphological variation associated with changes in temperature and precipitation. These associations are consistent throughout the geographic range analysed, leading us to postulate that dispersal and local adaptation jointly shape the distribution of phenotypic variation.
Collapse
Affiliation(s)
- Christian C Morales
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Juan P Gómez
- Departamento de Química y Biología, Universidad del Norte, Barranquilla 08001, Colombia
| | - Juan L Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| |
Collapse
|
3
|
Reyes-Grajales E, Macip-Ríos R, Iverson JB, Matamoros WA. Population Ecology and Morphology of the Central Chiapas Mud Turtle (Kinosternon abaxillare). CHELONIAN CONSERVATION AND BIOLOGY 2021. [DOI: 10.2744/ccb-1440.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eduardo Reyes-Grajales
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas. México. CP. 29039. Tuxtla Gutiérrez, Chiapas, México [; ]
| | - Rodrigo Macip-Ríos
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex. Hacienda de San José La Huerta, 58190 Morelia, México []
| | - John B. Iverson
- Department of Biology, Earlham College, Richmond, Indiana 47374 USA []
| | - Wilfredo A. Matamoros
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas. México. CP. 29039. Tuxtla Gutiérrez, Chiapas, México [; ]
| |
Collapse
|
4
|
Koshelev OI, Gensytskyi MV, Koshelev VO, Yorkina NV, Kunakh OM. Anthropogenic load іs a leading factor in the morphological variability of Chondrula tridens (Gastropoda, Enidae) in the northwestern Azov Sea region. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Morphometric data are widely used in biology to assess intraspecific and inter-population variability and for bioindication and environmental condition assessment. The following hypotheses have been experimentally tested in the paper: 1) the vegetation type affects the change in the shell shape of Chondrula tridens martynovi Gural-Sverlova & Gural, 2010; 2) the change in the shell shape of this species is influenced by the biotope moisture regime; 3) the shell shape changes depending on the anthropogenic load level. The material in the form of empty, fully formed Ch. tridens shells was collected in 2019 in the north-western Azov region within the basin of the Molochna River. The collection points were located in settlements and outside them and differed in vegetation, moisture regime and level of anthropogenic load. The vegetation has been expertly attributed to two alternative types: herbaceous vegetation and tree plantations. By moisture level, the locations have been assessed as xerophytic and mesoxerophytic. The anthropogenic load levels have been assessed as low, medium and high. The study revealed that the morphological characteristics of Ch. tridens demonstrate a significant component of variability, which is due to the shell size. The shell size depends on the anthropogenic impact level. Under conditions of high anthropogenic impact, the shell size increases. Mollusks from locations with low and medium anthropogenic impact levels did not differ in shell size. After extraction of the size component, morphological properties develop three main trends of variability. The mouth apparatus development of mollusks does not depend on the vegetation type, but depends on the biotope moisture level and the anthropogenic transformation level. The mollusk shell elongation was observed to have the opposite dynamics of the height parameters in relation to the width and depended on the level of anthropogenic load. Rearrangement in the mouth apparatus depended on the biotope moisture level and the anthropogenic load level. There were distinguished four clusters, the quantitative morphological features of which allowed us to identify them as morphotypes. Each location was characterized by a combination of different morphotypes, according to which the sampling points may be classified. Morphotype 1 corresponds to biotopes with low level of anthropogenic load, morphotype 4 corresponded to biotopes with high anthropogenic load. Morphotypes 2 and 3 corresponded to moderate level of anthropogenic load. Vegetation type is not an important factor in determining the morphotypic diversity of populations. Under xerophytic conditions, morphotypes 2 and 3 are more common, and under mesoxerophytic conditions, morphotypes 1 and 4 are more common. The range of molluscs in different habitats needs to be expanded in the future to clarify climatic and other patterns.
Collapse
|
5
|
Morgan K, Mboumba JF, Ntie S, Mickala P, Miller CA, Zhen Y, Harrigan RJ, Le Underwood V, Ruegg K, Fokam EB, Tasse Taboue GC, Sesink Clee PR, Fuller T, Smith TB, Anthony NM. Precipitation and vegetation shape patterns of genomic and craniometric variation in the central African rodent Praomys misonnei. Proc Biol Sci 2020; 287:20200449. [PMID: 32635865 DOI: 10.1098/rspb.2020.0449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Predicting species' capacity to respond to climate change is an essential first step in developing effective conservation strategies. However, conservation prioritization schemes rarely take evolutionary potential into account. Ecotones provide important opportunities for diversifying selection and may thus constitute reservoirs of standing variation, increasing the capacity for future adaptation. Here, we map patterns of environmentally associated genomic and craniometric variation in the central African rodent Praomys misonnei to identify areas with the greatest turnover in genomic composition. We also project patterns of environmentally associated genomic variation under future climate change scenarios to determine where populations may be under the greatest pressure to adapt. While precipitation gradients influence both genomic and craniometric variation, vegetation structure is also an important determinant of craniometric variation. Areas of elevated environmentally associated genomic and craniometric variation overlap with zones of rapid ecological transition underlining their importance as reservoirs of evolutionary potential. We also find that populations in the Sanaga river basin, central Cameroon and coastal Gabon are likely to be under the greatest pressure from climate change. Lastly, we make specific conservation recommendations on how to protect zones of high evolutionary potential and identify areas where populations may be the most susceptible to climate change.
Collapse
Affiliation(s)
- Katy Morgan
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - Jean-François Mboumba
- Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Stephan Ntie
- Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Patrick Mickala
- Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Courtney A Miller
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - Ying Zhen
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Ryan J Harrigan
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Vinh Le Underwood
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Kristen Ruegg
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Eric B Fokam
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon
| | | | | | - Trevon Fuller
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Thomas B Smith
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Nicola M Anthony
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| |
Collapse
|
6
|
DeSilva R, Dodd RS. Fragmented and isolated: limited gene flow coupled with weak isolation by environment in the paleoendemic giant sequoia (Sequoiadendron giganteum). AMERICAN JOURNAL OF BOTANY 2020; 107:45-55. [PMID: 31883111 DOI: 10.1002/ajb2.1406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Patterns of genetic structure across a species' range reflect the long-term interplay between genetic drift, gene flow, and selection. Given the importance of gene flow in preventing the loss of diversity through genetic drift among spatially isolated populations, understanding the dynamics of gene flow and the factors that influence connectivity across a species' range is a major goal for conservation of genetic diversity. Here we present a detailed look at gene flow dynamics of Sequoiadendron giganteum, a paleoendemic tree species that will likely face numerous threats due to climate change. METHODS We used microsatellite markers to examine nineteen populations of S. giganteum for patterns of genetic structure and to estimate admixture and rates of gene flow between eight population pairs. Also, we used Generalized Dissimilarity Models to elucidate landscape factors that shape genetic differentiation among populations. RESULTS We found minimal gene flow between adjacent groves in the northern disjunct range. In most of the southern portion of the range, groves showed a signal of connectivity which degrades to isolation in the extreme south. Geographic distance was the most important predictor of genetic dissimilarity across the range, with environmental conditions related to precipitation and temperature explaining a small, but significant, portion of the genetic variance. CONCLUSIONS Due to their isolation and unique genetic composition, northern populations of S. giganteum should be considered a high conservation priority. In this region, we suggest germplasm conservation as well as restoration planting to enhance genetic diversity.
Collapse
Affiliation(s)
- Rainbow DeSilva
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
| | - Richard S Dodd
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Temperature and Rainfall Are Separate Agents of Selection Shaping Population Differentiation in a Forest Tree. FORESTS 2019. [DOI: 10.3390/f10121145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Research highlights: We present evidence indicating that covariation of functional traits among populations of a forest tree is not due to genetic constraints, but rather selective covariance arising from local adaptation to different facets of the climate, namely rainfall and temperature. Background and Aims: Traits frequently covary among natural populations. Such covariation can be caused by pleiotropy and/or linkage disequilibrium, but also may arise when the traits are genetically independent as a direct consequence of natural selection, drift, mutation and/or gene flow. Of particular interest are cases of selective covariance, where natural selection directly generates among-population covariance in a set of genetically independent traits. We here studied the causes of population-level covariation in two key traits in the Australian tree Eucalyptus pauciflora. Materials and Methods: We studied covariation in seedling lignotuber size and vegetative juvenility using 37 populations sampled from throughout the geographic and ecological ranges of E. pauciflora on the island of Tasmania. We integrated evidence from multiple sources: (i) comparison of patterns of trait covariation within and among populations; (ii) climate-trait modelling using machine-learning algorithms; and (iii) selection analysis linking trait variation to field growth in an arid environment. Results: We showed strong covariation among populations compared with the weak genetic correlation within populations for the focal traits. Population differentiation in these genetically independent traits was correlated with different home-site climate variables (lignotuber size with temperature; vegetative juvenility with rainfall), which spatially covaried. The role of selection in shaping the population differentiation in lignotuber size was supported by its relationship with fitness measured in the field. Conclusions: Our study highlights the multi-trait nature of adaptation likely to occur as tree species respond to spatial and temporal changes in climate.
Collapse
|
8
|
Myers EA, Xue AT, Gehara M, Cox CL, Davis Rabosky AR, Lemos‐Espinal J, Martínez‐Gómez JE, Burbrink FT. Environmental heterogeneity and not vicariant biogeographic barriers generate community‐wide population structure in desert‐adapted snakes. Mol Ecol 2019; 28:4535-4548. [DOI: 10.1111/mec.15182] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/23/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Edward A. Myers
- Department of Vertebrate Zoology Smithsonian Institution National Museum of Natural History Washington DC USA
- Department of Herpetology The American Museum of Natural History New York NY USA
| | | | - Marcelo Gehara
- Department of Herpetology The American Museum of Natural History New York NY USA
| | - Christian L. Cox
- Department of Biology Georgia Southern University Statesboro GA USA
| | - Alison R. Davis Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology University of Michigan Ann Arbor MI USA
| | - Julio Lemos‐Espinal
- Laboratorio de Ecología, UBIPRO, FES Iztacala Universidad Nacional Autónoma de México Tlalnepantla Mexico
| | | | - Frank T. Burbrink
- Department of Herpetology The American Museum of Natural History New York NY USA
| |
Collapse
|
9
|
Snake diversity in floodplains of central South America: Is flood pulse the principal driver? ACTA OECOLOGICA 2019. [DOI: 10.1016/j.actao.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Monteiro WP, Veiga JC, Silva AR, Carvalho CDS, Lanes ÉCM, Rico Y, Jaffé R. Everything you always wanted to know about gene flow in tropical landscapes (but were afraid to ask). PeerJ 2019; 7:e6446. [PMID: 30783576 PMCID: PMC6377592 DOI: 10.7717/peerj.6446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
The bulk of the world’s biodiversity is found in tropical regions, which are increasingly threatened by the human-led degradation of natural habitats. Yet, little is known about tropical biodiversity responses to habitat loss and fragmentation. Here we review all available literature assessing landscape effects on gene flow in tropical species, aiming to help unravel the factors underpinning functional connectivity in the tropics. We map and classify studies by focus species, the molecular markers employed, statistical approaches to assess landscape effects on gene flow, and the evaluated landscape and environmental variables. We then compare qualitatively and quantitatively landscape effects on gene flow across species and units of analysis. We found 69 articles assessing landscape effects on gene flow in tropical organisms, most of which were published in the last five years, were concentrated in the Americas, and focused on amphibians or mammals. Most studies employed population-level approaches, microsatellites were the preferred type of markers, and Mantel and partial Mantel tests the most common statistical approaches used. While elevation, land cover and forest cover were the most common gene flow predictors assessed, habitat suitability was found to be a common predictor of gene flow. A third of all surveyed studies explicitly assessed the effect of habitat degradation, but only 14 of these detected a reduced gene flow with increasing habitat loss. Elevation was responsible for most significant microsatellite-based isolation by resistance effects and a single study reported significant isolation by non-forested areas in an ant. Our study reveals important knowledge gaps on the study of landscape effects on gene flow in tropical organisms, and provides useful guidelines on how to fill them.
Collapse
Affiliation(s)
| | - Jamille Costa Veiga
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Amanda Reis Silva
- Departamento de Botânica, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | | | | | - Yessica Rico
- CONACYT, Red de Diversidad Biológica del Occidente Mexicano, Instituto de Ecología, A.C., Michoacán, Mexico
| | - Rodolfo Jaffé
- Instituto Tecnológico Vale, Belém, PA, Brazil.,Departamento de Ecologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Kaliontzopoulou A, Pinho C, Martínez-Freiría F. Where does diversity come from? Linking geographical patterns of morphological, genetic, and environmental variation in wall lizards. BMC Evol Biol 2018; 18:124. [PMID: 30134828 PMCID: PMC6113677 DOI: 10.1186/s12862-018-1237-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Understanding how phenotypic variation scales from individuals, through populations, up to species, and how it relates to genetic and environmental factors, is essential for deciphering the evolutionary mechanisms that drive biodiversity. We used two species of Podarcis wall lizards to test whether phenotypic diversity within and divergence across populations follow concordant patterns, and to examine how phenotypic variation responds to genetic and environmental variability across different hierarchical levels of biological organization, in an explicit geographic framework. RESULTS We found a general concordance of phenotypic variation across hierarchical levels (i.e. individuals and populations). However, we also found that within-population diversity does not exhibit a coherent geographic structure for most traits, while among-population divergence does, suggesting that different mechanisms may underlie the generation of diversity at these two levels. Furthermore, the association of phenotypic variation with genetic and environmental factors varied extensively between hierarchical levels and across traits, hampering the identification of simple rules to explain what yields diversity. CONCLUSIONS Our results in some cases comply with general ecological and evolutionary predictions, but in others they are difficult to explain in the geographic framework used, suggesting that habitat characteristics and other regulatory mechanisms may have a more substantial contribution in shaping phenotypic diversity.
Collapse
Affiliation(s)
- Antigoni Kaliontzopoulou
- CIBIO/InBIO Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Rua Padre Armando Quintas, N° 7.4485-661 Vairão, Vila do Conde, Portugal.
| | - Catarina Pinho
- CIBIO/InBIO Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Rua Padre Armando Quintas, N° 7.4485-661 Vairão, Vila do Conde, Portugal
| | - Fernando Martínez-Freiría
- CIBIO/InBIO Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, Rua Padre Armando Quintas, N° 7.4485-661 Vairão, Vila do Conde, Portugal
| |
Collapse
|
12
|
Hanson JO, Rhodes JR, Possingham HP, Fuller RA. raptr: Representative and adequate prioritization toolkit in R. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey O. Hanson
- School of Biological Sciences University of Queensland Brisbane Qld. Australia
| | - Jonathan R. Rhodes
- School of Earth and Environmental Sciences University of Queensland Brisbane Qld. Australia
| | - Hugh P. Possingham
- School of Biological Sciences University of Queensland Brisbane Qld. Australia
- The Nature Conservancy South Brisbane Qld. Australia
| | - Richard A. Fuller
- School of Biological Sciences University of Queensland Brisbane Qld. Australia
| |
Collapse
|
13
|
Geue JC, Vágási CI, Schweizer M, Pap PL, Thomassen HA. Environmental selection is a main driver of divergence in house sparrows ( Passer domesticus) in Romania and Bulgaria. Ecol Evol 2016; 6:7954-7964. [PMID: 27891219 PMCID: PMC5108248 DOI: 10.1002/ece3.2509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 01/25/2023] Open
Abstract
Both neutral and adaptive evolutionary processes can cause population divergence, but their relative contributions remain unclear. We investigated the roles of these processes in population divergence in house sparrows (Passer domesticus) from Romania and Bulgaria, regions characterized by high landscape heterogeneity compared to Western Europe. We asked whether morphological divergence, complemented with genetic data in this human commensal species, was best explained by environmental variation, geographic distance, or landscape resistance—the effort it takes for an individual to disperse from one location to the other—caused by either natural or anthropogenic barriers. Using generalized dissimilarity modeling, a matrix regression technique that fits biotic beta diversity to both environmental predictors and geographic distance, we found that a small set of climate and vegetation variables explained up to ~30% of the observed divergence, whereas geographic and resistance distances played much lesser roles. Our results are consistent with signals of selection on morphological traits and of isolation by adaptation in genetic markers, suggesting that selection by natural environmental conditions shapes population divergence in house sparrows. Our study thus contributes to a growing body of evidence that adaptive evolution may be a major driver of diversification.
Collapse
Affiliation(s)
- Julia C Geue
- Comparative Zoology Institute for Evolution and Ecology University of Tübingen Tübingen Germany
| | - Csongor I Vágási
- MTA-DE 'Lendület' Behavioural Ecology Research Group Department of Evolutionary Zoology and Human Biology University of Debrecen Debrecen Hungary; Evolutionary Ecology Group Hungarian Department of Biology and Ecology Babeş-Bolyai University Cluj- Napoca Romania
| | - Mona Schweizer
- Animal Physiological Ecology Institute for Evolution and Ecology University of Tübingen Tübingen Germany
| | - Péter L Pap
- MTA-DE 'Lendület' Behavioural Ecology Research Group Department of Evolutionary Zoology and Human Biology University of Debrecen Debrecen Hungary; Evolutionary Ecology Group Hungarian Department of Biology and Ecology Babeş-Bolyai University Cluj- Napoca Romania
| | - Henri A Thomassen
- Comparative Zoology Institute for Evolution and Ecology University of Tübingen Tübingen Germany
| |
Collapse
|
14
|
Oyamaguchi HM, Oliveira E, Smith TB. Environmental drivers of body size variation in the lesser treefrog ( Dendropsophus minutus) across the Amazon-Cerrado gradient. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hilton M. Oyamaguchi
- Center for Tropical Research; Institute of the Environment; University of California Los Angeles; Los Angeles CA USA
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; Los Angeles CA USA
| | | | - Thomas B. Smith
- Center for Tropical Research; Institute of the Environment; University of California Los Angeles; Los Angeles CA USA
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; Los Angeles CA USA
| |
Collapse
|
15
|
Marcer A, Méndez-Vigo B, Alonso-Blanco C, Picó FX. Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecol Evol 2016; 6:2084-97. [PMID: 27066224 PMCID: PMC4768750 DOI: 10.1002/ece3.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/25/2022] Open
Abstract
Genetic diversity provides insight into heterogeneous demographic and adaptive history across organisms' distribution ranges. For this reason, decomposing single species into genetic units may represent a powerful tool to better understand biogeographical patterns as well as improve predictions of the effects of GCC (global climate change) on biodiversity loss. Using 279 georeferenced Iberian accessions, we used classes of three intraspecific genetic units of the annual plant Arabidopsis thaliana obtained from the genetic analyses of nuclear SNPs (single nucleotide polymorphisms), chloroplast SNPs, and the vernalization requirement for flowering. We used SDM (species distribution models), including climate, vegetation, and soil data, at the whole-species and genetic-unit levels. We compared model outputs for present environmental conditions and with a particularly severe GCC scenario. SDM accuracy was high for genetic units with smaller distribution ranges. Kernel density plots identified the environmental variables underpinning potential distribution ranges of genetic units. Combinations of environmental variables accounted for potential distribution ranges of genetic units, which shrank dramatically with GCC at almost all levels. Only two genetic clusters increased their potential distribution ranges with GCC. The application of SDM to intraspecific genetic units provides a detailed picture on the biogeographical patterns of distinct genetic groups based on different genetic criteria. Our approach also allowed us to pinpoint the genetic changes, in terms of genetic background and physiological requirements for flowering, that Iberian A. thaliana may experience with a GCC scenario applying SDM to intraspecific genetic units.
Collapse
Affiliation(s)
- Arnald Marcer
- CREAF Cerdanyola del Vallès 08193 Spain; Univ Autònoma de Barcelona Cerdanyola del Vallès 08193 Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC) 28049 Madrid Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC) 28049 Madrid Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa Estación Biológica de Doñana (EBD) Consejo Superior de Investigaciones Científicas (CSIC) 41092 Sevilla Spain
| |
Collapse
|
16
|
Benham PM, Witt CC. The dual role of Andean topography in primary divergence: functional and neutral variation among populations of the hummingbird, Metallura tyrianthina. BMC Evol Biol 2016; 16:22. [PMID: 26801894 PMCID: PMC4724075 DOI: 10.1186/s12862-016-0595-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background The ridges and valleys of the Andes create physical barriers that limit animal dispersal and cause deterministic local variation in rainfall. This has resulted in physical isolation of animal populations and variation in habitats, each of which has likely contributed to the evolution of high species diversity in the region. However, the relative influences of geographic isolation, ecoclimatic conditions, and their potential interactions remain poorly understood. To address this, we compared patterns of genetic and morphological diversity in Peruvian populations of the hummingbird Metallura tyrianthina. Results Phylogenetic and variation partitioning analyses showed that geographic isolation rather than climatic dissimilarity explained the greatest proportion of genetic variance. In contrast, bill length variation was explained by climatic seasonality, but not by genetic divergence. We found that mutation-scaled migration rate (m) between persistently humid and semi-humid environments was nearly 20 times higher when the habitats were contiguous (m = 39.9) than when separated by a barrier, the Cordillera de Vilcanota (m = 2.1). Moreover, the population experiencing more gene flow exhibited a lesser degree of bill length divergence despite similar differences in climate. Conclusions Geographic isolation is necessary for genetic divergence. Ecological differences, represented here by climate characteristics, are necessary for functional divergence. Gene flow appears to hinder the evolution of functional traits toward local adaptive optima. This suggests that functional diversification requires geographic isolation followed or accompanied by a shift in ecological conditions. Andean topography causes both isolation and climatic variation, underscoring its dual role in biotic diversification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0595-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phred M Benham
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA. .,Present address: Division of Biological Sciences, University of Montana, 32 Campus Dr. HS104, Missoula, MT, 59812, USA.
| | - Christopher C Witt
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
17
|
Komarova EV, Smirnov DG, Stojko TG. Shell variability of the terrestrial mollusk Chondrula tridens (Pulmonata, Enidae) in the forest–steppe zone of the volga upland. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Rosauer DF, Catullo RA, VanDerWal J, Moussalli A, Moritz C. Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. PLoS One 2015; 10:e0126274. [PMID: 26020936 PMCID: PMC4447262 DOI: 10.1371/journal.pone.0126274] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/31/2015] [Indexed: 12/03/2022] Open
Abstract
Areas of suitable habitat for species and communities have arisen, shifted, and disappeared with Pleistocene climate cycles, and through this shifting landscape, current biodiversity has found paths to the present. Evolutionary refugia, areas of relative habitat stability in this shifting landscape, support persistence of lineages through time, and are thus crucial to the accumulation and maintenance of biodiversity. Areas of endemism are indicative of refugial areas where diversity has persisted, and endemism of intraspecific lineages in particular is strongly associated with late-Pleistocene habitat stability. However, it remains a challenge to consistently estimate the geographic ranges of intraspecific lineages and thus infer phylogeographic endemism, because spatial sampling for genetic analyses is typically sparse relative to species records. We present a novel technique to model the geographic distribution of intraspecific lineages, which is informed by the ecological niche of a species and known locations of its constituent lineages. Our approach allows for the effects of isolation by unsuitable habitat, and captures uncertainty in the extent of lineage ranges. Applying this method to the arc of rainforest areas spanning 3500 km in eastern Australia, we estimated lineage endemism for 53 species of rainforest dependent herpetofauna with available phylogeographic data. We related endemism to the stability of rainforest habitat over the past 120,000 years and identified distinct concentrations of lineage endemism that can be considered putative refugia. These areas of lineage endemism are strongly related to historical stability of rainforest habitat, after controlling for the effects of current environment. In fact, a dynamic stability model that allows movement to track suitable habitat over time was the most important factor in explaining current patterns of endemism. The techniques presented here provide an objective, practical method for estimating geographic ranges below the species level, and including them in spatial analyses of biodiversity.
Collapse
Affiliation(s)
- Dan F. Rosauer
- Research School of Biology & Centre for Biodiversity Analysis, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Renee A. Catullo
- Research School of Biology & Centre for Biodiversity Analysis, Australian National University, Canberra, Australian Capital Territory, Australia
- CSIRO Land and Water Flagship, Canberra, Australian Capital Territory, Australia
| | - Jeremy VanDerWal
- Centre for Tropical Biodiversity & Climate Change, College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
- eResearch Centre, Division of Research and Innovation, James Cook University, Townsville, Queensland, Australia
| | - Adnan Moussalli
- Sciences Department, Museum Victoria, Melbourne, Victoria, Australia
| | - Craig Moritz
- Research School of Biology & Centre for Biodiversity Analysis, Australian National University, Canberra, Australian Capital Territory, Australia
- CSIRO Land and Water Flagship, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
19
|
Mitchell MW, Locatelli S, Sesink Clee PR, Thomassen HA, Gonder MK. Environmental variation and rivers govern the structure of chimpanzee genetic diversity in a biodiversity hotspot. BMC Evol Biol 2015; 15:1. [PMID: 25608511 PMCID: PMC4314796 DOI: 10.1186/s12862-014-0274-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background The mechanisms that underlie the diversification of tropical animals remain poorly understood, but new approaches that combine geo-spatial modeling with spatially explicit genetic data are providing fresh insights on this topic. Data about the diversification of tropical mammals remain particularly sparse, and vanishingly few opportunities exist to study endangered large mammals that increasingly exist only in isolated pockets. The chimpanzees of Cameroon represent a unique opportunity to examine the mechanisms that promote genetic differentiation in tropical mammals because the region is home to two chimpanzee subspecies: Pan troglodytes ellioti and P. t. trogolodytes. Their ranges converge in central Cameroon, which is a geographically, climatically and environmentally complex region that presents an unparalleled opportunity to examine the roles of rivers and/or environmental variation in influencing the evolution of chimpanzee populations. Results We analyzed microsatellite genotypes and mtDNA HVRI sequencing data from wild chimpanzees sampled at a fine geographic scale across Cameroon and eastern Nigeria using a spatially explicit approach based upon Generalized Dissimilarity Modeling. Both the Sanaga River and environmental variation were found to contribute to driving separation of the subspecies. The importance of environmental variation differed among subspecies. Gene-environment associations were weak in P. t. troglodytes, whereas environmental variation was found to play a much larger role in shaping patterns of genetic differentiation in P. t. ellioti. Conclusions We found that both the Sanaga River and environmental variation likely play a role in shaping patterns of chimpanzee genetic diversity. Future studies using single nucleotide polymorphism (SNP) data are necessary to further understand how rivers and environmental variation contribute to shaping patterns of genetic variation in chimpanzees. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0274-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew W Mitchell
- Department of Biology, Drexel University, Philadelphia 19104, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
20
|
Thomassen HA, Fuller T, Buermann W, Milá B, Kieswetter CM, Jarrín-V P, Cameron SE, Mason E, Schweizer R, Schlunegger J, Chan J, Wang O, Peralvo M, Schneider CJ, Graham CH, Pollinger JP, Saatchi S, Wayne RK, Smith TB. Mapping evolutionary process: a multi-taxa approach to conservation prioritization. Evol Appl 2015; 4:397-413. [PMID: 25567981 PMCID: PMC3352560 DOI: 10.1111/j.1752-4571.2010.00172.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/26/2010] [Indexed: 11/26/2022] Open
Abstract
Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization.
Collapse
Affiliation(s)
- Henri A Thomassen
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA
| | - Trevon Fuller
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA
| | - Wolfgang Buermann
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, CA, USA
| | - Borja Milá
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | - Pablo Jarrín-V
- Yasuni Research Station, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador Quito, Ecuador
| | - Susan E Cameron
- Museum of Comparative Zoology and Center for the Environment, Harvard University Cambridge, MA, USA
| | - Eliza Mason
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA ; Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Rena Schweizer
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Jasmin Schlunegger
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Janice Chan
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA
| | - Ophelia Wang
- Department of Geography and the Environment, University of Texas at Austin Austin, TX, USA
| | - Manuel Peralvo
- Unidad de Biodiversidad y Geografía Aplicada CONDESAN, Quito, Ecuador
| | | | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University New York, NY, USA
| | - John P Pollinger
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Sassan Saatchi
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| | - Robert K Wayne
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Thomas B Smith
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| |
Collapse
|
21
|
Warren DL, Cardillo M, Rosauer DF, Bolnick DI. Mistaking geography for biology: inferring processes from species distributions. Trends Ecol Evol 2014; 29:572-80. [DOI: 10.1016/j.tree.2014.08.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/03/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
|
22
|
Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett 2014; 18:1-16. [DOI: 10.1111/ele.12376] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/17/2014] [Accepted: 08/21/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew C. Fitzpatrick
- Appalachian Lab; University of Maryland Center for Environmental Science; Frostburg MD USA
| | - Stephen R. Keller
- Appalachian Lab; University of Maryland Center for Environmental Science; Frostburg MD USA
| |
Collapse
|
23
|
Harrigan RJ, Sedano R, Chasar AC, Chaves JA, Nguyen JT, Whitaker A, Smith TB. New host and lineage diversity of avian haemosporidia in the northern Andes. Evol Appl 2014; 7:799-811. [PMID: 25469161 PMCID: PMC4227860 DOI: 10.1111/eva.12176] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/25/2014] [Indexed: 12/22/2022] Open
Abstract
The northern Andes, with their steep elevational and climate gradients, are home to an exceptional diversity of flora and fauna, particularly rich in avian species that have adapted to divergent ecological conditions. With this diversity comes the opportunity for parasites to exploit a wide breadth of avian hosts. However, little research has focused on examining the patterns of prevalence and lineage diversity of avian parasites in the Andes. Here, we screened a total of 428 birds from 19 species (representing nine families) and identified 133 infections of avian haemosporidia (31%), including lineages of Plasmodium, Haemoproteus, and Leucocytozoon. We document a higher prevalence of haemosporidia at higher elevations and lower temperatures, as well as an overall high diversity of lineages in the northern Andes, including the first sequences of haemosporidians reported in hummingbirds (31 sequences found in 11 species within the family Trochilidae). Double infections were distinguished using PHASE, which enables the separation of distinct parasite lineages. Results suggest that the ecological heterogeneity of the northern Andes that has given rise to a rich diversity of avian hosts may also be particularly conducive to parasite diversification and specialization.
Collapse
Affiliation(s)
- Ryan J Harrigan
- Center for Tropical Research, Institute of the
Environment and Sustainability, University of CaliforniaLos Angeles, CA, USA
| | - Raul Sedano
- Escuela de Biología, Universidad Industrial de
SantanderBucaramanga, Colombia
| | - Anthony C Chasar
- Center for Tropical Research, Institute of the
Environment and Sustainability, University of CaliforniaLos Angeles, CA, USA
| | - Jaime A Chaves
- Department of Biology, University of MiamiCoral Gables, FL, USA
- Universidad San Francisco de Quito, USFQ, Colegio de
Ciencias Biológicas y Ambientales, y Extensión Galápagos, Campus
CumbayáCasilla, Ecuador
| | - Jennifer T Nguyen
- Department of Ecology and Evolutionary Biology,
University of CaliforniaLos Angeles, CA, USA
| | - Alexis Whitaker
- Department of Ecology and Evolutionary Biology,
University of CaliforniaLos Angeles, CA, USA
| | - Thomas B Smith
- Center for Tropical Research, Institute of the
Environment and Sustainability, University of CaliforniaLos Angeles, CA, USA
- Department of Ecology and Evolutionary Biology,
University of CaliforniaLos Angeles, CA, USA
| |
Collapse
|
24
|
Fuller TL, Thomassen HA, Peralvo M, Buermann W, Milá B, Kieswetter CM, Jarrín-V P, Devitt SEC, Mason E, Schweizer RM, Schlunegger J, Chan J, Wang O, Schneider CJ, Pollinger JP, Saatchi S, Graham CH, Wayne RK, Smith TB. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones. Proc Biol Sci 2013; 280:20130423. [PMID: 23595273 DOI: 10.1098/rspb.2013.0423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible.
Collapse
Affiliation(s)
- Trevon L Fuller
- Center for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, La Kretz Hall, Suite 300, 619 Charles E. Young Dr. East, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Alda F, González MA, Olea PP, Ena V, Godinho R, Drovetski SV. Genetic diversity, structure and conservation of the endangered Cantabrian Capercaillie in a unique peripheral habitat. EUR J WILDLIFE RES 2013. [DOI: 10.1007/s10344-013-0727-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Baldassarre DT, Thomassen HA, Karubian J, Webster MS. The role of ecological variation in driving divergence of sexual and non-sexual traits in the red-backed fairy-wren (Malurus melanocephalus). BMC Evol Biol 2013; 13:75. [PMID: 23536958 PMCID: PMC3639809 DOI: 10.1186/1471-2148-13-75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 03/20/2013] [Indexed: 11/22/2022] Open
Abstract
Background Many species exhibit geographic variation in sexual signals, and divergence in these traits may lead to speciation. Sexual signals may diverge due to differences in ecology if the environment constrains signal production or transmission. Alternatively, sexual signals may diverge stochastically through sexual selection or genetic drift, with little environmental influence. To distinguish between these alternatives we quantified variation in two putative sexual signals – tail length and plumage color – and a suite of non-sexual morphometric traits across the geographic range of the red-backed fairy-wren (Malurus melanocephalus). We then tested for associations between these traits and a number of environmental variables using generalized dissimilarity models. Results Variation in morphometric traits was explained well by environmental variation, irrespective of geographic distance between sites. Among putative signals, variation in plumage color was best explained by geographic distance, whereas tail length was best explained by environmental variation. Divergence in male plumage color was not coincident with the boundary between genetic lineages, but was greatest across a contact zone located 300 km east of the genetic boundary. Conclusions Morphometric traits describing size and shape have likely been subject to ecological selection and thus appear to track local environmental variation regardless of subspecies identity. Ecological selection appears to have also influenced the evolution of tail length as a signal, but has played a limited role in shaping geographic variation in plumage color, consistent with stochastic divergence in concert with Fisherian selection on this trait. The lack of coincidence between the genetic boundary and the contact zone between plumage types suggests that the sexual plumage signal of one subspecies has introgressed into the genetic background of the other. Thus, this study provides insight into the various ways in which signal evolution may occur within a species, and the geographic patterns of signal variation that can arise, especially following secondary contact.
Collapse
|
27
|
Wang IJ, Glor RE, Losos JB. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 2012; 16:175-82. [DOI: 10.1111/ele.12025] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/18/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Ian J. Wang
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge; MA; 02138; USA
| | - Richard E. Glor
- Department of Biology; University of Rochester; Rochester; NY; 14627; USA
| | - Jonathan B. Losos
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge; MA; 02138; USA
| |
Collapse
|
28
|
Alda F, García J, García JT, Suárez-Seoane S. Local genetic structure on breeding grounds of a long-distance migrant passerine: the bluethroat (Luscinia svecica) in Spain. J Hered 2012; 104:36-46. [PMID: 23008445 DOI: 10.1093/jhered/ess071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breeding site fidelity can be determined by environmental features, which depending on their heterogeneous distribution may shape the genetic landscape of a population. We used 10 microsatellite loci to study the genetic variation of 83 bluethroats (Luscinia svecica azuricollis) across 14 localities within the Spanish breeding population and assess the relative influence of different habitat characteristics (physiography and vegetation) on genetic differentiation. Based on the genetic variation of this population, we identified 3 geographically consistent genetic clusters that on average showed a higher genetic differentiation than among other north European populations, even those belonging to different subspecies. The inferred genetic clusters occurred in geographic areas that significantly differed in elevation. The highest genetic differentiation was observed between sites at different mountain ranges, as well as between the highest altitude sites in the northeastern locale, whereas vegetation type did not explain a significant percentage of genetic variation. The lack of correlation between geographic and genetic distances suggests that this pattern of genetic structure cannot be explained as a consequence of isolation by distance. Finally, we discuss the importance of preserving areas encompassing high environmental and genetic variation as a means of preserving evolutionary processes and adaptive potential.
Collapse
Affiliation(s)
- Fernando Alda
- Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain.
| | | | | | | |
Collapse
|
29
|
Milá B, Tavares ES, Muñoz Saldaña A, Karubian J, Smith TB, Baker AJ. A trans-Amazonian screening of mtDNA reveals deep intraspecific divergence in forest birds and suggests a vast underestimation of species diversity. PLoS One 2012; 7:e40541. [PMID: 22815761 PMCID: PMC3398903 DOI: 10.1371/journal.pone.0040541] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 06/11/2012] [Indexed: 11/19/2022] Open
Abstract
The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%), yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%), with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In-depth phylogeographic surveys are urgently needed to avoid underestimating tropical diversity, and the use of mtDNA markers can be instrumental in identifying and prioritizing taxa for species discovery.
Collapse
Affiliation(s)
- Borja Milá
- National Museum of Natural Sciences, Spanish Research Council (CSIC), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Fitze PS, Gonzalez-Jimena V, San-Jose LM, San Mauro D, Aragón P, Suarez T, Zardoya R. Integrative analyses of speciation and divergence in Psammodromus hispanicus (Squamata: Lacertidae). BMC Evol Biol 2011; 11:347. [PMID: 22129245 PMCID: PMC3293786 DOI: 10.1186/1471-2148-11-347] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Genetic, phenotypic and ecological divergence within a lineage is the result of past and ongoing evolutionary processes, which lead ultimately to diversification and speciation. Integrative analyses allow linking diversification to geological, climatic, and ecological events, and thus disentangling the relative importance of different evolutionary drivers in generating and maintaining current species richness. RESULTS Here, we use phylogenetic, phenotypic, geographic, and environmental data to investigate diversification in the Spanish sand racer (Psammodromus hispanicus). Phylogenetic, molecular clock dating, and phenotypic analyses show that P. hispanicus consists of three lineages. One lineage from Western Spain diverged 8.3 (2.9-14.7) Mya from the ancestor of Psammodromus hispanicus edwardsianus and P. hispanicus hispanicus Central lineage. The latter diverged 4.8 (1.5-8.7) Mya. Molecular clock dating, together with population genetic analyses, indicate that the three lineages experienced northward range expansions from southern Iberian refugia during Pleistocene glacial periods. Ecological niche modelling shows that suitable habitat of the Western lineage and P. h. edwardsianus overlap over vast areas, but that a barrier may hinder dispersal and genetic mixing of populations of both lineages. P. h. hispanicus Central lineage inhabits an ecological niche that overlaps marginally with the other two lineages. CONCLUSIONS Our results provide evidence for divergence in allopatry and niche conservatism between the Western lineage and the ancestor of P. h. edwardsianus and P. h. hispanicus Central lineage, whereas they suggest that niche divergence is involved in the origin of the latter two lineages. Both processes were temporally separated and may be responsible for the here documented genetic and phenotypic diversity of P. hispanicus. The temporal pattern is in line with those proposed for other animal lineages. It suggests that geographic isolation and vicariance played an important role in the early diversification of the group, and that lineage diversification was further amplified through ecological divergence.
Collapse
Affiliation(s)
- Patrick S Fitze
- Department of Ecology and Evolution (DEE), Université de Lausanne, Biophore, Lausanne, CH-1015, Switzerland
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Calle José Gutierrez Abascal 2, Madrid, E-28006, Spain
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Regimiento de Galicia s/n, Jaca, E-22700, Spain
- Fundación Araid, Edificio Pignatelli, Paseo Maria Agustin 36, Zaragoza, E-50004, Spain
| | - Virginia Gonzalez-Jimena
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Calle José Gutierrez Abascal 2, Madrid, E-28006, Spain
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Regimiento de Galicia s/n, Jaca, E-22700, Spain
| | - Luis M San-Jose
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Calle José Gutierrez Abascal 2, Madrid, E-28006, Spain
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Regimiento de Galicia s/n, Jaca, E-22700, Spain
| | - Diego San Mauro
- Department of Zoology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Pedro Aragón
- Department of Ecology and Evolution (DEE), Université de Lausanne, Biophore, Lausanne, CH-1015, Switzerland
| | - Teresa Suarez
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas (CSIC), Calle Ramiro de Maetzu 9, Madrid, E-28040, Spain
| | - Rafael Zardoya
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Calle José Gutierrez Abascal 2, Madrid, E-28006, Spain
| |
Collapse
|
31
|
Bernatchez L, Tseng M. Evolutionary applications summer 2011. Evol Appl 2011; 4:617-20. [PMID: 25568009 PMCID: PMC3352538 DOI: 10.1111/j.1752-4571.2011.00205.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Louis Bernatchez
- Département de biologie, Université Laval Québec, QC, Canada e-mail:
| | - Michelle Tseng
- Department of Zoology, University of British Columbia Vancouver, BC, Canada e-mail:
| |
Collapse
|
32
|
Carvalho SB, Brito JC, Crespo EJ, Possingham HP. Incorporating evolutionary processes into conservation planning using species distribution data: a case study with the western Mediterranean herpetofauna. DIVERS DISTRIB 2011. [DOI: 10.1111/j.1472-4642.2011.00752.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
THOMASSEN HENRIA, CHEVIRON ZACHARYA, FREEDMAN ADAMH, HARRIGAN RYANJ, WAYNE ROBERTK, SMITH THOMASB. INVITED REVIEW: Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Mol Ecol 2010; 19:3532-48. [DOI: 10.1111/j.1365-294x.2010.04737.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|