1
|
Coolahan M, Whalen KE. A review of quorum-sensing and its role in mediating interkingdom interactions in the ocean. Commun Biol 2025; 8:179. [PMID: 39905218 PMCID: PMC11794697 DOI: 10.1038/s42003-025-07608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Quorum sensing, first described in marine systems five decades ago, is a well-characterized chemical communication system used to coordinate bacterial gene expression and behavior; however, the impact of quorum sensing on interkingdom interactions has been vastly understudied. In this review, we examine how these molecules mediate communication between bacteria and marine eukaryotes; influencing processes such as development, disease pathogenesis, and microbiome regulation within marine ecosystems. We describe the varied mechanisms eukaryotes have evolved to interfere with bacterial quorum sensing signaling, the crucial role these signals play in host-virus interactions, and how their exchange may be governed by outer membrane vesicles, prevalent in marine systems. Here, we present a dynamic portrayal of the impact of quorum sensing signals beyond bacterial communication, laying the groundwork for future investigations on their roles in shaping marine ecosystem structure and function.
Collapse
Affiliation(s)
- Megan Coolahan
- Department of Biology, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
2
|
Yang Q, Yang B, Yang B, Zhang W, Tang X, Sun H, Zhang Y, Li J, Ling J, Dong J. Alleviating Coral Thermal Stress via Inoculation with Quorum Quenching Bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:951-963. [PMID: 39030411 DOI: 10.1007/s10126-024-10344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
In the background of global warming, coral bleaching induced by elevated seawater temperature is the primary cause of coral reef degradation. Coral microbiome engineering using the beneficial microorganisms for corals (BMCs) has become a hot spot in the field of coral reef conservation and restoration. Investigating the potential of alleviating thermal stress by quorum quenching (QQ) bacteria may provide more tools for coral microbial engineering remediation. In this study, QQ bacteria strain Pseudoalteromonas piscicida SCSIO 43740 was screened among 75 coral-derived bacterial strains, and its quorum sensing inhibitor (QSI) compound was isolated and identified as 2,4-di-tert-butylphenol (2,4-DTBP). Then, the thermal stress alleviating potential of QQ bacteria on coral Pocillopora damicornis was tested by a 30-day controlled experiment with three different treatments: control group (Con: 29 °C), high temperature group (HT: 31 °C), and the group of high temperature with QQ bacteria inoculation (HTQQ: 31 °C + QQ bacteria). The results showed that QQ bacteria SCSIO 43740 inoculation can significantly mitigate the loss of symbiotic algae and impairment of photosynthesis efficiency of coral P. damicornis under thermal stress. Significant difference in superoxide dismutase (SOD) and catalase (CAT) enzyme activities between HT and HTQQ was not observed. In addition, QQ bacteria inoculation suppressed the coral microbial community beta-dispersion and improved the stability of microbial co-occurrence network under thermal stress. It was suggested that QQ bacteria inoculation can alleviate coral thermal stress via reshaping microbial interaction and maintain community stability of coral microbiome. This study provided new evidence for the probiotic function of QQ bacteria in corals, which shedding light on the development of new microbiological tools for coral reef conservation.
Collapse
Affiliation(s)
- Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Bing Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Huiming Sun
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Yanying Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Yantai University, Yantai, 264003, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| |
Collapse
|
3
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
4
|
Xu M, Lyu Y, Cheng K, Zhang B, Cai Z, Chen G, Zhou J. Interactions between quorum sensing/quorum quenching and virulence genes may affect coral health by regulating symbiotic bacterial community. ENVIRONMENTAL RESEARCH 2023; 238:117221. [PMID: 37775014 DOI: 10.1016/j.envres.2023.117221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China
| | - Yihua Lyu
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510300, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Boya Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
5
|
Vilas Bhagwat P, Ravindran C, Irudayarajan L. Characterization of the defense properties of healthy and diseased coral mucus. J Invertebr Pathol 2023; 201:108001. [PMID: 37838065 DOI: 10.1016/j.jip.2023.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The surface mucus layer of corals aids in feeding, silt removal, and defense against pathogens. However, first line of defense of secreted mucus of corals against tissue damage generated through pathogen or environmental factors is poorly understood. Hence, we used various methods such as a well diffusion assay and tests for quorum quenching, free radical scavenging, antioxidant enzyme expression and phenoloxidase (PO) activity to determine the mucus defense properties using mucus of healthy and diseased Porites sp. and Acropora sp. Interestingly the coral mucus showed antimicrobial activity against coral pathogens such as bacteria and protozoan ciliates. Inhibition of the N-Acyl homoserine lactone (AHL) molecule suggests quorum quenching. Free radical scavenging of mucus was screened using hydrogen peroxide, hydroxyl radical, and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) methods, which was found significantly more in diseased corals (p < 0.05). Antioxidant enzymes superoxide dismutase (SOD), catalase, and peroxidase activity were observed in both the diseased and healthy coral mucus. The presence of serine and metalloproteases was also detected in coral mucus. Further, phenoloxidase (PO) activity was highest in diseased coral mucus affected by pink line syndrome and white patch Acropora sp. disease than the healthy coral mucus. Thus, the present study of antimicrobial properties, antioxidant enzymes, and quorum quenching properties in coral mucus may aid in understanding the corals defense and survival against pathogens and any abiotic stress.
Collapse
Affiliation(s)
- Phartade Vilas Bhagwat
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula-403004, Goa, India; Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| | - Chinnarajan Ravindran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula-403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Lawrance Irudayarajan
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula-403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Zhao W, Chen X, Liu R, Tian P, Niu W, Zhang XH, Liu J, Wang X. Distinct coral environments shape the dynamic of planktonic Vibrio spp. ENVIRONMENTAL MICROBIOME 2023; 18:77. [PMID: 37872593 PMCID: PMC10594878 DOI: 10.1186/s40793-023-00532-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Coral reefs are one of the most biodiverse and productive ecosystems, providing habitat for a vast of species. Reef-building scleractinian corals with a symbiotic microbiome, including bacteria, archaea, viruses and eukaryotic microbes, are referred to coral holobionts. Among them, coral diseases, mainly caused by Vibrio spp., have significantly contributed to the loss of coral cover and diversity. Habitat filtering across the globe has led to a variety structure of marine bacterial communities. Coral species, quantity and characteristics are significant differences between the Xisha Islands and Daya Bay (Guangdong Province). Thus, the Vibrio communities may be distinct between coral rich and poor areas. RESULTS Through comparison of Vibrio dynamics between coral-rich (Xisha Islands) and coral-poor (Daya Bay) locations, we uncovered differences in Vibrio abundance, diversity, community composition and assembly mechanisms associated with corals. The higher abundance of Vibrio in coral rich areas may indicate a strong interaction between vibrios and corals. V. campbellii, Paraphotobacterium marinum and V. caribbeanicus were widely distributed in both coral rich and poor areas, likely indicating weak species specificity in the coral-stimulated growth of Vibrio. Random-forest prediction revealed Vibrio species and Photobacterium species as potential microbial indicators in the coral rich and coral poor areas, respectively. Ecological drift rather than selection governed the Vibrio community assembly in the Xisha Islands. Comparatively, homogenizing selection was more important for the Daya Bay community, which may reflect a role of habitat filtration. CONCLUSION This study revealed the different distribution pattern and assembly mechanism of Vibrio spp. between coral rich and poor areas, providing the background data for the research of Vibrio community in coral reef areas and may help the protection of coral reef at the biological level. The main reasons for the difference were different number and species of corals, environmental (e.g., temperature) and spatial factors. It reflected the strong interaction between Vibrio and corals, and provided a new perspective for the investigation of Vibrio in coral reef ecosystem.
Collapse
Affiliation(s)
- Wenbin Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Peng Tian
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, China
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510000, China
| | - Wentao Niu
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, China
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510000, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China.
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
7
|
Priya PS, Boopathi S, Murugan R, Haridevamuthu B, Arshad A, Arockiaraj J. Quorum sensing signals: Aquaculture risk factor. REVIEWS IN AQUACULTURE 2023; 15:1294-1310. [DOI: 10.1111/raq.12774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 10/16/2023]
Abstract
AbstractBacteria produce several virulence factors and cause massive mortality in fish and crustaceans. Abundant quorum sensing (QS) signals and high cell density are essentially required for the production of such virulence factors. Although several strategies have been developed to control aquatic pathogens through antibiotics and QS inhibition, the impact of pre‐existing QS signals in the aquatic environment has been overlooked. QS signals cause detrimental effects on mammalian cells and induce cell death by interfering with multiple cellular pathways. Moreover, QS signals not only function as a messenger, but also annihilate the functions of the host immune system which implies that QS signals should be designated as a major virulence factor. Despite QS signals' role has been well documented in mammalian cells, their impact on aquatic organisms is still at the budding stage. However, many aquatic organisms produce enzymes that degrade and detoxify such QS signals. In addition, physical and chemical factors also determine the stability of the QS signals in the aqueous environment. The balance between QS signals and existing QS signals degrading factors essentially determines the disease progression in aquatic organisms. In this review, we highlight the impact of QS signals on aquatic organisms and further discussed potential alternative strategies to control disease progression.
Collapse
Affiliation(s)
- P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Seenivasan Boopathi
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
8
|
Diversity of Bacteria with Quorum Sensing and Quenching Activities from Hydrothermal Vents in the Okinawa Trough. Microorganisms 2023; 11:microorganisms11030748. [PMID: 36985321 PMCID: PMC10052519 DOI: 10.3390/microorganisms11030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Quorum sensing (QS) is a chemical communication system by which bacteria coordinate gene expression and social behaviors. Quorum quenching (QQ) refers to processes of inhibiting the QS pathway. Deep-sea hydrothermal vents are extreme marine environments, where abundant and diverse microbial communities live. However, the nature of chemical communication in bacteria inhabiting the hydrothermal vent is poorly understood. In this study, the QS and QQ activities with N-acyl homoserine lactones (AHLs) as the autoinducer were detected in bacteria isolated from hydrothermal vents in the Okinawa Trough. A total of 18 and 108 isolates possessed AHL-producing and AHL-degrading abilities, respectively. Bacteria mainly affiliated with Rhodobacterales, Hyphomicrobiales, Enterobacterales and Sphingomonadales showed QS activities; QQ was mainly associated with Bacillales, Rhodospirillales and Sphingomonadales. The results showed that the bacterial QS and QQ processes are prevalent in hydrothermal environments in the Okinawa Trough. Furthermore, QS significantly affected the activities of extracellular enzymes represented by β-glucosidase, aminopeptidase and phosphatase in the four isolates with higher QS activities. Our results increase the current knowledge of the diversity of QS and QQ bacteria in extreme marine environments and shed light on the interspecific relationships to better investigate their dynamics and ecological roles in biogeochemical cycling.
Collapse
|
9
|
Jiang C, Kasai H, Mino S, Romalde JL, Sawabe T. The pan‐genome of Splendidus clade species in the family
Vibrionaceae
: insights into evolution, adaptation, and pathogenicity. Environ Microbiol 2022; 24:4587-4606. [DOI: 10.1111/1462-2920.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS‐Facultad de Biología. Universidade de Santiago de Compostela Spain
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| |
Collapse
|
10
|
Wang X, Yu D, Chen G, Liu C, Xu A, Tang Z. Effects of interactions between quorum sensing and quorum quenching on microbial aggregation characteristics in wastewater treatment: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2883-2902. [PMID: 34719836 DOI: 10.1002/wer.1657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Due to the increasingly urgent demand for effective wastewater denitrification and dephosphorization systems, there is a need to improve the performance of existing biological treatment technologies. As a bacteria-level communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. On this basis, the QS-based bacterial communication mechanism and environmental factors affecting QS are discussed. This paper reviews the influence of QS on sludge granulation, biofilm formation, emerging contaminants (ECs) removal, and horizontal gene transfer in sewage treatment system. Furthermore, the QS inhibition strategies are compared. Based on the coexistence and balance of QQ and QS in the long-term operation system, QQ, as an effective tool to regulate the growth density of microorganisms, provides a promising exogenous regulation strategy for residual sludge reduction and biofilm pollution control. This paper reviews the potential of improving wastewater treatment efficiency based on QS theory and points out the feasibility and prospect of exogenous regulation strategy. PRACTITIONER POINTS: The mechanism of bacterial communication based on QS and the environmental factors affecting QS were discussed. The application of QS and QQ in improving the sludge performance of biological treatment systems was described. The significance of QS and QQ coexistence in sewage treatment process was described.
Collapse
Affiliation(s)
- Xueping Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Chengju Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Zhihao Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Urvoy M, Lami R, Dreanno C, Daudé D, Rodrigues AMS, Gourmelon M, L'Helguen S, Labry C. Quorum sensing disruption regulates hydrolytic enzyme and biofilm production in estuarine bacteria. Environ Microbiol 2021; 23:7183-7200. [PMID: 34528354 DOI: 10.1111/1462-2920.15775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Biofilms of heterotrophic bacteria cover organic matter aggregates and constitute hotspots of mineralization, primarily acting through extracellular hydrolytic enzyme production. Nevertheless, regulation of both biofilm and hydrolytic enzyme synthesis remains poorly investigated, especially in estuarine ecosystems. In this study, various bioassays, mass spectrometry and genomics approaches were combined to test the possible involvement of quorum sensing (QS) in these mechanisms. QS is a bacterial cell-cell communication system that relies notably on the emission of N-acylhomoserine lactones (AHLs). In our estuarine bacterial collection, we found that 28 strains (9%), mainly Vibrio, Pseudomonas and Acinetobacter isolates, produced at least 14 different types of AHLs encoded by various luxI genes. We then inhibited the AHL QS circuits of those 28 strains using a broad-spectrum lactonase preparation and tested whether biofilm production as well as β-glucosidase and leucine-aminopeptidase activities were impacted. Interestingly, we recorded contrasted responses, as biofilm production, dissolved and cell-bound β-glucosidase and leucine-aminopeptidase activities significantly increased in 4%-68% of strains but decreased in 0%-21% of strains. These findings highlight the key role of AHL-based QS in estuarine bacterial physiology and ultimately on biogeochemical cycles. They also point out the complexity of QS regulations within natural microbial assemblages.
Collapse
Affiliation(s)
- Marion Urvoy
- Ifremer, DYNECO, Plouzané, F-29280, France.,Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, F-29280, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), 66650 Banyuls-sur-Mer, France
| | | | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille, 13005, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), 66650 Banyuls-sur-Mer, France
| | | | - Stéphane L'Helguen
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, F-29280, France
| | | |
Collapse
|
12
|
Use of Quorum Sensing Inhibition Strategies to Control Microfouling. Mar Drugs 2021; 19:md19020074. [PMID: 33573187 PMCID: PMC7912365 DOI: 10.3390/md19020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.
Collapse
|
13
|
Peixoto RS, Sweet M, Villela HDM, Cardoso P, Thomas T, Voolstra CR, Høj L, Bourne DG. Coral Probiotics: Premise, Promise, Prospects. Annu Rev Anim Biosci 2020; 9:265-288. [PMID: 33321044 DOI: 10.1146/annurev-animal-090120-115444] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of Beneficial Microorganisms for Corals (BMCs) has been proposed recently as a tool for the improvement of coral health, with knowledge in this research topic advancing rapidly. BMCs are defined as consortia of microorganisms that contribute to coral health through mechanisms that include (a) promoting coral nutrition and growth, (b) mitigating stress and impacts of toxic compounds, (c) deterring pathogens, and (d) benefiting early life-stage development. Here, we review the current proposed BMC approach and outline the studies that have proven its potential to increase coral resilience to stress. We revisit and expand the list of putative beneficial microorganisms associated with corals and their proposed mechanismsthat facilitate improved host performance. Further, we discuss the caveats and bottlenecks affecting the efficacy of BMCs and close by focusing on the next steps to facilitate application at larger scales that can improve outcomes for corals and reefs globally.
Collapse
Affiliation(s)
- Raquel S Peixoto
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; .,IMAM-AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, 20220-360, Brazil.,Current affiliation: Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, United Kingdom
| | - Helena D M Villela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Pedro Cardoso
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz 78457, Germany.,Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lone Høj
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
14
|
Singh AA, Singh AK, Nerurkar A. Bacteria associated with marine macroorganisms as potential source of quorum-sensing antagonists. J Basic Microbiol 2020; 60:799-808. [PMID: 32598075 DOI: 10.1002/jobm.202000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/09/2022]
Abstract
Samples were collected from different undisturbed areas along the coast of Gujarat like Okha, Diu, Veraval, and Somnath. A total of 68 marine isolates were obtained out of which 53 were associated with various marine macroorganisms like sponges, gastropods, and algae, whereas 15 were free living. Quorum-quenching ability of all the isolates was tested against Chromobacterium violaceum MK by co-culture technique as a way to simultaneously detect signal-degrading as well as nondegrading quorum-sensing inhibitors. Nineteen macroorganism-associated bacteria and eight free-living bacteria were found to possess quorum-sensing inhibitory activity against C. violaceum MK without affecting its growth. Isolate OA22 from grape alga and OA10 from purple sponge (Haliclona sp.) were found to possess the highest C6-HSL degradation activity and extracellular non-N-acyl-homoserine lactone degrading QSI activity, respectively. OA22 was also found to degrade 3-oxo-C12 homoserine lactone. Acid recovery of both the C6- and C12-HSL after degradation by OA22 indicated the presence of lactonase enzyme in the isolate. Cell-free supernatant of OA10 was extracted with ethyl acetate to obtain the quorum-quenching compound. Pigment inhibition in C. violaceum MK treated with OA10 extract was demonstrated in various ways and was indicative of QSI activity of the extract without degradation of the quorum-sensing signaling molecule. The isolates OA22 and OA10 were identified as Desemzia incerta and Bacillus sp., respectively, by 16S ribosomal DNA sequence analysis.
Collapse
Affiliation(s)
- Aparna A Singh
- Department of Microbiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.,Department of Microbiology, School of Sciences, P. P. Savani University, Surat, Gujarat, India
| | - Anil K Singh
- Department of Microbiology, Government Science College, Vankal, Surat, Gujarat, India
| | - Anuradha Nerurkar
- Department of Microbiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
15
|
Zhou J, Lin ZJ, Cai ZH, Zeng YH, Zhu JM, Du XP. Opportunistic bacteria use quorum sensing to disturb coral symbiotic communities and mediate the occurrence of coral bleaching. Environ Microbiol 2020; 22:1944-1962. [PMID: 32249540 DOI: 10.1111/1462-2920.15009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zi-Jun Lin
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.,Department of Earth System Science, Tsinghua University of Education Key Laboratory for Earth System Modeling, Beijing, 100084, People's Republic of China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.,School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
16
|
Gao M, Liu YJ, Liu Z, Li HT, Zhang AN. Dynamic characteristics of AHLs-secreting strain Aeromonas sp. A-L2 and its bioaugmentation during quinoline biodegradation. J Appl Microbiol 2019; 128:1060-1073. [PMID: 31770483 DOI: 10.1111/jam.14530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 11/29/2022]
Abstract
AIMS In order to probe a more environmentally friendly method of pollutant treatment based on microbial bioaugmentation and quorum sensing (QS) effects. METHODS AND RESULTS The dynamic characteristics and QS effects of the acylated homoserine lactones (AHLs)-secreting strain Aeromonas sp. A-L2 (A-L2), which was isolated from the activated sludge system, was discussed. According to the liquid chromatography-mass spectrometry results, N-butyryl-homoserine lactone (C4-HSL) and N-hexanoyl-homoserine lactone (C6-HSL) were the major AHLs secreted by strain A-L2, and the swarming of strain Ochrobactrum sp. LC-1 (LC-1) was induced by these compounds. The extracellular polymeric substance secretion of the strain LC-1 was mainly led by C6-HSL, and the biofilm formation ability was mainly influenced by C6-HSL or C4-HSL (60 μg l-1 ). The optimal AHLs secretion conditions of strain A-L2 were also studied. Drawing support from the AHLs-secreting strain A-L2 during quinoline degradation by strain LC-1, the degradation time was greatly shortened. CONCLUSIONS Hence, AHLs-secreting strain A-L2 can be useful as an AHLs continuous supplier during bioaugmentation and pollutant biodegradation. SIGNIFICANCE AND IMPACT OF THE STUDY The bioaugmentation process of strain A-L2 on quinoline biodegradation based on QS effects would lay a certain theoretical and practical significance for large-scale applications.
Collapse
Affiliation(s)
- M Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China
| | - Y J Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China.,Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, PR China
| | - Z Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China.,Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, PR China
| | - H T Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China
| | - A N Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China.,Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, PR China
| |
Collapse
|
17
|
Reina JC, Pérez-Victoria I, Martín J, Llamas I. A Quorum-Sensing Inhibitor Strain of Vibrio alginolyticus Blocks Qs-Controlled Phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar Drugs 2019; 17:md17090494. [PMID: 31450549 PMCID: PMC6780304 DOI: 10.3390/md17090494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The cell density-dependent mechanism, quorum sensing (QS), regulates the expression of virulence factors. Its inhibition has been proposed as a promising new strategy to prevent bacterial pathogenicity. In this study, 827 strains from the microbiota of sea anemones and holothurians were screened for their ability to produce quorum-sensing inhibitor (QSI) compounds. The strain M3-10, identified as Vibrio alginolyticus by 16S rRNA gene sequencing, as well as ANIb and dDDH analyses, was selected for its high QSI activity. Bioassay-guided fractionation of the cell pellet extract from a fermentation broth of strain M3-10, followed by LC–MS and NMR analyses, revealed tyramine and N-acetyltyramine as the active compounds. The QS inhibitory activity of these molecules, which was confirmed using pure commercially available standards, was found to significantly inhibit Chromobacterium violaceum ATCC 12472 violacein production and virulence factors, such as pyoverdine production, as well as swarming and twitching motilities, produced by Pseudomonas aeruginosa PAO1. This constitutes the first study to screen QSI-producing strains in the microbiota of anemones and holothurians and provides an insight into the use of naturally produced QSI as a possible strategy to combat bacterial infections.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Ignacio Pérez-Victoria
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain.
| | - Jesús Martín
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
18
|
Girard L. Quorum sensing in Vibrio spp.: the complexity of multiple signalling molecules in marine and aquatic environments. Crit Rev Microbiol 2019; 45:451-471. [PMID: 31241379 DOI: 10.1080/1040841x.2019.1624499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum sensing (QS) is a density-dependent mechanism enabling bacteria to coordinate their actions via the release of small diffusible molecules named autoinducers (AIs). Vibrio spp. are able to adapt to changing environmental conditions by using a wide range of physiological mechanisms and many species pose a threat for human health and diverse marine and estuarine ecosystems worldwide. Cell-to-cell communication controls many of their vital functions such as niche colonization, survival strategies, or virulence. In this review, I summarize (1) the different known QS pathways (2) the diversity of AIs as well as their biological functions, and (3) the QS-mediated interactions between Vibrio and other organisms. However, the current knowledge is limited to a few pathogenic or bioluminescent species and in order to provide a genus-wide view an inventory of QS genes among 87 Vibrio species has been made. The large diversity of signal molecules and their differential effects on a particular physiological function suggest that the complexity of multiple signalling systems within bacterial communities is far from being fully understood. I question here the real level of specificity of such communication in the environment and discuss the different perspectives in order to better apprehend QS in natural habitats.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics , KU Leuven , Belgium
| |
Collapse
|
19
|
Antunes J, Leão P, Vasconcelos V. Marine biofilms: diversity of communities and of chemical cues. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:287-305. [PMID: 30246474 DOI: 10.1111/1758-2229.12694] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Surfaces immersed in seawater are rapidly colonized by various microorganisms, resulting in the formation of heterogenic marine biofilms. These communities are known to influence the settlement of algae spores and invertebrate larvae, triggering a succession of fouling events, with significant environmental and economic impacts. This review covers recent research regarding the differences in composition of biofilms isolated from different artificial surface types and the influence of environmental factors on their formation. One particular phenomenon - bacterial quorum sensing (QS) - allows bacteria to coordinate swarming, biofilm formation among other phenomena. Some other marine biofilm chemical cues are believed to modulate the settlement and the succession of macrofouling organisms, and they are also reviewed here. Finally, since the formation of a marine biofilm is considered to be an initial, QS-dependent step in the development of marine fouling events, QS inhibition is discussed on its potential as a tool for antibiofouling control in marine settings.
Collapse
Affiliation(s)
- Jorge Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| | - Pedro Leão
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| |
Collapse
|
20
|
Torres M, Dessaux Y, Llamas I. Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Mar Drugs 2019; 17:md17030191. [PMID: 30934619 PMCID: PMC6471967 DOI: 10.3390/md17030191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
21
|
Curren E, Leong SCY. Profiles of bacterial assemblages from microplastics of tropical coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:313-320. [PMID: 30471599 DOI: 10.1016/j.scitotenv.2018.11.250] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 05/20/2023]
Abstract
Plastic waste is a global issue of an increasing concern in aquatic ecosystems. Microplastics form a large proportion of plastic pollution in marine environments. Although microplastics are prevalent, their distribution along the coasts of tropical regions is not well studied. Microplastic pieces (1-5 mm) were collected from two distinct regions along the coastlines of Singapore, from the northern coast in the Johor Strait and the southern coast in the Singapore Strait. Microplastics were present in concentrations ranging from 9.20-59.9 particles per kg of dry sand sediment. The majority of microplastics identified were foam particles (55%) and fragments (35%). Microplastics were significantly more abundant on heavily populated beaches compared to pristine beaches. High throughput sequencing was used to profile the communities of bacteria on the surfaces of microplastic particles. The structure of the microbial communities was primarily characterised by Proteobacteria and Bacteroidetes and were distinct across sites. Hydrocarbon-degrading genera such as Erythrobacter were dominant in areas with heavy shipping and pollution. Potential pathogenic genera such as Vibrio and Pseudomonas were also identified. This study highlights the diverse bacterial assemblages present on marine microplastic surfaces and the importance of understanding the bacterial plastisphere.
Collapse
Affiliation(s)
- Emily Curren
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, 117555, Singapore; St. John Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, 119227, Singapore.
| | - Sandric Chee Yew Leong
- St. John Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| |
Collapse
|
22
|
Song Y, Cai Z, Lao Y, Jin H, Ying K, Lin G, Zhou J. Antibiofilm activity substances derived from coral symbiotic bacterial extract inhibit biofouling by the model strain Pseudomonas aeruginosa PAO1. Microb Biotechnol 2018; 11:1090-1105. [PMID: 30298548 PMCID: PMC6196393 DOI: 10.1111/1751-7915.13312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
The mitigation of biofouling has received significant research attention, with particular focus on non-toxic and sustainable strategies. Here, we investigated quorum sensing inhibitor (QSI) bacteria as a means of controlling biofouling in a laboratory-scale system. Approximately, 200 strains were isolated from coral (Pocillopora damicornis) and screened for their ability to inhibit quorum sensing (QS). Approximately, 15% of the isolates exhibited QSI activity, and a typical coral symbiotic bacterium, H12-Vibrio alginolyticus, was selected in order for us to investigate quorum sensing inhibitory activity further. Confocal microscopy revealed that V. alginolyticus extract inhibited biofilm formation from Pseudomonas aeruginosa PAO1. In addition, the secondary metabolites of V. alginolyticus inhibited PAO1 virulence phenotypes by downregulating motility ability, elastase activity and rhamnolipid production. NMR and MS spectrometry suggested that the potential bioactive compound involved was rhodamine isothiocyanate. Quantitative real-time PCR indicated that the bacterial extract induced a significant downregulation of QS regulatory genes (lasB, lasI, lasR, rhlI, rhlR) and virulence-related genes (pqsA, pqsR). The possible mechanism underlying the action of rhodamine isothiocyanate analogue involves the disruption of the las and/or rhl system of PAO1. Our results highlight coral microbes as a bioresource pool for developing QS inhibitors and identifying novel antifouling agents.
Collapse
Affiliation(s)
- Yu Song
- Department of Earth System ScienceTsinghua University of Education Key Laboratory for Earth System ModelingBeijing100084China
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Zhong‐Hua Cai
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Yong‐Min Lao
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Hui Jin
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Ke‐Zhen Ying
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Guang‐Hui Lin
- Department of Earth System ScienceTsinghua University of Education Key Laboratory for Earth System ModelingBeijing100084China
| | - Jin Zhou
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| |
Collapse
|
23
|
Genetic diversity and phenotypic plasticity of AHL-mediated Quorum sensing in environmental strains of Vibrio mediterranei. ISME JOURNAL 2018; 13:159-169. [PMID: 30116040 DOI: 10.1038/s41396-018-0260-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 01/28/2023]
Abstract
N-Acyl homoserine lactone (AHL)-mediated Quorum sensing (QS) is one of the most studied social behavior among Proteobacteria. However, despite the current knowledge on QS-associated phenotypes such as bioluminescence, biofilm formation, or pathogenesis, the characterization of environmental factors driving QS in realistic ecological settings remains scarce. We investigated the dynamics of AHL and AHL-producing Vibrio among 840 isolates collected fortnightly from the Salses-Leucate Mediterranean lagoon in spring and summer 2015 and 2016. Vibrio isolates were characterized by gyrB gene sequencing, Enterobacterial repetitive intergenic consensus polymerase chain reaction, and genome sequencing, and AHL production was investigated by a biosensors-based UHPLC-HRMS/MS approach. Our results revealed, for the first time, a succession of V. mediterranei isolates with different AHL production phenotypes over time and this dynamics was observed in a single genotype (average genomic nucleotide identity >99.9). A multivariate DistLM analysis revealed that 83.4% of the temporal variation of V. mediterranei QS phenotypes was explained by environmental variables. Overall, our results suggest that isolates of a single genotype are able to change their QS phenotypes in response to environmental conditions, highlighting the phenotypic plasticity of bacterial communication in the environment.
Collapse
|
24
|
Liu J, Fu K, Wu C, Qin K, Li F, Zhou L. "In-Group" Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018; 8:139. [PMID: 29868495 PMCID: PMC5952220 DOI: 10.3389/fcimb.2018.00139] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
N-Acyl Homoserine Lactones (N-AHLs) are an important group of small quorum-sensing molecules generated and released into the surroundings by Gram-negative bacteria. N-AHLs play a crucial role in various infection-related biological processes of marine Vibrio species, including survival, colonization, invasion, and pathogenesis. With the increasing problem of antibiotic abuse and subsequently the emergence of drug-resistant bacteria, studies on AHLs are therefore expected to bring potential new breakthroughs for the prevention and treatment of Vibrio infections. This article starts from AHLs generation in marine Vibrio, and then discusses the advantages, disadvantages, and trends in the future development of various detection methods for AHLs characterization. In addition to a detailed classification of the various marine Vibrio-derived AHL types that have been reported over the years, the regulatory mechanisms of AHLs and their roles in marine Vibrio biofilms, pathogenicity and interaction with host cells are also highlighted. Intervention measures for AHLs in different stages are systematically reviewed, and the prospects of their future development and application are examined.
Collapse
Affiliation(s)
- Jianfei Liu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kewei Qin
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
25
|
Torres M, Reina JC, Fuentes-Monteverde JC, Fernández G, Rodríguez J, Jiménez C, Llamas I. AHL-lactonase expression in three marine emerging pathogenic Vibrio spp. reduces virulence and mortality in brine shrimp (Artemia salina) and Manila clam (Venerupis philippinarum). PLoS One 2018; 13:e0195176. [PMID: 29664914 PMCID: PMC5903640 DOI: 10.1371/journal.pone.0195176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/16/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial infectious diseases produced by Vibrio are the main cause of economic losses in aquaculture. During recent years it has been shown that the expression of virulence genes in some Vibrio species is controlled by a population-density dependent gene-expression mechanism known as quorum sensing (QS), which is mediated by the diffusion of signal molecules such as N-acylhomoserine lactones (AHLs). QS disruption, especially the enzymatic degradation of signalling molecules, known as quorum quenching (QQ), is one of the novel therapeutic strategies for the treatment of bacterial infections. In this study, we present the detection of AHLs in 34 marine Vibrionaceae strains. Three aquaculture-related pathogenic Vibrio strains, V. mediterranei VibC-Oc-097, V. owensii VibC-Oc-106 and V. coralliilyticus VibC-Oc-193 were selected for further studies based on their virulence and high production of AHLs. This is the first report where the signal molecules have been characterized in these emerging marine pathogens and correlated to the expression of virulence factors. Moreover, the results of AHL inactivation in the three selected strains have been confirmed in vivo against brine shrimps (Artemia salina) and Manila clams (Venerupis philippinarum). This research contributes to the development of future therapies based on AHL disruption, the most promising alternatives for fighting infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Juan Carlos Fuentes-Monteverde
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Gerardo Fernández
- Research Support Service (SAI), Central Services (ESCI) University of A Coruña, A Coruña, Spain
| | - Jaime Rodríguez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Carlos Jiménez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, A Coruña, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
26
|
Muras A, López-Pérez M, Mayer C, Parga A, Amaro-Blanco J, Otero A. High Prevalence of Quorum-Sensing and Quorum-Quenching Activity among Cultivable Bacteria and Metagenomic Sequences in the Mediterranean Sea. Genes (Basel) 2018; 9:E100. [PMID: 29462892 PMCID: PMC5852596 DOI: 10.3390/genes9020100] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence being accumulated regarding the importance of N-acyl homoserine lactones (AHL)-mediated quorum-sensing (QS) and quorum-quenching (QQ) processes in the marine environment, but in most cases, data has been obtained from specific microhabitats, and subsequently little is known regarding these activities in free-living marine bacteria. The QS and QQ activities among 605 bacterial isolates obtained at 90 and 2000 m depths in the Mediterranean Sea were analyzed. Additionally, putative QS and QQ sequences were searched in metagenomic data obtained at different depths (15-2000 m) at the same sampling site. The number of AHL producers was higher in the 90 m sample (37.66%) than in the 2000 m sample (4.01%). However, the presence of QQ enzymatic activity was 1.63-fold higher in the 2000 m sample. The analysis of putative QQ enzymes in the metagenomes supports the relevance of QQ processes in the deepest samples, found in cultivable bacteria. Despite the unavoidable biases in the cultivation methods and biosensor assays and the possible promiscuous activity of the QQ enzymes retrieved in the metagenomic analysis, the results indicate that AHL-related QS and QQ processes could be common activity in the marine environment.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan de Alicante 03202, Spain.
| | - Celia Mayer
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Jaime Amaro-Blanco
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
27
|
Certner RH, Vollmer SV. Inhibiting bacterial quorum sensing arrests coral disease development and disease‐associated microbes. Environ Microbiol 2017; 20:645-657. [DOI: 10.1111/1462-2920.13991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Rebecca H. Certner
- Department of Marine and Environmental SciencesNortheastern University, 430 Nahant RoadNahantMA 01908 USA
| | - Steven V. Vollmer
- Department of Marine and Environmental SciencesNortheastern University, 430 Nahant RoadNahantMA 01908 USA
| |
Collapse
|
28
|
Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. Proc Natl Acad Sci U S A 2017; 114:E8488-E8497. [PMID: 28923926 DOI: 10.1073/pnas.1706879114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacterial communities colonize epithelial surfaces of most animals. Several factors, including the innate immune system, mucus composition, and diet, have been identified as determinants of host-associated bacterial communities. Here we show that the early branching metazoan Hydra is able to modify bacterial quorum-sensing signals. We identified a eukaryotic mechanism that enables Hydra to specifically modify long-chain 3-oxo-homoserine lactones into their 3-hydroxy-HSL counterparts. Expression data revealed that Hydra's main bacterial colonizer, Curvibacter sp., responds differentially to N-(3-hydroxydodecanoyl)-l-homoserine lactone (3OHC12-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL). Investigating the impacts of the different N-acyl-HSLs on host colonization elucidated that 3OHC12-HSL allows and 3OC12-HSL represses host colonization of Curvibacter sp. These results show that an animal manipulates bacterial quorum-sensing signals and that this modification leads to a phenotypic switch in the bacterial colonizers. This mechanism may enable the host to manipulate the gene expression and thereby the behavior of its bacterial colonizers.
Collapse
|
29
|
Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method. SENSORS 2017; 17:s17040906. [PMID: 28425948 PMCID: PMC5426830 DOI: 10.3390/s17040906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
Since the discovery of quorum sensing (QS) in the 1970s, many studies have demonstrated that Vibrio species coordinate activities such as biofilm formation, virulence, pathogenesis, and bioluminescence, through a large group of molecules called N-acyl homoserine lactones (AHLs). However, despite the extensive knowledge on the involved molecules and the biological processes controlled by QS in a few selected Vibrio strains, less is known about the overall diversity of AHLs produced by a broader range of environmental strains. To investigate the prevalence of QS capability of Vibrio environmental strains we analyzed 87 Vibrio spp. strains from the Banyuls Bacterial Culture Collection (WDCM911) for their ability to produce AHLs. This screening was based on three biosensors, which cover a large spectrum of AHLs, and revealed that only 9% of the screened isolates produced AHLs in the defined experimental conditions. Among these AHL-producing strains, Vibrio tasmaniensis LGP32 is a well-known pathogen of bivalves. We further analyzed the diversity of AHLs produced by this strain using a sensitive bioguided UHPLC-HRMS/MS approach (Ultra-High-Performance Liquid Chromatography followed by High-Resolution tandem Mass Spectrometry) and we identified C10-HSL, OH-C12-HSL, oxo-C12-HSL and C14:1-HSL as QS molecules. This is the first report that documents the production of AHL by Vibrio tasmaniensis LGP32.
Collapse
|
30
|
Peixoto RS, Rosado PM, Leite DCDA, Rosado AS, Bourne DG. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front Microbiol 2017; 8:341. [PMID: 28326066 PMCID: PMC5339234 DOI: 10.3389/fmicb.2017.00341] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium. Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting strategies for the use of this knowledge to manipulate the microbiome, reversing dysbiosis to restore and protect coral reefs. This may include developing and using BMC consortia as environmental "probiotics" to improve coral resistance after bleaching events and/or the use of BMC with other strategies such as human-assisted acclimation/adaption to shifting environmental conditions.
Collapse
Affiliation(s)
- Raquel S. Peixoto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - Phillipe M. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | | | - Alexandre S. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - David G. Bourne
- College of Science and Engineering, James Cook University, TownsvilleQLD, Australia
- Australian Institute of Marine Science, TownsvilleQLD, Australia
| |
Collapse
|
31
|
Abstract
Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.
Collapse
Affiliation(s)
- Laura R Hmelo
- School of Oceanography, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
32
|
Seghal Kiran G, Priyadharshini S, Dobson ADW, Gnanamani E, Selvin J. Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms Microbiomes 2016; 2:16002. [PMID: 28721241 PMCID: PMC5515267 DOI: 10.1038/npjbiofilms.2016.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 11/21/2022] Open
Abstract
Luminescent vibrios are ubiquitous in the marine environment and are the causative agents of vibriosis and mass mortality in many aquatic animals. In aquatic environments, treatments cannot be limited to the diseased population alone, therefore treatment of the entire aquatic system is the only possible approach. Thus, the use of antibiotics to treat part of the infected animals requires a dose based on the entire biomass, which results in the treatment of uninfected animals as well as non-target normal microbial flora. A treatment method based on anti-virulence or quorum quenching has recently been proposed as an effective treatment strategy for aquatic animals. Polyhydroxy butyrates (PHB) are bacterial storage molecules, which accumulate in cells under nutritional stress. The degradation of PHB releases short-chain β-hydroxy butyric acid, which may act as anti-infective molecule. To date, there is very limited information on the potential anti-infective and anti-virulence mechanisms involving PHB. In this study, we aim to examine the effect of PHB on inhibition of the virulence cascade of Vibrio such as biofilm formation, luminescence, motility behaviour, haemolysin and quorum sensing. A luminescent Vibrio PUGSK8, tentatively identified as Vibrio campbellii PUGSK8 was tested in vitro for production of extracellular virulence factors and then established as a potential shrimp pathogen based on in vivo challenge experiments. The ability of Vibrio PUGSK8 to form biofilms and the effect of PHB on biofilm formation was tested in a 96-well microtitre-plate assay system. The motility behaviour of Vibrio PUGSK8 was evaluated using twitching, swimming and swarming plate assays. Reporter strains such as Chromobacterium violaceum CV026 and Agrobacterium tumefaciens were used to detect quorum-sensing molecules. Gas chromatography-mass spectrometry spectral analysis was performed to elucidate the fragmentation pattern and structure of N-hexanoyl homoserine lactone. PHB depolymerase activity in Vibrio PUGSK8 was quantified as the amount of the enzyme solution to hydrolyse 1 μg of PHB per min. An in vivo challenge experiment was performed using a gnotobiotic Artemia assay. Of the 27 isolates tested, the Vibrio PUGSK8 strain was selected for target-specific assays based on the high intensity of luminescence and production of virulence factors. The virulence cascade detected in Vibrio PUGSK8 include luminescence, motility behaviour, biofilm formation, quorum sensing and haemolysin production. Thus inhibition/degradation of the virulence cascade would be an effective approach to contain Vibrio infections in aquatic animals. In this report, we demonstrate that the degradation intermediate of PHB effectively inhibits biofilm formation, luminescence, motility behaviour, haemolysin production and the N-acyl-homoserine lactone (AHL)-mediated quorum-sensing pathway in PUGSK8. Interestingly, the growth of Vibrio PUGSK8 remains unaffected in the presence of PHB, with PHB degradation being detected in the media. PHB depolymerase activity in Vibrio PUGSK8 results in the release of degradation intermediates include a short-chain β-hydroxy butyric acid, which inhibits the virulence cascade in Vibrio PUGSK8. Thus, a molecule that targets quorum sensing and the virulence cascade and which is species/strain-specific could prove to be an effective alternative to antimicrobial agents to control the pathogenesis of Vibrio, and thereby help to contain Vibrio outbreaks in aquatic systems.
Collapse
Affiliation(s)
- George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Sethu Priyadharshini
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | | | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
33
|
Li J, Azam F, Zhang S. Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogenVibrio shiloniiAK1. Environ Microbiol 2016; 18:3850-3866. [DOI: 10.1111/1462-2920.13344] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences; Guangzhou Guangdong P. R. China
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego; La Jolla CA USA
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences; Guangzhou Guangdong P. R. China
| |
Collapse
|
34
|
Gu D, Guo M, Yang M, Zhang Y, Zhou X, Wang Q. A σE-Mediated Temperature Gauge Controls a Switch from LuxR-Mediated Virulence Gene Expression to Thermal Stress Adaptation in Vibrio alginolyticus. PLoS Pathog 2016; 12:e1005645. [PMID: 27253371 PMCID: PMC4890791 DOI: 10.1371/journal.ppat.1005645] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/28/2016] [Indexed: 01/15/2023] Open
Abstract
In vibrios, the expression of virulence factors is often controlled by LuxR, the master quorum-sensing regulator. Here, we investigate the interplay between LuxR and σE, an alternative sigma factor, during the control of virulence-related gene expression and adaptations to temperature elevations in the zoonotic pathogen Vibrio alginolyticus. An rpoE null V. alginolyticus mutant was unable to adapt to various stresses and was survival-deficient in fish. In wild type V. alginolyticus, the expression of LuxR-regulated virulence factors increased as the temperature was increased from 22°C to 37°C, but mutants lacking σE did not respond to temperature, indicating that σE is critical for the temperature-dependent upregulation of virulence genes. Further analyses revealed that σE binds directly to -10 and -35 elements in the luxR promoter that drive its transcription. ChIP assays showed that σE binds to the promoter regions of luxR, rpoH and rpoE at high temperatures (e.g., 30°C and 37°C). However, at higher temperatures (42°C) that induce thermal stress, σE binding to the luxR promoter decreased, while its binding to the rpoH and rpoE promoters was unchanged. Thus, the temperature-dependent binding of σE to distinct promoters appears to underlie a σE-controlled switch between the expression of virulence genes and adaptation to thermal stress. This study illustrates how a conserved temperature response mechanism integrates into quorum-sensing circuits to regulate both virulence and stress adaptation. Zoonotic Vibrio outbreaks are believed to be closely associated with increases in environmental temperature. The mechanisms underlying this phenomenon have not been defined. Here, we show that the expression of the V. alginolyticus exotoxin Asp and other quorum-sensing (QS)-regulated virulence factors are induced by increasing temperatures, with the maximum expression observed at approximately 37°C. σE plays an essential role in regulating the QS master regulator LuxR in response to temperature shifts by binding directly to the -10 and -35 regions of the luxR promoter to drive its transcription. However, at higher thermal stress temperatures, σE binding to the luxR promoter decreased, resulting in a reduction in luxR transcription. This change underlies a binomial switch mechanism that regulates σE-controlled virulence gene expression patterns. Furthermore, we found that anti-σE signaling was involved in this stress and virulence reciprocal switch. This study suggests that a common temperature response mechanism is integrated into QS circuits to regulate both virulence and adaptation in related Vibrio taxa.
Collapse
Affiliation(s)
- Dan Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Min Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minjun Yang
- Shanghai—MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (XZ); (QW)
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- * E-mail: (XZ); (QW)
| |
Collapse
|
35
|
Abstract
The tissue, skeleton, and secreted mucus of corals supports a highly dynamic and diverse community of microbes, which play a major role in the health status of corals such as the provision of essential nutrients or the metabolism of waste products. However, members of the Vibrio genus are prominent as causative agents of disease in corals. The aim of this chapter is to review our understanding of the spectrum of disease effects displayed by coral-associated vibrios, with a particular emphasis on the few species where detailed studies of pathogenicity have been conducted. The role of Vibrio shilonii in seasonal bleaching of Oculina patagonica and the development of the coral probiotic hypothesis is reviewed, pointing to unanswered questions about this phenomenon. Detailed consideration is given to studies of V. coralliilyticus and related pathogens and changes in the dominance of vibrios associated with coral bleaching. Other Vibrio-associated disease syndromes discussed include yellow band/blotch disease and tissue necrosis in temperate gorgonian corals. The review includes analysis of the role of enzymes, resistance to oxidative stress, and quorum sensing in virulence of coral-associated vibrios. The review concludes that we should probably regard most-possibly all-vibrios as "opportunistic" pathogens which, under certain environmental conditions, are capable of overwhelming the defense mechanisms of appropriate hosts, leading to rapid growth and tissue destruction.
Collapse
|
36
|
Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M. Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. ISME JOURNAL 2015; 10:1204-16. [PMID: 26495995 DOI: 10.1038/ismej.2015.184] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
Disruption of the microbiome often correlates with the appearance of disease symptoms in metaorganisms such as corals. In Black Band Disease (BBD), a polymicrobial disease consortium dominated by the filamentous cyanobacterium Roseofilum reptotaenium displaces members of the epibiotic microbiome. We examined both normal surface microbiomes and BBD consortia on Caribbean corals and found that the microbiomes of healthy corals were dominated by Gammaproteobacteria, in particular Halomonas spp., and were remarkably stable across spatial and temporal scales. In contrast, the microbial community structure in black band consortia was more variable and more diverse. Nevertheless, deep sequencing revealed that members of the disease consortium were present in every sampled surface microbiome of Montastraea, Orbicella and Pseudodiploria corals, regardless of the health status. Within the BBD consortium, we identified lyngbic acid, a cyanobacterial secondary metabolite. It strongly inhibited quorum sensing (QS) in the Vibrio harveyi QS reporters. The effects of lyngbic acid on the QS reporters depended on the presence of the CAI-1 receptor CqsS. Lyngbic acid inhibited luminescence in native coral Vibrio spp. that also possess the CAI-1-mediated QS. The effects of this naturally occurring QS inhibitor on bacterial regulatory networks potentially contribute to the structuring of the interactions within BBD consortia.
Collapse
Affiliation(s)
- Julie L Meyer
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| | | | - Raymond M Scott
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| | | | - Max Teplitski
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA.,Smithsonian Marine Station, Ft Pierce, FL, USA
| |
Collapse
|
37
|
Rajput A, Kaur K, Kumar M. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes. Nucleic Acids Res 2015; 44:D634-9. [PMID: 26490957 PMCID: PMC4702795 DOI: 10.1093/nar/gkv1076] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/06/2015] [Indexed: 11/24/2022] Open
Abstract
Quorum sensing is a widespread phenomenon in prokaryotes that helps them to communicate among themselves and with eukaryotes. It is driven through quorum sensing signaling molecules (QSSMs) in a density dependent manner that assists in numerous biological functions like biofilm formation, virulence factors secretion, swarming motility, bioluminescence, etc. Despite immense implications, dedicated resources of QSSMs are lacking. Therefore, we have developed SigMol (http://bioinfo.imtech.res.in/manojk/sigmol), a specialized repository of these molecules in prokaryotes. SigMol harbors information on QSSMs pertaining to different quorum sensing signaling systems namely acylated homoserine lactones (AHLs), diketopiperazines (DKPs), 4-hydroxy-2-alkylquinolines (HAQs), diffusible signal factors (DSFs), autoinducer-2 (AI-2) and others. Database contains 1382 entries of 182 unique signaling molecules from 215 organisms. It encompasses biological as well as chemical aspects of signaling molecules. Biological information includes genes, preliminary bioassays, identification assays and applications, while chemical detail comprises of IUPAC name, SMILES and structure. We have provided user-friendly browsing and searching facilities for easy data retrieval and comparison. We have gleaned information of diverse QSSMs reported in literature at a single platform ‘SigMol’. This comprehensive resource will assist the scientific community in understanding intraspecies, interspecies or interkingdom networking and further help to unfold different facets of quorum sensing and related therapeutics.
Collapse
Affiliation(s)
- Akanksha Rajput
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| | - Karambir Kaur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| |
Collapse
|
38
|
Evidence for Autoinduction and Quorum Sensing in White Band Disease-Causing Microbes on Acropora cervicornis. Sci Rep 2015; 5:11134. [PMID: 26047488 PMCID: PMC4457150 DOI: 10.1038/srep11134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023] Open
Abstract
Coral reefs have entered a state of global decline party due to an increasing incidence of coral disease. However, the diversity and complexity of coral-associated bacterial communities has made identifying the mechanisms underlying disease transmission and progression extremely difficult. This study explores the effects of coral cell-free culture fluid (CFCF) and autoinducer (a quorum sensing signaling molecule) on coral-associated bacterial growth and on coral tissue loss respectively. All experiments were conducted using the endangered Caribbean coral Acropora cervicornis. Coral-associated microbes were grown on selective media infused with CFCF derived from healthy and white band disease-infected A. cervicornis. Exposure to diseased CFCF increased proliferation of Cytophaga-Flavobacterium spp. while exposure to healthy CFCF inhibited growth of this group. Exposure to either CFCF did not significantly affect Vibrio spp. growth. In order to test whether disease symptoms can be induced in healthy corals, A. cervicornis was exposed to bacterial assemblages supplemented with exogenous, purified autoinducer. Incubation with autoinducer resulted in complete tissue loss in all corals tested in less than one week. These findings indicate that white band disease in A. cervicornis may be caused by opportunistic pathogenesis of resident microbes.
Collapse
|
39
|
Kusari P, Kusari S, Spiteller M, Kayser O. Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 2015; 99:5383-90. [DOI: 10.1007/s00253-015-6660-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/30/2022]
|
40
|
Linthorne JS, Chang BJ, Flematti GR, Ghisalberti EL, Sutton DC. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:33-42. [PMID: 25082352 DOI: 10.1007/s10126-014-9592-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.
Collapse
Affiliation(s)
- Jamie S Linthorne
- School of Pathology and Laboratory Medicine, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | | | | | |
Collapse
|
41
|
Zimmer BL, May AL, Bhedi CD, Dearth SP, Prevatte CW, Pratte Z, Campagna SR, Richardson LL. Quorum sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer. PLoS One 2014; 9:e108541. [PMID: 25268348 PMCID: PMC4182479 DOI: 10.1371/journal.pone.0108541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/29/2014] [Indexed: 02/01/2023] Open
Abstract
Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome.
Collapse
Affiliation(s)
- Beth L. Zimmer
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
- Atkins North America, Miami, Florida, United States of America
| | - Amanda L. May
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chinmayee D. Bhedi
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Stephen P. Dearth
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Carson W. Prevatte
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Zoe Pratte
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Laurie L. Richardson
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
42
|
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep 2014; 31:1510-53. [DOI: 10.1039/c4np00017j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Tout J, Jeffries TC, Webster NS, Stocker R, Ralph PJ, Seymour JR. Variability in microbial community composition and function between different niches within a coral reef. MICROBIAL ECOLOGY 2014; 67:540-552. [PMID: 24477921 DOI: 10.1007/s00248-013-0362-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/26/2013] [Indexed: 06/03/2023]
Abstract
To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions.
Collapse
Affiliation(s)
- Jessica Tout
- Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, NSW, Australia,
| | | | | | | | | | | |
Collapse
|
44
|
Frydenborg BR, Krediet CJ, Teplitski M, Ritchie KB. Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria. MICROBIAL ECOLOGY 2014; 67:392-401. [PMID: 24370863 DOI: 10.1007/s00248-013-0334-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.
Collapse
Affiliation(s)
- Beck R Frydenborg
- Microbiology and Cell Science Department, University of Florida-IFAS, Gainesville, FL, 32611, USA
| | | | | | | |
Collapse
|
45
|
Ransome E, Munn CB, Halliday N, Cámara M, Tait K. Diverse profiles ofN-acyl-homoserine lactone molecules found in cnidarians. FEMS Microbiol Ecol 2013; 87:315-29. [DOI: 10.1111/1574-6941.12226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/06/2013] [Accepted: 09/15/2013] [Indexed: 12/11/2022] Open
Affiliation(s)
- Emma Ransome
- Plymouth Marine Laboratory; Plymouth Devon UK
- School of Marine Science and Engineering; Plymouth University; Plymouth UK
| | - Colin B. Munn
- School of Marine Science and Engineering; Plymouth University; Plymouth UK
| | - Nigel Halliday
- School of Molecular Medical Sciences; Centre for Biomolecular Sciences; University of Nottingham; Nottingham UK
| | - Miguel Cámara
- School of Molecular Medical Sciences; Centre for Biomolecular Sciences; University of Nottingham; Nottingham UK
| | - Karen Tait
- Plymouth Marine Laboratory; Plymouth Devon UK
| |
Collapse
|
46
|
Abstract
Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals.
Collapse
|
47
|
Krediet CJ, Ritchie KB, Paul VJ, Teplitski M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Biol Sci 2013; 280:20122328. [PMID: 23363627 DOI: 10.1098/rspb.2012.2328] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Over the last decade, significant advances have been made in characterization of the coral microbiota. Shifts in its composition often correlate with the appearance of signs of diseases and/or bleaching, thus suggesting a link between microbes, coral health and stability of reef ecosystems. The understanding of interactions in coral-associated microbiota is informed by the on-going characterization of other microbiomes, which suggest that metabolic pathways and functional capabilities define the 'core' microbiota more accurately than the taxonomic diversity of its members. Consistent with this hypothesis, there does not appear to be a consensus on the specificity in the interactions of corals with microbial commensals, even though recent studies report potentially beneficial functions of the coral-associated bacteria. They cycle sulphur, fix nitrogen, produce antimicrobial compounds, inhibit cell-to-cell signalling and disrupt virulence in opportunistic pathogens. While their beneficial functions have been documented, it is not certain whether or how these microbes are selected by the hosts. Therefore, understanding the role of innate immunity, signal and nutrient exchange in the establishment of coral microbiota and in controlling its functions will probably reveal ancient, evolutionarily conserved mechanisms that dictate the outcomes of host-microbial interactions, and impact the resilience of the host.
Collapse
Affiliation(s)
- Cory J Krediet
- Interdisciplinary Ecology, University of Florida-IFAS, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
48
|
Golberg K, Pavlov V, Marks RS, Kushmaro A. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. BIOFOULING 2013; 29:669-82. [PMID: 23777289 DOI: 10.1080/08927014.2013.796939] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Marine biofouling, the settlement of microorganisms and macroorganisms on structures submerged in seawater, although economically detrimental, is a successful strategy for survival in hostile environments, where coordinated bacterial communities establish biofilms via the regulation of quorum sensing (QS) communication systems. The inhibition of QS activity among bacteria isolated from different coral species was investigated to gain further insight into its potency in the attenuation, or even the prevention, of undesirable biofouling on marine organisms. It is hypothesized that coral mucus/microorganism interactions are competitive, suggesting that the dominant communities secrete QS disruptive compounds. One hundred and twenty bacterial isolates were collected from healthy coral species and screened for their ability to inhibit QS using three bioreporter strains. Approximately 12, 11, and 24% of the isolates exhibited anti-QS activity against Escherichia coli pSB1075, Chromobacterium violaceum CV026, and Agrobacterium tumefaciens KYC55 indicator strains, respectively. Isolates with positive activity against the bioluminescent monitor strains were scanned via a cytotoxic/genotoxic, E. coli TV1061 and DPD2794 antimicrobial panel. Isolates detected by C. violaceum CV026 and A. tumefaciens KYC55 reporter strains were tested for their ability to inhibit the growth of these reporter strains, which were found to be unaffected. Tests of the Favia sp. coral isolate Fav 2-50-7 (>98% similarity to Vibrio harveyi) for its ability to attenuate the formation of biofilm showed extensive inhibitory activity against biofilms of Pseudomonas aeruginosa and Acinetobacter baumannii. To ascertain the stability and general structure of the active compound, cell-free culture supernatants exposed to an increasing temperature gradient or to digestion by proteinase K, were shown to maintain potent QS attenuation and the ability to inhibit the growth of biofilms. Mass spectrometry confirmed the presence of a low molecular mass compound. The anti-QS strategy exemplified in the coral mucus is a model with potentially wide applications, including countering the ecological threat posed by biofilms. Manipulating synchronized bacterial behavior by detecting new QS inhibitors will facilitate the discovery of new antifouling compounds.
Collapse
Affiliation(s)
- Karina Golberg
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
49
|
Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME JOURNAL 2012; 7:980-90. [PMID: 23254513 DOI: 10.1038/ismej.2012.164] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The outcome of the interactions between native commensal microorganisms and opportunistic pathogens is crucial to the health of the coral holobiont. During the establishment within the coral surface mucus layer, opportunistic pathogens, including a white pox pathogen Serratia marcescens PDL100, compete with native bacteria for available nutrients. Both commensals and pathogens employ glycosidases and N-acetyl-glucosaminidase to utilize components of coral mucus. This study tested the hypothesis that specific glycosidases were critical for the growth of S. marcescens on mucus and that their inhibition by native coral microbiota reduces fitness of the pathogen. Consistent with this hypothesis, a S. marcescens transposon mutant with reduced glycosidase and N-acetyl-glucosaminidase activities was unable to compete with the wild type on the mucus of the host coral Acropora palmata, although it was at least as competitive as the wild type on a minimal medium with glycerol and casamino acids. Virulence of the mutant was modestly reduced in the Aiptasia model. A survey revealed that ∼8% of culturable coral commensal bacteria have the ability to inhibit glycosidases in the pathogen. A small molecular weight, ethanol-soluble substance(s) produced by the coral commensal Exiguobacterium sp. was capable of the inhibition of the induction of catabolic enzymes in S. marcescens. This inhibition was in part responsible for the 10-100-fold reduction in the ability of the pathogen to grow on coral mucus. These results provide insight into potential mechanisms of commensal interference with early colonization and infection behaviors in opportunistic pathogens and highlight an important function for the native microbiota in coral health.
Collapse
|
50
|
Sharp KH, Ritchie KB. Multi-partner interactions in corals in the face of climate change. THE BIOLOGICAL BULLETIN 2012; 223:66-77. [PMID: 22983033 DOI: 10.1086/bblv223n1p66] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent research has explored the possibility that increased sea-surface temperatures and decreasing pH (ocean acidification) contribute to the ongoing decline of coral reef ecosystems. Within corals, a diverse microbiome exerts significant influence on biogeochemical and ecological processes, including food webs, organismal life cycles, and chemical and nutrient cycling. Microbes on coral reefs play a critical role in regulating larval recruitment, bacterial colonization, and pathogen abundance under ambient conditions, ultimately governing the overall resilience of coral reef systems. As a result, microbial processes may be involved in reef ecosystem-level responses to climate change. Developments of new molecular technologies, in addition to multidisciplinary collaborative research on coral reefs, have led to the rapid advancement in our understanding of bacterially mediated reef responses to environmental change. Here we review new discoveries regarding (1) the onset of coral-bacterial associations; (2) the functional roles that bacteria play in healthy corals; and (3) how bacteria influence coral reef response to environmental change, leading to a model describing how reef microbiota direct ecosystem-level response to a changing global climate.
Collapse
Affiliation(s)
- Koty H Sharp
- Eckerd College, 4200 54th Avenue South, St. Petersburg, Florida 33711, USA.
| | | |
Collapse
|