1
|
Chen Q, Liu F, Zhang G, Qu Q, Chen Y, Li M, Huang Q, Fu H, Zhu X, He Y, Huang X, Zhang X. Progesterone regulates gut microbiota mediating bone marrow mesenchymal stem cell injury in immune thrombocytopenia patients during pregnancy. J Thromb Haemost 2025; 23:1428-1441. [PMID: 39756658 DOI: 10.1016/j.jtha.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Immune thrombocytopenia during pregnancy (PITP) is the most common cause of platelet reduction in early and mid-pregnancy. However, the pathogenesis of PITP is still unclear. OBJECTIVES To determine the characteristics of bone marrow mesenchymal stem cells (BM-MSCs) in PITP patients and to explore the associations between metabolites, the gut microbiota, and BM-MSCs in PITP. METHODS The characteristics of BM-MSCs were detected through in vitro and in vivo experiments. Nontargeted metabolomics was used to screen metabolites. The features of the gut microbiota were analyzed by 16S rDNA sequencing. PITP and fecal microbiota transplantation (FMT) mouse model were established to explore the associations between metabolites, gut microbiota, and BM-MSCs. RESULTS BM-MSCs from PITP patients had significant senescence and apoptosis, as well as impaired immunoregulatory function. Metabolomic analysis indicated that progesterone was the most significant specific metabolite in PITP patients. In vivo studies showed that progesterone mediated MSC injury. Further analysis of the gut microbiota and FMT experiments revealed that progesterone mediated BM-MSCs injury by regulating the composition of the gut microbiota in PITP. RNA sequencing analysis of BM-MSCs from FMT mice revealed abnormal expression of genes related to cell aging and the NOD-like receptor signaling pathway. CONCLUSION In conclusion, BM-MSCs in the PITP were significantly impaired, which was associated with increased progesterone and changes in the gut microbiota regulated by progesterone. Intervening with the gut microbiota may become a new treatment for PITP.
Collapse
Affiliation(s)
- Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Fengqi Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Gaochao Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qingyuan Qu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yuxiu Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Menglin Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qiusha Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Haixia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China.
| |
Collapse
|
2
|
Peng YH, Li CW, Wu KH, Li JP, Yang SF, Chao YH. Up-Regulated Expression of Thioredoxin-Interacting Protein (TXNIP) in Mesenchymal Stem Cells Associated with Severe Aplastic Anemia in Children. Int J Mol Sci 2024; 25:12298. [PMID: 39596362 PMCID: PMC11594798 DOI: 10.3390/ijms252212298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The pathogenic mechanisms of severe aplastic anemia (SAA) in children are not completely elucidated. The insufficiency of the bone marrow microenvironment, in which mesenchymal stem cells (MSCs) are an important element, can be a potential factor associated with hematopoietic impairment in SAA. In the present study, we compared bone marrow MSCs from five children with SAA and five controls. We found a higher intensity of senescence-associated β-galactosidase activity in SAA MSCs, indicating the increased senescence in these cells. Further RNA sequencing analysis identified a distinctive profile of transcriptomes in SAA MSCs. After conducting a survey of the differentially expressed genes, we found that the up-regulated expression of TXNIP may compromise the proliferative potential of MSCs and probably relate to the pathogenesis of SAA. These results were validated by qPCR. To explore the molecular mechanism involving aberrant TXNIP regulation in SAA MSCs, the expression levels of IGF-1 and IGFBP-1 were measured. A significant increase in IGFBP-1 expression was noted in SAA MSCs despite the wide range of IGF-1 expressions. Accordingly, we postulated a novel pathogenic mechanism of SAA: a compensated increase in the expression of IGF-1 in MSCs to down-regulate TXNIP expression in the face of SAA, which is offset by the up-regulated expression of IGFBP-1.
Collapse
Affiliation(s)
- Ying-Hsuan Peng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (Y.-H.P.); (K.-H.W.); (J.-P.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Chang-Wei Li
- Department of Research and Development, AllBio Life Incorporation, Taichung 402, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (Y.-H.P.); (K.-H.W.); (J.-P.L.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (Y.-H.P.); (K.-H.W.); (J.-P.L.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (Y.-H.P.); (K.-H.W.); (J.-P.L.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
3
|
Petinati NA, Sadovskaya AV, Sats NV, Kapranov NM, Davydova YO, Fastova EA, Magomedova AU, Vasilyeva AN, Aleshina OA, Arapidi GP, Shender VO, Smirnov IP, Pobeguts OV, Lagarkova MA, Drize NI, Parovichnikova EN. Molecular Changes in Immunological Characteristics of Bone Marrow Multipotent Mesenchymal Stromal Cells in Lymphoid Neoplasia. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:883-903. [PMID: 38880649 DOI: 10.1134/s0006297924050092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 06/18/2024]
Abstract
Immune system and bone marrow stromal cells play an important role in maintaining normal hematopoiesis. Lymphoid neoplasia disturbs not only development of immune cells, but other immune response mechanisms as well. Multipotent mesenchymal stromal cells (MSCs) of the bone marrow are involved in immune response regulation through both intercellular interactions and secretion of various cytokines. In hematological malignancies, the bone marrow stromal microenvironment, including MSCs, is altered. Aim of this study was to describe the differences of MSCs' immunological function in the patients with acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). In ALL, malignant cells arise from the early precursor cells localized in bone marrow, while in DLBCL they arise from more differentiated B-cells. In this study, only the DLBCL patients without bone marrow involvement were included. Growth parameters, surface marker expression, genes of interest expression, and secretion pattern of bone marrow MSCs from the patients with ALL and DLBCL at the onset of the disease and in remission were studied. MSCs from the healthy donors of corresponding ages were used as controls. It has been shown that concentration of MSCs in the bone marrow of the patients with ALL is reduced at the onset of the disease and is restored upon reaching remission; in the patients with DLBCL this parameter does not change. Proliferative capacity of MSCs did not change in the patients with ALL; however, the cells of the DLBCL patients both at the onset and in remission proliferated significantly faster than those from the donors. Expression of the membrane surface markers and expression of the genes important for differentiation, immunological status maintenance, and cytokine secretion differed significantly in the MSCs of the patients from those of the healthy donors and depended on nosology of the disease. Secretomes of the MSCs varied greatly; a number of proteins associated with immune response regulation, differentiation, and maintenance of hematopoietic stem cells were depleted in the secretomes of the cells from the patients. Lymphoid neoplasia leads to dramatic changes in the functional immunological status of MSCs.
Collapse
Affiliation(s)
- Nataliya A Petinati
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| | - Aleksandra V Sadovskaya
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia V Sats
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Nikolai M Kapranov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Yulia O Davydova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ekaterina A Fastova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Aminat U Magomedova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Anastasia N Vasilyeva
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Olga A Aleshina
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Georgiy P Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Viktoria O Shender
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Igor P Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga V Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Nina I Drize
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Elena N Parovichnikova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| |
Collapse
|
4
|
Mesenchymal Stem Cells in Acquired Aplastic Anemia: The Spectrum from Basic to Clinical Utility. Int J Mol Sci 2023; 24:ijms24054464. [PMID: 36901900 PMCID: PMC10003043 DOI: 10.3390/ijms24054464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Aplastic anemia (AA), a rare but potentially life-threatening disease, is a paradigm of bone marrow failure syndromes characterized by pancytopenia in the peripheral blood and hypocellularity in the bone marrow. The pathophysiology of acquired idiopathic AA is quite complex. Mesenchymal stem cells (MSCs), an important component of the bone marrow, are crucial in providing the specialized microenvironment for hematopoiesis. MSC dysfunction may result in an insufficient bone marrow and may be associated with the development of AA. In this comprehensive review, we summarized the current understanding about the involvement of MSCs in the pathogenesis of acquired idiopathic AA, along with the clinical application of MSCs for patients with the disease. The pathophysiology of AA, the major properties of MSCs, and results of MSC therapy in preclinical animal models of AA are also described. Several important issues regarding the clinical use of MSCs are discussed finally. With evolving knowledge from basic studies and clinical applications, we anticipate that more patients with the disease can benefit from the therapeutic effects of MSCs in the near future.
Collapse
|
5
|
Dorofeeva AI, Shipunova IN, Luchkin AV, Abramova AV, Fidarova ZT, Dvirnyk VN, Galtseva IV, Mikhailova EA, Parovichnikova EN. Differences in the Differentiation Potential and Relative Levels of Gene Expression in the Bone Marrow-Derived Fibroblast Colony-Forming Units in Patients during the Onset of Aplastic Anemia Depending on the Disease Severity. Bull Exp Biol Med 2023; 174:538-543. [PMID: 36899207 DOI: 10.1007/s10517-023-05744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/12/2023]
Abstract
The differentiation potential of individual clones of fibroblast CFU (CFU-F) was studied and the relative expression level of genes was analyzed in the culture of CFU-F from the bone marrow in patients with non-severe and severe forms of aplastic anemia at the onset of the disease. The differentiation potential of CFU-F clones was determined by the relative expression of marker genes using quantitative PCR. In aplastic anemia, the ratio of CFU-F clones with different differentiation potential changes, but the molecular mechanisms of this phenomenon are different in non-severe and severe aplastic anemia. In the culture of CFU-F in non-severe and severe aplastic anemia, the relative expression level of genes associated with the maintenance of the hematopoietic stem cell in the bone marrow niche changes, but the decrease in the expression of immunoregulatory genes occurs in severe form only, which may reflect differences in the pathogenesis of non-severe and severe aplastic anemia.
Collapse
Affiliation(s)
- A I Dorofeeva
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I N Shipunova
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A V Luchkin
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Abramova
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Z T Fidarova
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V N Dvirnyk
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Galtseva
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Mikhailova
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E N Parovichnikova
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
6
|
Srivastava J, Katiyar S, Chaturvedi CP, Nityanand S. Extracellular vesicles from bone marrow mesenchymal stromal cells of severe aplastic anemia patients attenuate hematopoietic functions of CD34 + hematopoietic stem and progenitor cells. Cell Biol Int 2022; 46:1970-1976. [PMID: 35998254 DOI: 10.1002/cbin.11885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/07/2022]
Abstract
Mesenchymal stromal cells (MSC) regulate hematopoiesis in the bone marrow (BM) niche and extracellular vesicles (EVs) released by BM-MSC are important mediators of the cross-talk between BM-MSC and hematopoietic stem and progenitor cells (HSPC). We have previously demonstrated that BM-MSC of severe aplastic anemia (SAA) patients have an altered expression of hematopoiesis regulatory molecules. In the present study, we observed that CD34+ HSPC when cocultured with BM-MSC EVs from aplastic anemia patients exhibited a significant reduction in colony-forming units (p = .001), cell proliferation (p = .002), and increased apoptosis (p > .001) when compared to coculture with BM-MSC EVs from controls. Collectively, our results highlight that EVs derived from the BM-MSC of SAA patients impair the hematopoiesis supporting function of HSPC.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology and Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shobhita Katiyar
- Department of Hematology and Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chandra P Chaturvedi
- Department of Hematology and Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Soniya Nityanand
- Department of Hematology and Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Deng S, Zeng Y, Xiang J, Lin S, Shen J. Icariin protects bone marrow mesenchymal stem cells in aplastic anemia by targeting MAPK pathway. Mol Biol Rep 2022; 49:8317-8324. [PMID: 35708859 DOI: 10.1007/s11033-022-07645-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Icariin, the main pharmacological active flavonoid extracted from Epimedi herba, can regulate cellular processes in diverse diseases. The aim of this study was to explore the effects and mechanisms of icariin on proliferation and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) in aplastic anemia (AA). METHODS AND RESULTS Bone marrow mesenchymal stem cells were isolated from posterior tibias and femurs of AA rats that were induced by benzene and cyclophosphamide and gavaged with icariin. The isolated BMSCs were characterized morphologically and immunologically by positive markers (CD29 and CD90) and negative markers (CD34 and CD45). CCK-8 assay was performed to examine the BMSCs proliferation. Cell apoptosis and cell cycle were detected by flow cytometry. Oil red O staining was carried out to evaluate the adipogenesis of BMSCs. The mRNA expression of PPARγ, C/EBP-α, and FABP4 was measured by qRT-PCR. The protein levels of p-p38/p38, p-JNK/JNK, p-ERK/ERK, PPARγ, C/EBP-α, and FABP4 were detected using Western blotting. Icariin promoted the proliferation of BMSCs from AA rats in a dose-dependent manner. The protein levels of p-p38/p38, p-JNK/JNK, and p-ERK/ERK were downregulated in BMSCs from AA rats after icariin treatment. Icariin inhibited the apoptosis and arrested cell cycle at G/S phase of BMSCs from AA rats. The adipogenesis of BMSCs from AA rats was also suppressed after icariin treatment. However, the effects of icariin on BMSCs were weakened by p38 agonist addition. CONCLUSIONS Icariin promoted the proliferation and inhibited the apoptosis and adipogenesis of BMSCs in AA by suppressing MAPK pathway.
Collapse
Affiliation(s)
- Shu Deng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, China
| | - Yuqing Zeng
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Jingjing Xiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, China
| | - Shengyun Lin
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, China.
| |
Collapse
|
8
|
Atmar K, Tulling AJ, Lankester AC, Bartels M, Smiers FJ, van der Burg M, Mohseny AB. Functional and Immune Modulatory Characteristics of Bone Marrow Mesenchymal Stromal Cells in Patients With Aplastic Anemia: A Systematic Review. Front Immunol 2022; 13:859668. [PMID: 35355996 PMCID: PMC8959635 DOI: 10.3389/fimmu.2022.859668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background In most patients with aplastic anemia (AA), the diagnosis is limited to a description of the symptoms. Lack of understanding of the underlying pathophysiological mechanisms causing bone marrow failure (BMF), hampers tailored treatment. In these patients, auto-immune cell-mediated destruction of the bone marrow is often presumed to be the causative mechanism. The status of the bone marrow microenvironment, particularly the mesenchymal stromal cell (MSC) component, was recently suggested as a potential player in the pathophysiology of AA. Therefore, functional, and immune modulatory characteristics of bone marrow MSCs might represent important parameters for AA. Objective To conduct a systematic review to evaluate in vitro functional properties of MSCs derived from patients with AA compared to healthy controls. Methods According to PRISMA guidelines, a comprehensive search strategy was performed by using online databases (Pubmed, ISI Web of Science, Embase, and the Cochrane Library). Studies reporting on phenotypical characterization, proliferation potential, differentiation capacity, immunomodulatory potential, and ability to support hematopoiesis were identified and screened using the Rayyan software tool. Results 23 articles were included in this systematic review, describing a total of 324 patients with AA and 285 controls. None of the studies identified a significant difference in expression of any MSC surface marker between both groups. However, AA-MSCs showed a decreased proliferation potential, an increased tendency to differentiate into the adipogenic lineage and decreased propensity towards osteogenic differentiation. Importantly, AA-MSCs show reduced capacity of immunosuppression and hematopoietic support in comparison to healthy controls. Conclusion We conclude that there are indications for a contribution of MSCs in the pathophysiology of AA. However, the current evidence is of poor quality and requires better defined study populations in addition to a more robust methodology to study MSC biology at a cellular and molecular level. Future studies on bone marrow microenvironment should aim at elucidating the interaction between MSCs, hematopoietic stem cells (HSCs) and immune cells to identify impairments associated with/causing BMF in patients with AA.
Collapse
Affiliation(s)
- Khaled Atmar
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Adam J Tulling
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C Lankester
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Frans J Smiers
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander B Mohseny
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Bone Marrow Multipotent Mesenchymal Stromal Cells from Patients with Aplastic Anemia Retain Their Ability to Support Hematopoietic Precursors despite Pronounced Changes in Gene Expression. Bull Exp Biol Med 2022; 172:637-641. [PMID: 35352257 DOI: 10.1007/s10517-022-05453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 10/18/2022]
Abstract
The properties of bone marrow-derived multipotent mesenchymal stromal cells (MSC) of patients with aplastic anemia at the onset of the disease are studied insufficiently. The aim of this work was to test the ability of MSC from patients with aplastic anemia to maintain hematopoietic precursors and to analyze the expression of genes associated with hematopoiesis and immune response. The ability of MSC to maintain hematopoietic precursors was determined by counting cobblestone area-forming cells; gene expression was analyzed by quantitative PCR. It was shown that MSC of patients with aplastic anemia preserve their ability to maintain hematopoietic precursors. Pronounced changes in the expression of the VEGFA and ANGPT1 genes were found. MSC from aplastic anemia patients with PNH clone significantly differ from those from aplastic anemia patients without PNH clone in terms of the expression of the SDF1, IL1R, and VEGFA genes. Changes in gene expression can be associated with the pathogenesis of the disease.
Collapse
|
10
|
Petinati NA, Bigildeev AE, Karpenko DS, Sats NV, Kapranov NM, Davydova YO, Fastova EA, Magomedova AU, Kravchenko SK, Arapidi GP, Rusanova MI, Lagarkova MM, Drize NI, Savchenko VG. Humoral Effect of a B-Cell Tumor on the Bone Marrow Multipotent Mesenchymal Stromal Cells. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:207-216. [PMID: 33832419 DOI: 10.1134/s0006297921020097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The properties of bone marrow (BM)-derived multipotent mesenchymal stromal cells (MSCs) are altered in the patients with the diffuse large B cell lymphoma (DLBCL) without BM involvement. It was suggested that plasma from the patients contains soluble factors that affect MSCs. Plasma and BM-derived MSCs from the DLBCL patients at the onset of the disease and one month after the end of treatment were studied. Concentration of the plasma cytokines and gene expression in the MSCs were evaluated by the Bio-Plex Pro Human Cytokine Panel kit to measure 27 analytes and real-time PCR. Plasma and MSCs from the healthy donors were used as controls. Analysis of cytokines in the plasma from healthy donors and patients before and one month after the end of treatment revealed significant differences in the concentration of 14 out of 27 cytokines. Correlations between the levels of secreted cytokines were altered in the plasma from patients indicating that the immune response regulation was disturbed. Cultivation of the MSCs from the healthy donors in the medium supplemented with the plasma from patients led to the changes in the MSC properties, similar to those observed in the MSCs from patients. The BM-derived MSCs were shown to participate in the humoral changes occurring in the DLBCL patients. For the first time, it was shown that the precursors of the stromal microenvironment - multipotent mesenchymal stromal cells - are altered in the patients with DLBCL without bone marrow involvement due to the humoral effect of the tumor and the response of organism to it. Comprehensive analysis of the results shows that, when remission is achieved in the patients with DLBCL, composition of the plasma cytokines normalizes, but does not reach the level observed in the healthy donors. The discovery of a new aspect of the effect of the tumor B-cells on the organism could help to reveal general regularities of the humoral effect of various tumors on the bone marrow stromal cells.
Collapse
Affiliation(s)
- Nataliya A Petinati
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia.
| | - Alexey E Bigildeev
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Dmitriy S Karpenko
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Natalia V Sats
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Nikolay M Kapranov
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Yulia O Davydova
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Ekaterina A Fastova
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Aminat U Magomedova
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Sergey K Kravchenko
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Georgiy P Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Maria I Rusanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria M Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Nina I Drize
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| | - Valeriy G Savchenko
- National Research Center for Hematology, Ministry of Health, Moscow, 125167, Russia
| |
Collapse
|
11
|
Ginsenoside Rg1 can restore hematopoietic function by inhibiting Bax translocation-mediated mitochondrial apoptosis in aplastic anemia. Sci Rep 2021; 11:12742. [PMID: 34140535 PMCID: PMC8211841 DOI: 10.1038/s41598-021-91471-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The present study investigated, the anti-apoptotic activity of Ginsenoside Rg1 (Rg1) via inhibition of Bax translocation and the subsequent recovery of hematopoietic function. Mitochondrial apoptosis in bone marrow mononuclear cells (BMNCs) was observed in aplastic anemia (AA) patients. To establish a mouse model of AA, BALB/c mice were transplanted with lymph node cells from DBA/2 donor mice via vein injection after treatment with Co60 γ-radiation. After treatment with Rg1 for 14 days, the peripheral blood and Lin–Sca-1 + c-Kit + (LSK) cell counts of the treated group were increased compared with those of the untreated model mice. In in vivo and in vitro tests of LSKs, Rg1 was found to increase mitochondrial number and the ratio of Bcl-2/Bax and to decrease damage to the mitochondrial inner and outer membranes, the mitochondrial Bax level and the protein levels of mitochondrial apoptosis-related proteins AIF and Cyt-C by decreasing the ROS level. Rg1 also improved the concentration–time curve of MAO and COX and levels of ATP, ADP and AMP in an in vitro test. In addition, high levels of Bax mitochondrial translocation could be corrected by Rg1 treatment. Levels of markers of mitochondrial apoptosis in the Rg1-treated group were significantly better than those in the AA model group, implying that Rg1 might improve hematopoietic stem cells and thereby restore hematopoietic function in AA by suppressing the mitochondrial apoptosis mediated by Bax translocation.
Collapse
|
12
|
Hossein-Khannazer N, Zian Z, Bakkach J, Kamali AN, Hosseinzadeh R, Anka AU, Yazdani R, Azizi G. Features and roles of T helper 22 cells in immunological diseases and malignancies. Scand J Immunol 2021; 93:e13030. [PMID: 33576072 DOI: 10.1111/sji.13030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
T helper 22 (Th22) cell populations are a newly identified subset of CD4+ T cells that primarily mediate biological effects on the epithelial barrier through interleukin (IL)-22. Although, new studies showed that both Th22 and IL-22 are closely associated with the pathogenesis of inflammatory, autoimmune and allergic disease as well as malignancies. In this review, we aim to describe the development and characteristics of Th22 cells as well as their roles in the immunopathogenesis of immune-related disorders and cancer.
Collapse
Affiliation(s)
- Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Joaira Bakkach
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co, Alborz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
13
|
Human Acquired Aplastic Anemia Patients' Bone-Marrow-Derived Mesenchymal Stem Cells Are Not Influenced by Hematopoietic Compartment and Maintain Stemness and Immune Properties. Anemia 2021; 2021:6678067. [PMID: 34012684 PMCID: PMC8105116 DOI: 10.1155/2021/6678067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Methods In the current study, we investigated the morphological differences, proliferation capacity, population doubling time (PDT), surface marker profiling, trilineage differentiation potential, and immunosuppressive ability of BM Mesenchymal Stem Cells (BM-MSCs) from untreated aAA patients and in the same number of age- and gender-matched controls. Results We observed similar morphology, proliferation capacity, phenotype, trilineage differentiation potential, and immunomodulatory properties of BM-MSCs in aAA patients and control subjects. Conclusion Our results confirm that the basic and immunosuppressive properties of BM-MSCs from aAA patients do not differ from normal BM-MSCs. Our data suggest that BM-MSCs from aAA patients might not be involved in disease pathogenesis. However, owing to a smaller number of samples, it is not conclusive, and future studies with more exhaustive investigation at transcriptome level are warranted.
Collapse
|
14
|
Scheinberg P. Acquired severe aplastic anaemia: how medical therapy evolved in the 20th and 21st centuries. Br J Haematol 2021; 194:954-969. [PMID: 33855695 DOI: 10.1111/bjh.17403] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
The progress in aplastic anaemia (AA) management is one of success. Once an obscure entity resulting in death in most affected can now be successfully treated with either haematopoietic stem cell transplantation (HSCT) or immunosuppressive therapy (IST). The mechanisms that underly the diminution of haematopoietic stem cells (HSCs) are now better elucidated, and include genetics and immunological alterations. Advances in supportive care with better antimicrobials, safer blood products and iron chelation have greatly impacted AA outcomes. Working somewhat 'mysteriously', anti-thymocyte globulin (ATG) forms the base for both HSCT and IST protocols. Efforts to augment immunosuppression potency have not, unfortunately, led to better outcomes. Stimulating HSCs, an often-sought approach, has not been effective historically. The thrombopoietin receptor agonists (Tpo-RA) have been effective in stimulating early HSCs in AA despite the high endogenous Tpo levels. Dosing, timing and best combinations with Tpo-RAs are being defined to improve HSCs expansion in AA with minimal added toxicity. The more comprehensive access and advances in HSCT and IST protocols are likely to benefit AA patients worldwide. The focus of this review will be on the medical treatment advances in AA.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Division of Haematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| |
Collapse
|
15
|
Li H, Xu X, Wang D, Zhang Y, Chen J, Li B, Su S, Wei L, You H, Fang Y, Wang Y, Liu Y. Hypermethylation-mediated downregulation of long non-coding RNA MEG3 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells and promotes pediatric aplastic anemia. Int Immunopharmacol 2021; 93:107292. [PMID: 33529912 DOI: 10.1016/j.intimp.2020.107292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The reduced osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is the typical characteristics of pediatric aplastic anemia (AA) pathogenesis. Long non-coding RNA MEG3 is reported to promote osteogenic differentiation of BMSCs via inducing BMP4 expression. OBJECTIVE This study aims to investigate the mechanism of DNMT1/MEG3/BMP4 pathway in osteogenic differentiation of BMSCs in pediatric AA. METHODS BMSCs were isolated and purified from bone marrows of pediatric AA patients (n = 5) and non-AA patients (n = 5). The expression of DNMT1, MEG3, and BMP4 in isolated BMSCs was detected using quantitative real-time PCR and western blot analysis. Osteogenic differentiation was determined using Alizarin red staining. The methylation of MEG3 promoter and the interaction between DNMT1 and MEG3 promoter were detected using methylation-specific PCR and chromatin immunoprecipitation assay, respectively. RESULTS Lowly expressed MEG3 and BMP4 and highly expressed DNMT1 were observed in BMSCs of pediatric AA patients. The overexpression of MEG3 promoted osteogenic differentiation of BMSCs. Luciferase reporter assay showed that MEG3 overexpression increased transcriptional activity of BMP4. The inhibitor of methylation, 5-azacytidine, suppressed DNMT1 expression and reduced methylation of MEG3 promoter. Overexpression of DNMT1 increased the binding between DNMT1 and MEG3 promoter. The simultaneous overexpression of DNMT1 and MEG3 restored the inhibition of osteogenic differentiation caused by DNMT1 overexpression alone. CONCLUSIONS Our findings indicated that DNMT1 mediated the hypermethylation of MEG3 promoter in BMSCs, and DNMT1/MEG3/BMP4 pathway modulated osteogenic differentiation of BMSCs in pediatric AA.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueju Xu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dao Wang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiao Chen
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bai Li
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shufang Su
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Linlin Wei
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongliang You
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingqi Fang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingchao Wang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yufeng Liu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Giudice V, Cardamone C, Triggiani M, Selleri C. Bone Marrow Failure Syndromes, Overlapping Diseases with a Common Cytokine Signature. Int J Mol Sci 2021; 22:ijms22020705. [PMID: 33445786 PMCID: PMC7828244 DOI: 10.3390/ijms22020705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Bone marrow failure (BMF) syndromes are a heterogenous group of non-malignant hematologic diseases characterized by single- or multi-lineage cytopenia(s) with either inherited or acquired pathogenesis. Aberrant T or B cells or innate immune responses are variously involved in the pathophysiology of BMF, and hematological improvement after standard immunosuppressive or anti-complement therapies is the main indirect evidence of the central role of the immune system in BMF development. As part of this immune derangement, pro-inflammatory cytokines play an important role in shaping the immune responses and in sustaining inflammation during marrow failure. In this review, we summarize current knowledge of cytokine signatures in BMF syndromes.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Chiara Cardamone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Internal Medicine and Clinical Immunology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Massimo Triggiani
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Internal Medicine and Clinical Immunology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672810
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
17
|
Huo J, Zhang L, Ren X, Li C, Li X, Dong P, Zheng X, Huang J, Shao Y, Ge M, Zhang J, Wang M, Nie N, Jin P, Zheng Y. Multifaceted characterization of the signatures and efficacy of mesenchymal stem/stromal cells in acquired aplastic anemia. Stem Cell Res Ther 2020; 11:59. [PMID: 32054519 PMCID: PMC7020384 DOI: 10.1186/s13287-020-1577-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/17/2019] [Accepted: 02/03/2020] [Indexed: 01/07/2023] Open
Abstract
Background Longitudinal studies have verified the pivotal role of mesenchymal stem/stromal cells (MSCs) in the bone marrow microenvironment for hematopoiesis and coordinate contribution to leukemia pathogenesis. However, the precise characteristics and alternation of MSCs during acquired aplastic anemia (AA) remain obscure. Methods In this study, we originally collected samples from both healthy donors (HD) and AA patients to dissect the hematological changes. To systematically evaluate the biological defects of AA-derived MSCs (AA-MSCs), we analyzed alterations in cellular morphology, immunophenotype, multi-lineage differentiation, cell migration, cellular apoptosis, and chromosome karyocyte, together with the immunosuppressive effect on the activation and differentiation of lymphocytes. With the aid of whole genome sequencing and bioinformatic analysis, we try to compare the differences between AA-MSCs and HD-derived MSCs (HD-MSCs) upon the molecular genetics, especially the immune-associated gene expression pattern. In addition, the efficacy of umbilical cord-derived MSC (UC-MSC) transplantation on AA mice was evaluated by utilizing survivorship curve, histologic sections, and blood cell analyses. Results In coincidence with the current reports, AA patients showed abnormal subsets of lymphocytes and higher contents of proinflammatory cytokines. Although with similar immunophenotype and chromosome karyotype to HD-MSCs, AA-MSCs showed distinguishable morphology and multiple distinct characteristics including genetic properties. In addition, the immunosuppressive effect on lymphocytes was significantly impaired in AA-MSCs. What is more, the cardinal symptoms of AA mice were largely rescued by systemic transplantation of UC-MSCs. Conclusions Herein, we systematically investigated the signatures and efficacy of MSCs to dissect the alterations occurred in AA both at the cellular and molecular levels. Different from HD-MSCs, AA-MSCs exhibited multifaceted defects in biological characteristics and alterative molecular genetics in the whole genome. Our findings have provided systematic and overwhelming new evidence for the defects of AA-MSCs, together with effectiveness assessments of UC-MSCs on AA as well.
Collapse
Affiliation(s)
- Jiali Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Leisheng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xiang Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Chengwen Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xingxin Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Peiyuan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xuan Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Jinbo Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yingqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Jing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Neng Nie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Peng Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
18
|
Li N, Liu L, Liu Y, Luo S, Song Y, Fang B. miR-144-3p Suppresses Osteogenic Differentiation of BMSCs from Patients with Aplastic Anemia through Repression of TET2. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:619-626. [PMID: 31945725 PMCID: PMC6965517 DOI: 10.1016/j.omtn.2019.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
Reduced osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs) has been causally linked to the development of aplastic anemia. In this work, we aimed to identify novel microRNAs (miRNAs) that participate in the regulation of differentiation of BMSCs from patients with aplastic anemia. We show that miR-144-3p is significantly upregulated in BMSCs from patients with aplastic anemia relative to control equivalents. Depletion of miR-144-3p significantly enhances osteogenic differentiation of BMSCs from patients with aplastic anemia after culturing in osteogenesis-inducing medium. Conversely, overexpression of miR-144-3p blocks osteogenic differentiation of BMSCs. Mechanistically, miR-144-3p negatively regulates the expression of ten-eleven translocation 2 (TET2) in BMSCs. Reduced TET2 expression is associated with a significant decrease in global 5-hydroxymethyl-cytosine (5hmC) levels and osteogenic gene expression. Knockdown of miR-144-3p elevates the expression of TET2 and total 5hmC levels in BMSCs. Silencing of TET2 inhibits the osteogenic differentiation of BMSCs. Overexpression of TET2 reverses miR-144-3p-mediated inhibition of osteogenesis. In addition, there is a significant negative correlation between the expression of miR-144-3p and TET2 in BMSCs from patients with aplastic anemia. Overall, miR-144-3p impairs the osteogenic capacity of BMSCs from patients with aplastic anemia through repression of TET2. Therefore, the targeting of miR-144-3p may be a therapeutic strategy against aplastic anemia.
Collapse
Affiliation(s)
- Ning Li
- Department of Oncology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lina Liu
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuzhang Liu
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Suxia Luo
- Department of Oncology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Baijun Fang
- Henan Institute of Haematology, Department of Hematology, Henan Cancer Hospital, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Zhang X, Liu L, Dou C, Cheng P, Liu L, Liu H, Ren S, Wang C, Jia S, Chen L, Zhang H, Chen M. PPAR Gamma-Regulated MicroRNA 199a-5p Underlies Bone Marrow Adiposity in Aplastic Anemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:678-687. [PMID: 31400610 PMCID: PMC6700432 DOI: 10.1016/j.omtn.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/02/2023]
Abstract
Increased propensity of bone marrow-derived mesenchymal stem cells (BM-MSCs) toward adipogenic differentiation has been implicated in the fatty bone marrow and defective hematopoiesis of aplastic anemia (AA). However, the underlying molecular mechanism remains to be investigated. In this study, we found that microRNA 199a-5p (miR-199a-5p) exhibits significantly higher expression in AA BM-MSCs compared with the normal control and is demonstrated to facilitate adipogenic differentiation of BM-MSCs through lentivirus-mediated miR-199a overexpression. Mechanistic investigation reveals that miR-199a-5p could be regulated by PPAR gamma (PPARγ) in a transcription-independent manner and regulates adipogenic differentiation by targeting the expression of transforming growth factor beta induced (TGFBI), which is subsequently validated as a negative regulator of adipogenesis. Besides, the positive correlation between PPARγ and miR-199a-5p expression as well as the inverse relationship between miR-199a-5p and TGFBI expression in normal and AA BM-MSCs was observed. Altogether, our work demonstrates that PPARγ-regulated miR-199a-5p promotes adipogenesis of BM-MSCs by inhibiting TGFBI expression, which might be a novel mechanism underlying the bone marrow adiposity in AA, and provides promising therapeutic targets for AA treatment.
Collapse
Affiliation(s)
- Xianning Zhang
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Lulu Liu
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Cuiyun Dou
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Haihui Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Cuiling Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Shu Jia
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China
| | - Lulu Chen
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China.
| | - Mingtai Chen
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong Province, China.
| |
Collapse
|
20
|
Fastova EA, Magomedova AU, Petinati NA, Sats NV, Kapranov NM, Davydova YO, Drize NI, Kravchenko SK, Savchenko VG. Bone Marrow Multipotent Mesenchymal Stromal Cells in Patients with Diffuse Large B-Cell Lymphoma. Bull Exp Biol Med 2019; 167:150-153. [PMID: 31183651 DOI: 10.1007/s10517-019-04480-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 02/08/2023]
Abstract
In diffuse large B-cell lymphoma, bone marrow involvement is rarely diagnosed. We compared the properties of bone marrow stromal progenitor cells and the concentration of fibroblast CFU in patients with diffuse large B-cell lymphoma without bone marrow involvement and in healthy donors. It was found that the properties of multipotent mesenchymal stromal cells in patients in the debut of the disease differed considerably from those in healthy donors. In particular, the total cell production in patients was significantly higher than in donors. In multipotent mesenchymal stromal cells of patients, some cell parameters were changes; the mean fluorescence intensity of the adhesion molecule ICAM1 on the cell surface was increased. The mean fluorescence intensity of mesenchymal stromal cell markers (HLA-ABC, CD73 and CD90) was significantly elevated. The relative expression of BMP4, MMP2, FGFR1, and ICAM1 genes in mesenchymal stromal cell was reduced, while the expression of FGFR2 gene was enhanced. Despite the absence of proven involvement of the bone marrow, the properties of mesenchymal stromal cells, the components in the stromal microenvironment niche regulating hemopoiesis are altered in patients with diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- E A Fastova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A U Magomedova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Petinati
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Sats
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N M Kapranov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu O Davydova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N I Drize
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S K Kravchenko
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Savchenko
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
21
|
Guo X, Tang Y, Zhang P, Li S, Chen Y, Qian B, Shen H, Zhao N. Effect of ectopic high expression of transcription factor OCT4 on the "stemness" characteristics of human bone marrow-derived mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:160. [PMID: 31159871 PMCID: PMC6547465 DOI: 10.1186/s13287-019-1263-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate the effect of ectopic high expression of OCT4 on the stemness characteristics of bone marrow-derived mesenchymal stromal cells (BM-MSCs). METHODS BM-MSCs were collected from three de novo acute lymphoblastic leukemia (ALL) and three aplastic anemia patients (AA), which were cultivated by the whole bone marrow adherent method. Surface markers of BM-MSCs were analyzed by flow cytometry (FCM); meanwhile, growth characteristics were observed with a phase contrast microscope, and population doubling time (PDT) was calculated. The optimal generation cells (P4) were used for the subsequent experiments. Recombinant plasmid pcDNA3.1-OCT4 was constructed and transferred into ALL MSCs by liposome transfection. The cells with stable and high expression of OCT4 were selected by G418 resistance screening and subcloning, of which the expression of OCT4 was verified by FCM, cellular immunofluorescence assay (CIFA), and RT-PCR. The expression of stemness-related transcription factors (TFs) (NANOG, SOX2) and the embryonic stem cell (ESC)-related surface markers (SSEA4, TRA-1-60, and TRA-1-81) were analyzed by FCM, RT-PCR, and CIFA. Embryonic body (EB) formation was performed with the above cells, and triembryonic differentiation marker genes were evaluated by RT-PCR. RESULTS The primary passage of AA MSCs grew more slowly and had longer PDT (16 days on average) than ALL MSCs (10 days on average). AA MSCs presented the same typical morphology and similar expression levels of specific mesenchymal markers as ALL MSCs, whereas the latter had a much better proliferative capacity in P4 cells (P < 0.05). Besides, the expression levels of surface markers in ALL MSCs were slightly higher than that in AA MSCs in P4, P7, and P10 cells (P < 0.05). Cell lines with stable and high expression of OCT4 were successfully established from ALL MSCs, which were confirmed by CIFA, FCM, and RT-PCR. Compared with untransfected parental MSCs, the mean expression levels of TFs in OCT4 overexpression MSCs were increased from 0.63 ± 0.37% to 39.39 ± 1.85% (NANOG) and from 14.34 ± 2.44% to 91.45 ± 4.56% (SOX2). The average expression levels of ESC surface markers were increased from 3.33 ± 2.35%, 1.59 ± 1.29%, and 1.46 ± 0.86% to 84.98 ± 9.2%, 57.28 ± 6.72%, and 75.88 ± 7.35% respectively for SSEA-4, TRA-1-60, and TRA-1-81, which were confirmed by CIFA analysis. Moreover, the OCT4 overexpression MSCs could form EBs ex vivo and express ectoderm (TUBB3, WNT1), mesoderm (Brachyury, TBX20), and endoderm (SPARC) genes. CONCLUSION Ectopic high expression of transcription factor OCT4 in BM-MSCs may drive them to grow as ESC-like cells with "stemness" characteristics. Single OCT4 transfection can upregulate the expression of other stemness-related transcription factors such as NANOG and SOX2.
Collapse
Affiliation(s)
- Xiaoping Guo
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Yongmin Tang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China.
| | - Ping Zhang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Sisi Li
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Yuanyuan Chen
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Baiqin Qian
- Division of Hematology-Oncology, Zhejiang Key Laboratory for Neonatal Diseases, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Hongqiang Shen
- Division of Hematology-Oncology, Zhejiang Key Laboratory for Neonatal Diseases, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Ning Zhao
- Division of Hematology-Oncology, Zhejiang Key Laboratory for Neonatal Diseases, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| |
Collapse
|
22
|
Effect of nutritional supplement on bone marrow-derived mesenchymal stem cells from aplastic anaemia. Br J Nutr 2019; 119:748-758. [PMID: 29569543 DOI: 10.1017/s0007114518000399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aplastic anaemia (AA) is characterised by pancytopenia resulting from a marked reduction in haemopoietic stem cells (HSC). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the bone marrow (BM) microenvironment, including BM-derived mesenchymal stromal cells (BMSC). The purpose of this study was to analyse the biological effect of nutritional supplement (NS), a dietary supplement consisting of thirty-six compounds: amino acids, nucleotides, vitamins and micronutrients on the BMSC of AA rats. The AA rat model was established by irradiating X-ray (2·5 Gy) and intraperitoneal injections of cyclophosphamide (35 mg/kg; Sigma) and chloramphenicol (35 mg/kg; Sigma). Then AA rats were fed with NS in a dose-dependent manner (2266·95, 1511·3, 1057·91 mg/kg d) by intragastric administration. The effect of NS on the BMSC of AA rats was analysed. As compared with AA rats, NS treatment significantly improved these peripheral blood parameters and stimulated the proliferation of total femoral nucleated cells. NS treatment affected proliferative behaviour of BMSC and suppressed BMSC differentiation to adipocytes. Furthermore, NS treatment of AA rats accelerated osteogenic differentiation of BMSC and enhanced bone mineral density. Co-incubation of HSC with mesenchymal stromal cells and serum from AA rats subjected to high-dose NS markedly improved the yield of CD34+cells. Protein microarray analysis revealed that there were eleven differentially expressed proteins in the NS group compared with the AA rat group. The identified specific NS might be implicated in rehabilitation of BMSC in AA rats, suggesting their potential of nutritional support in AA treatment.
Collapse
|
23
|
Medinger M, Drexler B, Lengerke C, Passweg J. Pathogenesis of Acquired Aplastic Anemia and the Role of the Bone Marrow Microenvironment. Front Oncol 2018; 8:587. [PMID: 30568919 PMCID: PMC6290278 DOI: 10.3389/fonc.2018.00587] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Aplastic anemia (AA) is characterized by bone marrow (BM) hypocellularity, resulting in peripheral cytopenias. An antigen-driven and likely auto-immune dysregulated T-cell homeostasis results in hematopoietic stem cell injury, which ultimately leads to the pathogenesis of the acquired form of this disease. Auto-immune and inflammatory processes further influence the disease course as well as response rate to therapy, mainly consisting of intensive immunosuppressive therapy and allogeneic hematopoietic cell transplantation. Bone marrow hematopoietic stem and progenitor cells are strongly regulated by the crosstalk with the surrounding microenvironment and its components like mesenchymal stromal cells, also consistently altered in AA. Whether latter is a contributing cause or rather consequence of the disease remains an open question. Overall, niche disruption may contribute to disease progression, sustain pancytopenia and promote clonal evolution. Here we review the existing knowledge on BM microenvironmental changes in acquired AA and discuss their relevance for the pathogenesis and therapy.
Collapse
Affiliation(s)
- Michael Medinger
- Division of Internal Medicine, Department of Medicine, University Hospital Basel, Basel, Switzerland.,Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Beatrice Drexler
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Claudia Lengerke
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Jakob Passweg
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
24
|
Liu L, Liu L, Liu H, Ren S, Dou C, Cheng P, Wang C, Wang L, Chen X, Zhang H, Chen M. Levamisole suppresses adipogenesis of aplastic anaemia-derived bone marrow mesenchymal stem cells through ZFP36L1-PPARGC1B axis. J Cell Mol Med 2018; 22:4496-4506. [PMID: 29993187 PMCID: PMC6111807 DOI: 10.1111/jcmm.13761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 11/26/2022] Open
Abstract
Aplastic anaemia (AA) is a life-threatening hematopoietic disorder characterized by hypoplasia and pancytopenia with increasing fat cells in the bone marrow (BM). The BM-derived mesenchymal stem cells (MSCs) from AA are more susceptible to be induced into adipogenic differentiation compared with that from control, which may be causatively associated with the fatty BM and defective hematopoiesis of AA. Here in this study, we first demonstrated that levamisole displayed a significant suppressive effect on the in vitro adipogenic differentiation of AA BM-MSCs. Mechanistic investigation revealed that levamisole could increase the expression of ZFP36L1 which was subsequently demonstrated to function as a negative regulator of adipogenic differentiation of AA BM-MSCs through lentivirus-mediated ZFP36L1 knock-down and overexpression assay. Peroxisome proliferator-activated receptor gamma coactivator 1 beta (PPARGC1B) whose 3'-untranslated region bears adenine-uridine-rich elements was verified as a direct downstream target of ZFP36L1, and knock-down of PPARGC1B impaired the adipogenesis of AA BM-MSCs. Collectively, our work demonstrated that ZFP36L1-mediated post-transcriptional control of PPARGC1B expression underlies the suppressive effect of levamisole on the adipogenic differentiation of AA BM-MSCs, which not only provides novel therapeutic targets for alleviating the BM fatty phenomenon of AA patients, but also lays the theoretical and experimental foundation for the clinical application of levamisole in AA therapy.
Collapse
Affiliation(s)
- Lu‐Lu Liu
- Central LaboratoryAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Lei Liu
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Hai‐Hui Liu
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
- Department of Graduate SchoolJining Medical UniversityJiningChina
| | - Sai‐Sai Ren
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Cui‐Yun Dou
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Pan‐Pan Cheng
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Cui‐Ling Wang
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Li‐Na Wang
- Central LaboratoryAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Xiao‐Li Chen
- Department of Graduate SchoolJining Medical UniversityJiningChina
| | - Hao Zhang
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Ming‐Tai Chen
- Central LaboratoryAffiliated Hospital of Jining Medical UniversityJiningChina
| |
Collapse
|
25
|
Schoettler ML, Nathan DG. The Pathophysiology of Acquired Aplastic Anemia: Current Concepts Revisited. Hematol Oncol Clin North Am 2018; 32:581-594. [PMID: 30047412 PMCID: PMC6538304 DOI: 10.1016/j.hoc.2018.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Idiopathic acquired aplastic anemia is a rare, life-threatening bone marrow failure syndrome characterized by cytopenias and hypocellular bone marrow. The pathophysiology is unknown; the most favored model is of a dysregulated immune system leading to autoreactive T-cell destruction of hematopoietic stem and progenitor cells in a genetically susceptible host. The authors review the literature and propose that the major driver of acquired aplastic anemia is a combination of hematopoietic stem and progenitor cells intrinsic defects and an inappropriately activated immune response in the setting of a viral infection. Alterations in bone marrow microenvironment may also contribute to the disease process.
Collapse
Affiliation(s)
- Michelle L Schoettler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215-5450, USA; Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - David G Nathan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215-5450, USA; Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Goulard M, Dosquet C, Bonnet D. Role of the microenvironment in myeloid malignancies. Cell Mol Life Sci 2018; 75:1377-1391. [PMID: 29222645 PMCID: PMC5852194 DOI: 10.1007/s00018-017-2725-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
The bone marrow microenvironment (BMM) regulates the fate of hematopoietic stem cells (HSCs) in homeostatic and pathologic conditions. In myeloid malignancies, new insights into the role of the BMM and its cellular and molecular actors in the progression of the diseases have started to emerge. In this review, we will focus on describing the major players of the HSC niche and the role of the altered niche function in myeloid malignancies, more specifically focusing on the mesenchymal stroma cell compartment.
Collapse
Affiliation(s)
- Marie Goulard
- INSERM, UMRS1131-Paris Diderot University, Saint Louis Hospital, Paris, France
| | - Christine Dosquet
- INSERM, UMRS1131-Paris Diderot University, Saint Louis Hospital, Paris, France
- Cell Biology Department, APHP, Saint Louis Hospital, Paris, France
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1, Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
27
|
Abstract
Bone marrow fat cells comprise the largest population of cells in the bone marrow cavity, a characteristic that has attracted the attention of scholars from different disciplines. The perception that bone marrow adipocytes are "inert space fillers" has been broken, and currently, bone marrow fat is unanimously considered to be the third largest fat depot, after subcutaneous fat and visceral fat. Bone marrow fat (BMF) acts as a metabolically active organ and plays an active role in energy storage, endocrine function, bone metabolism, and the bone metastasis of tumors. Bone marrow adipocytes (BMAs), as a component of the bone marrow microenvironment, influence hematopoiesis through direct contact with cells and the secretion of adipocyte-derived factors. They also influence the progression of hematologic diseases such as leukemia, multiple myeloma, and aplastic anemia, and may be a novel target when exploring treatments for related diseases in the future. Based on currently available data, this review describes the role of BMF in hematopoiesis as well as in the development of hematologic diseases.
Collapse
|
28
|
Lu S, Ge M, Zheng Y, Li J, Feng X, Feng S, Huang J, Feng Y, Yang D, Shi J, Chen F, Han Z. CD106 is a novel mediator of bone marrow mesenchymal stem cells via NF-κB in the bone marrow failure of acquired aplastic anemia. Stem Cell Res Ther 2017; 8:178. [PMID: 28764810 PMCID: PMC5540520 DOI: 10.1186/s13287-017-0620-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/14/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Acquired aplastic anemia (AA) is characterized by deficiency or dysfunction of the bone marrow (BM) microenvironment. However, little is known about the impairment of BM-derived mesenchymal stem cells (MSCs) in AA patients. METHODS We used Illumina HiSeqTM 2000 sequencing, quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry (FCM), and Western blotting to test the expression of CD106 gene (vascular cell adhesion molecule 1 (VCAM1)) and CD106 protein of BM-MSCs. Furthermore, we used hematoxylin and eosin (H&E) and histochemical staining analysis, immunofluorescence, and the formation of capillary-like structures to analyze capillary tube-like formation in vitro; we also used the Matrigel plug assay to test in vivo vasculogenesis, and an assay of colony forming units (CFUs) and colony-forming unit-megakaryocyte (CFU-MK) to detect the support function of MSCs in vitro. The in vivo engraftment of CD34+ cells and MSCs in NOD/SCID mice was tested by FACS and survival assay; the expression of NF-κB was tested by NanoPro analysis and immunofluorescence. NF-κB-regulated CD106 gene (VCAM1) was confirmed by tumor necrosis factor alpha (TNF-α)-stimulated and lipopolysaccharide (LPS)-stimulated MSCs, blockade assay, and immunofluorescence. RESULTS Here, we report that BM-MSCs from AA patients exhibited downregulation of the CD06 gene (VCAM1) and low expression of CD106 in vitro. Further analysis revealed that CD106+ MSCs from both AA patients and healthy controls had increased potential for in vitro capillary tube-like formation and in vivo vasculogenesis compared with CD106- MSCs, and the results were similar when healthy MSCs were compared with AA MSCs. CD106+ MSCs from both AA patients and healthy controls more strongly supported in vitro growth and in vivo engraftment of CD34+ cells in NOD/SCID mice than CD106- MSCs, and similar results were obtained when healthy MSCs and AA MSCs were compared. The expression of NF-κB was decreased in AA MSCs, and NF-κB regulated the CD106 gene (VCAM1) which supported hematopoiesis. CONCLUSIONS These results revealed the effect of CD106 and NF-κB in BM failure of AA.
Collapse
Affiliation(s)
- Shihong Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jianping Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.,Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jinbo Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Ying Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Fang Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| |
Collapse
|
29
|
Somasundaram V, Tevatia MS, Purohit A, Ahuja A, Mahapatra M, Tyagi S, Pati H, Saxena R. Evaluation of Bone Marrow Microvessel Density in Patients with Aplastic Anemia. Indian J Hematol Blood Transfus 2017; 33:169-174. [PMID: 28596646 PMCID: PMC5442054 DOI: 10.1007/s12288-016-0707-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/09/2016] [Indexed: 12/01/2022] Open
Abstract
Bone marrow microenvironment plays a crucial role in the growth of hemopoietic cells and bone marrow function, which in turn depends on an intact microvasculature. Our study assesses the microvessel density (MVD) in the bone marrow of aplastic anemia (AA) patients, compares with MVD of controls and MVD among the different types of AA. Bone marrow specimens from 60 patients with AA and 17 controls were studied. There were 33 patients with non severe AA (NSAA), 12 patients with severe AA (SAA) and 15 patients with very severe AA (VSAA). MVD was calculated on sections stained immunohistochemically for CD34. The mean bone marrow MVD in AA group was 1.28 ± 0.36, being significantly lower than that in control group (6.80 ± 1.59, p < 0.001). MVD of SAA and NSAA patients were 1.16 ± 0.35 and 1.49 ± 0.27, respectively, being significantly different (p = 0.003). MVD of VSAA was 0.93 ± 0.25 and the difference with NSAA is significant, however there was no significant difference between SAA and VSAA. Bone marrow MVD is low in AA patients and is likely to have a role in pathophysiology of bone marrow failure. Proangiogenic agents together with specific therapy might accelerate the recovery of hematopoiesis in AA patients.
Collapse
Affiliation(s)
| | - Manvir Singh Tevatia
- Brig Med, HQ Delhi Area, New Delhi, India
- Department of Pathology, Army College of Medical Sciences, Delhi Cantt., New Delhi, India
| | - Abhishek Purohit
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ankur Ahuja
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoranjan Mahapatra
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Tyagi
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Haraprasad Pati
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Renu Saxena
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Sobacchi C, Palagano E, Villa A, Menale C. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate. Front Bioeng Biotechnol 2017; 5:32. [PMID: 28567372 PMCID: PMC5434159 DOI: 10.3389/fbioe.2017.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Eleonora Palagano
- Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Ciro Menale
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| |
Collapse
|
31
|
Vascular and perivascular niches, but not the osteoblastic niche, are numerically restored following allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia. Int J Hematol 2017; 106:71-81. [PMID: 28303517 DOI: 10.1007/s12185-017-2217-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022]
Abstract
Bone marrow (BM) niches, including the osteoblastic, vascular, and perivascular niches, are numerically impaired in patients with aplastic anemia (AA). It remains unclear whether these niches are numerically restored in AA patients after allogenic hematopoietic stem cell transplantation (allo-HSCT). To investigate changes in BM niches, we monitored 52 patients with AA who had undergone allo-HSCT and performed immunohistochemical studies of BM niches using antibodies against CD34, CD146, and osteopontin. After allo-HSCT, patients with AA exhibited a remarkable increase in the number of cellular elements in the BM niches, including the vascular and perivascular cells. However, no significant differences in endosteal cells were detected. We explored the cause of this restoration by analyzing the origin of BM mesenchymal stem cells (BM-MSCs) and the expression of cytokines in BM plasma. STR-PCR revealed that the BM-MSCs were derived from the host, not the donor. In addition, significantly elevated levels of vascular endothelial growth factor (VEGF) were found after allo-HSCT. Our data indicates that vascular and perivascular niches are numerically restored, but the endosteal niche remains numerically impaired in patients with AA after allo-HSCT, and that levels of VEGF, but not donor-derived BM-MSCs, may correlate with the restoration of BM niches.
Collapse
|
32
|
Sorokina T, Shipounova I, Bigildeev A, Petinati N, Drize N, Turkina A, Chelysheva E, Shukhov O, Kuzmina L, Parovichnikova E, Savchenko V. The ability of multipotent mesenchymal stromal cells from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. Eur J Haematol 2016; 97:245-52. [PMID: 26643284 DOI: 10.1111/ejh.12713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. METHODS MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia. As a control, MSCs from 22 healthy donors were used. The incidence of cobblestone area forming cells (CAFC 7-8 d) in the bone marrow of healthy donor cultivated on the supportive layer of patients MSCs was measured. RESULTS The ability of MSCs from AML and ALL patients at the moment of diagnosis to maintain normal CAFC was significantly decreased when compared to donors. After chemotherapy, the restoration of ALL patients' MSCs functions was slower than that of AML. CML MSCs maintained CAFC better than donors' at the moment of diagnosis and this ability increased with treatment. CONCLUSIONS The ability of patients' MSCs to maintain normal hematopoietic progenitor cells was shown to change in comparison with MSCs from healthy donors and depended on nosology. During treatment, the functional capacity of patients' MSCs had been partially restored.
Collapse
Affiliation(s)
| | | | | | | | - Nina Drize
- National Research Center for Hematology, Moscow, Russia
| | - Anna Turkina
- National Research Center for Hematology, Moscow, Russia
| | | | - Oleg Shukhov
- National Research Center for Hematology, Moscow, Russia
| | | | | | | |
Collapse
|
33
|
Lu T, Liu Y, Li P, Yu S, Huang X, Ma D, Ji C. Decreased circulating Th22 and Th17 cells in patients with aplastic anemia. Clin Chim Acta 2015; 450:90-6. [PMID: 26238188 DOI: 10.1016/j.cca.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/08/2015] [Accepted: 07/30/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Aplastic anemia (AA) is an immune-mediated disorder and mainly related to active destruction of hematopoietic cells by effector T lymphocytes. T helper (Th) 22 cells characterized as a novel subset of CD4+ T cells participate in the pathogenesis of autoimmune and hematological diseases. However, the role of Th22 subset in AA remains unknown. METHODS 31 untreated AA patients and 30 healthy controls were included in this study. The percentages of Th22, Th17 and pure Th17 cells in peripheral blood were detected by flow cytometry. ELISA to measure interleukin (IL)-22 and IL-17A plasma levels and qRT-PCR for the mRNA levels of Th22 and Th17 related molecules were performed. RESULTS The proportions of Th22, pure Th17, Th17 cells and plasma levels of IL-22 were significantly lower in untreated AA patients than those in normal controls. A positive correlation was found between Th22 and pure Th17 cells in AA. Moreover, percentages of Th22 cells correlated positively with reticulocyte counts and percentages. In addition, STAT3/STAT5 mRNA expression ratio was elevated in AA patients. CONCLUSION Together, our results showed Th22 cells correlating with clinical characteristics of AA patients, indicating a possible role of Th22 immune response in the pathogenesis and therapeutic intervention of AA.
Collapse
Affiliation(s)
- Ting Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Yan Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Shuang Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Xiaoyang Huang
- Department of Paediatrics, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
34
|
Hamzic E, Whiting K, Gordon Smith E, Pettengell R. Characterization of bone marrow mesenchymal stromal cells in aplastic anaemia. Br J Haematol 2015; 169:804-13. [PMID: 25819548 DOI: 10.1111/bjh.13364] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022]
Abstract
In aplastic anaemia (AA), haemopoietic activity is significantly reduced and generally attributed to failure of haemopoietic stem cells (HSC) within the bone marrow (BM). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the BM microenvironment, including mesenchymal stromal cells (MSC). MSC involvement in the functional restriction of HSC in AA is largely unknown and therefore, the physical and functional properties of AA MSC were studied in vitro. MSC were characterized by their phenotype and ability to form adherent stromal layers. The functional properties of AA MSC were assessed through proliferative, clonogenic and cross-over culture assays. Results indicate that although AA MSC presented typical morphology and distinctive mesenchymal markers, stromal formation was reduced, with 50% of BM samples failing to produce adherent layers. Furthermore, their proliferative and clonogenic capacity was markedly decreased (P = 0·03 and P = 0·04 respectively) and the ability to sustain haemopoiesis was significantly reduced, as assessed by total cell proliferation (P = 0·032 and P = 0·019 at Week 5 and 6, respectively) and clonogenic potential of HSC (P = 0·02 at Week 6). It was concluded that the biological characteristics of AA MSC are different from those of control MSC and their in vitro haemopoiesis-supporting ability is significantly reduced.
Collapse
Affiliation(s)
- Edita Hamzic
- Department of Infection and Immunity, St George's University of London, London, UK.,Department of Life Sciences, Kingston University, Kingston upon Thames, UK
| | - Karen Whiting
- Department of Life Sciences, Kingston University, Kingston upon Thames, UK
| | - Edward Gordon Smith
- Department of Infection and Immunity, St George's University of London, London, UK
| | - Ruth Pettengell
- Department of Infection and Immunity, St George's University of London, London, UK
| |
Collapse
|
35
|
Bestach Y, Sieza Y, Attie M, Riccheri C, Verri V, Bolesina M, Bengió R, Larripa I, Belli C. Polymorphisms inTNFandIFNGare associated with clinical characteristics of aplastic anemia in Argentinean population. Leuk Lymphoma 2015; 56:1793-8. [DOI: 10.3109/10428194.2014.966707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Zhao J, Wang C, Song Y, Fang B. Arsenic trioxide and microRNA-204 display contrary effects on regulating adipogenic and osteogenic differentiation of mesenchymal stem cells in aplastic anemia. Acta Biochim Biophys Sin (Shanghai) 2014; 46:885-93. [PMID: 25187411 DOI: 10.1093/abbs/gmu082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Our previous studies have demonstrated that arsenic trioxide (ATO) had the clinical efficacy in treating patients with aplastic anemia (AA). However, the mechanisms remain to be elucidated. The important components of the bone marrow hematopoietic microenvironment, bone marrow mesenchymal stem cells (BMSCs), are often altered in AA patients. In this study, it was found that AA BMSCs were prone to be induced into adipocytes rather than osteoblasts. ATO treatment can at least partially restore the differentiation imbalance of AA BMSCs. We further identified miR-204 as a key regulator in AA BMSC differentiation. Luciferase reporter assay showed that miR-204 could directly bind to the 3'-untranslated region of Runx2 mRNA, a key transcription factor regulating osteogenesis. Moreover, adipogenic differentiation was promoted and osteogenic differentiation was inhibited in miR-204 over-expressed cells, whereas osteogenesis was enhanced and adipocyte formation was inhibited in cells that lost miR-204 function, which suggested its endogenous function. Together we showed that ATO could inhibit adipogenic differentiation, but promote osteogenic differentiation in AA BMSCs, providing a possible explanation for ATO clinical efficacy in AA patients. MiR-204 plays a key role in regulating BMSCs differentiation, and down-regulating miR-204 expression might be a novel strategy to treat AA.
Collapse
Affiliation(s)
- Junmei Zhao
- Henan Key Lab of Experimental Haematology, Henan Institute of Haematology, Henan Tumor Hospital affiliated to Zhengzhou University, Zhengzhou 450008, China
| | - Chao Wang
- Henan Key Lab of Experimental Haematology, Henan Institute of Haematology, Henan Tumor Hospital affiliated to Zhengzhou University, Zhengzhou 450008, China
| | - Yongping Song
- Henan Key Lab of Experimental Haematology, Henan Institute of Haematology, Henan Tumor Hospital affiliated to Zhengzhou University, Zhengzhou 450008, China
| | - Baijun Fang
- Henan Key Lab of Experimental Haematology, Henan Institute of Haematology, Henan Tumor Hospital affiliated to Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
37
|
Bueno C, Roldan M, Anguita E, Romero-Moya D, Martín-Antonio B, Rosu-Myles M, del Cañizo C, Campos F, García R, Gómez-Casares M, Fuster JL, Jurado M, Delgado M, Menendez P. Bone marrow mesenchymal stem cells from patients with aplastic anemia maintain functional and immune properties and do not contribute to the pathogenesis of the disease. Haematologica 2014; 99:1168-75. [PMID: 24727813 DOI: 10.3324/haematol.2014.103580] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition. Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvironment because of their immunomodulatory properties and their ability to support hematopoiesis, and they have been involved in the pathogenesis of several hematologic malignancies. We investigated whether bone marrow mesenchymal stem cells contribute, directly or indirectly, to the pathogenesis of aplastic anemia. We found that mesenchymal stem cell cultures can be established from the bone marrow of aplastic anemia patients and display the same phenotype and differentiation potential as their counterparts from normal bone marrow. Mesenchymal stem cells from aplastic anemia patients support the in vitro homeostasis and the in vivo repopulating function of CD34(+) cells, and maintain their immunosuppressive and anti-inflammatory properties. These data demonstrate that bone marrow mesenchymal stem cells from patients with aplastic anemia do not have impaired functional and immunological properties, suggesting that they do not contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Clara Bueno
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Mar Roldan
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Eduardo Anguita
- Servicio de Hematología, Hospital Clínico San Carlos, Madrid, Spain
| | - Damia Romero-Moya
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Beatriz Martín-Antonio
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Michael Rosu-Myles
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Consuelo del Cañizo
- Department of Hematology, University Hospital of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Francisco Campos
- Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico-Health Research Institute of Santiago de Compostela, Spain
| | - Regina García
- Servicio de Hematología, Hospital Clínico de Málaga, Málaga, Spain
| | - Maite Gómez-Casares
- Servicio de Hematología, Hospital Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Jose Luis Fuster
- Sección de Oncohematología Pediátrica, Hospital Virgen de Arrixaca, Murcia, Spain
| | - Manuel Jurado
- Servicio de Hematología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Faculty of Medicine, Barcelona, Spain Instituciò Catalana de Reserca i Estudis Avançats (ICREA), Barcellona, Spain
| |
Collapse
|
38
|
Jiang SY, Xie XT, Jiang H, Zhou JJ, Li FX, Cao P. Low expression of basic fibroblastic growth factor in mesenchymal stem cells and bone marrow of children with aplastic anemia. Pediatr Hematol Oncol 2014; 31:11-9. [PMID: 24308692 DOI: 10.3109/08880018.2013.792402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Our previous experiments with gene chip suggested that basic fibroblastic growth factor (FGF2) levels were lower in mesenchymal stem cell (MSC) from aplastic anemia patients. The purpose of this study was to determine the expression of FGF2 in MSC and in bone marrow of children with aplastic anemia to better understand the role of low FGF2 expression in the pathogenesis of aplastic anemia. PROCEDURE MSCs from the bone marrow of aplastic anemia children and control group were cultured in vitro. Growth curves of primary and passage MSC were plotted. FGF2 gene expression in MSCs was detected using quantitative real-time polymerase chain reaction (RT-PCR). FGF2 protein expression in mononuclear cells and FGF2 protein level in extracellular fluid of bone marrow were also investigated. RESULT Decreased growth of MSCs from aplastic anemia children was observed after passage 8 in serial subcultivation, and FGF2 gene expression was downregulated. Within the patients' bone marrow, low FGF2 expression was validated both in mononuclear cells and in the extracellular fluid. CONCLUSION Low FGF2 gene expression in MSCs and low FGF2 protein level in bone marrow of aplastic anemia may involve to pathogenesis of aplastic anemia.
Collapse
Affiliation(s)
- Sha yi Jiang
- Department of Hematology, Children's Hospital of Shanghai, Shanghai Jiao Tong University , Shanghai , China
| | | | | | | | | | | |
Collapse
|
39
|
Mesenchymal stem cells in immune-mediated bone marrow failure syndromes. Clin Dev Immunol 2013; 2013:265608. [PMID: 24386000 PMCID: PMC3872391 DOI: 10.1155/2013/265608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Immune-mediated bone marrow failure syndromes (BMFS) are characterized by ineffective marrow haemopoiesis and subsequent peripheral cytopenias. Ineffective haemopoiesis is the result of a complex marrow deregulation including genetic, epigenetic, and immune-mediated alterations in haemopoietic stem/progenitor cells, as well as abnormal haemopoietic-to-stromal cell interactions, with abnormal release of haemopoietic growth factors, chemokines, and inhibitors. Mesenchymal stem/stromal cells (MSCs) and their progeny (i.e., osteoblasts, adipocytes, and reticular cells) are considered as key cellular components of the bone marrow haemopoietic niche. MSCs may interfere with haemopoietic as well as immune regulation. Evidence suggests that bone marrow MSCs may be involved in immune-mediated BMFS underlying pathophysiology, harboring either native abnormalities and/or secondary defects, caused by exposure to activated marrow components. This review summarizes previous as well as more recent information related to the biologic/functional characteristics of bone marrow MSCs in myelodysplastic syndromes, acquired aplastic anemia, and chronic idiopathic neutropenia.
Collapse
|
40
|
Du HZ, Wang Q, Ji J, Shen BM, Wei SC, Liu LJ, Ding J, Ma DX, Wang W, Peng J, Hou M. Expression of IL-27, Th1 and Th17 in patients with aplastic anemia. J Clin Immunol 2012; 33:436-45. [PMID: 23054344 DOI: 10.1007/s10875-012-9810-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/24/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aplastic anemia (AA) is an autoimmune disease and interleukin-27 (IL-27) is an important cytokine involved in the pathogenesis of autoimmune diseases. To date there have been no reports concerning the intrinsic association among IL-27 and Thelper (Th) 1 and Th17 cells in AA. MATERIALS AND METHODS Enzyme-linked immunosorbent assay (ELISA) to assay IL-27, interferon gamma (IFN-γ) and IL-17 levels, flow cytometry to measure the percentages of Th1 and Th17 cells among peripheral blood mononuclear cells (PBMCs), real-time reverse transcriptase polymerase chain reaction (PCR) for the mRNA levels of IL-27, IFN-γ, T-bet and IL-17 and retinoid related orphan receptor gamma (RORγt) in PBMCs were performed. In addition, the effect of exogenous rhIL-27 on the differentiation of T cells into Th1 and Th17 cells was investigated in vitro. RESULTS Plasma and mRNA levels of IL-27 in PBMCs from AA patients were significantly higher than those in healthy controls. A positive correlation was found between plasma levels of IL27 and IFN-γ. The proportions of Th1 and Th17 cells accompanied by the mRNA expression of RORγt and T-bet were significantly higher in AA patients than in healthy controls. Plasma levels of IL-27 correlated positively with frequencies of Th1 cells in AA patients. Exogenous rhIL-27 could significantly upregulate the frequency of Th1 cells and the mRNA levels of T-bet and IFN-γ and the application of rhIL-27 in vitro could inhibit the expression of RORγt mRNA. CONCLUSION The upregulation of IL-27 might cause Th1 differentiation and immune disorders in AA patients. Blocking the expression of IL-27 could therefore be a reasonable therapeutic strategy for AA.
Collapse
Affiliation(s)
- Hui-zhen Du
- Laiwu Central Hospital of Xinwen Mining Industry Group, Laiwu, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yin LM, Jiang HF, Wang X, Qian XD, Gao RL, Lin XJ, Chen XH, Wang LC. Effects of sodium copper chlorophyllin on mesenchymal stem cell function in aplastic anemia mice. Chin J Integr Med 2012; 19:360-6. [PMID: 23001462 DOI: 10.1007/s11655-012-1210-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the effects of sodium copper chlorophyllin (SCC) on the proliferation, differentiation and immunomodulatory function of mesenchymal stem cells (MSCs) from mice with aplastic anemia. METHODS A mouse model of aplastic anemia was established by exposure of BALB/c mice to sublethal doses of 5.0 Gy Co60 γ radiation, followed by transplantation of 2×10(6) lymph node cells from DBA/2 donor mice within 4 h after radiation. Aplastic anemic BALB/c mice were randomly divided into six groups: the treated groups, which received 25, 50, or 100 mg/kg/day SCC, respectively; a positive control group treated with cyclosporine A (CsA); and an untreated model control group (model group); while, the non-irradiated mice as the normal control group. SCC or CsA were administered by gastrogavage for 20 days, starting on day 4 after irradiation. Peripheral blood cells were counted and colony-forming fibroblasts (CFU-F) in the bone marrow were assayed. The ability of MSCs to form calcium nodes after culture in osteoinductive medium was also observed. The immunosuppressive effect of MSCs on T lymphocytes was analyzed by enzyme-linked immunosorbent assay and flow cytometry, to evaluate the efficacy of SCC in mice with aplastic anemia. RESULTS Peripheral blood white cell and platelet counts were increased by medium and high SCC doses, compared with the untreated control. CFU-Fs were also increased compared with the untreated control, and the numbers of calcium nodes in MSCs in osteoinductive medium were elevated in response to SCC treatment. The percentage of Forkhead box protein 3 (FOXP3(+)) T cells was increased in T cell-MSC cocultures, and the cytokine transforming growth factor β1 was up-regulated in SCC-treated groups. CONCLUSION The results of this study suggest that SCC not only promotes the proliferation and differentiation of MSCs, but also improves their immunoregulatory capacity in mice with aplastic anemia.
Collapse
Affiliation(s)
- Li-Ming Yin
- Research Institute of Hematopathy, the First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Petinati NA, Shipunova IN, Bigildeyev AE, Kuz'mina LA, Momotyuk KS, Parovichnikova EN, Drize NI, Savchenko VG. Analysis of expression of genes involved in immune response modulation in silent multipotent mesenchymal stromal cells. Bull Exp Biol Med 2012; 153:244-8. [PMID: 22816094 DOI: 10.1007/s10517-012-1687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression of some genes modulating the immune response was studied in multipotent mesenchymal stromal cells (MMSC) from the bone marrow of a healthy donor. Non-activated MMSC expressed IL-6 and IL-10, complement H factor, macrophage growth factor, prostaglandin E2 synthase, and indoleamine-2,3-dioxygenase. The expression of all these genes was higher in female MMSC. A close inverse relationship between IL-6 expression in MMSC and male donor age, close relationship between body weight index and fibroblast CFU concentration in female donor bone marrow and between indoleamine-2,3-dioxygenase and macrophage growth factor in MMSC from these donors were detected. The expression of the analyzed genes was higher in MMSC of donors who had no antibodies to cytomegalovirus, herpes simplex virus, and Epstein-Barr virus in the blood. The results demonstrate the MMSC regulation of immune reactions by MMSC at the cell and organism levels.
Collapse
Affiliation(s)
- N A Petinati
- Hematology Research Center, the Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu Y, Chen XH, Si YJ, Li ZJ, Gao L, Gao L, Zhang C, Zhang X. Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells. PLoS One 2012; 7:e31741. [PMID: 22384064 PMCID: PMC3285638 DOI: 10.1371/journal.pone.0031741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/12/2012] [Indexed: 01/13/2023] Open
Abstract
The hematopoietic inductive microenvironment (HIM) is where hematopoietic stem/progenitor cells grow and develop. Hematopoietic stromal cells were the key components of the HIM. In our previous study, we had successfully cultured and isolated human cord blood–derived stromal cells (HUCBSCs) and demonstrated that they could secret hemopoietic growth factors such as GM-CSF, TPO, and SCF. However, it is still controversial whether HUCBSCs can be used for reconstruction of HIM. In this study, we first established a co-culture system of HUCBSCs and cord blood CD34+ cells and then determined that using HUCBSCs as the adherent layer had significantly more newly formed colonies of each hematopoietic lineage than the control group, indicating that HUCBSCs had the ability to promote the proliferation of hematopoietic stem cells/progenitor cells. Furthermore, the number of colonies was significantly higher in vascular cell adhesion molecule-1 (VCAM-1)-modified HUCBSCs, suggesting that the ability of HUCBSCs in promoting the proliferation of hematopoietic stem cells/progenitor cells was further enhanced after having been modified with VCAM-1. Next, HUCBSCs were infused into a radiation-damaged animal model, in which the recovery of hematopoiesis was observed. The results demonstrate that the transplanted HUCBSCs were “homed in” to bone marrow and played roles in promoting the recovery of irradiation-induced hematopoietic damage and repairing HIM. Compared with the control group, the HUCBSC group had significantly superior effectiveness in terms of the recovery time for hemogram and myelogram, CFU-F, CFU-GM, BFU-E, and CFU-Meg. Such differences were even more significant in VCAM-1-modified HUCBSCs group. We suggest that HUCBSCs are able to restore the functions of HIM and promote the recovery of radiation-induced hematopoietic damage. VCAM-1 plays an important role in supporting the repair of HIM damage.
Collapse
Affiliation(s)
- Yao Liu
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xing-hua Chen
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Ying-jian Si
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
- Department of Pediatric Hematology/Oncology, BaYi Children's Hospital, The Military General Hospital of Beijing, Beijing, China
| | - Zhong-jun Li
- Department of Blood Transfusion, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Cheng Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|