1
|
Mahmoud AM, Sheteiwy MS, El-Keblawy A, Ulhassan Z, Khalaf MH, Mohamed HS, Okla MK, AlGarawi AM, El-Sawah AM, Ahmed ES, Reyad AM. The potential biofortification role of Actinopolyspora sp. JTT-01 in enhancing the yield and tissue chemical composition of caraway plants. BMC PLANT BIOLOGY 2025; 25:540. [PMID: 40281484 PMCID: PMC12032728 DOI: 10.1186/s12870-025-06137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/21/2025] [Indexed: 04/29/2025]
Abstract
The need for improving plant production, nutritional value, and medicinal applications has become increasingly important due to the growing global population. The caraway (Carum carvi L) plant has been recognized for its broad range of nutritional and therapeutic uses. Consequently, this study aimed to increase caraway seeds' nutritional and biological value. To achieve this, the Actinopolyspora sp. JTT-0 strain, isolated from the medicinal plant Tephrosia purpurea, was investigated for its potential biofortification role to enhance caraway yield and quality. Our results revealed significant improvements (p < 0.05) in various physical parameters, such as seed yield, pod length, and bulk density, in the treated seeds compared to the controls. Along with the yield increase, there were notable elevations in primary metabolites such as total sugars, proteins, and amino acids. Furthermore, secondary metabolites, including essential oils (EOs), alkaloids, steroids, phenols, and vitamins (e.g., tocopherol and ascorbic acid), also showed significant increases. Notably, the EO constituents showed varying levels of enhancements, with the highest increases in β-pinene (186.2%) and carvacrol (49.2%). Moreover, the treated seeds exhibited improved biological activity, as evidenced by their anti-oxidant (anti-lipid peroxidation and DPPH assays) and anti-microbial properties compared to the controls. The study reported a positive biofortification effect of the Actinopolyspora sp. JTT-01 strain on enhancing caraway seed's quality and yield. However, additional field trials are needed to evaluate the commercial biofertilization capacity of this strain for caraway and other plants.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Maha H Khalaf
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hussein S Mohamed
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Amal Mohamed AlGarawi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Enas S Ahmed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed M Reyad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
2
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
3
|
He D, Gao C, Zhao S, Chen H, Li P, Yang X, Li D, Zhao T, Jiang H, Liu C. Antibacterial, Herbicidal, and Plant Growth-Promoting Properties of Streptomyces sp. STD57 from the Rhizosphere of Adenophora stricta. Microorganisms 2024; 12:2245. [PMID: 39597634 PMCID: PMC11596161 DOI: 10.3390/microorganisms12112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Bacterial wilt triggered by the soil-borne pathogenic bacterium Ralstonia solanacearum is one of the most serious diseases in tomato plants, leading to huge economic losses worldwide. Biological control is considered an environmentally friendly and sustainable way to manage soil-borne diseases. In this study, Streptomyces sp. STD57 isolated from the rhizosphere of Adenophora stricta showed strong antibacterial activity against R. solanacearum. Pot experiments showed that strain STD57 exhibited a significant biocontrol effect (81.7%) on tomato bacterial wilt in the greenhouse environment. Furthermore, strain STD57 could inhibit the growth of weeds (Amaranthus retroflexus, Portulaca oleracea, and Echinochloa crusgalli) but promote the growth of crops (wheat, rice, and tomato). The plant growth-promoting substance was identified as indoleacetic acid (IAA) by high-pressure liquid chromatography-mass spectrometry and genome analysis. Coarse separation of the fermented extracts revealed that the antibacterial and herbicidal substances were mainly in the fermentation supernatant and belonged to different products. These findings suggested that strain STD57 may be a potential biocontrol and bioherbicide agent useful in agriculture.
Collapse
Affiliation(s)
- Dan He
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Congting Gao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| | - Shen Zhao
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Hongmin Chen
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| | - Peng Li
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Xishan Yang
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Deping Li
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Tingting Zhao
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Hong Jiang
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Chongxi Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| |
Collapse
|
4
|
Zafar S, Armaghan M, Khan K, Hassan N, Sharifi-Rad J, Habtemariam S, Kieliszek M, Butnariu M, Bagiu IC, Bagiu RV, Cho WC. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed Pharmacother 2023; 165:115039. [PMID: 37364476 DOI: 10.1016/j.biopha.2023.115039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan.
| | - Nazia Hassan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania.
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Preventive Medicine Study Center, Timisoara, Romania
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Diversity and Bioactivity of Endophytic Actinobacteria Associated with Grapevines. Curr Microbiol 2022; 79:390. [PMCID: PMC9633489 DOI: 10.1007/s00284-022-03068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
AbstractGrapevine trunk diseases (GTDs) are a significant problem for New Zealand viticulture. Endophytic actinobacteria are of interest as potential biocontrol agents due to their ability to inhibit plant pathogens and improve plant growth. However, no studies have investigated the diversity of actinobacteria associated with grapevines in New Zealand vineyards and their bioactivity. Actinobacteria diversity in different ‘Sauvignon blanc’ vine tissues from three vineyards (conventional and organic management, and different vine ages) was assessed using different methods and media. Forty-six endophytic actinobacteria were isolated, with more isolates recovered from roots (n = 45) than leaves (n = 1) and shoot internodes (n = 0). More isolates were recovered from the organic (n = 21) than conventional (n = 8) vineyard, mature (25-year old; n = 21) than young (2-year old; n = 2) vines and using a tissue maceration technique (n = 40). Actinomycete Isolation Agar, International Streptomyces Project 2, and Starch Casein media were effective for actinobacteria isolation. Most of the isolates recovered belonged to Streptomyces, with one isolate identified as Mycolicibacterium. Forty isolates were assessed for antifungal activity and plant growth-promoting (PGP) characteristics. Of these, 13 isolates had antifungal activity against test GTD pathogens (Dactylonectria macrodidyma, Eutypa lata, Ilyonectria liriodendri, Neofusicoccum parvum, and N. luteum). Eighteen isolates exhibited more than one PGP trait; 25siderophore production (n = 25), phosphate solubilization (n = 6), and indole acetic acid production (n = 16). Two strains, Streptomyces sp. LUVPK-22 and Streptomyces sp. LUVPK-30, exhibited the best antifungal and PGP properties. This study revealed the diversity of culturable endophytic actinobacteria from grapevines in New Zealand vineyards and their biocontrol potential against GTD pathogens.
Collapse
|
6
|
Liu JQ, Chen SM, Zhang CM, Xu MJ, Xing K, Li CG, Li K, Zhang YQ, Qin S. Abundant and diverse endophytic bacteria associated with medicinal plant Arctium lappa L. and their potential for host plant growth promoting. Antonie Van Leeuwenhoek 2022; 115:1405-1420. [DOI: 10.1007/s10482-022-01785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
|
7
|
Ali AR, Bahrami Y, Kakaei E, Mohammadzadeh S, Bouk S, Jalilian N. Isolation and identification of endophytic actinobacteria from Citrullus colocynthis (L.) Schrad and their antibacterial properties. Microb Cell Fact 2022; 21:206. [PMID: 36217205 PMCID: PMC9548430 DOI: 10.1186/s12934-022-01936-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antibiotic resistance poses a major threat to human health globally. Consequently, new antibiotics are desperately required to discover and develop from unexplored habitats to treat life-threatening infections. Microbial natural products (NP) are still remained as primary sources for the discovery of new antibiotics. Endophytic actinobacteria (EA) which are well-known producers of bioactive compounds could provide novel antibiotic against pathogenic bacteria. This research aimed to isolate EA from the Citrullus colocynthis plant and explore the antibacterial properties of their metabolites against pathogenic bacteria. RESULTS The healthy samples were collected, dissected and surface-sterilized before cultured on four different selection media at 28 °C. Six endophytic actinobacteria were isolated from Citrullus colocynthis plant. They were taxonomically classified into two family namely Streptomycetaceae and Nocardiopsaceae, based on colony morphological features, scanning electron microscope analysis and molecular identification of isolates. This is the first report on the identification of EA form Citrullus colocynthis and their antibacterial activity. The strains generated a chain of vibrio-comma, cubed or cylindrical shaped spores with indenting or smooth surfaces. Three of those were reported as endophytes for the first time. The strain KUMS-C1 showed 98.55% sequence similarity to its closely related strains which constitutes as a novel species/ strain for which the name Nocardiopsis colocynthis sp. was proposed for the isolated strain. Five isolated strains had antagonist activity against S. aureus, P. aeruginosa, and E. coli. Among those, stain KUMS-C6 showed the broadest spectrum of antibacterial activity against all test bacteria, whereas the strain KUMS-C4 had no antibacterial activity. CONCLUSIONS NPs have a long history of safe and efficient use for development of pharmaceutical products. Our study highlights that Citrullus colocynthis is an untapped source for the isolation of EA, generating novel and bioactive metabolites by which might lead to discovery of new antibiotic(s). This study reveals the future of new antibiotic developments looks bright against multi-drug resistance diseases by mining under- or unexplored habitats.
Collapse
Affiliation(s)
- Aram R Ali
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Mohammadzadeh
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Jalilian
- Forests and Rangelands Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, (AREEO), Kermanshah, Iran
| |
Collapse
|
8
|
Kanchanasin P, Phongsopitanun W, Yuki M, Kudo T, Ohkuma M, Nakashima T, Tanasupawat S. Actinomadura violacea sp. nov., a madurastatin A1-producing strain isolated from lichen in Thailand. Int J Syst Evol Microbiol 2021; 71. [PMID: 34870574 DOI: 10.1099/ijsem.0.005126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An actinomycete strain, LCR2-06T, isolated from a lichen sample on rock collected from Chiang Rai Province (Pong Phra Bat Waterfall), Thailand, was characterized using a polyphasic approach. The strain grew at 25-45 °C, pH 6-11 and on International Streptomyces Project 2 agar plate with 5 % (w/v) NaCl. It contained meso-diaminopimelic acid as the diamino acid in whole-cell hydrolysates. Rhamnose, ribose, xylose, madurose, glucose and galactose were detected as whole-cell sugar hydrolysates. Mycolic acids were absent. The N-acyl type of muramic acid was acetyl. The strain contained C16 : 0, TBSA 10-methyl C18 : 0 and 2-hydroxy C16 : 0 as the predominant fatty acids and MK-9(H6), MK-9(H4) and MK-9(H8) as the major menaquinones. The major polar lipids were diphosphatidylglycerol, phosphatidylinositol and unidentified phospholipid. The draft genome of strain LCR2-06T was closely related to Actinomadura barringtoniae TBRC 7225T (99.2 %), Actinomadura nitritigenes NBRC 15918T (98.8 %), Actinomadura montaniterrae TISTR 2400T (98.5 %) and Actinomadura physcomitrii JCM 33455T (97.9 %). The draft genome of LCR2-06T was 11.1 Mb with 10 588 coding sequences with an average G+C content of 72.7 mol%. Results of genomic analysis revealed that the ANIb and ANIm values between strain LCR2-06T and A. montaniterrae TISTR 2400T were 90.0 and 92.0 %, respectively. The digital DNA-DNA hybridization value was 43.9 % in comparison with the draft genome of A. montaniterrae TISTR 2400T. The strain produced an antibacterial compound active against Bacillus subtilis ATCC 6633 and Kocuria rhizophila ATCC 9341. The results of taxonomic analysis suggested that strain LCR2-06T represented a novel species of the genus Actinomadura for which the name Actinomadura violacea sp. nov. is proposed. The type strain is LCR2-06T (=JCM 33065T=KCTC 49547T=NBRC 114810T=LMG 32136T=TISTR 2935T).
Collapse
Affiliation(s)
- Pawina Kanchanasin
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, Japan
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, Japan
| | - Takuji Nakashima
- Research Organization for Nano and Life Innovation, Waseda University, 513 Tsurumaki, Waseda, Tokyo, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Salam N, Xian WD, Asem MD, Xiao M, Li WJ. From ecophysiology to cultivation methodology: filling the knowledge gap between uncultured and cultured microbes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:132-147. [PMID: 37073336 PMCID: PMC10077289 DOI: 10.1007/s42995-020-00064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Earth is dominated by a myriad of microbial communities, but the majority fails to grow under in situ laboratory conditions. The basic cause of unculturability is that bacteria dominantly occur as biofilms in natural environments. Earlier improvements in the culture techniques are mostly done by optimizing media components. However, with technological advancement particularly in the field of genome sequencing and cell imagining techniques, new tools have become available to understand the ecophysiology of microbial communities. Hence, it becomes easier to mimic environmental conditions in the culture plate. Other methods include co-culturing, emendation of growth factors, and cultivation after physical cell sorting. Most recently, techniques have been proposed for bacterial cultivation by employing genomic data to understand either microbial interactions (network-directed targeted bacterial isolation) or ecosystem engineering (reverse genomics). Hopefully, these techniques may be applied to almost all environmental samples, and help fill the gaps between the cultured and uncultured microbial communities.
Collapse
Affiliation(s)
- Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Mipeshwaree Devi Asem
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| |
Collapse
|
10
|
Thermo-halotolerant mycelial bacteria from Algerian soils: Isolation, taxonomy and antagonistic properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Zhu Q, Cheng W, Song Y, He Q, Ju J, Li Q. Complete genome sequence of the deep South China Sea-derived Streptomyces niveus SCSIO 3406, the producer of cytotoxic and antibacterial marfuraquinocins. PLoS One 2021; 16:e0248404. [PMID: 33755698 PMCID: PMC7987185 DOI: 10.1371/journal.pone.0248404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Streptomyces niveus SCSIO 3406 was isolated from a sediment sample collected from South China Sea at a depth of 3536 m. Four new sesquiterpenoid naphthoquinones, marfuraquinocins A-D, and two new geranylated phenazines, i. e. phenaziterpenes A and B, were isolated from the fermentation broth of the strain. Here, we present its genome sequence, which contains 7,990,492 bp with a G+C content of 70.46% and harbors 7088 protein-encoding genes. The genome sequence analysis revealed the presence of a 28,787 bp gene cluster encoding for 24 open reading frames including 1,3,6,8-tetrahydroxynaphthalene synthase and monooxygenase, seven phenazine biosynthesis proteins, two prenyltransferases and a squalene-hopene cyclase. These genes are known to be necessary for the biosynthesis of both marfuraquinocins and phenaziterpenes. Outside the gene cluster (and scattered around the genome), there are seven genes belonging to the methylerythritol phosphate pathway for the biosynthesis of the essential primary metabolite, isopentenyl diphosphate, as well as six geranyl diphosphate/farnesyl diphosphate synthase genes. The strain S. niveus SCSIO 3406 showed type I PKS, type III PKS and nonribosomal peptide synthetase cluster. The sequence will provide the genetic basis for better understanding of biosynthesis mechanism of the above mentioned six compounds and for the construction of improved strain for the industrial production of antimicrobial agents.
Collapse
Affiliation(s)
- Qinghua Zhu
- College of Life Science, Dezhou University, Dezhou, China
| | - Weige Cheng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qing He
- College of Life Science, Dezhou University, Dezhou, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (QL); (JJ)
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (QL); (JJ)
| |
Collapse
|
12
|
Songsumanus A, Kuncharoen N, Kudo T, Yuki M, Ohkuma M, Igarashi Y, Tanasupawat S. Actinomadura decatromicini sp. nov., isolated from mountain soil in Thailand. J Antibiot (Tokyo) 2021; 74:51-58. [PMID: 32724099 DOI: 10.1038/s41429-020-0353-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 11/08/2022]
Abstract
A novel actinomycete strain CYP1-5T was isolated from the mountain soil sample collected from Chaiyaphum province, Thailand and its taxonomic position was clarified by using a polyphasic taxonomic approach. The chemotaxonomic properties of strain CYP1-5T were consistent within the genus Actinomadura. Cell-wall peptidoglycan of this strain contained meso-diaminopimelic acid. Galactose, madurose, and ribose were presented as the diagnostic sugars in whole-cell hydrolysates. The major menaquinone was MK-9(H6). Major cellular fatty acids were iso-C16:0 and C16:0. Phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, and phosphatidylinositol mannoside were observed as predominant phospholipids. Based on the results of phylogenetic analyses of 16S rRNA gene sequence, strain CYP1-5T was constituent with the genus Actinomadura and was closely related to Actinomadura syzygii GKU157T (99.5%) and Actinomadura chibensis IFM 10266T (= JCM 14158T) (98.2%). The draft genome size of strain CYP1-5T was 9.30 Mb with 72.2 mol% of G + C content. Strain CYP1-5T showed ANIb values of 94.9% with A. syzygii GKU157T and 93.2% with A. chibensis JCM 14158T. Phenotypic characteristics, phylogenetic analysis and genome data support that strain CYP1-5T could be discriminated from its closest relatives, representing a novel species of the genus Actinomadura, for which the name Actinomadura decatromicini sp. nov. is proposed. The type strain is CYP1-5T (= JCM 16996T = KCTC 19916T = TISTR 2901T).
Collapse
Affiliation(s)
| | - Nattakorn Kuncharoen
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Tveit AT, Kiss A, Winkel M, Horn F, Hájek T, Svenning MM, Wagner D, Liebner S. Environmental patterns of brown moss- and Sphagnum-associated microbial communities. Sci Rep 2020; 10:22412. [PMID: 33376244 PMCID: PMC7772339 DOI: 10.1038/s41598-020-79773-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022] Open
Abstract
Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.
Collapse
Affiliation(s)
- Alexander Tøsdal Tveit
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Andrea Kiss
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Matthias Winkel
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Tomáš Hájek
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Mette Marianne Svenning
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Dirk Wagner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, Potsdam, Germany
| | - Susanne Liebner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany.
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany.
| |
Collapse
|
14
|
Tosi M, Gaiero J, Linton N, Mafa-Attoye T, Castillo A, Dunfield K. Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-981-15-6125-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Seasonal Variation Influence Endophytic Actinobacterial Communities of Medicinal Plants from Tropical Deciduous Forest of Meghalaya and Characterization of Their Plant Growth-Promoting Potentials. Curr Microbiol 2020; 77:1689-1698. [PMID: 32300926 DOI: 10.1007/s00284-020-01988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
The endophytic actinobacteria constitute a diverse community which has vast potential importance that may be exploited in pharmaceutical, agricultural, and biotechnological industries. However, the effects of seasonal changes on distribution of endophytic actinobacteria in medicinal plants of Meghalaya are largely uncharacterized. Here, we investigated host and seasonal influence on diversity of endophytic actinobacteria residing in roots of six medicinal plant species of Meghalaya. A total of 493 cultivable endophytic actinobacterial isolates representing 41 species were obtained from root segments of six plant species which had been collected during four different seasons of 2011-2012 and 2012-2013. Among the host plant species, maximum actinobacterial colonization was observed in Costus speciosus and minimum in Potentilla fulgens. In regard to seasons, the highest actinobacterial colonization and relative abundance were observed during summer season and least was recorded during the winter season. It was ascertained that though endophytic actinobacteria have varying capacity to colonize in different plant species during the seasons, colonization is not found to be species-specific. Culture-independent attempt also inferred that actinobacterial community varied amongst the six medicinal plants during the different seasons. Hence, seasons are influential factors in the colonization capacity of endophytic actinobacterial community. Furthermore, plant growth-promoting activities were recorded in 34.15% of the isolates. Hence, these results indicate that endophytic actinobacteria from the selected medicinal plants also represent an important source of plant growth-promoting bioactive metabolites.
Collapse
|
16
|
Abdelshafy Mohamad OA, Ma JB, Liu YH, Zhang D, Hua S, Bhute S, Hedlund BP, Li WJ, Li L. Beneficial Endophytic Bacterial Populations Associated With Medicinal Plant Thymus vulgaris Alleviate Salt Stress and Confer Resistance to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2020; 11:47. [PMID: 32117385 PMCID: PMC7033553 DOI: 10.3389/fpls.2020.00047] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
As a result of climate change, salinity has become a major abiotic stress that reduces plant growth and crop productivity worldwide. A variety of endophytic bacteria alleviate salt stress; however, their ecology and biotechnological potential has not been fully realized. To address this gap, a collection of 117 endophytic bacteria were isolated from wild populations of the herb Thymus vulgaris in Sheikh Zuweid and Rafah of North Sinai Province, Egypt, and identified based on their 16S rRNA gene sequences. The endophytes were highly diverse, including 17 genera and 30 species. The number of bacterial species obtained from root tissues was higher (n = 18) compared to stem (n = 14) and leaf (n = 11) tissue. The endophytic bacteria exhibited several plant growth-promoting activities in vitro, including auxin synthesis, diazotrophy, phosphate solubilization, siderophore production, and production of lytic enzymes (i.e., chitinase, cellulase, protease, and lipase). Three endophytes representing Bacillus species associated with T. vulgaris such as EGY05, EGY21, and EGY25 were selected based on their ex-situ activities for growth chamber assays to test for their ability to promote the growth of tomato (Solanum lycopersicum L.) under various NaCl concentrations (50-200 mM). All three strains significantly (P < 0.05) promoted the growth of tomato plants under salt stress, compared to uninoculated controls. In addition, inoculated tomato plants by all tested strains decreased (P < 0.05) the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase). Six strains, representing Bacillus and Enterobacter species EGY01, EGY05, EGY16, EGY21, EGY25, and EGY31 were selected based on in vitro antagonistic activity to F. oxysporum for pot experiments under salt stress. All tested strains reduced the disease severity index (DSI) of tomato plants at all tested salt concentrations. Gas-chromatography/mass-spectrometry analysis of cell-free extracts of B. subtilis (EGY16) showed at least ten compounds were known to have antimicrobial activity, with the major peaks being benzene, 1,3-dimethyl-, p-xylene, dibutyl phthalate, bis (2-ethylhexyl) phthalate, and tetracosane. This study demonstrates that diverse endophytes grow in wild thyme populations and that some are able to alleviate salinity stress and inhibit F. oxysporum pathogenesis, making them promising candidates for biofertilizers and biocontrol agents.
Collapse
Affiliation(s)
- Osama Abdalla Abdelshafy Mohamad
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
- Department of Biological, Marine Sciences, and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Al-Arish, Egypt
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish, Egypt
| | - Jin-Biao Ma
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Yong-Hong Liu
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Daoyuan Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Shao Hua
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Shrikant Bhute
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish, Egypt
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Wen-Jun Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| |
Collapse
|
17
|
Wang Z, Yu Z, Zhao J, Zhuang X, Cao P, Guo X, Liu C, Xiang W. Community Composition, Antifungal Activity and Chemical Analyses of Ant-Derived Actinobacteria. Front Microbiol 2020; 11:201. [PMID: 32117188 PMCID: PMC7026373 DOI: 10.3389/fmicb.2020.00201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Actinobacteria associated with insects represent one potentially rich source of novel natural products with antifungal activity. Here, we investigated the phylogenetic diversity and community composition of actinobacteria associated with ants using a combination of culture-dependent and -independent methods. Further, we assessed the antagonistic activity against phytopathogenic fungi and identified the secondary metabolites from isolates with bioactivity. A total of 416 actinobacterial isolates were obtained from three ant species (Camponotus japonicus, Lasius fuliginosus, and Lasius flavus) located in five nests. The largest amount of isolates were observed in the head samples. 16S rRNA gene sequencing showed that the isolates were diverse and belonged to ten genera within the phylum Actinobacteria, with Streptomyces and Micromonospora comprising the most abundant genera. High-throughput sequencing analyses revealed that the actinobacterial communities were more diverse and dominated by the families Nocardioidaceae, Nocardiaceae, Dermacoccaceae, Intrasporangiaceae, and Streptomycetaceae. In addition, 52.3% of the representative isolates had inhibitory properties against phytopathogenic fungi. Chemical analysis of one Streptomyces strain led to the discovery of two known compounds and one new compound. These results demonstrated that ant-derived actinobacteria represented an underexplored bioresource library of diverse and novel taxa that may be of potential interest in the discovery of new agroactive compounds.
Collapse
Affiliation(s)
- Zhiyan Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhiyin Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xiaoxin Zhuang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xiaowei Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Salwan R, Sharma V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 2020; 231:126374. [DOI: 10.1016/j.micres.2019.126374] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
|
19
|
Hu J, Han C, Yu B, Zhao J, Guo X, Shen Y, Wang X, Xiang W. Actinomadura harenae sp. nov. , a novel actinomycete isolated from sea sand in Sanya. Int J Syst Evol Microbiol 2019; 70:766-772. [PMID: 31671050 DOI: 10.1099/ijsem.0.003819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete, designated strain NEAU-Ht49T, was isolated from sea sand sampled in Sanya and characterized by using a polyphasic approach. The 16S rRNA gene sequence analysis showed that strain NEAU-Ht49T was most closely related to Actinomadura rhizosphaerae SDA37T (98.8 %), Actinomadura logoneensis NEAU-G17T (98.6 %), Actinomadura oligospora ATCC 43269T (98.6 %) and Actinomadura gamaensis NEAU-Gz5T (98.6 %). The results of phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain NEAU-Ht49T formed a cluster with A. rhizosphaerae SDA37T, A. logoneensis NEAU-G17T, A. oligospora ATCC 43269T, A. gamaensis NEAU-Gz5T and Actinomadura rupiterrae CS5-AC15T (96.4 %). Meso-diaminopimelic acid was detected in its cell walls and glucose, madurose, mannose and ribose were detected in whole-cell hydrolysate. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside and two unidentified lipids. The majoy menaquinone was MK-10(H6) and the minor menaquinones were MK-9(H4) and MK-9(H8). The major fatty acids were C16 : 0, C18 : 1ω9c, 10-methyl C18 : 0 and iso-C16 : 0. Moreover, morphological and chemotaxonomic characteristics of properties of strain NEAU-Ht49T also confirmed the affiliation of the isolate to the genus Actinomadura. However, DNA-DNA relatedness, physiological and biochemical data showed that strain NEAU-Ht49T could be distinguished from its closest relatives. Therefore, strain NEAU-Ht49T represents a novel species of the genus Actinomadura, for which the name Actinomadura harenae sp. nov. is proposed, with strain NEAU-Ht49T (=CGMCC 4.7499T=JCM 32659T) as the type strain.
Collapse
Affiliation(s)
- Jiangmeihui Hu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chuanyu Han
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Bing Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiaowei Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Yue Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
20
|
Singh K, Dwivedi GR, Sanket AS, Pati S. Therapeutic Potential of Endophytic Compounds: A Special Reference to Drug Transporter Inhibitors. Curr Top Med Chem 2019; 19:754-783. [DOI: 10.2174/1568026619666190412095105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
Abstract
From the discovery to the golden age of antibiotics (miracle), millions of lives have been saved. The era of negligence towards chemotherapeutic agents gave birth to drug resistance. Among all the regulators of drug resistance, drug transporters are considered to be the key regulators for multidrug resistance. These transporters are prevalent from prokaryotes to eukaryotes. Endophytes are one of the unexplored wealths of nature. Endophytes are a model mutualistic partner of plants. They are the reservoir of novel therapeutics. The present review deals with endophytes as novel drug resistance reversal agents by inhibiting the drug transporters across the genera. This review also focuses on drug transporters, and mutualistic chemical diversity, exploring drug transporter modulating potential of endophytes.
Collapse
Affiliation(s)
- Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - A. Swaroop Sanket
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
21
|
Chen P, Zhang C, Ju X, Xiong Y, Xing K, Qin S. Community Composition and Metabolic Potential of Endophytic Actinobacteria From Coastal Salt Marsh Plants in Jiangsu, China. Front Microbiol 2019; 10:1063. [PMID: 31139174 PMCID: PMC6527748 DOI: 10.3389/fmicb.2019.01063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
The diversity and functional roles of the plant associated endophytic actinobacteria in unique habitats remain poorly understood. In this paper, we examined the phylogenetic diversity and community composition of endophytic actinobacteria associated with native coastal salt marsh plants in Jiangsu, China using a combination of cultivation and 16S rRNA gene-based high-throughput sequencing (HTS) methods. Further, we evaluated the antifungal, fibrinolytic activities and the secondary metabolite biosynthesis potential of isolates via gene screening. A total of 278 actinobacterial isolates were isolated from 19 plant samples. 16S rRNA gene sequencing revealed that the isolates were highly diverse and belonged to 23 genera within the Actinomycetales order, with Streptomyces, Saccharopolyspora, and Pseudonocardia comprising the most abundant genera. In addition, more than 10 of the isolates were novel actinobacterial taxa distributed across eight genera. HTS analyses of seven representative plant root samples revealed that Actinobacteria phylum constituted 0.04–28.66% of root endophytic bacterial communities. A total of four actinobacterial classes, 14 orders, 35 families, and 63 known genera were detected via HTS, and these communities were found to be dominated by the members of the order Actinomycetales including the genera Streptomyces, Mycobacterium, Arthrobacter, Nocardioides, and Micromonospora. In addition, 30.4% of the representative isolates exhibited antifungal activities, 40.5% of them showed fibrinolytic activities, while 43.0% of the strains harbored secondary metabolite biosynthesis genes. These results demonstrated that coastal salt marsh plants in the Jiangsu Province represented an underexplored new reservoir of diverse and novel endophytic actinobacteria that may be of potential interest in the discovery of bioactive compounds with potential as biocontrol agents and for fibrinolytic enzyme production.
Collapse
Affiliation(s)
- Pan Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Chunmei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiuyun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Youwei Xiong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
22
|
Eichmeier A, Kiss T, Necas T, Penazova E, Tekielska D, Bohunicka M, Valentova L, Cmejla R, Morais D, Baldrian P. High-Throughput Sequencing Analysis of the Bacterial Community in Stone Fruit Phloem Tissues Infected by "Candidatus Phytoplasma prunorum". MICROBIAL ECOLOGY 2019; 77:664-675. [PMID: 30194483 DOI: 10.1007/s00248-018-1250-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
"Candidatus Phytoplasma prunorum" (CPp) is a highly destructive phytopathogenic agent in many stone fruit-growing regions in Europe and the surrounding countries. In this work, we focused on documenting entire bacterial community in the phloem tissues of 60 stone fruit trees. Nested PCR and two real-time PCR assays were used to select CPp-positive (group A) and CPp-negative samples (group B). Afterwards, high-throughput amplicon sequencing was performed to assess bacterial community compositions in phloem tissues. The bacterial composition in phloem tissue consisted of 118 distinct genera, represented mainly by Pseudomonas, Acinetobacter, Methylobacterium, Sphingomonas, and Rhizobium. Statistics showed that CPp influenced the bacterial composition of infected plants (group A) and that the bacterial community depended on the geographical origin of the sample. This is the first work focusing on an analysis of the influence of CPp on the bacteria coexisting in the phloem tissues of stone fruit trees.
Collapse
Affiliation(s)
- Ales Eichmeier
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valtická 334, 691 44, Lednice, Czech Republic.
| | - Tomas Kiss
- Department of Fruit Growing, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic
| | - Tomas Necas
- Department of Fruit Growing, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic
| | - Eliska Penazova
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valtická 334, 691 44, Lednice, Czech Republic
| | - Dorota Tekielska
- Department of Plant Protection, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Krakow, Poland
| | - Marketa Bohunicka
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Lucie Valentova
- Research and Breeding Institute of Pomology Holovousy Ltd, Holovousy 129, 508 01, Hořice, Czech Republic
| | - Radek Cmejla
- Research and Breeding Institute of Pomology Holovousy Ltd, Holovousy 129, 508 01, Hořice, Czech Republic
| | - Daniel Morais
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| |
Collapse
|
23
|
Secondary Metabolites of Endophytic Actinomycetes: Isolation, Synthesis, Biosynthesis, and Biological Activities. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 108 2019; 108:207-296. [DOI: 10.1007/978-3-030-01099-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Qin S, Feng WW, Zhang YJ, Wang TT, Xiong YW, Xing K. Diversity of Bacterial Microbiota of Coastal Halophyte Limonium sinense and Amelioration of Salinity Stress Damage by Symbiotic Plant Growth-Promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol 2018; 84:e01533-18. [PMID: 30054358 PMCID: PMC6146988 DOI: 10.1128/aem.01533-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
Plant-associated microorganisms are considered a key determinant of plant health and growth. However, little information is available regarding the composition and ecological function of the roots' and leaves' bacterial microbiota of halophytes. Here, using both culture-dependent and culture-independent techniques, we characterized the bacterial communities of the roots and leaves as well as the rhizosphere and bulk soils of the coastal halophyte Limonium sinense in Jiangsu Province, China. We identified 49 representative bacterial strains belonging to 17 genera across all samples, with Glutamicibacter as the most dominant genus. All Glutamicibacter isolates showed multiple potential plant growth promotion traits and tolerated a high concentration of NaCl and a wide pH range. Interestingly, further inoculation experiments showed that the Glutamicibacter halophytocola strain KLBMP 5180 isolated from root tissue significantly promoted host growth under NaCl stress. Indeed, KLBMP 5180 inoculation increased the concentrations of total chlorophyll, proline, antioxidative enzymes, flavonoids, K+, and Ca2+ in the leaves; the concentrations of malondialdehyde (MDA) and Na+ were reduced. A transcriptome analysis identified 1,359 and 328 differentially expressed genes (DEGs) in inoculated seedlings treated with 0 and 250 mM NaCl, respectively. We found that pathways related to phenylpropanoid and flavonoid biosynthesis and ion transport and metabolism might play more important roles in host salt stress tolerance induced by KLBMP 5180 inoculation compared to that in noninoculated leaves. Our results provide novel insights into the complex composition and function of the bacterial microbiota of the coastal halophyte L. sinense and suggest that halophytes might recruit specific bacteria to enhance their tolerance of harsh environments.IMPORTANCE Halophytes are important coastal plants often used for the remediation of saline coastal soils. Limonium sinense is well known for its medical properties and phytoremediation of saline soils. However, excessive exploitation and utilization have made the wild resource endangered. The use of endophytic and rhizosphere bacteria may be one of the suitable ways to solve the problem. This study was undertaken to develop approaches to improve the growth of L. sinense using endophytes. The application of actinobacterial endophytes ameliorated salt stress damage of the host via complex physiological and molecular mechanisms. The results also highlight the potential of using habitat-adapted, symbiotic, indigenous endophytic bacteria to enhance the growth and ameliorate abiotic stress damage of host plants growing in special habitats.
Collapse
Affiliation(s)
- Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Wei-Wei Feng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Yue-Ji Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Tian-Tian Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - You-Wei Xiong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Singh R, Dubey AK. Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Front Microbiol 2018; 9:1767. [PMID: 30135681 PMCID: PMC6092505 DOI: 10.3389/fmicb.2018.01767] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Actinobacteria are wide spread in nature and represent the largest taxonomic group within the domain Bacteria. They are abundant in soil and have been extensively explored for their therapeutic applications. This versatile group of bacteria has adapted to diverse ecological habitats, which has drawn considerable attention of the scientific community in recent times as it has opened up new possibilities for novel metabolites that may help in solving some of the most challenging problems of the day, for example, novel drugs for drug-resistant human pathogens, affordable means to maintain ecological balance in various habitats, and alternative practices for sustainable agriculture. Traditionally, free dwelling soil actinobacteria have been the subject of intensive research. Of late, symbiotic actinobacteria residing as endophytes within the plant tissues have generated immense interest as potential source of novel compounds, which may find applications in medicine, agriculture, and environment. In the light of these possibilities, this review focuses on the diversity of endophytic actinobacteria isolated from the plants of extreme habitats and specific ecological niches. Furthermore, an attempt has been made to assign chemical class to the compounds obtained from endophytic actinobacteria. Potential therapeutic applications of these compounds and the utility of endophytic actinobacteria in agriculture and environment are discussed.
Collapse
Affiliation(s)
| | - Ashok K. Dubey
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
26
|
Malisorn K, Kanchanasin P, Phongsopitanun W, Tanasupawat S. Actinomadura rhizosphaerae sp. nov., isolated from rhizosphere soil of the plant Azadirachta indica. Int J Syst Evol Microbiol 2018; 68:3012-3016. [PMID: 30063200 DOI: 10.1099/ijsem.0.002940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete, strain SDA37T, belonging to the genus Actinomadura, was isolated from rhizosphere soil collected from Udon Thani Province, Thailand. The taxonomic position of the strain was characterized using a polyphasic approach. Meso-diaminopimelic acid, glucose, ribose, galactose and madurose were detected in cell-wall and whole-cell hydrolysates. The N-acyl type of muramic acid was acetyl. Menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The predominant cellular fatty acids were iso-C16 : 0, C16 : 0, 10-methyl C18 : 0 and iso-C14 : 0. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylinositol. blast analysis of the almost-complete 16S rRNA gene sequence showed 98.8 % similarity to Actinomadura oligospora NBRC 104149T, 98.7 % similarity to Actinomadura gamaensis DSM 100815T and 97.2 % similarity to Actinomadura rupiterrae KCTC 19559T. The DNA G+C content was 73.1 mol%. Strain SDA37T showed low DNA-DNA relatedness (44.3±7.3 to 58.5±8.7 %) to A. oligospora NBRC 104149T, Actinomadura gamaensis DSM 100815T and Actinomadura rupiterrae KCTC 19559T. The new strain could also be distinguished from its closely related strains by the differences in the phenotypic characteristics. The results of taxonomic analysis suggested that strain SDA37T represented a novel species of the genus Actinomadura for which the name Actinomadura rhizosphaerae sp. nov. is proposed. The type strain is SDA37T (=KCTC 39965T=NBRC 112909T=TISTR 2523T).
Collapse
Affiliation(s)
- Kingchan Malisorn
- 1Department of Biology, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Pawina Kanchanasin
- 2Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Somboon Tanasupawat
- 2Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Zhao K, Li J, Shen M, Chen Q, Liu M, Ao X, Liao D, Gu Y, Xu K, Ma M, Yu X, Xiang Q, Chen J, Zhang X, Penttinen P. Actinobacteria associated with Chinaberry tree are diverse and show antimicrobial activity. Sci Rep 2018; 8:11103. [PMID: 30038421 PMCID: PMC6056502 DOI: 10.1038/s41598-018-29442-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/01/2022] Open
Abstract
Many actinobacteria produce secondary metabolites that include antimicrobial compounds. Since most of the actinobacteria cannot be cultivated, their antimicrobial potential awaits to be revealed. We hypothesized that the actinobacterial endophyte communities inside Melia toosendan (Chinaberry) tree are diverse, include strains with antimicrobial activity, and that antimicrobial activity can be detected using a cultivation independent approach and co-occurrence analysis. We isolated and identified actinobacteria from Chinaberry, tested their antimicrobial activities, and characterized the communities using amplicon sequencing and denaturing gradient gel electrophoresis as cultivation independent methods. Most of the isolates were identified as Streptomyces spp., whereas based on amplicon sequencing the most abundant OTU was assigned to Rhodococcus, and Tomitella was the most diverse genus. Out of the 135 isolates, 113 inhibited the growth of at least one indicator organism. Six out of the 7577 operational taxonomic units (OTUs) matched 46 cultivated isolates. Only three OTUs, Streptomyces OTU4, OTU11, and OTU26, and their corresponding isolate groups were available for comparing co-occurrences and antimicrobial activity. Streptomyces OTU4 correlated negatively with a high number of OTUs, and the isolates corresponding to Streptomyces OTU4 had high antimicrobial activity. However, for the other two OTUs and their corresponding isolate groups there was no clear relation between the numbers of negative correlations and antimicrobial activity. Thus, the applicability of co-occurrence analysis in detecting antimicrobially active actinobacteria could not be proven.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China.
| | - Jing Li
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Meiling Shen
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Qiang Chen
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Maoke Liu
- Biotechnology Center, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Luzhou, 646100, P. R. China
| | - Xiaolin Ao
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Decong Liao
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Yunfu Gu
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Kaiwei Xu
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Menggen Ma
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Xiumei Yu
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Quanju Xiang
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Ji Chen
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan, 625000, P. R. China
| | - Petri Penttinen
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, School of Environmental & Resource Sciences, Zhejiang Agriculture & Forestry University, Linan, 311300, P. R. China.
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Fin-00014, Finland.
| |
Collapse
|
28
|
Phylogenetic diversity and investigation of plant growth-promoting traits of actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu, China. Syst Appl Microbiol 2018; 41:516-527. [PMID: 29934111 DOI: 10.1016/j.syapm.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022]
Abstract
Actinobacteria from special habitats are of interest due to their producing of bioactive compounds and diverse ecological functions. However, little is known of the diversity and functional traits of actinobacteria inhabiting coastal salt marsh soils. We assessed actinobacterial diversity from eight coastal salt marsh rhizosphere soils from Jiangsu Province, China, using culture-based and 16S rRNA gene high throughput sequencing (HTS) methods, in addition to evaluating their plant growth-promoting (PGP) traits of isolates. Actinobacterial sequences represented 2.8%-43.0% of rhizosphere bacterial communities, as determined by HTS technique. The actinobacteria community comprised 34 families and 79 genera. In addition, 196 actinobacterial isolates were obtained, of which 92 representative isolates were selected for further 16S rRNA gene sequencing and phylogenetic analysis. The 92 strains comprised seven suborders, 12 families, and 20 genera that included several potential novel species. All representative strains were tested for their ability of producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), hydrolytic enzymes, and phosphate solubilization. Based on the presence of multiple PGP traits, two strains, Streptomyces sp. KLBMP S0051 and Micromonospora sp. KLBMP S0019 were selected for inoculation of wheat seeds grown under salt stress. Both strains promoted seed germination, and KLBMP S0019 significantly enhanced seedling growth under NaCl stress. Our study demonstrates that coastal salt marsh rhizosphere soils harbor a diverse reservoir of actinobacteria that are potential resources for the discovery of novel species and functions. Moreover, several of the isolates identified here are good candidates as PGP bacteria that may contribute to plant adaptions to saline soils.
Collapse
|
29
|
Shi S, Tian L, Ma L, Tian C. Community Structure of Rhizomicrobiomes in Four Medicinal Herbs and Its Implication on Growth Management. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718030098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
31
|
Li L, Mohamad OAA, Ma J, Friel AD, Su Y, Wang Y, Musa Z, Liu Y, Hedlund BP, Li W. Synergistic plant-microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie van Leeuwenhoek 2018. [PMID: 29516314 DOI: 10.1007/s10482-018-1062-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Little is known about the composition, diversity, and geographical distribution of bacterial communities associated with medicinal plants in arid lands. To address this, a collection of 116 endophytic bacteria were isolated from wild populations of the herb Glycyrrhiza uralensis Fisch (licorice) in Xinyuan, Gongliu, and Tekesi of Xinjiang Province, China, and identified based on their 16S rRNA gene sequences. The endophytes were highly diverse, including 20 genera and 35 species. The number of distinct bacterial genera obtained from root tissues was higher (n = 14) compared to stem (n = 9) and leaf (n = 6) tissue. Geographically, the diversity of culturable endophytic genera was higher at the Tekesi (n = 14) and Xinyuan (n = 12) sites than the Gongliu site (n = 4), reflecting the extremely low organic carbon content, high salinity, and low nutrient status of Gongliu soils. The endophytic bacteria exhibited a number of plant growth-promoting activities ex situ, including diazotrophy, phosphate and potassium solubilization, siderophore production, auxin synthesis, and production of hydrolytic enzymes. Twelve endophytes were selected based on their ex situ plant growth-promoting activities for growth chamber assays to test for their ability to promote growth of G. uralensis F. and Triticum aestivum (wheat) plants. Several strains belonging to the genera Bacillus (n = 6) and Achromobacter (n = 1) stimulated total biomass production in both G. uralensis and T. aestivum under low-nutrient conditions. This work is the first report on the isolation and characterization of endophytes associated with G. uralensis F. in arid lands. The results demonstrate the broad diversity of endophytes associated with wild licorice and suggest that some Bacillus strains may be promising candidates for biofertilizers to promote enhanced survival and growth of licorice and other valuable crops in arid environments.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, 830011, China
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Osama Abdalla Abdelshafy Mohamad
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, 830011, China
- Institute for Post Graduate Environmental Studies, Environmental Science Department, Arish University, North-Sinai, 45516, Egypt
| | - Jinbiao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, 830011, China
| | - Ariel D Friel
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Yangui Su
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, 830011, China
| | - Yun Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, 830011, China
| | - Zulpiya Musa
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, 830011, China
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yonghong Liu
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, 830011, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Wenjun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, 830011, China.
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat Sen University, Guangzhou, 510275, China.
| |
Collapse
|
32
|
Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res 2017; 207:8-18. [PMID: 29458872 DOI: 10.1016/j.micres.2017.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/10/2017] [Accepted: 10/27/2017] [Indexed: 02/03/2023]
Abstract
Endophytic bacteria occupy the same niche of phytopathogens and may produce metabolites that induce the host plant systemic resistance and growth. Host and environmental variables often determine the endophytic community's structure and composition. In this study, we addressed whether the plant genotype, organ, and geographic location influence the structure, composition, and functionality of endophytic bacterial communities in Paullinia cupana. To characterize the communities and identify strains with potential application in agriculture, we analyzed two P. cupana genotypes cultivated in two cities of the State of Amazonas, Brazil. Endophytic bacteria were isolated from surface-disinfested root, leaf, and seed tissues through the fragmentation and maceration techniques. The colonization rate, number of bacteria, richness, diversity, and functional traits were determined. The plant growth-promoting ability of selected bacterial strains was assessed in Sorghum bicolor. We identified 95 bacterial species distributed in 29 genera and 3 phyla (Proteobacteria, Actinobacteria, and Firmicutes). The colonization rate, richness, diversity, and species composition varied across the plant organs; the last parameter also varied across the plant genotype and location. Some strains exhibited relevant plant growth-promoting traits and antagonistic traits against the main phytopathogens of P. cupana, but they were not separated by functional traits. The main bacterial strains with plant growth-promoting traits induced S. bicolor growth. Altogether, our findings open opportunities to study the application of isolated endophytic bacterial strains in the bioprospection of processes and products.
Collapse
|
33
|
Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Sarma RK, Saikia R, Donovan AO, Singh BP. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 2017; 7:11809. [PMID: 28924162 PMCID: PMC5603540 DOI: 10.1038/s41598-017-12235-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
Endophytic actinobacteria play an important role in growth promotion and development of host plant by producing enormous quantities of novel bioactive natural products. In the present investigation, 169 endophytic actinobacteria were isolated from endospheric tissues of Rhynchotoechum ellipticum. Based on their antimicrobial potential, 81 strains were identified by 16rRNA gene analysis, which were taxonomically grouped into 15 genera. All identified strains were screened for their plant growth promoting attributes and, for the presence of modular polyketide synthases (PKSI, PKSII and nonribosomal peptide synthetase (NRPS) gene clusters to correlate the biosynthetic genes with their functional properties. Expression studies and antioxidant potential for four representative strains were evaluated using qRT-PCR and DPPH assay respectively. Additionally, six antibiotics (erythromycin, ketoconazole, fluconazole, chloramphenicol, rifampicin and miconazole) and nine phenolic compounds (catechin, kaempferol, chebulagic acid, chlorogenic acid, Asiatic acid, ferulic acid, arjunic acid, gallic acid and boswellic acid) were detected and quantified using UHPLC-QqQLIT-MS/MS. Furthermore, three strains (BPSAC77, 121 and 101) showed the presence of the anticancerous compound paclitaxel which was reported for the first time from endophytic actinobacteria. This study provides a holistic picture, that endophytic actinobacteria are rich bacterial resource for bioactive natural products, which has a great prospective in agriculture and pharmaceutical industries.
Collapse
Affiliation(s)
- Ajit Kumar Passari
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Aizawl, Mizoram University, Mizoram, 796004, India
| | - Vineet Kumar Mishra
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Aizawl, Mizoram University, Mizoram, 796004, India
| | - Garima Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Aizawl, Mizoram University, Mizoram, 796004, India
| | - Pratibha Singh
- SAIF, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226012, India
| | - Brijesh Kumar
- SAIF, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226012, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618, Tallinn, Estonia
| | | | - Ratul Saikia
- Biotechnology Division, CSIR-NEIST, Jorhat, Assam, 785006, India
| | - Anthonia O' Donovan
- Applied Biology and Biopharmaceutical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Bhim Pratap Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Aizawl, Mizoram University, Mizoram, 796004, India.
| |
Collapse
|
34
|
Indole and Tyramine Alkaloids Produced by an Endophytic Actinomycete Associated with Artemisia annua. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-2184-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Taechowisan T, Chaisaeng S, Phutdhawong WS. Antibacterial, antioxidant and anticancer activities of biphenyls from Streptomyces sp. BO-07: an endophyte in Boesenbergia rotunda (L.) Mansf A. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1339669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Thongchai Taechowisan
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
| | - Suchanya Chaisaeng
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
| | - Waya S. Phutdhawong
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
| |
Collapse
|
36
|
Nalini MS, Prakash HS. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol 2017; 64:261-270. [PMID: 28107573 DOI: 10.1111/lam.12718] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 01/10/2017] [Indexed: 11/28/2022]
Abstract
The endophytic actinomycetes constitute one of the fascinating group of microorganisms associated with a wide range of plant species. The diversity of actinomycetes in plants and their tissue parts is a matter of debate as no consensus are derived between individual studies. Nevertheless, their diversity correlates with the occurrence in plant species harboured in unique regions of biologically diverse areas called "hot spots." Recent advances in the isolation techniques have facilitated the isolation of rare taxa from these environments. The biosynthetic ability of the endophytic actinomycetes has proven beyond doubt that these organisms have the potential to synthesize an array of compounds with novelty in structure and bioactivity and as a result are preferred in the natural product screening programs. In the years to come, the scientific world may await to discover many more novel actinomycete taxa with metabolic diversity and applications in therapeutics. SIGNIFICANCE AND IMPACT OF THE STUDY "Endophytes" - the microbes residing in the living tissues of plants are virtually omnipresent. Actinomycete endophytes are diverse in distribution within plant tissues, especially in the roots as they have a close association with the rhizhosphere. An introspection into diversity studies necessitates careful sampling, analysis, and isolation data from the biodiverse and nonbiodiverse regions represented by unique environments. The key to the recovery of novel species and their bioprospection lies in these regions.
Collapse
Affiliation(s)
- M S Nalini
- Department of Studies in Botany, University of Mysore, Mysore, India
| | - H S Prakash
- Department of Studies in Biotechnology, University of Mysore, Mysore, India
| |
Collapse
|
37
|
Feng WW, Wang TT, Bai JL, Ding P, Xing K, Jiang JH, Peng X, Qin S. Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense. Int J Syst Evol Microbiol 2017; 67:1120-1125. [DOI: 10.1099/ijsem.0.001775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wei-Wei Feng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Tian-Tian Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Juan-Luan Bai
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Peng Ding
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Xue Peng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| |
Collapse
|
38
|
Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1308563. [PMID: 28484706 PMCID: PMC5397652 DOI: 10.1155/2017/1308563] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022]
Abstract
Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces, Nocardiopsis, Brevibacterium, Microbacterium, Tsukamurella, Arthrobacter, Brachybacterium, Nocardia, Rhodococcus, Kocuria, Nocardioides, and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC50-values ranging between 3 and 33 μg·mL−1. Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.
Collapse
|
39
|
Bai JL, Wang Y, Qin S, Ding P, Xing K, Yuan B, Cao CL, Huang Y, Zhang YQ, Jiang JH. Nocardia
jiangsuensis sp. nov., an actinomycete isolated from coastal soil. Int J Syst Evol Microbiol 2016; 66:4633-4638. [DOI: 10.1099/ijsem.0.001402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Juan-Luan Bai
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Yu Wang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Sheng Qin
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Peng Ding
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Ke Xing
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Bo Yuan
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Cheng-Liang Cao
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Ji-Hong Jiang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| |
Collapse
|
40
|
Qin S, Li WJ, Dastager SG, Hozzein WN. Editorial: Actinobacteria in Special and Extreme Habitats: Diversity, Function Roles, and Environmental Adaptations. Front Microbiol 2016; 7:1415. [PMID: 27660627 PMCID: PMC5014857 DOI: 10.3389/fmicb.2016.01415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University Xuzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University Guangzhou, China
| | - Syed G Dastager
- Council of Scientific and Industrial Research National Chemical Laboratory, National Chemical Laboratory Resource Center Pune, India
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Songsumanus A, Kudo T, Ohkuma M, Phongsopitanun W, Tanasupawat S. Actinomadura montaniterrae sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:3310-3316. [DOI: 10.1099/ijsem.0.001196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Apakorn Songsumanus
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
42
|
Undabarrena A, Beltrametti F, Claverías FP, González M, Moore ERB, Seeger M, Cámara B. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile. Front Microbiol 2016; 7:1135. [PMID: 27486455 PMCID: PMC4949237 DOI: 10.3389/fmicb.2016.01135] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | | | - Fernanda P. Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Myriam González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Edward R. B. Moore
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa MaríaValparaíso, Chile
| |
Collapse
|
43
|
Supong K, Thawai C, Choowong W, Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N, Pittayakhajonwut P. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice ( Oryza sativa L.). Res Microbiol 2016; 167:290-298. [DOI: 10.1016/j.resmic.2016.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/03/2023]
|
44
|
Chakraborty S, Britton M, Martínez-García PJ, Dandekar AM. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues. AMB Express 2016; 6:12. [PMID: 26883051 PMCID: PMC4755957 DOI: 10.1186/s13568-016-0182-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/29/2016] [Indexed: 11/10/2022] Open
Abstract
Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.
Collapse
Affiliation(s)
| | - Monica Britton
- />UC Davis Genome Center Bioinformatics Core Facility, Davis, CA 95616 USA
| | | | - Abhaya M. Dandekar
- />Plant Sciences Department, University of California, Davis, CA 95616 USA
| |
Collapse
|
45
|
Qin S, Feng WW, Xing K, Bai JL, Yuan B, Liu WJ, Jiang JH. Complete genome sequence of Kibdelosporangium phytohabitans KLBMP 1111(T), a plant growth promoting endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. J Biotechnol 2015; 216:129-30. [PMID: 26516119 DOI: 10.1016/j.jbiotec.2015.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Kibdelosporangium phytohabitans KLBMP 1111(T) is a plant growth promoting endophytic actinomycete isolated from the oil-seed plant Jatropha curcas L. collected from dry-hot valley, in Sichuan, China. The complete genome sequence of this actinomycete consists of one chromosome (11,759,770bp) with no plasmid. From the genome, we identified gene clusters responsible for polyketide and nonribosomal peptide synthesis of natural products, and genes related to the plant growth promoting, such as zeatin, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and siderophore. The complete genome information may be useful to understand the beneficial interactions between K. phytohabitans KLBMP 1111(T) and host plants.
Collapse
Affiliation(s)
- Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Wei-Wei Feng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Ke Xing
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Juan-Luan Bai
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Wei-Jie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| |
Collapse
|
46
|
Qin S, Bai JL, Wang Y, Feng WW, Yuan B, Sun Y, Cao CL, Ju XY, Huang Y, Jiang JH. Tamaricihabitans halophyticus gen. nov., sp. nov., an endophytic actinomycete of the family Pseudonocardiaceae. Int J Syst Evol Microbiol 2015; 65:4662-4668. [DOI: 10.1099/ijsem.0.000628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete strain, designated KLBMP 1356T, was isolated from the root of halophyte Tamarix chinensis Lour. collected from the coastal area of Jiangsu province, PR China. The isolate was characterized using a polyphasic approach. Comparative analysis of the 16S rRNA gene sequence indicated that strain KLBMP 1356T was phylogenetically related to members of the family Pseudonocardiaceae and formed a distinct monophyletic clade between the genera Amycolatopsis (93.1–94.7 % 16S rRNA gene sequence similarity), Prauserella (93.6–95.1 %) and Saccharomonospora (93.2–94.3 %). The isolate displayed long spore chains containing rod-shaped and smooth-surfaced spores. Strain KLBMP 1356T contained meso-diaminopimelic acid as the diagnostic diamino acid, and galactose, arabinose and glucose as the whole-cell sugars. The major menaquinone was MK-9(H4) and the fatty acid profile was characterized by the predominance of iso-C16 : 0, C17 : 1ω8c, C17 : 1ω6c and C17 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, unknown aminophospholipids and an unknown glycolipid. Mycolic acids were not present. The G+C content of the genomic DNA was 67.2 mol%. On the basis of the evidence from this polyphasic study, strain KLBMP 1356T is considered to represent a novel species of a new genus in the family Pseudonocardiaceae, for which the name Tamaricihabitans halophyticus gen. nov., sp. nov. is proposed. The type strain of the type species is KLBMP 1356T ( = DSM 45765T = NBRC 109361T).
Collapse
Affiliation(s)
- Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Juan-Luan Bai
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Yu Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Wei-Wei Feng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Yong Sun
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Cheng Liang Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Xiu-Yun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| |
Collapse
|
47
|
Trujillo ME, Riesco R, Benito P, Carro L. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants. Front Microbiol 2015; 6:1341. [PMID: 26648923 PMCID: PMC4664631 DOI: 10.3389/fmicb.2015.01341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and as an endophytic bacterium with the capacity to colonize the internal plant tissues which are protected from the invasion of other soil microbes were identified. The genome data also revealed the potential of M. lupini Lupac 08 as a plant growth promoting bacterium. Several loci involved in plant growth promotion features such as the production of siderophores, phytohormones, and the degradation of chitin (biocontrol) were also located on the genome and the functionality of these genes was confirmed in the laboratory. In addition, when several host plants species were inoculated with Micromonospora strains, the plant growth enhancing effect was evident under greenhouse conditions. Unexpectedly, a high number of plant-cell wall degrading enzymes were also detected, a trait usually found only in pathogenic bacteria. Thus, Micromonospora can be added to the list of new plant-microbe interactions. The current data indicate that this microorganism may have an important application in agriculture and other biotechnological processes. The available information is promising but limited, much research is still needed to determine which is the ecological function of Micromonospora in interaction with nitrogen fixing plants.
Collapse
Affiliation(s)
- Martha E Trujillo
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Raúl Riesco
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Patricia Benito
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Lorena Carro
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
48
|
Masand M, Jose PA, Menghani E, Jebakumar SRD. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites. World J Microbiol Biotechnol 2015; 31:1863-75. [PMID: 26410426 DOI: 10.1007/s11274-015-1950-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.
Collapse
Affiliation(s)
- Meeta Masand
- School of Life sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Polpass Arul Jose
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India. .,Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Ekta Menghani
- Department of Biotechnology, School of Science, JECRC University, Jaipur, India
| | | |
Collapse
|
49
|
New Cyclic Depsipeptide from an Endophytic Actinomycete. Chem Nat Compd 2015. [DOI: 10.1007/s10600-015-1449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M. Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie van Leeuwenhoek 2015; 108:267-89. [PMID: 26093915 PMCID: PMC4491368 DOI: 10.1007/s10482-015-0502-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023]
Abstract
Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.
Collapse
Affiliation(s)
- Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, 87100, Torun, Poland,
| | | | | | | | | | | |
Collapse
|