1
|
Lei K, Chen Y, Wu J, Lin Y, Bai Y, Cao H, Che Q, Guo J, Su Z. Mechanism of liver x receptor alpha in intestine, liver and adipose tissues in metabolic associated fatty liver disease. Int J Biol Macromol 2025; 307:142275. [PMID: 40112983 DOI: 10.1016/j.ijbiomac.2025.142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Metabolism associated fatty liver disease (MAFLD) has emerged as a growing global health challenge with limited effective treatments. Research on nuclear receptors offers promising new therapeutic avenues for MAFLD. The liver X receptor (LXR) has gained attention for its roles in tumors and metabolic and inflammatory diseases; However, its effects on MAFLD treatment remain a subject of debate. This review explores the therapeutic role of LXRα in MAFLD, focusing on its functions in the intestine, hepatic and adipose tissue, and summarizes recent advancements in LXRα ligands over the past five years. In the intestine, LXRα activation enhances the efflux of non-biliary cholesterol and reduces inflammation in the gut-liver axis by regulating intestinal high-density lipoprotein synthesis and its interaction with lipopolysaccharide. In the liver, LXRα activation facilitates cholesterol transport, influences hepatic lipid synthesis, and exerts anti-inflammatory effects. In adipose tissue, LXRα helps delay MAFLD progression by managing lipid autophagy and insulin resistance. Ligands that modulate LXRα transcriptional activity show considerable promise for MAFLD treatment.
Collapse
Affiliation(s)
- Kaiwen Lei
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianxing Wu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiyu Lin
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
ABD MUID SUHAILA, AWANG JALIL REMEE, HARUN NOORHANISA, MOHD NAWAWI HAPIZAH, RUTH FROEMMING GABRIELEANISAH. HDL AND ITS SUBPOPULATION (HDL2 AND HDL3) PROMOTE CHOLESTEROL TRANSPORTERS EXPRESSION AND ATTENUATES INFLAMMATION IN 3T3-L1 MATURE ADIPOCYTES INDUCED BY TUMOR NECROSIS FACTOR ALPHA. MALAYSIAN APPLIED BIOLOGY 2022; 51:153-167. [DOI: 10.55230/mabjournal.v51i4.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Obesity activates inflammation causing dysfunction of adipocytes. Increasing high-density lipoprotein (HDL) levels in obesity may be beneficial in overcoming this effect. However, not much data is available on the effects of HDL and its subpopulations in inflamed adipocytes. The objective of this study was to investigate the effects of total HDL (tHDL) and the comparison between its subpopulations (HDL2 & HDL3) on protein and gene expression of cholesterol transporters, inflammation, and adipokines in TNF-α stimulated 3T3-L1 mature adipocytes. TNFα alone had lower adiponectin and higher protein and gene expression of IL-6 and NF-ĸβ (p65) compared to unstimulated adipocytes and these effects were attenuated by HDLs especially HDL3 (in most of the biomarkers). HDL and its subpopulation had higher cholesterol transporters expression in 3T3-L1 mature adipocytes induced by TNF-α compared to unstimulated cells. Increment of cholesterol transporters expression by HDL leads to reduce secretion of inflammatory markers [IL-6 & NF-kB (p65)] and visfatin and increases adiponectin secretion in the inflamed mature adipocytes. HDL exhibits beyond its reverse cholesterol transporter property by exhibiting anti-inflammatory effects thru the deactivation of NF-ĸβ (p65). This may contribute to reducing the progression of obesity-related complications.
Collapse
|
3
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
4
|
Cao K, Zhang K, Ma M, Ma J, Tian J, Jin Y. Lactobacillus mediates the expression of NPC1L1, CYP7A1, and ABCG5 genes to regulate cholesterol. Food Sci Nutr 2021; 9:6882-6891. [PMID: 34925816 PMCID: PMC8645708 DOI: 10.1002/fsn3.2600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/09/2023] Open
Abstract
Hypercholesterolemia is the main cause of cardiovascular disease worldwide, and the regulation of cholesterol homeostasis is essential for human health. Lactobacillus is present in large quantities in the human intestine. As the normal flora in the gut, lactobacillus plays an important role in regulating metabolism in the human body. Lactobacillus can regulate the cholesterol content by regulating the expression of genes involved in cholesterol synthesis, metabolism, and absorption. This article reviews the biological effects and mechanisms of lactobacillus that mediate the expression of NPC1L1, CYP7A1, ABCG5, ABCG8, and other genes to inhibit cholesterol absorption, and discusses the mechanism of reducing cholesterol by lactobacillus in cells in vitro, to provide a theoretical basis for the development and utilization of lactobacillus resources.
Collapse
Affiliation(s)
- Kaihui Cao
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Kaiping Zhang
- Department of Cooking & Food ProcessingInner Mongolia Business and Trade Vocational CollegeHohhotChina
| | - Muran Ma
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Junjie Ma
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Jianjun Tian
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Ye Jin
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
5
|
Wang Q, Dwivedi Y. Advances in novel molecular targets for antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110041. [PMID: 32682872 PMCID: PMC7484229 DOI: 10.1016/j.pnpbp.2020.110041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
Depression is the most common psychiatric illness affecting numerous people world-wide. The currently available antidepressant treatment presents low response and remission rates. Thus, new effective antidepressants need to be developed or discovered. Aiming to give an overview of novel possible antidepressant drug targets, we summarized the molecular targets of antidepressants and the underlying neurobiology of depression. We have also addressed the multidimensional perspectives on the progress in the psychopharmacological treatment of depression and on the new potential approaches with effective drug discovery.
Collapse
Affiliation(s)
- Qingzhong Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Kasbi Chadli F, Treguier M, Briand F, Sulpice T, Ouguerram K. Ezetimibe Enhances Macrophage-to-Feces Reverse Cholesterol Transport in Golden Syrian Hamsters Fed a High-Cholesterol Diet. J Pharmacol Exp Ther 2020; 375:349-356. [PMID: 32873624 DOI: 10.1124/jpet.120.000062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work was to evaluate reverse cholesterol transport (RCT) in hamster, animal model expressing CETP under a high cholesterol diet (HF) supplemented with Ezetimibe using primary labelled macrophages. We studied three groups of hamsters (n=8/group) for 4 weeks: 1) chow diet group: Chow, 2) High cholesterol diet group: HF and 3) HF group supplemented with 0.01% of ezetimibe: HF+0.01%Ezet. Following intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages, we measured the in vivo macrophage-to-feces RCT. .HF group exhibited an increase of triglycerides (TG), cholesterol, glucose in plasma and higher TG and cholesterol content in liver (p<0.01) compared to Chow group. Ezetimibe induced a significant decrease in plasma cholesterol with a lower LDL and VLDL cholesterol (p<0.001) and in liver cholesterol (p<0.001) and TG (p<0.01) content compared to HF. In vivo RCT essay showed an increase of tracer level in plasma and liver (p<0.05) but not in feces in HF compared to Chow group. The amount of labelled total sterol and cholesterol in liver and feces was significantly reduced (p<0.05) and increased (p=0.05) respectively with Ezetimibe treatment. No significant increase was obtained for labelled feces bile acids in HF+0.01%Ezet compared to HF. Ezetimibe decreased SCD1 gene expression and increased SR-B1 (p<0.05) in liver but did not affect NPC1L1 nor ABCG5 and ABCG8 expression in jejunum. In conclusion, ezetimibe exhibited an atheroprotective effect by enhancing RCT in hamster and decreasing LDL cholesterol. Ours findings showed also a hepatoprotective effect of ezetimibe by decreasing hepatic fat content. Significance Statement This work was assessed to determine the effect of ezetimibe treatment on high cholesterol diet induced disturbances and especially the effect on reverse cholesterol transport in animal model with CETP activity and using labelled primary hamster macrophages. We were able to demonstrate that ezetimibe exhibited an atheroprotective effect by enhancing RCT and by decreasing LDL cholesterol in hamster. We showed also a hepatoprotective effect of ezetimibe by decreasing hepatic fat content.
Collapse
Affiliation(s)
| | - Morgan Treguier
- 1 INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hotel-Dieu, F-44 000 Nantes, France;, France
| | | | | | | |
Collapse
|
7
|
Srivastava RAK, Cefalu AB, Srivastava NS, Averna M. NPC1L1 and ABCG5/8 induction explain synergistic fecal cholesterol excretion in ob/ob mice co-treated with PPAR-α and LXR agonists. Mol Cell Biochem 2020; 473:247-262. [DOI: 10.1007/s11010-020-03826-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|
8
|
Xia B, Lin P, Ji Y, Yin J, Wang J, Yang X, Li T, Yang Z, Li F, Guo S. Ezetimibe promotes CYP7A1 and modulates PPARs as a compensatory mechanism in LDL receptor-deficient hamsters. Lipids Health Dis 2020; 19:24. [PMID: 32035489 PMCID: PMC7007651 DOI: 10.1186/s12944-020-1202-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background The LDL-C lowering effect of ezetimibe has been attributed primarily to increased catabolism of LDL-C via up-regulation of LDL receptor (LDLR) and decreased cholesterol absorption. Recently, ezetimibe has been demonstrated to have reverse cholesterol transport (RCT) promoting effects in mice, hamsters and humans. However, the underlying mechanisms are still not clear. The aim of this study is to investigate whether ezetimibe improves RCT-related protein expression in LDLR−/− hamsters. Methods A high-fat diet was used to induce a human-like hyperlipidemia in LDLR−/− hamsters. Lipid profiles were assayed by commercially available kits, and the effects of ezetimibe on lipid metabolism-related protein expression were carried out via western blot. Results Our data demonstrated that ezetimibe administration significantly reduced plasma total cholesterol (~ 51.6% reduction, P < 0.01) and triglyceride (from ~ 884.1 mg/dL to ~ 277.3 mg/dL) levels in LDLR−/− hamsters fed a high-fat diet. Ezetimibe administration (25 mg/kg/d) significantly promoted the protein expression of cholesterol 7 alpha-hydroxylase A1 (CYP7A1), LXRβ and peroxisome proliferator-activated receptor (PPAR) γ; and down-regulated the protein expression of PPARα and PPARβ. However, it showed no significant effect on sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, proprotein convertase subtilisin/kexin type 9 (PCSK9), Niemann-Pick C1-like 1 (NPC1L1), and ATP-biding cassette (ABC) G5/G8. Conclusion Ezetimibe may accelerate the transformation from cholesterol to bile acid via promoting CYP7A1 and thereby enhance RCT. As a compensatory mechanism of TG lowering, ezetimibe promoted the protein expression of PPARγ and decreased PPARα and β. These results are helpful in explaining the lipid-lowering effects of ezetimibe and the potential compensatory mechanisms.
Collapse
Affiliation(s)
- Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Yubin Ji
- College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Jiayu Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Jin Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Xiaoqian Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Ting Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Zixun Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Fahui Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.
| | - Shoudong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China. .,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China.
| |
Collapse
|
9
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Tano K, Suematsu Y, Tashiro K, Kumagai-Koyanagi N, Matsuo Y, Kuwano T, Miura SI. Ezetimibe Monotherapy Reduces Serum Levels of Platelet-Activating Factor Acetylhydrolase in Patients With Dyslipidemia. J Clin Med Res 2019; 11:676-681. [PMID: 31636781 PMCID: PMC6785278 DOI: 10.14740/jocmr3901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/20/2019] [Indexed: 11/11/2022] Open
Abstract
Background The combination of ezetimibe with statin therapy reduced cardiovascular events compared to statin monotherapy in IMPROVEIT study, and ezetimibe monotherapy attenuated atherosclerosis in basic study. We previously showed ezetimibe monotherapy was especially effective for metabolic syndrome (MetS) patients. We investigated the effects of ezetimibe monotherapy for high-density lipoprotein cholesterol (HDL-chol) function and platelet-activating factor acetylhydrolase (PAF-AH) activity. Methods Forty-two patients who initially received ezetimibe (10 mg/day) without statin treatment for 16 weeks from January 2009 to August 2011 were enrolled. Patients were divided into MetS and non-MetS groups, and serum levels of lipids, PAF-AH, and HDL-chol efflux capacity (HDL-CEC) at baseline and after 16 weeks of treatment were investigated. Serum PAF-AH, HDL-associated PAF-AH (HDL-PAF-AH), and LDL-associated PAF-AH (LDL-PAF-AH) were measured. Results In all patients, age, the percentages of males, and body mass index were 61.0 ± 8.8 years, 59.5% and 26.3 ± 3.4 kg/m2, respectively. Total cholesterol and low-density lipoprotein cholesterol (LDL-chol) were significantly decreased by ezetimibe monotherapy. Serum PAF-AH and LDL-PAF-AH were significantly decreased by ezetimibe monotherapy, whereas HDL-PAF-AH and HDL-CEC were not. There was no difference in the results of PAF-AH and HDL-CEC between MetS and non-MetS groups. Conclusions Ezetimibe monotherapy might prevent coronary heart disease (CHD) regardless of the presence of MetS, because PAF-AH was independent risk factor for CHD.
Collapse
Affiliation(s)
- Kanako Tano
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.,These authors contributed equally to this manuscript
| | - Yasunori Suematsu
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.,These authors contributed equally to this manuscript
| | - Kohei Tashiro
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Naoko Kumagai-Koyanagi
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.,Division of Cardiology, Sata Hospital, Fukuoka, Japan
| | - Yoshino Matsuo
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takashi Kuwano
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | |
Collapse
|
11
|
Nakano T, Inoue I, Murakoshi T. A Newly Integrated Model for Intestinal Cholesterol Absorption and Efflux Reappraises How Plant Sterol Intake Reduces Circulating Cholesterol Levels. Nutrients 2019; 11:nu11020310. [PMID: 30717222 PMCID: PMC6412963 DOI: 10.3390/nu11020310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cholesterol homeostasis is maintained through a balance of de novo synthesis, intestinal absorption, and excretion from the gut. The small intestine contributes to cholesterol homeostasis by absorbing and excreting it, the latter of which is referred to as trans-intestinal cholesterol efflux (TICE). Because the excretion efficiency of endogenous cholesterol is inversely associated with the development of atherosclerosis, TICE provides an attractive therapeutic target. Thus, elucidation of the mechanism is warranted. We have shown that intestinal cholesterol absorption and TICE are inversely correlated in intestinal perfusion experiments in mice. In this review, we summarized 28 paired data sets for absorption efficiency and fecal neutral sterol excretion, a surrogate marker of TICE, obtained from 13 available publications in a figure, demonstrating the inverse correlation were nearly consistent with the assumption. We then offer a bidirectional flux model that accommodates absorption and TICE occurring in the same segment. In this model, the brush border membrane (BBM) of intestinal epithelial cells stands as the dividing ridge for cholesterol fluxes, making the opposite fluxes competitive and being coordinated by shared BBM-localized transporters, ATP-binding cassette G5/G8 and Niemann-Pick C1-like 1. Furthermore, the idea is applied to address how excess plant sterol/stanol (PS) intake reduces circulating cholesterol level, because the mechanism is still unclear. We propose that unabsorbable PS repeatedly shuttles between the BBM and lumen and promotes concomitant cholesterol efflux. Additionally, PSs, which are chemically analogous to cholesterol, may disturb the trafficking machineries that transport cholesterol to the cell interior.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| |
Collapse
|
12
|
Analysis of the PPARD Gene Expression Level Changes in Football Players in Response to the Training Cycle. Balkan J Med Genet 2018; 21:19-25. [PMID: 30425906 PMCID: PMC6231314 DOI: 10.2478/bjmg-2018-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The PPARD gene codes protein that belongs to the peroxisome proliferator-activated receptor (PPAR) family engaged in a variety of biological processes, including lipid metabolism in muscle cells. In this study, we assess the relationship between PPARD gene expression lipid metabolism parameters and the variation of the PPARD gene expression before (T1) and after 12 hours of training (T2) sessions in a group of football players. Peripheral blood lymphocytes were obtained from 22 football players (17.5±0.7 years, 178±0.7 cm, 68.05±9.18 kg). The PPARD gene expression, analyzed by quantitative polymerase chain reaction (qPCR), was significantly higher after T2 (p = 0.0006). Moreover, at the end of the training cycle, there was a significant decrease in relative fat tissue (FAT) (%) (p = 0.01) and absolute FAT (kg) (p = 0.01). A negative correlation was observed between absolute FAT (kg) and PPARD gene expression level in T2 (p = 0.03). The levels of cholesterol and triglyceride (TG) fractions were not significantly different (p >0.05) before and after training. No significant relationship between PPARD expression and cholesterol or TG levels was found. We found that physical training affects PPARD expression. Moreover, the negative correlation between PPARD expression and absolute FAT (kg) level may be indicative of the contribution of PPARD in metabolic adaptation to increased lipid uptake that can be used to control the body composition of athletes.
Collapse
|
13
|
Duong M, Uno K, Nankivell V, Bursill C, Nicholls SJ. Induction of obesity impairs reverse cholesterol transport in ob/ob mice. PLoS One 2018; 13:e0202102. [PMID: 30216355 PMCID: PMC6138368 DOI: 10.1371/journal.pone.0202102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/27/2018] [Indexed: 11/25/2022] Open
Abstract
Objectives Obesity is an independent risk factor for cardiovascular disease. Reverse cholesterol transport (RCT) is an important cardioprotective mechanism. This study aimed to investigate RCT changes in a murine model of obesity. Methods Ob/ob and control mice were injected with [3H]-cholesterol-labelled macrophages and cholesterol accumulation quantified after 48 h. Ex vivo, cholesterol efflux and uptake were determined in hepatic and adipose tissues. Results Ob/ob mice had more labelled cholesterol in their plasma (86%, p<0.001), suggesting impaired RCT. SR-BI-mediated cholesterol efflux was elevated from ob/ob mice (serum, 33%; apoB-depleted plasma, 14%, p<0.01) and HDL-c were also higher (60%, p<0.01). Ex vivo it was found that cholesterol uptake was significantly lower into the livers and adipose tissue of ob/ob mice, compared to non-obese wildtype controls. Furthermore, ex vivo cholesterol efflux was reduced in ob/ob liver and adipose tissue towards apoA-I and HDL. Consistent with this, protein levels of SR-BI and ABCG1 were significantly lower in ob/ob hepatic and adipose tissue than in wildtype mice. Finally, labelled cholesterol concentrations were lower in ob/ob bile (67%, p<0.01) and faeces (76%, p<0.0001). Conclusion Obesity causes impairment in RCT due to reduced plasma cholesterol uptake and efflux by hepatocytes and adipocytes. A reduction in the capacity for plasma cholesterol clearance may partly account for increased CVD risk with obesity.
Collapse
Affiliation(s)
- MyNgan Duong
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Cell Biology and Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- * E-mail:
| | - Kiyoko Uno
- Department of Cell Biology and Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Victoria Nankivell
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Christina Bursill
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stephen J. Nicholls
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Cell Biology and Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
14
|
Yamashita S, Arai H, Yokote K, Araki E, Suganami H, Ishibashi S. Effects of pemafibrate (K-877) on cholesterol efflux capacity and postprandial hyperlipidemia in patients with atherogenic dyslipidemia. J Clin Lipidol 2018; 12:1267-1279.e4. [DOI: 10.1016/j.jacl.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023]
|
15
|
Silveira MG, Lindor KD. Investigational drugs in phase II clinical trials for primary biliary cholangitis. Expert Opin Investig Drugs 2017; 26:1115-1121. [DOI: 10.1080/13543784.2017.1371135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marina G. Silveira
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Keith D. Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ, USA
- Office of the University Provost, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
16
|
Doktorova M, Zwarts I, Zutphen TV, Dijk THV, Bloks VW, Harkema L, Bruin AD, Downes M, Evans RM, Verkade HJ, Jonker JW. Intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Sci Rep 2017; 7:846. [PMID: 28404991 PMCID: PMC5429805 DOI: 10.1038/s41598-017-00889-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) is a ligand-activated transcription factor that has an important role in lipid metabolism. Activation of PPARδ stimulates fatty acid oxidation in adipose tissue and skeletal muscle and improves dyslipidemia in mice and humans. PPARδ is highly expressed in the intestinal tract but its physiological function in this organ is not known. Using mice with an intestinal epithelial cell-specific deletion of PPARδ, we show that intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Furthermore, absence of intestinal PPARδ abolished the ability of PPARδ agonist GW501516 to increase plasma levels of HDL-cholesterol. Together, our findings show that intestinal PPARδ is important in maintaining metabolic homeostasis and suggest that intestinal-specific activation of PPARδ could be a therapeutic approach for treatment of the metabolic syndrome and dyslipidemia, while avoiding systemic toxicity.
Collapse
Affiliation(s)
- Marcela Doktorova
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Irene Zwarts
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Tim van Zutphen
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Vincent W Bloks
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Liesbeth Harkema
- Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands
| | - Alain de Bruin
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands
| | - Michael Downes
- Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Ronald M Evans
- Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Henkjan J Verkade
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
17
|
Lin X, Racette SB, Ma L, Wallendorf M, Ostlund RE. Ezetimibe Increases Endogenous Cholesterol Excretion in Humans. Arterioscler Thromb Vasc Biol 2017; 37:990-996. [PMID: 28279967 DOI: 10.1161/atvbaha.117.309119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Ezetimibe improves cardiovascular outcomes when added to optimum statin treatment. It lowers low-density lipoprotein cholesterol and percent intestinal cholesterol absorption, but the exact cardioprotective mechanism is unknown. We tested the hypothesis that the dominant effect of ezetimibe is to increase the reverse transport of cholesterol from rapidly mixing endogenous cholesterol pool into the stool. APPROACH AND RESULTS In a randomized, placebo-controlled, double-blind parallel trial in 24 healthy subjects with low-density lipoprotein cholesterol 100 to 200 mg/dL, we measured cholesterol metabolism before and after a 6-week treatment period with ezetimibe 10 mg/d or placebo. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d7 in a lipid emulsion and dietary cholesterol with cholesterol-d5 and sitostanol-d4 solubilized in oil. Plasma and stool samples collected during a cholesterol- and phytosterol-controlled metabolic kitchen diet were analyzed by mass spectrometry. Ezetimibe reduced intestinal cholesterol absorption efficiency 30±4.3% (SE, P<0.0001) and low-density lipoprotein cholesterol 19.8±1.9% (P=0.0001). Body cholesterol pool size was unchanged, but fecal endogenous cholesterol excretion increased 66.6±12.2% (P<0.0001) and percent cholesterol excretion from body pools into the stool increased 74.7±14.3% (P<0.0001), whereas plasma cholesterol turnover rose 26.2±3.6% (P=0.0096). Fecal bile acids were unchanged. CONCLUSIONS Ezetimibe increased the efficiency of reverse cholesterol transport from rapidly mixing plasma and tissue pools into the stool. Further work is needed to examine the potential relation of reverse cholesterol transport and whole body cholesterol metabolism to coronary events and the treatment of atherosclerosis. CLINICAL TRIALS REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758.
Collapse
Affiliation(s)
- Xiaobo Lin
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.)
| | - Susan B Racette
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.)
| | - Lina Ma
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.)
| | - Michael Wallendorf
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.)
| | - Richard E Ostlund
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.).
| |
Collapse
|
18
|
Mistry RH, Verkade HJ, Tietge UJF. Absence of intestinal microbiota increases ß-cyclodextrin stimulated reverse cholesterol transport. Mol Nutr Food Res 2017; 61. [PMID: 28087885 DOI: 10.1002/mnfr.201600674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 11/07/2022]
Abstract
SCOPE Non-digestible oligosaccharides are used as prebiotics for perceived health benefits, among these modulating lipid metabolism. However, the mechanisms of action are incompletely understood. The present study characterized the impact of dietary ß-cyclodextrin (ßCD, 10%, w/w), a cyclic oligosaccharide, on sterol metabolism and reverse cholesterol transport (RCT) in conventional and also germ-free mice to establish dependency on metabolism by intestinal bacteria. METHODS AND RESULTS In conventional ßCD-fed C57BL/6J wild-type mice plasma cholesterol decreased significantly (-40%, p < 0.05), largely within HDL, while fecal neutral sterol excretion increased (3-fold, p < 0.01) and fecal bile acid excretion was unchanged. Hepatic cholesterol levels and biliary cholesterol secretion were unaltered. Changes in cholesterol metabolism translated into increased macrophage-to-feces RCT in ßCD-administered mice (1.5-fold, p < 0.05). In germ-free C57BL/6J mice ßCD similarly lowered plasma cholesterol (-40%, p < 0.05). However, ßCD increased fecal neutral sterol excretion (7.5-fold, p < 0.01), bile acid excretion (2-fold, p < 0.05) and RCT (2.5-fold, p < 0.01) even more substantially in germ-free mice compared with the effect in conventional mice. CONCLUSION In summary, this study demonstrates that ßCD lowers plasma cholesterol levels and increases fecal cholesterol excretion from a RCT-relevant pool. Intestinal bacteria decrease the impact of ßCD on RCT. These data suggest that dietary ßCD might have cardiovascular health benefits.
Collapse
Affiliation(s)
- Rima H Mistry
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Drouin-Chartier JP, Tremblay AJ, Lemelin V, Lépine MC, Lamarche B, Couture P. Ezetimibe increases intestinal expression of the LDL receptor gene in dyslipidaemic men with insulin resistance. Diabetes Obes Metab 2016; 18:1226-1235. [PMID: 27460541 DOI: 10.1111/dom.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023]
Abstract
AIM To gain further insight into intestinal cholesterol homeostasis in dyslipidaemic men with insulin resistance (IR) by examining the impact of treatment with ezetimibe on the expression of key genes involved in cholesterol synthesis and LDL receptor (R)-mediated uptake of lipoproteins. METHODS A total of 25 men with dyslipidaemia and IR were recruited to participate in this double-blind, randomized, crossover, placebo-controlled trial. Participants received 10 mg/day ezetimibe or placebo for periods of 12 weeks each. Intestinal gene expression was measured by quantitative PCR in duodenal biopsy samples collected by gastroduodenoscopy at the end of each treatment. RESULTS A total of 20 participants completed the protocol. Treatment with ezetimibe significantly increased intestinal LDLR (+16.2%; P = .01), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoAR; +14.0%; P = .04) and acetyl-Coenzyme A acetyltransferase 2 (ACAT-2) mRNA expression (+12.5%; P = .03). Changes in sterol regulatory element-binding transcription factor 2 (SREBP-2) expression were significantly correlated with changes in HMG-CoAR (r = 0.55; P < .05), ACAT-2 (r = 0.69; P < .001) and proprotein convertase substilisin/kexin type 9 (PCSK9) expression (r = 0.45; P < .05). CONCLUSIONS These results show that inhibition of intestinal cholesterol absorption by ezetimibe increases expression of the LDLR gene, supporting the concept that increased LDL clearance with ezetimibe treatment occurs not only in the liver but also in the small intestine.
Collapse
Affiliation(s)
| | - André J Tremblay
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Valéry Lemelin
- Department of Gastroenterology, CHU de Québec-Université Laval, Quebec City, Canada
| | - Marie-Claude Lépine
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Benoît Lamarche
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Patrick Couture
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
- Department of Medicine, Lipid Research Center, CHU de Québec-Université Laval, Quebec City, Canada
| |
Collapse
|
20
|
Pharmacological Activation of Peroxisome Proliferator-Activated Receptor {Delta} Increases Sphingomyelin Synthase Activity in THP-1 Macrophage-Derived Foam Cell. Inflammation 2016; 39:1538-46. [DOI: 10.1007/s10753-016-0389-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Naya N, Fukao K, Nakamura A, Hamada T, Sugimoto M, Kojima M, Yoshimura N, Uwabe KI, Imagawa K, Nomura K, Hara S, Nakano T, Iwasaki T, Shinosaki T, Hanasaki K. A selective peroxisome proliferator-activated receptor δ agonist PYPEP suppresses atherosclerosis in association with improvement of the serum lipoprotein profiles in human apolipoprotein B100 and cholesteryl ester transfer protein double transgenic mice. Metabolism 2016; 65:16-25. [PMID: 26683793 DOI: 10.1016/j.metabol.2015.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/27/2015] [Accepted: 09/19/2015] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Although peroxisome proliferator-activated receptor (PPAR) δ agonists have been shown to improve the serum lipoprotein profiles in humans, the impact of the changes in these lipoprotein profiles on atherosclerosis remains to be elucidated. The aim of this study was to investigate the relationship between the selective PPARδ agonist-induced alterations of serum lipoprotein profiles and the development of atherosclerosis in human apolipoprotein B100 and cholesterol ester transfer protein double transgenic (hApoB100/hCETP-dTg) mice with human-like hypercholesterolemic dyslipidemia. METHODS hApoB100/hCETP-dTg mice fed an atherogenic diet received a novel PPARδ agonist (PYPEP) or vehicle for 18 weeks, followed by evaluation of atherosclerosis. Serum samples were collected during the treatment period at least at 3-week intervals to determine the lipoprotein levels and the levels of an inflammatory marker, macrophage chemotactic protein-1 (MCP-1), and to analyze the lipoprotein profile by fast protein liquid chromatography. The cholesterol efflux capacity of high-density lipoprotein (HDL) was examined using [(3)H]-cholesterol labeled macrophages. RESULTS Compared with vehicle treatment, PYPEP treatment caused increases in the serum levels of HDL cholesterol and apolipoprotein A-I (ApoA-I), as well as reductions in the serum non-HDL cholesterol and MCP-1 levels. The HDL fraction from the PYPEP-treated group maintained its cholesterol efflux capacity and showed an increased population of smaller HDL particles. PYPEP substantially suppressed atherosclerotic lesion progression, and the lesion areas had significant correlations with non-HDL cholesterol, HDL cholesterol, ApoA-I and MCP-1 by Pearson's correlation analysis. A multiple regression analysis revealed that non-HDL cholesterol and ApoA-I were significantly associated with the atherosclerotic lesion area. CONCLUSION A novel PPARδ agonist, PYPEP, suppressed atherosclerotic lesion progression by improving the serum lipoprotein profiles, including increased levels of ApoA-I and functional HDL particles, as well as a reduced non-HDL cholesterol level, in hApoB100/hCETP-dTg mice with human-like hypercholesterolemic dyslipidemia.
Collapse
Affiliation(s)
- Noriyuki Naya
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Keita Fukao
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Akemi Nakamura
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tadateru Hamada
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masayuki Sugimoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Midori Kojima
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Norito Yoshimura
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ken-Ichiro Uwabe
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Keiichi Imagawa
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kohji Nomura
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Seijiro Hara
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Toru Nakano
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Takanori Iwasaki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Toshihiro Shinosaki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kohji Hanasaki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
22
|
ZHOU LINGYAN, LI CONGCONG, GAO LING, WANG AIHONG. High-density lipoprotein synthesis and metabolism (Review). Mol Med Rep 2015; 12:4015-4021. [DOI: 10.3892/mmr.2015.3930] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/26/2015] [Indexed: 11/06/2022] Open
|
23
|
Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci 2015; 36:440-51. [PMID: 25930707 DOI: 10.1016/j.tips.2015.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.
Collapse
Affiliation(s)
- Ryan E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
24
|
Favari E, Chroni A, Tietge UJF, Zanotti I, Escolà-Gil JC, Bernini F. Cholesterol efflux and reverse cholesterol transport. Handb Exp Pharmacol 2015; 224:181-206. [PMID: 25522988 DOI: 10.1007/978-3-319-09665-0_4] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both alterations of lipid/lipoprotein metabolism and inflammatory events contribute to the formation of the atherosclerotic plaque, characterized by the accumulation of abnormal amounts of cholesterol and macrophages in the artery wall. Reverse cholesterol transport (RCT) may counteract the pathogenic events leading to the formation and development of atheroma, by promoting the high-density lipoprotein (HDL)-mediated removal of cholesterol from the artery wall. Recent in vivo studies established the inverse relationship between RCT efficiency and atherosclerotic cardiovascular diseases (CVD), thus suggesting that the promotion of this process may represent a novel strategy to reduce atherosclerotic plaque burden and subsequent cardiovascular events. HDL plays a primary role in all stages of RCT: (1) cholesterol efflux, where these lipoproteins remove excess cholesterol from cells; (2) lipoprotein remodeling, where HDL undergo structural modifications with possible impact on their function; and (3) hepatic lipid uptake, where HDL releases cholesterol to the liver, for the final excretion into bile and feces. Although the inverse association between HDL plasma levels and CVD risk has been postulated for years, recently this concept has been challenged by studies reporting that HDL antiatherogenic functions may be independent of their plasma levels. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux may offer a better prediction of CVD than HDL levels alone. Consistent with this idea, it has been recently demonstrated that the evaluation of serum cholesterol efflux capacity (CEC) is a predictor of atherosclerosis extent in humans.
Collapse
Affiliation(s)
- Elda Favari
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Sim DS, Jeong MH, Park DS, Kim JH, Lim KS, Kim HK, Kim SS, Cho JY, Jeong HC, Park KH, Hong YJ, Kim JH, Ahn Y, Cho JG, Park JC. Effect of pretreatment of ezetimibe/simvastatin on arterial healing and endothelialization after drug-eluting stent implantation in a porcine coronary restenosis model. Korean Circ J 2015; 45:110-6. [PMID: 25810732 PMCID: PMC4372976 DOI: 10.4070/kcj.2015.45.2.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/05/2014] [Accepted: 12/29/2014] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives We sought to evaluate the effect of the early use of ezetimibe/simvastatin (Vytorin®) on arterial healing and endothelialization after the implantation of a drug-eluting stent (DES) in a porcine model of coronary restenosis. Materials and Methods A total of 20 pigs (40 coronary arteries) were randomly allocated to a pretreatment or no treatment group. The pretreatment group (n=20) received oral ezetimibe/simvastatin (10/20 mg) daily for 7 days before stenting and the no pretreatment group (n=20) did not. All pigs were treated with ezetimibe/simvastatin (10/20 mg) daily after stenting for 4 weeks. Stenting was performed using a bare-metal stent (BMS, n=10) and three types of DES: biolimus A9-eluting stent (BES, n=10), zotarolimus-eluting stent (ZES, n=10), and everolimus-eluting stents (EES, n=10). Four weeks later, pigs underwent a follow-up coronary angiography and were sacrificed for histopathologic analysis. Results There were no significant differences between the pretreatment and no pretreatment groups in the internal elastic lamina area, lumen area, neointima area, stenotic area, injury score, fibrin score, and inflammation score. In both groups, the fibrin score was higher in pigs with DES than in BMS, particularly in ZES and EES. The inflammatory score was not different between DES and BMS. Conclusion In a porcine model of coronary restenosis, pretreatment with ezetimibe/simvastatin before DES implantation failed to improve arterial healing and endothelialization compared to treatment after stenting.
Collapse
Affiliation(s)
- Doo Sun Sim
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Myung Ho Jeong
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Dae Sung Park
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Jung Ha Kim
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Kyung Seob Lim
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Hyun Kuk Kim
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Sung Soo Kim
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Jae Yeong Cho
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Hae Chang Jeong
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Keun Ho Park
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Young Joon Hong
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Ju Han Kim
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Youngkeun Ahn
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Jeong Gwan Cho
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| | - Jong Chun Park
- The Heart Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health, Welfare and Family Affairs, Gwangju, Korea
| |
Collapse
|
26
|
PPAR-β/δ activation promotes phospholipid transfer protein expression. Biochem Pharmacol 2015; 94:101-8. [DOI: 10.1016/j.bcp.2015.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 12/30/2022]
|
27
|
Altemus JB, Patel SB, Sehayek E. Liver-specific induction of Abcg5 and Abcg8 stimulates reverse cholesterol transport in response to ezetimibe treatment. Metabolism 2014; 63:1334-41. [PMID: 25060694 DOI: 10.1016/j.metabol.2014.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Previous studies have shown ezetimibe treatment results in a 2-6-fold increase in reverse cholesterol transport (RCT). However, recent sterol balance studies question the role of biliary sterol secretion in RCT, and challenge the hypothesis that ezetimibe increases RCT through decreased absorption of biliary cholesterol in the intestine. We set out to determine whether ezetimibe may increase RCT by mechanisms that are independent of its well-established inhibition of intestinal cholesterol absorption. METHODS C57BL/6J, Npc1l1-KO, and/or Abcg8-KO mice were fed a chow diet with or without ezetimibe and fecal [(14)C]-neutral and [(14)C]-acidic sterols were measured to examine macrophage-to-feces RCT. We measured the expression of RCT related genes in the liver and jejunum in these mice. To confirm our significant gene expression findings, we utilized primary human hepatocytes cultured with or without a glucuronated metabolite of ezetimibe. RESULTS Our studies revealed that treatment with ezetimibe was associated with increased expression of hepatic Abcg5 and Abcg8. Ezetimibe did not directly affect expression in the liver, but this expression was due to the inhibition of intestinal cholesterol absorption. This conclusion was supported by the absence of an ABCG5/ABCG8 expression response to treatment with an ezetimibe metabolite in primary human hepatocytes. Finally, we found that the ezetimibe-dependent stimulation of RCT was attenuated in the absence of Abcg8. CONCLUSIONS Our study is the first to demonstrate ezetimibe treatment cooperatively stimulated macrophage-to-feces RCT by indirectly increasing liver Abcg5/Abcg8 expression in addition to its known suppression of intestinal cholesterol absorption.
Collapse
Affiliation(s)
- Jessica B Altemus
- Genomic Medicine Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Shailendra B Patel
- Division of Endocrinology, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ephraim Sehayek
- Genomic Medicine Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
28
|
Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl Environ Microbiol 2014; 80:7496-504. [PMID: 25261526 DOI: 10.1128/aem.02926-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis.
Collapse
|
29
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
30
|
Degirolamo C, Sabbà C, Moschetta A. Intestinal nuclear receptors in HDL cholesterol metabolism. J Lipid Res 2014; 56:1262-70. [PMID: 25070952 DOI: 10.1194/jlr.r052704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio Moschetta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
31
|
Briand F, Thieblemont Q, Muzotte E, Burr N, Urbain I, Sulpice T, Johns DG. Anacetrapib and dalcetrapib differentially alters HDL metabolism and macrophage-to-feces reverse cholesterol transport at similar levels of CETP inhibition in hamsters. Eur J Pharmacol 2014; 740:135-43. [PMID: 25008069 DOI: 10.1016/j.ejphar.2014.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/12/2023]
Abstract
Cholesteryl ester transfer protein (CETP) inhibitors dalcetrapib and anacetrapib differentially alter LDL- and HDL-cholesterol levels, which might be related to the potency of each drug to inhibit CETP activity. We evaluated the effects of both drugs at similar levels of CETP inhibition on macrophage-to-feces reverse cholesterol transport (RCT) in hamsters. In normolipidemic hamsters, both anacetrapib 30 mg/kg QD and dalcetrapib 200 mg/kg BID inhibited CETP activity by ~60%. After injection of 3H-cholesteryl oleate labeled HDL, anacetrapib and dalcetrapib reduced HDL-cholesteryl esters fractional catabolic rate (FCR) by 30% and 26% (both P<0.001 vs. vehicle) respectively, but only dalcetrapib increased HDL-derived 3H-tracer fecal excretion by 30% (P<0.05 vs. vehicle). After 3H-cholesterol labeled macrophage intraperitoneal injection, anacetrapib stimulated 3H-tracer appearance in HDL, but both drugs did not promote macrophage-derived 3H-tracer fecal excretion. In dyslipidemic hamsters, both anacetrapib 1 mg/kg QD and dalcetrapib 200 mg/kg BID inhibited CETP activity by ~65% and reduced HDL-cholesteryl ester FCR by 36% (both P<0.001 vs. vehicle), but only anacetrapib increased HDL-derived 3H-tracer fecal excretion significantly by 39%. After 3H-cholesterol labeled macrophage injection, only anacetrapib 1 mg/kg QD stimulated macrophage-derived 3H-tracer appearance in HDL. These effects remained weaker than those observed with anacetrapib 60 mg/kg QD, which induced a maximal inhibition of CETP and stimulation of macrophage-derived 3H-tracer fecal excretion. In contrast, dalcetrapib 200 mg/kg BID reduced macrophage-derived 3H-tracer fecal excretion by 23% (P<0.05 vs. vehicle). In conclusion, anacetrapib and dalcetrapib differentially alter HDL metabolism and RCT in hamsters. A stronger inhibition of CETP may be required to promote macrophage-to-feces reverse cholesterol transport in dyslipidemic hamsters.
Collapse
Affiliation(s)
| | | | | | - Noémie Burr
- Physiogenex SAS, Prologue Biotech, Labège, France
| | | | | | - Douglas G Johns
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ, USA.
| |
Collapse
|
32
|
Uto-Kondo H, Ayaori M, Sotherden GM, Nakaya K, Sasaki M, Yogo M, Komatsu T, Takiguchi S, Yakushiji E, Ogura M, Nishida T, Endo Y, Ikewaki K. Ezetimibe enhances macrophage reverse cholesterol transport in hamsters: contribution of hepato-biliary pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1247-55. [PMID: 24989153 DOI: 10.1016/j.bbalip.2014.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 11/15/2022]
Abstract
Reverse cholesterol transport (RCT) is pivotal in the return of excess cholesterol from peripheral tissues to the liver for excretion in bile and eventually feces. RCT from macrophages is a critical anti-atherogenicity mechanism of HDL. As the cholesterol absorption inhibitor ezetimibe promoted RCT in mice, which lack cholesterol ester transfer protein (CETP), we investigated its effects in hamsters, which have CETP. A high-cholesterol diet (HC) increased cholesterol levels throughout lipoprotein fractions and ezetimibe markedly reduced VLDL/LDL cholesterol levels under both normal chow (NC) and HC. However, ezetimibe did not affect and reduced HDL-cholesterol levels under NC and HC, respectively. Intraperitoneal injection of (3)H-cholesterol pre-labeled macrophages in an in vivo RCT assay increased tracer accumulation in the liver but reduced it in bile under HC, and these changes were completely cancelled by ezetimibe. Under both NC and HC, ezetimibe reduced tracer levels in the liver but increased them in feces, indicating promotion of RCT in vivo. We performed a RCT assay using hamsters subjected to bile duct ligation (BDL) to clarify whether a transintestinal cholesterol efflux (TICE) pathway contributes to ezetimibe's enhancement of RCT. BDL markedly inhibited macrophage-derived (3)H-cholesterol excretion to feces and cancelled ezetimibe's stimulatory effect on RCT, suggesting that biliary cholesterol excretion is a major contributor in RCT promotion by ezetimibe but the contribution of the TICE pathway is minimal. In conclusions, ezetimibe exerts an additive anti-atherogenic property by enhancing RCT in hamsters. Our findings suggest that this property is independent of the TICE pathway.
Collapse
Affiliation(s)
- Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan.
| | - Grace Megumi Sotherden
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kazuhiro Nakaya
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makiko Yogo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiro Komatsu
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shunichi Takiguchi
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Emi Yakushiji
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masatsune Ogura
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Takafumi Nishida
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yasuhiro Endo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
33
|
Dikkers A, Annema W, de Boer JF, Iqbal J, Hussain MM, Tietge UJF. Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice. J Lipid Res 2014; 55:816-25. [PMID: 24511105 DOI: 10.1194/jlr.m042986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp(-/-)) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp(-/-) mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp(-/-) mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.
Collapse
Affiliation(s)
- Arne Dikkers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Lichtenstein L, Serhan N, Annema W, Combes G, Robaye B, Boeynaems JM, Perret B, Tietge UJF, Laffargue M, Martinez LO. Lack of P2Y13 in mice fed a high cholesterol diet results in decreased hepatic cholesterol content, biliary lipid secretion and reverse cholesterol transport. Nutr Metab (Lond) 2013; 10:67. [PMID: 24476490 PMCID: PMC4029266 DOI: 10.1186/1743-7075-10-67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/30/2013] [Indexed: 01/11/2023] Open
Abstract
Background The protective effect of HDL is mostly attributed to their metabolic function in reverse cholesterol transport (RCT), a process whereby excess cellular cholesterol is taken up from peripheral cells, processed in HDL particles, and later delivered to the liver for further metabolism and biliary secretion. Mechanistically, the purinergic P2Y13 ADP-receptor is involved in hepatic HDL endocytosis (i.e., uptake of both HDL protein + lipid moieties), which is considered an important step of RCT. Accordingly, chow-fed P2Y13 knockout (P2Y13-/-) mice exhibit lower hepatic HDL uptake, which translates into a decrease of hepatic free cholesterol content and biliary cholesterol and phospholipid secretion. Findings The aim of this study was to determine the effect of high cholesterol diet (HCD) in P2Y13-/- mice, in order to mimic high dietary cholesterol intake, which is a major cause of dyslipidemia in humans. As previously reported with chow-diet, HCD did not affect plasma lipid levels in P2Y13-/- compared with control mice but decreased hepatic free and esterified cholesterol content (p < 0.05, P2Y13-/- versus control). Interestingly, biliary lipid secretion and macrophages-to-feces RCT were more dramatically impaired in P2Y13-/- mice fed a HCD than chow-diet. HCD did not enhance atherosclerosis in P2Y13-/- compared with control mice. Conclusion This study demonstrates that high dietary cholesterol intake accentuated the metabolic phenotype of P2Y13-/- mice, with impaired hepatobiliary RCT. Although other animal models might be required to further evaluate the role of P2Y13 receptor in atherosclerosis, P2Y13 appears a promising target for therapeutic intervention aiming to stimulate RCT, particularly in individuals with lipid-rich diet.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France
| | - Nizar Serhan
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France
| | - Wijtske Annema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Guillaume Combes
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean-Marie Boeynaems
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Bertrand Perret
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Muriel Laffargue
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France
| | - Laurent O Martinez
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France.,CHU de Toulouse, Hôpital Purpan, Toulouse, France
| |
Collapse
|
35
|
Davidson MH, Voogt J, Luchoomun J, Decaris J, Killion S, Boban D, Glass A, Mohammad H, Lu Y, Villegas D, Neese R, Hellerstein M, Neff D, Musliner T, Tomassini JE, Turner S. Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans. Atherosclerosis 2013; 230:322-9. [DOI: 10.1016/j.atherosclerosis.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 01/19/2023]
|
36
|
Bujold K, Mellal K, Zoccal KF, Rhainds D, Brissette L, Febbraio M, Marleau S, Ong H. EP 80317, a CD36 selective ligand, promotes reverse cholesterol transport in apolipoprotein E-deficient mice. Atherosclerosis 2013; 229:408-14. [DOI: 10.1016/j.atherosclerosis.2013.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 01/05/2023]
|
37
|
Triolo M, Annema W, Dullaart RPF, Tietge UJF. Assessing the functional properties of high-density lipoproteins: an emerging concept in cardiovascular research. Biomark Med 2013; 7:457-72. [DOI: 10.2217/bmm.13.35] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although plasma concentrations of high-density lipoprotein (HDL) cholesterol correlate inversely with the incidence of atherosclerotic cardiovascular disease, results from recent epidemiological, genetic and pharmacological intervention studies resulted in a shift of concept. Rather than HDL cholesterol mass levels, the functionality of HDL particles is increasingly regarded as potentially clinically important. This review provides an overview of four key functional properties of HDL, namely cholesterol efflux and reverse cholesterol transport; antioxidative activities; anti-inflammatory activities; and the ability of HDL to increase vascular nitric oxide production resulting in vasorelaxation. Currently available assays are put into context with different HDL isolation procedures yielding compositional heterogeneity of the particle. Gathered knowledge on the impact of different disease states on HDL function is discussed together with potential underlying causative factors modulating HDL functionalities. In addition, a perspective is provided regarding how a better understanding of the determinants of (dys)functional HDL might impact clinical practice and the future design of rational and specific therapeutic approaches targeting atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Michela Triolo
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijtske Annema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Top Institute Food & Nutrition, Wageningen, The Netherlands
| | - Robin PF Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Uwe JF Tietge
- Top Institute Food & Nutrition, Wageningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
38
|
Maugeais C, Annema W, Blum D, Mary JL, Tietge UJF. rHDL administration increases reverse cholesterol transport in mice, but is not additive on top of ezetimibe or cholestyramine treatment. Atherosclerosis 2013; 229:94-101. [PMID: 23725986 DOI: 10.1016/j.atherosclerosis.2013.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 03/12/2013] [Accepted: 04/02/2013] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Promoting reverse cholesterol transport (RCT) is a major atheroprotective property of HDL. The present study explored the effect of stimulating the first step of RCT (cholesterol efflux from macrophages) alone or in combination with stimulating the last step of RCT (fecal sterol excretion). METHODS AND RESULTS Reconstituted HDL (rHDL) was injected into wild-type mice either with or without administration of the cholesterol absorption inhibitor ezetimibe or the bile acid sequestrant cholestyramine. Single dose administration of rHDL (100 mg apoA-I/kg) resulted in an early (4 h) increase in plasma free cholesterol levels (p < 0.001), without affecting hepatic cholesterol levels or fecal mass sterol excretion. rHDL injection also increased [(3)H]cholesterol appearance in plasma at an early time-point (4 h) after intraperitoneal administration of [(3)H]cholesterol-labeled mouse macrophage foam cells and fecal radioactivity excretion indicating completed RCT was increased by 26% (p < 0.05). Ezetimibe treatment inhibited intestinal cholesterol absorption by 74% (p < 0.01), but also the bile acid sequestrant cholestyramine decreased cholesterol absorption significantly (24%, p < 0.01). Consequently, ezetimibe increased RCT 2.1-fold (p < 0.001) primarily within fecal neutral sterols, while cholestyramine increased RCT by 3.6-fold (p < 0.001), primarily within bile acids (p < 0.001), but also within neutral sterols (p < 0.001). However, no additive effects of both intestinal sterol uptake inhibitors were observed on top of rHDL administration. CONCLUSION These data demonstrate that increasing the first step of RCT by rHDL administration results in transient cholesterol mobilization from macrophages to plasma. This effect is not further enhanced by stimulating the last step of RCT, fecal sterol excretion.
Collapse
Affiliation(s)
- Cyrille Maugeais
- F. Hoffmann La Roche Ltd. pRED, Cardiovascular & Metabolic Diseases, Basel, Switzerland
| | | | | | | | | |
Collapse
|
39
|
The role of the gut in reverse cholesterol transport--focus on the enterocyte. Prog Lipid Res 2013; 52:317-28. [PMID: 23608233 DOI: 10.1016/j.plipres.2013.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 04/10/2013] [Indexed: 11/20/2022]
Abstract
In the arterial intima, macrophages become cholesterol-enriched foam cells and atherosclerotic lesions are generated. This atherogenic process can be attenuated, prevented, or even reversed by HDL particles capable of initiating a multistep pathway known as the macrophage-specific reverse cholesterol transport. The macrophage-derived cholesterol released to HDL is taken up by the liver, secreted into the bile, and ultimately excreted in the feces. Importantly, the absorptive epithelial cells lining the lumen of the small intestine, the enterocytes, express several membrane-associated proteins which mediate the influx of luminal cholesterol and its subsequent efflux at their apical and basolateral sides. Moreover, generation of intestinal HDL and systemic effects of the gut microbiota recently revealed a direct link between the gut and the cholesterol cargo of peripheral macrophages. This review summarizes experimental evidence establishing that the reverse cholesterol transport pathway which initiates in macrophages is susceptible to modulation in the small intestine. We also describe four paths which govern cholesterol passage across the enterocyte and define a role for the gut in the regulation of reverse cholesterol transport. Understanding the concerted function of these paths may be useful when designing therapeutic strategies aimed at removing cholesterol from the foam cells which occupy atherosclerotic lesions.
Collapse
|
40
|
Mahdy Ali K, Wonnerth A, Huber K, Wojta J. Cardiovascular disease risk reduction by raising HDL cholesterol--current therapies and future opportunities. Br J Pharmacol 2013; 167:1177-94. [PMID: 22725625 DOI: 10.1111/j.1476-5381.2012.02081.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Since the first discovery of an inverse correlation between high-density lipoprotein-cholesterol (HDL-C) levels and coronary heart disease in the 1950s the life cycle of HDL, its role in atherosclerosis and the therapeutic modification of HDL-C levels have been major research topics. The Framingham study and others that followed could show that HDL-C is an independent cardiovascular risk factor and that the increase of HDL-C of only 10 mg·L(-1) leads to a risk reduction of 2-3%. While statin therapy and therefore low-density lipoprotein-cholesterol (LDL-C) reduction could lower coronary heart disease considerably; cardiovascular morbidity and mortality still occur in a significant portion of subjects already receiving therapy. Therefore, new strategies and therapies are needed to further reduce the risk. Raising HDL-C was thought to achieve this goal. However, established drug therapies resulting in substantial HDL-C increase are scarce and their effect is controversial. Furthermore, it is becoming increasingly evident that HDL particle functionality is at least as important as HDL-C levels since HDL particles not only promote reverse cholesterol transport from the periphery (mainly macrophages) to the liver but also exert pleiotropic effects on inflammation, haemostasis and apoptosis. This review deals with the biology of HDL particles, the established and future therapeutic options to increase HDL-C and discusses the results and conclusions of the most important studies published in the last years. Finally, an outlook on future diagnostic tools and therapeutic opportunities regarding coronary artery disease is given.
Collapse
Affiliation(s)
- K Mahdy Ali
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
41
|
Xie P, Jia L, Ma Y, Ou J, Miao H, Wang N, Guo F, Yazdanyar A, Jiang XC, Yu L. Ezetimibe inhibits hepatic Niemann-Pick C1-Like 1 to facilitate macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol 2013; 33:920-5. [PMID: 23471229 DOI: 10.1161/atvbaha.112.301187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Controversies have arisen from recent mouse studies about the essential role of biliary sterol secretion in reverse cholesterol transport (RCT). The objective of this study was to examine the role of biliary cholesterol secretion in modulating macrophage RCT in Niemann-Pick C1-Like 1 (NPC1L1) liver only (L1(LivOnly)) mice, an animal model that is defective in both biliary sterol secretion and intestinal sterol absorption, and determine whether NPC1L1 inhibitor ezetimibe facilitates macrophage RCT by inhibiting hepatic NPC1L1. APPROACH AND RESULTS L1(LivOnly) mice were generated by crossing NPC1L1 knockout (L1-KO) mice with transgenic mice overexpressing human NPC1L1 specifically in liver. Macrophage-to-feces RCT was assayed in L1-KO and L1(LivOnly) mice injected intraperitoneally with [(3)H]-cholesterol-labeled peritoneal macrophages isolated from C57BL/6 mice. Inhibition of biliary sterol secretion by hepatic overexpression of NPC1L1 substantially reduced transport of [(3)H]-cholesterol from primary peritoneal macrophages to the neutral sterol fraction in bile and feces in L1(LivOnly) mice without affecting tracer excretion in the bile acid fraction. Ezetimibe treatment for 2 weeks completely restored both biliary and fecal excretion of [(3)H]-tracer in the neutral sterol fraction in L1(LivOnly) mice. High-density lipoprotein kinetic studies showed that L1(LivOnly) mice compared with L1-KO mice had a significantly reduced fractional catabolic rate without altered hepatic and intestinal uptake of high-density lipoprotein-cholesterol ether. CONCLUSIONS In mice lacking intestinal cholesterol absorption, macrophage-to-feces RCT depends on efficient biliary sterol secretion, and ezetimibe promotes macrophage RCT by inhibiting hepatic NPC1L1 function.
Collapse
Affiliation(s)
- Ping Xie
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wegner CJ, Kim B, Lee J. Trust your gut: galvanizing nutritional interest in intestinal cholesterol metabolism for protection against cardiovascular diseases. Nutrients 2013; 5:208-22. [PMID: 23325147 PMCID: PMC3571644 DOI: 10.3390/nu5010208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 02/08/2023] Open
Abstract
Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction.
Collapse
Affiliation(s)
- Casey J Wegner
- Department of Nutritional Sciences, University of Connecticut, 216 Advanced Technology Laboratory Building, 1392 Storrs Road, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
43
|
Silvennoinen R, Escola-Gil JC, Julve J, Rotllan N, Llaverias G, Metso J, Valledor AF, He J, Yu L, Jauhiainen M, Blanco-Vaca F, Kovanen PT, Lee-Rueckert M. Acute Psychological Stress Accelerates Reverse Cholesterol Transport via Corticosterone-Dependent Inhibition of Intestinal Cholesterol Absorption. Circ Res 2012; 111:1459-69. [DOI: 10.1161/circresaha.112.277962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rationale:
Psychological stress is associated with an increased risk of cardiovascular diseases. However, the connecting mechanisms of the stress-inducing activation of the hypothalamic-pituitary-adrenal axis with atherosclerosis are not well-understood.
Objective:
To study the effect of acute psychological stress on reverse cholesterol transport (RCT), which transfers peripheral cholesterol to the liver for its ultimate fecal excretion.
Methods and Results:
C57Bl/6J mice were exposed to restraint stress for 3 hours to induce acute psychological stress. RCT in vivo was quantified by measuring the transfer of [
3
H]cholesterol from intraperitoneally injected mouse macrophages to the lumen of the small intestine within the stress period. Surprisingly, stress markedly increased the contents of macrophage-derived [
3
H]cholesterol in the intestinal lumen. In the stressed mice, intestinal absorption of [
14
C]cholesterol was significantly impaired, the intestinal mRNA expression level of peroxisome proliferator–activated receptor-α increased, and that of the sterol influx transporter Niemann-Pick C1–like 1 decreased. The stress-dependent effects on RCT rate and peroxisome proliferator–activated receptor-α gene expression were fully mimicked by administration of the stress hormone corticosterone (CORT) to nonstressed mice, and they were blocked by the inhibition of CORT synthesis in stressed mice. Moreover, the intestinal expression of Niemann-Pick C1–like 1 protein decreased when circulating levels of CORT increased. Of note, when either peroxisome proliferator-activated receptor α or liver X receptor α knockout mice were exposed to stress, the RCT rate remained unchanged, although plasma CORT increased. This indicates that activities of both transcription factors were required for the RCT-accelerating effect of stress.
Conclusions:
Acute psychological stress accelerated RCT by compromising intestinal cholesterol absorption. The present results uncover a novel functional connection between the hypothalamic-pituitary-adrenal axis and RCT that can be triggered by a stress-induced increase in circulating CORT.
Collapse
Affiliation(s)
- Reija Silvennoinen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Joan Carles Escola-Gil
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Josep Julve
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Noemi Rotllan
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Gemma Llaverias
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Jari Metso
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Annabel F. Valledor
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Jianming He
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Liqing Yu
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Francisco Blanco-Vaca
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Petri T. Kovanen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Miriam Lee-Rueckert
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| |
Collapse
|
44
|
Pearen MA, Muscat GEO. Orphan nuclear receptors and the regulation of nutrient metabolism: understanding obesity. Physiology (Bethesda) 2012; 27:156-66. [PMID: 22689791 DOI: 10.1152/physiol.00007.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear hormone receptors (NRs) are a superfamily of eukaryotic ligand-dependent transcription factors that translate endocrine, metabolic, nutritional, developmental, and pathophysiological signals into gene regulation. Members of the NR superfamily (on the basis of sequence homology) that lack identified natural and/or synthetic ligands are/were classified as "orphan" NRs. These members of the NR superfamily are abundantly expressed in tissues associated with major metabolic activity, such as skeletal muscle, adipose, and liver. Subsequently, in vivo genetic studies on these orphan NRs and exploitation of novel natural and synthetic agonists has revealed that orphan NRs regulate 1) carbohydrate, lipid, and energy homeostasis in a tissue-specific manner, and 2) the pathophysiology of dyslipidemia, obesity, Type 2 diabetes, and cardiovascular disease. This review discusses key studies that have implicated the orphan NRs as organ-specific regulators of metabolism and mediators of adverse pathophysiological effects. The emerging discovery of novel endogenous orphan NR ligands and synthetic agonists has provided the foundation for therapeutic exploitation of the orphans in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | | |
Collapse
|
45
|
Abstract
Pomegranate is an ancient fruit that is still part of the diet in the Mediterranean area, the Middle East, and India. Health-promoting effects have long been attributed to this fruit. Modern research corroborates the use of pomegranate as a folk remedy for diabetes and metabolic syndrome, and is responsible for a new evaluation of nutritional and pharmaceutical aspects of pomegranate in the general public. In the last decade, industry and agricultural production have been adapted to meet higher market demands for pomegranate. In vivo and in vitro studies have demonstrated that pomegranate exerts hypoglycaemic effects, including increased insulin sensitivity, inhibition of α-glucosidase, and impact on glucose transporter type 4 function, but is also responsible for a reduction of total cholesterol, and the improvement of blood lipid profiles, as well as anti-inflammatory effects through the modulation of peroxisome proliferator-activated receptor pathways. These effects may also explain how pomegranate-derived compounds function in the amelioration of adverse health effects caused by metabolic syndrome. Pomegranate contains polyphenols such as ellagitannins and anthocyanins, as well as phenolic acids, fatty acids and a variety of volatile compounds. Ellagitannins are some of the most prevalent compounds present in pomegranate, and may be responsible for certain benevolent characteristics associated with pomegranate. A brief overview of rising health problems due to obesity will be provided, followed by characterisation of the biological activity, bioavailability, and safety of pomegranate and pomegranate-derived compounds. Although the fruit is consumed in many countries, epidemiological and clinical studies are unavailable. Additional research is necessary to corroborate the promise of current in vivo and in vitro findings.
Collapse
Affiliation(s)
- Svjetlana Medjakovic
- Department of Biotechnology, Christian-Doppler-Laboratory of Receptor Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | | |
Collapse
|
46
|
Vrins CLJ, Ottenhoff R, van den Oever K, de Waart DR, Kruyt JK, Zhao Y, van Berkel TJC, Havekes LM, Aerts JM, van Eck M, Rensen PCN, Groen AK. Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein. J Lipid Res 2012; 53:2017-2023. [PMID: 22802462 DOI: 10.1194/jlr.m022194] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding cassette protein A1 deficient (Abca1(-/-)) mice that lack HDL and wild-type (WT) mice were intravenously injected with chylomicron-like emulsion particles that contained radiolabeled cholesterol that is liberated in the liver and partly reenters the circulation. Both groups secreted radiolabeled cholesterol from plasma into intestinal lumen and TICE was unaltered between the two mouse models. To further investigate the role of HDL, we injected HDL with radiolabeled cholesterol in WT mice and Abca1(-/-)×Sr-b1(-/-) mice that lack HDL and are also unable to clear HDL via the liver. The intestines of both mice were unable to take up and secrete radiolabeled cholesterol from HDL via TICE. Although a generally accepted major player in the hepatobiliary route-based cholesterol excretion, HDL plays no significant role in TICE in mice.
Collapse
Affiliation(s)
- Carlos L J Vrins
- Department of Medical Biochemistry, Amsterdam, The Netherlands; AMC Tytgat Institute, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | - Dirk R de Waart
- AMC Tytgat Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - J Kar Kruyt
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Theo J C van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Louis M Havekes
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands; and
| | | | - Miranda van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Albert K Groen
- Department of Pediatrics/Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
47
|
Briand F, Thieblemont Q, Burcelin R, Sulpice T. Sitagliptin promotes macrophage-to-faeces reverse cholesterol transport through reduced intestinal cholesterol absorption in obese insulin resistant CETP-apoB100 transgenic mice. Diabetes Obes Metab 2012; 14:662-5. [PMID: 22268579 DOI: 10.1111/j.1463-1326.2012.01568.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4i) improve glycaemic control in type 2 diabetes, but their benefits on reverse cholesterol transport (RCT) remain unknown. We evaluated the effects of DPP-4i sitagliptin 500 mg/kg/day on RCT in obese insulin-resistant CETP-apoB100 transgenic mice. Metformin 300 mg/kg/day orally was used as a reference compound. Both metformin and sitagliptin showed the expected effects on glucose parameters. Although no significant effect was observed on total cholesterol and high-density lipoprotein (HDL) cholesterol levels, sitagliptin, but not metformin, increased faecal cholesterol mass excretion by 132% (p < 0.001 vs. vehicle), suggesting a potent effect on cholesterol metabolism. Mice were then injected i.p. with (3) H-cholesterol labelled macrophages to measure RCT over 48 h. Compared with vehicle, sitagliptin significantly increased macrophage-derived (3) H-cholesterol faecal excretion by 39%. Administration of (14) C-cholesterol labelled olive oil orally showed a significant reduction of (14) C-tracer plasma appearance over time with sitagliptin, indicating that this drug promotes RCT through reduced intestinal cholesterol absorption.
Collapse
Affiliation(s)
- F Briand
- Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Rue Pierre et Marie Curie, Labège-Innopole, France.
| | | | | | | |
Collapse
|
48
|
Briand F, Thiéblemont Q, Muzotte E, Sulpice T. High-fat and fructose intake induces insulin resistance, dyslipidemia, and liver steatosis and alters in vivo macrophage-to-feces reverse cholesterol transport in hamsters. J Nutr 2012; 142:704-9. [PMID: 22357742 DOI: 10.3945/jn.111.153197] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reverse cholesterol transport (RCT) promotes the egress of cholesterol from peripheral tissues to the liver for biliary and fecal excretion. Although not demonstrated in vivo, RCT is thought to be impaired in patients with metabolic syndrome, in which liver steatosis prevalence is relatively high. Golden Syrian hamsters were fed a nonpurified (CON) diet and normal drinking water or a high-fat (HF) diet containing 27% fat, 0.5% cholesterol, and 0.25% deoxycholate as well as 10% fructose in drinking water for 4 wk. Compared to CON, the HF diet induced insulin resistance and dyslipidemia, with significantly higher plasma non-HDL-cholesterol concentrations and cholesteryl ester transfer protein activity. The HF diet induced severe liver steatosis, with significantly higher cholesterol and TG levels compared to CON. In vivo RCT was assessed by i.p. injecting ³H-cholesterol labeled macrophages. Compared to CON, HF hamsters had significantly greater ³H-tracer recoveries in plasma, but not HDL. After 72 h, ³H-tracer recovery in HF hamsters was 318% higher in liver and 75% lower in bile (P < 0.01), indicating that the HF diet impaired hepatic cholesterol fluxes. However, macrophage-derived cholesterol fecal excretion was 45% higher in HF hamsters than in CON hamsters. This effect was not related to intestinal cholesterol absorption, which was 89% higher in HF hamsters (P < 0.05), suggesting a possible upregulation of transintestinal cholesterol excretion. Our data indicate a significant increase in macrophage-derived cholesterol fecal excretion in a hamster model of metabolic syndrome, which may not compensate for the diet-induced dyslipidemia and liver steatosis.
Collapse
Affiliation(s)
- François Briand
- Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Labège-Innopole, France.
| | | | | | | |
Collapse
|
49
|
Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012; 9:25. [PMID: 22458435 PMCID: PMC3366910 DOI: 10.1186/1743-7075-9-25] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022] Open
Abstract
Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included.
Collapse
|
50
|
Gross B, Hennuyer N, Bouchaert E, Rommens C, Grillot D, Mezdour H, Staels B. Generation and characterization of a humanized PPARδ mouse model. Br J Pharmacol 2012; 164:192-208. [PMID: 21426320 DOI: 10.1111/j.1476-5381.2011.01359.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Humanized mice for the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ), termed PPARδ knock-in (PPARδ KI) mice, were generated for the investigation of functional differences between mouse and human PPARδ and as tools for early drug efficacy assessment. EXPERIMENTAL APPROACH Human PPARδ function in lipid metabolism was assessed at baseline, after fasting or when challenged with the GW0742 compound in mice fed a chow diet or high-fat diet (HFD). KEY RESULTS Analysis of PPARδ mRNA levels revealed a hypomorph expression of human PPARδ in liver, macrophages, small intestine and heart, but not in soleus and quadriceps muscles, white adipose tissue and skin. PPARδ KI mice displayed a small decrease of high-density lipoprotein-cholesterol whereas other lipid parameters were unaltered. Plasma metabolic parameters were similar in wild-type and PPARδ KI mice when fed chow or HFD, and following physiological (fasting) and pharmacological (GW0742 compound) activation of PPARδ. Gene expression profiling in liver, soleus muscle and macrophages showed similar gene patterns regulated by mouse and human PPARδ. The anti-inflammatory potential of human PPARδ was also similar to mouse PPARδ in liver and isolated macrophages. CONCLUSIONS AND IMPLICATIONS These data indicate that human PPARδ can compensate for mouse PPARδ in the regulation of lipid metabolism and inflammation. Overall, this novel PPARδ KI mouse model shows full responsiveness to pharmacological challenge and represents a useful tool for the preclinical assessment of PPARδ activators with species-specific activity.
Collapse
Affiliation(s)
- B Gross
- Université Lille Nord de France, Lille, France
| | | | | | | | | | | | | |
Collapse
|