1
|
Zhao Z, Zhao Y, Marotta F, Xamxidin M, Li H, Xu J, Hu B, Wu M. The microbial community structure and nitrogen cycle of high-altitude pristine saline lakes on the Qinghai-Tibetan plateau. Front Microbiol 2024; 15:1424368. [PMID: 39132143 PMCID: PMC11312105 DOI: 10.3389/fmicb.2024.1424368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 08/13/2024] Open
Abstract
The nitrogen (N) cycle is the foundation of the biogeochemistry on Earth and plays a crucial role in global climate stability. It is one of the most important nutrient cycles in high-altitude lakes. The biogeochemistry of nitrogen is almost entirely dependent on redox reactions mediated by microorganisms. However, the nitrogen cycling of microbial communities in the high-altitude saline lakes of the Qinghai-Tibet Plateau (QTP), the world's "third pole" has not been investigated extensively. In this study, we used a metagenomic approach to investigate the microbial communities in four high-altitude pristine saline lakes in the Altun mountain on the QTP. We observed that Proteobacteria, Bacteroidota, and Actinobacteriota were dominant in these lakes. We reconstructed 1,593 bacterial MAGs and 8 archaeal MAGs, 1,060 of which were found to contain nitrogen cycle related genes. Our analysis revealed that nitrite reduction, nitrogen fixation, and assimilatory nitrate reduction processes might be active in the lakes. Denitrification might be a major mechanism driving the potential nitrogen loss, while nitrification might be inactive. A wide variety of microorganisms in the lake, dominated by Proteobacteria, participate together in the nitrogen cycle. The prevalence of the dominant taxon Yoonia in these lakes may be attributed to its well-established nitrogen functions and the coupled proton dynamics. This study is the first to systematically investigate the structure and nitrogen function of the microbial community in the high-altitude pristine saline lakes in the Altun mountain on the QTP. As such, it contributes to a better comprehension of biogeochemistry of high-altitude saline lakes.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yuxiang Zhao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Federico Marotta
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Huan Li
- Lab of Plateau Ecology and Nature Conservation, The Altun Mountain National Nature Reserve, Xinjiang, China
| | - Junquan Xu
- Lab of Plateau Ecology and Nature Conservation, The Altun Mountain National Nature Reserve, Xinjiang, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Zou C, Yi X, Li H, Bizic M, Berman-Frank I, Gao K. Correlation of methane production with physiological traits in Trichodesmium IMS 101 grown with methylphosphonate at different temperatures. Front Microbiol 2024; 15:1396369. [PMID: 38894967 PMCID: PMC11184136 DOI: 10.3389/fmicb.2024.1396369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The diazotrophic cyanobacterium Trichodesmium has been recognized as a potentially significant contributor to aerobic methane generation via several mechanisms including the utilization of methylphophonate (MPn) as a source of phosphorus. Currently, there is no information about how environmental factors regulate methane production by Trichodesmium. Here, we grew Trichodesmium IMS101 at five temperatures ranging from 16 to 31°C, and found that its methane production rates increased with rising temperatures to peak (1.028 ± 0.040 nmol CH4 μmol POC-1 day-1) at 27°C, and then declined. Its specific growth rate changed from 0.03 ± 0.01 d-1 to 0.34 ± 0.02 d-1, with the optimal growth temperature identified between 27 and 31°C. Within the tested temperature range the Q10 for the methane production rate was 4.6 ± 0.7, indicating a high sensitivity to thermal changes. In parallel, the methane production rates showed robust positive correlations with the assimilation rates of carbon, nitrogen, and phosphorus, resulting in the methane production quotients (molar ratio of carbon, nitrogen, or phosphorus assimilated to methane produced) of 227-494 for carbon, 40-128 for nitrogen, and 1.8-3.4 for phosphorus within the tested temperature range. Based on the experimental data, we estimated that the methane released from Trichodesmium can offset about 1% of its CO2 mitigation effects.
Collapse
Affiliation(s)
- Chuze Zou
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiangqi Yi
- Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen, China
| | - He Li
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Mina Bizic
- Department of Environmental Microbiomics, Institute of Environmental Technology, Technical University of Berlin, Berlin, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Ilana Berman-Frank
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
3
|
Robicheau BM, Tolman J, Rose S, Desai D, LaRoche J. Marine nitrogen-fixers in the Canadian Arctic Gateway are dominated by biogeographically distinct noncyanobacterial communities. FEMS Microbiol Ecol 2023; 99:fiad122. [PMID: 37951299 PMCID: PMC10656255 DOI: 10.1093/femsec/fiad122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/30/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023] Open
Abstract
We describe diazotrophs present during a 2015 GEOTRACES expedition through the Canadian Arctic Gateway (CAG) using nifH metabarcoding. In the less studied Labrador Sea, Bradyrhizobium sp. and Vitreoscilla sp. nifH variants were dominant, while in Baffin Bay, a Stutzerimonas stutzeri variant was dominant. In comparison, the Canadian Arctic Archipelago (CAA) was characterized by a broader set of dominant variants belonging to Desulfobulbaceae, Desulfuromonadales, Arcobacter sp., Vibrio spp., and Sulfuriferula sp. Although dominant diazotrophs fell within known nifH clusters I and III, only a few of these variants were frequently recovered in a 5-year weekly nifH times series in the coastal NW Atlantic presented herein, notably S. stutzeri and variants belonging to Desulfobacterales and Desulfuromonadales. In addition, the majority of dominant Arctic nifH variants shared low similarity (< 92% nucleotide identities) to sequences in a global noncyanobacterial diazotroph catalog recently compiled by others. We further detected UCYN-A throughout the CAG at low-levels using quantitative-PCR assays. Temperature, depth, salinity, oxygen, and nitrate were most strongly correlated to the Arctic diazotroph diversity observed, and we found a stark division between diazotroph communities of the Labrador Sea versus Baffin Bay and the CAA, hence establishing that a previously unknown biogeographic community division can occur for diazotrophs in the CAG.
Collapse
Affiliation(s)
- Brent M Robicheau
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Sonja Rose
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
4
|
Jabir T, Jain A, Vipindas PV, Krishnan KP. Stochastic Processes Dominate in the Water Mass-Based Segregation of Diazotrophs in a High Arctic Fjord (Svalbard). MICROBIAL ECOLOGY 2023; 86:2733-2746. [PMID: 37532947 DOI: 10.1007/s00248-023-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Nitrogen-fixing or diazotrophic microbes fix atmospheric nitrogen (N2) to ammonia (NH3+) using nitrogenase enzyme and play a crucial role in regulating marine primary productivity and carbon dioxide sequestration. However, there is a lack of information about the diversity, structure, and environmental regulations of the diazotrophic communities in the high Arctic fjords, such as Kongsfjorden. Here, we employed nifH gene sequencing to clarify variations in composition, community structure, and assembly mechanism among the diazotrophs of the salinity-driven stratified waters of Kongsfjorden. The principal environmental and ecological drivers of the observed variations were identified. The majority of the nifH gene sequences obtained in the present study belonged to cluster I and cluster III nifH phylotypes, accounting for 65% and 25% of the total nifH gene sequences. The nifH gene diversity and composition, irrespective of the size fractions (free-living and particle attached), showed a clear separation among water mass types, i.e., Atlantic-influenced versus glacier-influenced water mass. Higher nifH gene diversity and relative abundances of non-cyanobacterial nifH OTUs, affiliated with uncultured Rhizobiales, Burkholderiales, Alteromonadaceae, Gallionellaceae (cluster I) and uncultured Deltaproteobacteria including Desulfuromonadaceae (cluster III), were prevalent in GIW while uncultured Gammaproteobacteria and Desulfobulbaceae were abundant in AIW. The diazotrophic community assembly was dominated by stochastic processes, principally ecological drift, and to lesser degrees dispersal limitation and homogeneous dispersal. Differences in the salinity and dissolved oxygen content lead to the vertical segregation of diazotrophs among water mass types. These findings suggest that water column stratification affects the composition and assembly mechanism of diazotrophic communities and thus could affect nitrogen fixation in the Arctic fjord.
Collapse
Affiliation(s)
- Thajudeen Jabir
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India.
| | - Anand Jain
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| |
Collapse
|
5
|
von Friesen LW, Paulsen ML, Müller O, Gründger F, Riemann L. Glacial meltwater and seasonality influence community composition of diazotrophs in Arctic coastal and open waters. FEMS Microbiol Ecol 2023; 99:fiad067. [PMID: 37349965 DOI: 10.1093/femsec/fiad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
The Arctic Ocean is particularly affected by climate change with unknown consequences for primary productivity. Diazotrophs-prokaryotes capable of converting atmospheric nitrogen to ammonia-have been detected in the often nitrogen-limited Arctic Ocean but distribution and community composition dynamics are largely unknown. We performed amplicon sequencing of the diazotroph marker gene nifH from glacial rivers, coastal, and open ocean regions and identified regionally distinct Arctic communities. Proteobacterial diazotrophs dominated all seasons, epi- to mesopelagic depths and rivers to open waters and, surprisingly, Cyanobacteria were only sporadically identified in coastal and freshwaters. The upstream environment of glacial rivers influenced diazotroph diversity, and in marine samples putative anaerobic sulphate-reducers showed seasonal succession with highest prevalence in summer to polar night. Betaproteobacteria (Burkholderiales, Nitrosomonadales, and Rhodocyclales) were typically found in rivers and freshwater-influenced waters, and Delta- (Desulfuromonadales, Desulfobacterales, and Desulfovibrionales) and Gammaproteobacteria in marine waters. The identified community composition dynamics, likely driven by runoff, inorganic nutrients, particulate organic carbon, and seasonality, imply diazotrophy a phenotype of ecological relevance with expected responsiveness to ongoing climate change. Our study largely expands baseline knowledge of Arctic diazotrophs-a prerequisite to understand underpinning of nitrogen fixation-and supports nitrogen fixation as a contributor of new nitrogen in the rapidly changing Arctic Ocean.
Collapse
Affiliation(s)
- Lisa W von Friesen
- Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Maria L Paulsen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark
| | - Oliver Müller
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53A, NO-5006 Bergen, Norway
| | - Friederike Gründger
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark
| | - Lasse Riemann
- Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| |
Collapse
|
6
|
Takuhei S, Nishimura Y, Yoshizawa S, Takami H, Hamasaki K, Fujiwara A, Nishino S, Harada N. Distribution and survival strategies of endemic and cosmopolitan diazotrophs in the Arctic Ocean. THE ISME JOURNAL 2023:10.1038/s41396-023-01424-x. [PMID: 37217593 DOI: 10.1038/s41396-023-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Dinitrogen (N2) fixation is the major source of reactive nitrogen in the ocean and has been considered to occur specifically in low-latitude oligotrophic oceans. Recent studies have shown that N2 fixation also occurs in the polar regions and thus is a global process, although the physiological and ecological characteristics of polar diazotrophs are not yet known. Here, we successfully reconstructed diazotroph genomes, including that of cyanobacterium UCYN-A (Candidatus 'Atelocyanobacterium thalassa'), from metagenome data corresponding to 111 samples isolated from the Arctic Ocean. These diazotrophs were highly abundant in the Arctic Ocean (max., 1.28% of the total microbial community), suggesting that they have important roles in the Arctic ecosystem and biogeochemical cycles. Further, we show that diazotrophs within genera Arcobacter, Psychromonas, and Oceanobacter are prevalent in the <0.2 µm fraction in the Arctic Ocean, indicating that current methods cannot capture their N2 fixation. Diazotrophs in the Arctic Ocean were either Arctic-endemic or cosmopolitan species from their global distribution patterns. Arctic-endemic diazotrophs, including Arctic UCYN-A, were similar to low-latitude-endemic and cosmopolitan diazotrophs in genome-wide function, however, they had unique gene sets (e.g., diverse aromatics degradation genes), suggesting adaptations to Arctic-specific conditions. Cosmopolitan diazotrophs were generally non-cyanobacteria and commonly had the gene that encodes the cold-inducible RNA chaperone, which presumably makes their survival possible even in deep, cold waters of global ocean and polar surface waters. This study shows global distribution pattern of diazotrophs with their genomes and provides clues to answering the question of how diazotrophs can inhabit polar waters.
Collapse
Affiliation(s)
- Shiozaki Takuhei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan.
| | - Yosuke Nishimura
- Research Centre for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Hideto Takami
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
- Center for Mathematical Science and Advanced Technology, JAMSTEC, Yokohama, 236-0001, Japan
| | - Koji Hamasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 277-8564, Kashiwa, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 113-8657, Bunkyo-ku, Japan
| | - Amane Fujiwara
- Research Institute for Global Change, JAMSTEC, Yokosuka, 237-0061, Japan
| | - Shigeto Nishino
- Research Institute for Global Change, JAMSTEC, Yokosuka, 237-0061, Japan
| | - Naomi Harada
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
- Research Institute for Global Change, JAMSTEC, Yokosuka, 237-0061, Japan
| |
Collapse
|
7
|
Alcamán-Arias ME, Cifuentes-Anticevic J, Castillo-Inaipil W, Farías L, Sanhueza C, Fernández-Gómez B, Verdugo J, Abarzua L, Ridley C, Tamayo-Leiva J, Díez B. Dark Diazotrophy during the Late Summer in Surface Waters of Chile Bay, West Antarctic Peninsula. Microorganisms 2022; 10:microorganisms10061140. [PMID: 35744658 PMCID: PMC9227844 DOI: 10.3390/microorganisms10061140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Although crucial for the addition of new nitrogen in marine ecosystems, dinitrogen (N2) fixation remains an understudied process, especially under dark conditions and in polar coastal areas, such as the West Antarctic Peninsula (WAP). New measurements of light and dark N2 fixation rates in parallel with carbon (C) fixation rates, as well as analysis of the genetic marker nifH for diazotrophic organisms, were conducted during the late summer in the coastal waters of Chile Bay, South Shetland Islands, WAP. During six late summers (February 2013 to 2019), Chile Bay was characterized by high NO3− concentrations (~20 µM) and an NH4+ content that remained stable near 0.5 µM. The N:P ratio was approximately 14.1, thus close to that of the Redfield ratio (16:1). The presence of Cluster I and Cluster III nifH gene sequences closely related to Alpha-, Delta- and, to a lesser extent, Gammaproteobacteria, suggests that chemosynthetic and heterotrophic bacteria are primarily responsible for N2 fixation in the bay. Photosynthetic carbon assimilation ranged from 51.18 to 1471 nmol C L−1 d−1, while dark chemosynthesis ranged from 9.24 to 805 nmol C L−1 d−1. N2 fixation rates were higher under dark conditions (up to 45.40 nmol N L−1 d−1) than under light conditions (up to 7.70 nmol N L−1 d−1), possibly contributing more than 37% to new nitrogen-based production (≥2.5 g N m−2 y−1). Of all the environmental factors measured, only PO43- exhibited a significant correlation with C and N2 rates, being negatively correlated (p < 0.05) with dark chemosynthesis and N2 fixation under the light condition, revealing the importance of the N:P ratio for these processes in Chile Bay. This significant contribution of N2 fixation expands the ubiquity and biological potential of these marine chemosynthetic diazotrophs. As such, this process should be considered along with the entire N cycle when further reviewing highly productive Antarctic coastal waters and the diazotrophic potential of the global marine ecosystem.
Collapse
Affiliation(s)
- María E. Alcamán-Arias
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Escuela de Medicina, Universidad Espíritu Santo, Guayaquil 0901952, Ecuador
| | - Jerónimo Cifuentes-Anticevic
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Wilson Castillo-Inaipil
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Laura Farías
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
| | - Cynthia Sanhueza
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Beatriz Fernández-Gómez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas, Spain
| | - Josefa Verdugo
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
| | - Leslie Abarzua
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
| | - Christina Ridley
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Javier Tamayo-Leiva
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Center for Genome Regulation (CRG), Universidad de Chile, Blanco Encalada 2085, Santiago 8320000, Chile
| | - Beatriz Díez
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Center for Genome Regulation (CRG), Universidad de Chile, Blanco Encalada 2085, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
8
|
Messer LF, Brown MV, Van Ruth PD, Doubell M, Seymour JR. Temperate southern Australian coastal waters are characterised by surprisingly high rates of nitrogen fixation and diversity of diazotrophs. PeerJ 2021; 9:e10809. [PMID: 33717676 PMCID: PMC7931716 DOI: 10.7717/peerj.10809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022] Open
Abstract
Biological dinitrogen (N2) fixation is one mechanism by which specific microorganisms (diazotrophs) can ameliorate nitrogen (N) limitation. Historically, rates of N2 fixation were believed to be limited outside of the low nutrient tropical and subtropical open ocean; however, emerging evidence suggests that N2 fixation is also a significant process within temperate coastal waters. Using a combination of amplicon sequencing, targeting the nitrogenase reductase gene (nifH), quantitative nifH PCR, and 15N2 stable isotope tracer experiments, we investigated spatial patterns of diazotroph assemblage structure and N2 fixation rates within the temperate coastal waters of southern Australia during Austral autumn and summer. Relative to previous studies in open ocean environments, including tropical northern Australia, and tropical and temperate estuaries, our results indicate that high rates of N2 fixation (10-64 nmol L-1 d-1) can occur within the large inverse estuary Spencer Gulf, while comparatively low rates of N2 fixation (2 nmol L-1 d-1) were observed in the adjacent continental shelf waters. Across the dataset, low concentrations of NO3/NO2 were significantly correlated with the highest N2 fixation rates, suggesting that N2 fixation could be an important source of new N in the region as dissolved inorganic N concentrations are typically limiting. Overall, the underlying diazotrophic community was dominated by nifH sequences from Cluster 1 unicellular cyanobacteria of the UCYN-A clade, as well as non-cyanobacterial diazotrophs related to Pseudomonas stutzeri, and Cluster 3 sulfate-reducing deltaproteobacteria. Diazotroph community composition was significantly influenced by salinity and SiO4 concentrations, reflecting the transition from UCYN-A-dominated assemblages in the continental shelf waters, to Cluster 3-dominated assemblages in the hypersaline waters of the inverse estuary. Diverse, transitional diazotrophic communities, comprised of a mixture of UCYN-A and putative heterotrophic bacteria, were observed at the mouth and southern edge of Spencer Gulf, where the highest N2 fixation rates were observed. In contrast to observations in other environments, no seasonal patterns in N2 fixation rates and diazotroph community structure were apparent. Collectively, our findings are consistent with the emerging view that N2 fixation within temperate coastal waters is a previously overlooked dynamic and potentially important component of the marine N cycle.
Collapse
Affiliation(s)
- Lauren F Messer
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul D Van Ruth
- Aquatic Sciences, South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Mark Doubell
- Aquatic Sciences, South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Jabir T, Vipindas PV, Krishnan KP, Mohamed Hatha AA. Abundance and diversity of diazotrophs in the surface sediments of Kongsfjorden, an Arctic fjord. World J Microbiol Biotechnol 2021; 37:41. [PMID: 33544264 DOI: 10.1007/s11274-020-02993-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Diazotrophy in the Arctic environment is poorly understood compared to tropical and subtropical regions. Hence in this study, we report the abundance and diversity of diazotrophs in Arctic fjord sediments and elucidate the role of environmental factors on the distribution of diazotrophs. The study was conducted during the boreal summer in the Kongsfjorden, an Arctic fjord situated in the western coast of Spitsbergen. The abundance of nifH gene was measured through quantitative real-time PCR and the diversity of diazotrophs was assessed by nifH targeted clone library and next generation sequence analysis. Results revealed that the abundance of nifH gene in the surface sediments ranged from 2.3 × 106 to 3.7 × 107 copies g- 1. The δ-proteobacterial diazotrophs (71% of total sequence) were the dominant class observed in this study. Major genera retrieved from the sequence analysis were Desulfovibrionaceae (25% of total sequence), Desulfuromonadaceae (18% of total sequence) and Desulfobacteriaceae (10% of total sequence); these are important diazotrophic iron and sulfur-reducing bacterial clade in the Kongsfjorden sediments. The abundance of nifH gene showed a significant positive correlation TOC/TN ratio (r2 = 0.96, p ≤ 0.05) and total organic carbon (p ≤ 0.05) content in the fjord sediments. The higher TOC/TN ratio (4.24-14.5) indicated low nitrogen content organic matter in the fjord sediments through glacier runoff, which enhances the abundance and diversity of nitrogen fixing microorganisms.
Collapse
Affiliation(s)
- T Jabir
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa, 403 804, India
| | - P V Vipindas
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa, 403 804, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa, 403 804, India. .,CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi, 682 016, India.
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, 682 016, India.,CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi, 682 016, India
| |
Collapse
|
10
|
von Friesen LW, Riemann L. Nitrogen Fixation in a Changing Arctic Ocean: An Overlooked Source of Nitrogen? Front Microbiol 2021; 11:596426. [PMID: 33391213 PMCID: PMC7775723 DOI: 10.3389/fmicb.2020.596426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
The Arctic Ocean is the smallest ocean on Earth, yet estimated to play a substantial role as a global carbon sink. As climate change is rapidly changing fundamental components of the Arctic, it is of local and global importance to understand and predict consequences for its carbon dynamics. Primary production in the Arctic Ocean is often nitrogen-limited, and this is predicted to increase in some regions. It is therefore of critical interest that biological nitrogen fixation, a process where some bacteria and archaea termed diazotrophs convert nitrogen gas to bioavailable ammonia, has now been detected in the Arctic Ocean. Several studies report diverse and active diazotrophs on various temporal and spatial scales across the Arctic Ocean. Their ecology and biogeochemical impact remain poorly known, and nitrogen fixation is so far absent from models of primary production in the Arctic Ocean. The composition of the diazotroph community appears distinct from other oceans – challenging paradigms of function and regulation of nitrogen fixation. There is evidence of both symbiotic cyanobacterial nitrogen fixation and heterotrophic diazotrophy, but large regions are not yet sampled, and the sparse quantitative data hamper conclusive insights. Hence, it remains to be determined to what extent nitrogen fixation represents a hitherto overlooked source of new nitrogen to consider when predicting future productivity of the Arctic Ocean. Here, we discuss current knowledge on diazotroph distribution, composition, and activity in pelagic and sea ice-associated environments of the Arctic Ocean. Based on this, we identify gaps and outline pertinent research questions in the context of a climate change-influenced Arctic Ocean – with the aim of guiding and encouraging future research on nitrogen fixation in this region.
Collapse
Affiliation(s)
- Lisa W von Friesen
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Lasse Riemann
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
11
|
Fernández-Gómez B, Díez B, Polz MF, Arroyo JI, Alfaro FD, Marchandon G, Sanhueza C, Farías L, Trefault N, Marquet PA, Molina-Montenegro MA, Sylvander P, Snoeijs-Leijonmalm P. Bacterial community structure in a sympagic habitat expanding with global warming: brackish ice brine at 85-90 °N. THE ISME JOURNAL 2019; 13:316-333. [PMID: 30228379 PMCID: PMC6331608 DOI: 10.1038/s41396-018-0268-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/11/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4-9.6) and immediate sub-ice seawater (SW; salinity 33.3-34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella. A meta-analysis for the oligotrophic CAO showed a pattern with Flavobacteriia dominating in melt ponds, Flavobacteriia and Gammaproteobacteria in solid ice cores, Flavobacteriia, Gamma- and Betaproteobacteria, and Actinobacteria in brine, and Alphaproteobacteria in SW. Based on our results, we expect that the roles of Actinobacteria and Betaproteobacteria in the CAO will increase with global warming owing to the increased production of meltwater in summer. IB contained three times more phylotypes than SW and may act as an insurance reservoir for bacterial diversity that can act as a recruitment base when environmental conditions change.
Collapse
Affiliation(s)
- Beatriz Fernández-Gómez
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
- INTA-Universidad de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile.
- Center for Climate and Resilience Research, Concepción, Chile.
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - José Ignacio Arroyo
- Department of Ecology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Germán Marchandon
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Cynthia Sanhueza
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Laura Farías
- Center for Climate and Resilience Research, Concepción, Chile
- Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
| | - Pablo A Marquet
- Department of Ecology, Pontifical University Catholic of Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Coquimbo, Chile
| | - Peter Sylvander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
12
|
Diversity of key genes for carbon and nitrogen fixation in soils from the Sør Rondane Mountains, East Antarctica. Polar Biol 2018. [DOI: 10.1007/s00300-018-2353-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Blázquez-Prunera A, Almeida CR, Barbosa MA. Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium. Stem Cells Int 2017; 2017:2185351. [PMID: 28588620 PMCID: PMC5446864 DOI: 10.1155/2017/2185351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/08/2017] [Accepted: 02/26/2017] [Indexed: 01/14/2023] Open
Abstract
Due to their immunomodulatory and chemotactic properties, hMSC are being explored to treat immune-related diseases. For their use in human therapies, it is necessary to culture hMSC in xeno-free conditions. In this study, the impact that a xeno-free medium based on a human plasma derivate has on these properties was analysed. Bone marrow-derived hMSC preserved their immunosuppressive and immunostimulatory properties, as observed with in vitro assays with hMSC cocultured with mixed leukocyte reactions or with mitogen-stimulated leukocytes. Moreover, hMSC expanded in xeno-free medium were recruited by macrophages in both migration and invasion assays, which indicates that the cells maintained their chemotactic properties. These data suggest that xeno-free expanded hMSC preserved their immunomodulatory and chemotactic properties, indicating that the described xeno-free medium composition is a potential candidate to culture and expand hMSC for human cell therapies.
Collapse
Affiliation(s)
- A. Blázquez-Prunera
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - C. R. Almeida
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences and Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - M. A. Barbosa
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Fernández-Méndez M, Turk-Kubo KA, Buttigieg PL, Rapp JZ, Krumpen T, Zehr JP, Boetius A. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean. Front Microbiol 2016; 7:1884. [PMID: 27933047 PMCID: PMC5120112 DOI: 10.3389/fmicb.2016.01884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/09/2016] [Indexed: 11/13/2022] Open
Abstract
The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.
Collapse
Affiliation(s)
- Mar Fernández-Méndez
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhaven, Germany; HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Kendra A Turk-Kubo
- Department of Ocean Sciences, University of California at Santa Cruz, Santa Cruz CA, USA
| | - Pier L Buttigieg
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Josephine Z Rapp
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhaven, Germany; HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Thomas Krumpen
- Sea Ice Physics Section, Climate Sciences Department, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California at Santa Cruz, Santa Cruz CA, USA
| | - Antje Boetius
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhaven, Germany; HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| |
Collapse
|
15
|
Abstract
The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors.
Collapse
|
16
|
Rees AP, Tait K, Widdicombe CE, Quartly GD, McEvoy AJ, Al-Moosawi L. Metabolically active, non-nitrogen fixing, Trichodesmium in UK coastal waters during winter. JOURNAL OF PLANKTON RESEARCH 2016; 38:673-678. [PMID: 27274100 PMCID: PMC4892227 DOI: 10.1093/plankt/fbv123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
Trichodesmium, a colonial cyanobacterium typically associated with tropical waters, was observed between January and April 2014 in the western English Channel. Sequencing of the heterocyst differentiation (hetR) and 16S rRNA genes placed this community within the Clade IV Trichodesmium, an understudied clade previously found only in low numbers in warmer waters. Nitrogen fixation was not detected although measurable rates of nitrate uptake and carbon fixation were observed. Trichodesmium RuBisCO transcript abundance relative to gene abundance suggests the potential for viable and potentially active Trichodesmium carbon fixation. Observations of Trichodesmium when coupled with a numerical advection model indicate that Trichodesmium communities can remain viable for >3.5 months at temperatures lower than previously expected. The results suggest that Clade IV Trichodesmium occupies a different niche to other Trichodesmium species, and is a cold- or low-light-adapted variant.
Collapse
|
17
|
Tahon G, Tytgat B, Stragier P, Willems A. Analysis of cbbL, nifH, and pufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria. MICROBIAL ECOLOGY 2016; 71:131-149. [PMID: 26582318 DOI: 10.1007/s00248-015-0704-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Cyanobacteria are generally thought to be responsible for primary production and nitrogen fixation in the microbial communities that dominate Antarctic ecosystems. Recent studies of bacterial communities in terrestrial Antarctica, however, have shown that Cyanobacteria are sometimes only scarcely present, suggesting that other bacteria presumably take over their role as primary producers and diazotrophs. The diversity of key genes in these processes was studied in surface samples from the Sør Rondane Mountains, Dronning Maud Land, using clone libraries of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL, cbbM) and dinitrogenase-reductase (nifH) genes. We recovered a large diversity of non-cyanobacterial cbbL type IC in addition to cyanobacterial type IB, suggesting that non-cyanobacterial autotrophs may contribute to primary production. The nifH diversity recovered was predominantly related to Cyanobacteria, particularly members of the Nostocales. We also investigated the occurrence of proteorhodopsin and anoxygenic phototrophy as mechanisms for non-Cyanobacteria to exploit solar energy. While proteorhodopsin genes were not detected, a large diversity of genes coding for the light and medium subunits of the type 2 phototrophic reaction center (pufLM) was observed, suggesting for the first time, that the aerobic photoheterotrophic lifestyle may be important in oligotrophic high-altitude ice-free terrestrial Antarctic habitats.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Pieter Stragier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
18
|
Estrella Alcamán M, Fernandez C, Delgado A, Bergman B, Díez B. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. THE ISME JOURNAL 2015; 9:2290-303. [PMID: 26230049 PMCID: PMC4579480 DOI: 10.1038/ismej.2015.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
Abstract
Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011-2013. We used 16S rRNA and the nifH gene to analyze the distribution and diversity of diazotrophic cyanobacteria. Our results demonstrate the dominance of the heterocystous genus Mastigocladus (Stigonematales) along the entire temperature gradient of the hot spring (69-38 °C). In situ nitrogenase activity (acetylene reduction), nitrogen fixation rates (cellular uptake of (15)N2) and nifH transcription levels in the microbial mats showed that nitrogen fixation and nifH mRNA expression were light-dependent. Nitrogen fixation activities were detected at temperatures ranging from 58 °C to 46 °C, with maximum daily rates of 600 nmol C2H4 cm(-2) per day and 94.1 nmol N cm(-2) per day. These activity patterns strongly suggest a heterocystous cyanobacterial origin and reveal a correlation between nitrogenase activity and nifH gene expression during diurnal cycles in thermal microbial mats. N and C fixation in the mats contributed ~3 g N m(-2) per year and 27 g C m(-2) per year, suggesting that these vital demands are fully met by the diazotrophic and photoautotrophic capacities of the cyanobacteria in the Porcelana hot spring.
Collapse
Affiliation(s)
- María Estrella Alcamán
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Fernandez
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Banyuls/mer, France
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls/mer, France
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research (INCAR) and COPAS SURAUSTRAL Program, University of Concepción, Concepción, Chile
| | - Antonio Delgado
- Instituto Andaluz de Ciencias de la Tierra (CSIC-Univ. Granada), Armilla, Granada, Spain
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences and Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
| |
Collapse
|
19
|
Moisander PH, Serros T, Paerl RW, Beinart RA, Zehr JP. Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of the South Pacific Ocean. THE ISME JOURNAL 2014; 8:1962-73. [PMID: 24722632 PMCID: PMC4184014 DOI: 10.1038/ismej.2014.49] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/07/2014] [Accepted: 02/24/2014] [Indexed: 01/30/2023]
Abstract
In addition to the cyanobacterial N2-fixers (diazotrophs), there is a high nifH gene diversity of non-cyanobacterial groups present in marine environments, yet quantitative information about these groups is scarce. N2 fixation potential (nifH gene expression), diversity and distributions of the uncultivated diazotroph phylotype γ-24774A11, a putative gammaproteobacterium, were investigated in the western South Pacific Ocean. γ-24774A11 gene copies correlated positively with diazotrophic cyanobacteria, temperature, dissolved organic carbon and ambient O2 saturation, and negatively with depth, chlorophyll a and nutrients, suggesting that carbon supply, access to light or inhibitory effects of DIN may control γ-24774A11 abundances. Maximum nifH gene-copy abundance was 2 × 10(4) l(-1), two orders of magnitude less than that for diazotrophic cyanobacteria, while the median γ-24774A11 abundance, 8 × 10(2) l(-1), was greater than that for the UCYN-A cyanobacteria, suggesting a more homogeneous distribution in surface waters. The abundance of nifH transcripts by γ-24774A11 was greater during the night than during the day, and the transcripts generally ranged from 0-7%, but were up to 26% of all nifH transcripts at each station. The ubiquitous presence and low variability of γ-24774A11 abundances across tropical and subtropical oceans, combined with the consistent nifH expression reported in this study, suggest that γ-24774A11 could be one of the most important heterotrophic (or photoheterotrophic) diazotrophs and may need to be considered in future N budget estimates and models.
Collapse
Affiliation(s)
- Pia H Moisander
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Tracy Serros
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ryan W Paerl
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roxanne A Beinart
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
20
|
Comparative genomics reveals surprising divergence of two closely related strains of uncultivated UCYN-A cyanobacteria. ISME JOURNAL 2014; 8:2530-42. [PMID: 25226029 DOI: 10.1038/ismej.2014.167] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 11/08/2022]
Abstract
Marine planktonic cyanobacteria capable of fixing molecular nitrogen (termed 'diazotrophs') are key in biogeochemical cycling, and the nitrogen fixed is one of the major external sources of nitrogen to the open ocean. Candidatus Atelocyanobacterium thalassa (UCYN-A) is a diazotrophic cyanobacterium known for its widespread geographic distribution in tropical and subtropical oligotrophic oceans, unusually reduced genome and symbiosis with a single-celled prymnesiophyte alga. Recently a novel strain of this organism was also detected in coastal waters sampled from the Scripps Institute of Oceanography pier. We analyzed the metagenome of this UCYN-A2 population by concentrating cells by flow cytometry. Phylogenomic analysis provided strong bootstrap support for the monophyly of UCYN-A (here called UCYN-A1) and UCYN-A2 within the marine Crocosphaera sp. and Cyanothece sp. clade. UCYN-A2 shares 1159 of the 1200 UCYN-A1 protein-coding genes (96.6%) with high synteny, yet the average amino-acid sequence identity between these orthologs is only 86%. UCYN-A2 lacks the same major pathways and proteins that are absent in UCYN-A1, suggesting that both strains can be grouped at the same functional and ecological level. Our results suggest that UCYN-A1 and UCYN-A2 had a common ancestor and diverged after genome reduction. These two variants may reflect adaptation of the host to different niches, which could be coastal and open ocean habitats.
Collapse
|
21
|
Bentzon-Tilia M, Farnelid H, Jürgens K, Riemann L. Cultivation and isolation of N2-fixing bacteria from suboxic waters in the Baltic Sea. FEMS Microbiol Ecol 2014; 88:358-71. [PMID: 24579891 DOI: 10.1111/1574-6941.12304] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022] Open
Abstract
Nitrogenase genes (nifH) from heterotrophic dinitrogen (N2)-fixing bacteria appear ubiquitous in marine bacterioplankton, but the significance of these bacteria for N cycling is unknown. Quantitative data on the N2-fixation potential of marine and estuarine heterotrophs are scarce, and the shortage of cultivated specimens currently precludes ecophysiological characterization of these bacteria. Through the cultivation of diazotrophs from suboxic (1.79 μmol O2 L(-1)) Baltic Sea water in an artificial seawater medium devoid of combined N, we report the cultivability of a considerable fraction of the diazotrophic community in the Gotland Deep. Two nifH clades were present both in situ and in enrichment cultures showing gene abundances of up to 4.6 × 10(5) and 5.8 × 10(5) nifH gene copies L(-1) within two vertical profiles in the Baltic Sea. The distributions of the two clades suggested a relationship with the O2 concentrations in the water column as abundances increased in the suboxic and anoxic waters. It was possible to cultivate and isolate representatives from one of these prevalent clades, and preliminary analysis of their ecophysiology demonstrated growth optima at 0.5-15 μmol O2 L(-1) and 186-194 μmol O2 L(-1) in the absence of combined N.
Collapse
Affiliation(s)
- Mikkel Bentzon-Tilia
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | | | | | | |
Collapse
|
22
|
Tu Q, Yu H, He Z, Deng Y, Wu L, Van Nostrand JD, Zhou A, Voordeckers J, Lee YJ, Qin Y, Hemme CL, Shi Z, Xue K, Yuan T, Wang A, Zhou J. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol Ecol Resour 2014; 14:914-28. [PMID: 24520909 DOI: 10.1111/1755-0998.12239] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 01/21/2023]
Abstract
Micro-organisms play critical roles in many important biogeochemical processes in the Earth's biosphere. However, understanding and characterizing the functional capacity of microbial communities are still difficult due to the extremely diverse and often uncultivable nature of most micro-organisms. In this study, we developed a new functional gene array, GeoChip 4, for analysing the functional diversity, composition, structure, metabolic potential/activity and dynamics of microbial communities. GeoChip 4 contained approximately 82 000 probes covering 141 995 coding sequences from 410 functional gene families related to microbial carbon (C), nitrogen (N), sulphur (S), and phosphorus (P) cycling, energy metabolism, antibiotic resistance, metal resistance/reduction, organic remediation, stress responses, bacteriophage and virulence. A total of 173 archaeal, 4138 bacterial, 404 eukaryotic and 252 viral strains were targeted, providing the ability to analyse targeted functional gene families of micro-organisms included in all four domains. Experimental assessment using different amounts of DNA suggested that as little as 500 ng environmental DNA was required for good hybridization, and the signal intensities detected were well correlated with the DNA amount used. GeoChip 4 was then applied to study the effect of long-term warming on soil microbial communities at a Central Oklahoma site, with results indicating that microbial communities respond to long-term warming by enriching carbon degradation, nutrient cycling (nitrogen and phosphorous) and stress response gene families. To the best of our knowledge, GeoChip 4 is the most comprehensive functional gene array for microbial community analysis.
Collapse
Affiliation(s)
- Qichao Tu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics (IEG), University of Oklahoma, Norman, OK, 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim JG, Park SJ, Quan ZX, Jung MY, Cha IT, Kim SJ, Kim KH, Yang EJ, Kim YN, Lee SH, Rhee SK. Unveiling abundance and distribution of planktonic Bacteria and Archaea in a polynya in Amundsen Sea, Antarctica. Environ Microbiol 2013; 16:1566-78. [PMID: 24112809 DOI: 10.1111/1462-2920.12287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Polynyas, areas of open water surrounded by sea ice, are sites of intense primary production and ecological hotspots in the Antarctic Ocean. This study determined the spatial variation in communities of prokaryotes in a polynya in the Amundsen Sea using 454 pyrosequencing technology, and the results were compared with biotic and abiotic environmental factors. The bacterial abundance was correlated with that of phytoplankton, Phaeocystis spp. and diatoms. A cluster analysis indicated that the bacterial communities in the surface waters of the polynya were distinct from those under the sea ice. Overall, two bacterial clades, Polaribacter (20-64%) and uncultivated Oceanospirillaceae (7-34%), dominated the surface water in the polynya while the Pelagibacter clade was abundant at all depths (7-42%). The archaeal communities were not as diverse as the bacterial communities in the polynya, and marine group I was dominant (> 80%). Canonical correspondence analysis indicated that the oceanographic properties facilitated the development of distinct prokaryotic assemblages in the polynya. This analysis of the diversity and composition of the psychrophilic prokaryotes associated with high phytoplankton production provides new insights into the roles of prokaryotes in biogeochemical cycles in high-latitude polynyas.
Collapse
Affiliation(s)
- Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, 361-763, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ. Trichodesmium--a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol Rev 2012; 37:286-302. [PMID: 22928644 PMCID: PMC3655545 DOI: 10.1111/j.1574-6976.2012.00352.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/13/2012] [Accepted: 08/21/2012] [Indexed: 12/03/2022] Open
Abstract
The last several decades have witnessed dramatic advances in unfolding the diversity and commonality of oceanic diazotrophs and their N2-fixing potential. More recently, substantial progress in diazotrophic cell biology has provided a wealth of information on processes and mechanisms involved. The substantial contribution by the diazotrophic cyanobacterial genus Trichodesmium to the nitrogen influx of the global marine ecosystem is by now undisputable and of paramount ecological importance, while the underlying cellular and molecular regulatory physiology has only recently started to unfold. Here, we explore and summarize current knowledge, related to the optimization of its diazotrophic capacity, from genomics to ecophysiological processes, via, for example, cellular differentiation (diazocytes) and temporal regulations, and suggest cellular research avenues that now ought to be explored.
Collapse
|