1
|
Tongu Y, Kasahara T, Akiyama Y, Suzuki T, Ho HJ, Matsumoto Y, Kujirai R, Kikuchi K, Nata K, Kanzaki M, Suzuki K, Watanabe S, Kawabe C, Miyata Y, Itai S, Toyohara T, Suzuki C, Tanaka T, Wada J, Tomioka Y, Abe T. Hypoglycemia and hyperinsulinemia induced by phenolic uremic toxins in CKD and DKD patients. Sci Rep 2025; 15:5762. [PMID: 39962199 PMCID: PMC11833073 DOI: 10.1038/s41598-025-87501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Patients with end-stage renal disease have lower fasting plasma glucose and HbA1c levels, with significantly higher insulin levels. For a long time, it has been believed that this higher insulin level in renal failure is due to decreased insulin clearance caused by reduced renal function. However, here we reported that accumulation of the gut microbiota-derived uremic toxin, phenyl sulfate (PS) in the renal failure, increased insulin secretion from the pancreas by enhanced glucose-stimulated insulin secretion. Other endogenous sulfides compounds which accumulated as in the renal failure also increased glucose-stimulated insulin secretion from β-cell. With RNA-seq analyses and gene knock down, we demonstrated that insulin secretion evoked by PS was mediated by Ddah2. In addition, we also found that PS increased insulin resistance through lncRNA expression and Erk phosphorylation in the adipocytes. To confirm the relationship between PS and glucose metabolism in human, we recruited 2 clinical cohort studies (DKD and CKD) including 462 patients, and found that there was a weak negative correlation between PS and HbA1c. Because these trials did not measure fasting insulin level, we alternatively used the urinary C-peptide/creatinine ratio (UCPCR) as an indicator of insulin resistance. We found that PS may induce insulin resistance in patients with eGFR < 60 mL/min/1.73 m2. These data suggest that the accumulation of uremic toxins modulates glucose metabolism and induced insulin resistance in CKD and DKD patients. Considering HbA1c as a reflection of chronic hyperglycemia and UCPCR as a reflection of chronic hyperinsulinemia, our findings indicate that PS is negatively associated with hyperglycemia independent of CKD, and positively associated with hyperinsulinemia in DKD patients.
Collapse
Affiliation(s)
- Yoshiyasu Tongu
- Tohoku University School of Medicine, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoko Kasahara
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takehiro Suzuki
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hsin-Jung Ho
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Ryota Kujirai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Koichi Kikuchi
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Nata
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Makoto Kanzaki
- Department of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kenshin Suzuki
- Tohoku University School of Medicine, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Watanabe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chiharu Kawabe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Miyata
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Itai
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Toyohara
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chitose Suzuki
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
2
|
Mueller JW, Thomas P, Dalgaard LT, da Silva Xavier G. Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes. Essays Biochem 2024; 68:509-522. [PMID: 39290144 PMCID: PMC11625869 DOI: 10.1042/ebc20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Diabetes Type 1 and Type 2 are widely occurring diseases. In spite of a vast amount of biomedical literature about diabetic processes in general, links to certain biological processes are only becoming evident these days. One such area of biology is the sulfation of small molecules, such as steroid hormones or metabolites from the gastrointestinal tract, as well as larger biomolecules, such as proteins and proteoglycans. Thus, modulating the physicochemical propensities of the different sulfate acceptors, resulting in enhanced solubility, expedited circulatory transit, or enhanced macromolecular interaction. This review lists evidence for the involvement of sulfation pathways in the maintenance of functional pancreatic beta-cell mass and the implications for diabetes, grouped into various classes of sulfated biomolecule. Complex heparan sulfates might play a role in the development and maintenance of beta-cells. The sulfolipids sulfatide and sulfo-cholesterol might contribute to beta-cell health. In beta-cells, there are only very few proteins with confirmed sulfation on some tyrosine residues, with the IRS4 molecule being one of them. Sulfated steroid hormones, such as estradiol-sulfate and vitamin-D-sulfate, may facilitate downstream steroid signaling in beta-cells, following de-sulfation. Indoxyl sulfate is a metabolite from the intestine, that causes kidney damage, contributing to diabetic kidney disease. Finally, from a technological perspective, there is heparan sulfate, heparin, and chondroitin sulfate, that all might be involved in next-generation beta-cell transplantation. Sulfation pathways may play a role in pancreatic beta-cells through multiple mechanisms. A more coherent understanding of sulfation pathways in diabetes will facilitate discussion and guide future research.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | - Patricia Thomas
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | | | | |
Collapse
|
3
|
Yuan Z, Zhu X, Dai Y, Shi L, Feng Z, Li Z, Diao N, Guo A, Yin H, Ma L. Analysis of differentially expressed genes in torn rotator cuff tendon tissues in diabetic patients through RNA-sequencing. BMC Musculoskelet Disord 2024; 25:31. [PMID: 38172847 PMCID: PMC10763306 DOI: 10.1186/s12891-023-07149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Rotator cuff tears (RCT) is a common musculoskeletal disorder in the shoulder which cause pain and functional disability. Diabetes mellitus (DM) is characterized by impaired ability of producing or responding to insulin and has been reported to act as a risk factor of the progression of rotator cuff tendinopathy and tear. Long non-coding RNAs (lncRNAs) are involved in the development of various diseases, but little is known about their potential roles involved in RCT of diabetic patients. METHODS RNA-Sequencing (RNA-Seq) was used in this study to profile differentially expressed lncRNAs and mRNAs in RCT samples between 3 diabetic and 3 nondiabetic patients. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed to annotate the function of the differentially expressed genes (DEGs). LncRNA-mRNA co-expression network and competing endogenous RNA (ceRNA) network were constructed to elucidate the potential molecular mechanisms of DM affecting RCT. RESULTS In total, 505 lncRNAs and 388 mRNAs were detected to be differentially expressed in RCT samples between diabetic and nondiabetic patients. GO functional analysis indicated that related lncRNAs and mRNAs were involved in metabolic process, immune system process and others. KEGG pathway analysis indicated that related mRNAs were involved in ferroptosis, PI3K-Akt signaling pathway, Wnt signaling pathway, JAK-STAT signaling pathway and IL-17 signaling pathway and others. LncRNA-mRNA co-expression network was constructed, and ceRNA network showed the interaction of differentially expressed RNAs, comprising 5 lncRNAs, 2 mRNAs, and 142 miRNAs. TF regulation analysis revealed that STAT affected the progression of RCT by regulating the apoptosis pathway in diabetic patients. CONCLUSIONS We preliminarily dissected the differential expression profile of lncRNAs and mRNAs in torn rotator cuff tendon between diabetic and nondiabetic patients. And the bioinformatic analysis suggested some important RNAs and signaling pathways regarding inflammation and apoptosis were involved in diabetic RCT. Our findings offer a new perspective on the association between DM and progression of RCT.
Collapse
Affiliation(s)
- Ziyang Yuan
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Xu Zhu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
- Department of Orthopaedics, Beijing Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Yike Dai
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Lin Shi
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ziyang Feng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhiyao Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Naicheng Diao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
4
|
Kwak SH, Hernandez-Cancela RB, DiCorpo DA, Condon DE, Merino J, Wu P, Brody JA, Yao J, Guo X, Ahmadizar F, Meyer M, Sincan M, Mercader JM, Lee S, Haessler J, Vy HMT, Lin Z, Armstrong ND, Gu S, Tsao NL, Lange LA, Wang N, Wiggins KL, Trompet S, Liu S, Loos RJ, Judy R, Schroeder PH, Hasbani NR, Bos MM, Morrison AC, Jackson RD, Reiner AP, Manson JE, Chaudhary NS, Carmichael LK, Chen YDI, Taylor KD, Ghanbari M, van Meurs J, Pitsillides AN, Psaty BM, Noordam R, Do R, Park KS, Jukema JW, Kavousi M, Correa A, Rich SS, Damrauer SM, Hajek C, Cho NH, Irvin MR, Pankow JS, Nadkarni GN, Sladek R, Goodarzi MO, Florez JC, Chasman DI, Heckbert SR, Kooperberg C, Dupuis J, Malhotra R, de Vries PS, Liu CT, Rotter JI, Meigs JB. Time-to-Event Genome-Wide Association Study for Incident Cardiovascular Disease in People with Type 2 Diabetes Mellitus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.25.23293180. [PMID: 37546893 PMCID: PMC10402212 DOI: 10.1101/2023.07.25.23293180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) confers a two- to three-fold increased risk of cardiovascular disease (CVD). However, the mechanisms underlying increased CVD risk among people with T2D are only partially understood. We hypothesized that a genetic association study among people with T2D at risk for developing incident cardiovascular complications could provide insights into molecular genetic aspects underlying CVD. METHODS From 16 studies of the Cohorts for Heart & Aging Research in Genomic Epidemiology (CHARGE) Consortium, we conducted a multi-ancestry time-to-event genome-wide association study (GWAS) for incident CVD among people with T2D using Cox proportional hazards models. Incident CVD was defined based on a composite of coronary artery disease (CAD), stroke, and cardiovascular death that occurred at least one year after the diagnosis of T2D. Cohort-level estimated effect sizes were combined using inverse variance weighted fixed effects meta-analysis. We also tested 204 known CAD variants for association with incident CVD among patients with T2D. RESULTS A total of 49,230 participants with T2D were included in the analyses (31,118 European ancestries and 18,112 non-European ancestries) which consisted of 8,956 incident CVD cases over a range of mean follow-up duration between 3.2 and 33.7 years (event rate 18.2%). We identified three novel, distinct genetic loci for incident CVD among individuals with T2D that reached the threshold for genome-wide significance (P<5.0×10-8): rs147138607 (intergenic variant between CACNA1E and ZNF648) with a hazard ratio (HR) 1.23, 95% confidence interval (CI) 1.15 - 1.32, P=3.6×10-9, rs11444867 (intergenic variant near HS3ST1) with HR 1.89, 95% CI 1.52 - 2.35, P=9.9×10-9, and rs335407 (intergenic variant between TFB1M and NOX3) HR 1.25, 95% CI 1.16 - 1.35, P=1.5×10-8. Among 204 known CAD loci, 32 were associated with incident CVD in people with T2D with P<0.05, and 5 were significant after Bonferroni correction (P<0.00024, 0.05/204). A polygenic score of these 204 variants was significantly associated with incident CVD with HR 1.14 (95% CI 1.12 - 1.16) per 1 standard deviation increase (P=1.0×10-16). CONCLUSIONS The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Daniel A DiCorpo
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | | | - Jordi Merino
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Jie Yao
- Department of Pediatrics, Institute for Translational Genomics and Population Science, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Xiuqing Guo
- Department of Pediatrics, Institute for Translational Genomics and Population Science, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Data Science and Biostatistics, Julius Global Health, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mariah Meyer
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Murat Sincan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Josep M. Mercader
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sujin Lee
- Division of Vascular Surgery and Endovascular Therapy, Massachusetts General Hospital, Boston, MA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ha My T. Vy
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhaotong Lin
- Department of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Shaopeng Gu
- Department of Internal Medicine, Sanford Health, Sioux Falls, SD
| | - Noah L. Tsao
- Corporal Michael Crescenz VA Medical Center, and Department of Surgery, Perelman School of Medicine, Philadelphia, PA
| | - Leslie A. Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ningyuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI
| | - Ruth J.F. Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Renae Judy
- Corporal Michael Crescenz VA Medical Center, and Department of Surgery, Perelman School of Medicine, Philadelphia, PA
| | - Philip H. Schroeder
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Natalie R. Hasbani
- Human Genetics Center, Department of Epidemiology Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Maxime M. Bos
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Rebecca D. Jackson
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Ohio State University, Columbus, OH
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ninad S. Chaudhary
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Yii-Der Ida Chen
- Department of Pediatrics, Institute for Translational Genomics and Population Science, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Kent D. Taylor
- Department of Pediatrics, Institute for Translational Genomics and Population Science, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ron Do
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- The Netherlands Heart Institute, Utrecht, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Scott M. Damrauer
- Corporal Michael Crescenz VA Medical Center, and Department of Surgery, Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA
| | - Catherine Hajek
- Department of Internal Medicine, Sanford Health, Sioux Falls, SD
| | - Nam H. Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - James S. Pankow
- Department of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Girish N. Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Sladek
- Department of Medicine and Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center
| | - Jose C. Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Daniel I. Chasman
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jerome I. Rotter
- Department of Pediatrics, Institute for Translational Genomics and Population Science, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - James B. Meigs
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of General Internal Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA
| |
Collapse
|
5
|
Takahashi I. Importance of Heparan Sulfate Proteoglycans in Pancreatic Islets and β-Cells. Int J Mol Sci 2022; 23:12082. [PMID: 36292936 PMCID: PMC9603760 DOI: 10.3390/ijms232012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
β-cells in the islets of Langerhans of the pancreas secrete insulin in response to the glucose concentration in the blood. When these pancreatic β-cells are damaged, diabetes develops through glucose intolerance caused by insufficient insulin secretion. High molecular weight polysaccharides, such as heparin and heparan sulfate (HS) proteoglycans, and HS-degrading enzymes, such as heparinase, participate in the protection, maintenance, and enhancement of the functions of pancreatic islets and β-cells, and the demand for studies on glycobiology within the field of diabetes research has increased. This review introduces the roles of complex glycoconjugates containing high molecular weight polysaccharides and their degrading enzymes in pancreatic islets and β-cells, including those obtained in studies conducted by us earlier. In addition, from the perspective of glycobiology, this study proposes the possibility of application to diabetes medicine.
Collapse
Affiliation(s)
- Iwao Takahashi
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Morioka 028-3694, Iwate, Japan
| |
Collapse
|
6
|
Takahashi I. Role of Heparan Sulfate Proteoglycans in Insulin-producing Pancreatic β-cell Function. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2028.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Iwao Takahashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
7
|
Takahashi I. Role of Heparan Sulfate Proteoglycans in Insulin-producing Pancreatic β-cell Function. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2028.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Iwao Takahashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
8
|
Dhounchak S, Popp SK, Brown DJ, Laybutt DR, Biden TJ, Bornstein SR, Parish CR, Simeonovic CJ. Heparan sulfate proteoglycans in beta cells provide a critical link between endoplasmic reticulum stress, oxidative stress and type 2 diabetes. PLoS One 2021; 16:e0252607. [PMID: 34086738 PMCID: PMC8177513 DOI: 10.1371/journal.pone.0252607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) consist of a core protein with side chains of the glycosaminoglycan heparan sulfate (HS). We have previously identified (i) the HSPGs syndecan-1 (SDC1), and collagen type XVIII (COL18) inside mouse and human islet beta cells, and (ii) a critical role for HS in beta cell survival and protection from reactive oxygen species (ROS). The objective of this study was to investigate whether endoplasmic reticulum (ER) stress contributes to oxidative stress and type 2 diabetes (T2D) by depleting beta cell HSPGs/HS. A rapid loss of intra-islet/beta cell HSPGs, HS and heparanase (HPSE, an HS-degrading enzyme) accompanied upregulation of islet ER stress gene expression in both young T2D-prone db/db and Akita Ins2WT/C96Y mice. In MIN6 beta cells, HSPGs, HS and HPSE were reduced following treatment with pharmacological inducers of ER stress (thapsigargin or tunicamycin). Treatment of young db/db mice with Tauroursodeoxycholic acid (TUDCA), a chemical protein folding chaperone that relieves ER stress, improved glycemic control and increased intra-islet HSPG/HS. In vitro, HS replacement with heparin (a highly sulfated HS analogue) significantly increased the survival of wild-type and db/db beta cells and restored their resistance to hydrogen peroxide-induced death. We conclude that ER stress inhibits the synthesis/maturation of HSPG core proteins which are essential for HS assembly, thereby exacerbating oxidative stress and promoting beta cell failure. Diminished intracellular HSPGs/HS represent a previously unrecognized critical link bridging ER stress, oxidative stress and beta cell failure in T2D.
Collapse
Affiliation(s)
- Sarita Dhounchak
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - D. Ross Laybutt
- Garvan Institute of Medical Research, St Vincent’s Clinical School, The University of NSW (UNSW), Sydney, New South Wales, Australia
| | - Trevor J. Biden
- Garvan Institute of Medical Research, St Vincent’s Clinical School, The University of NSW (UNSW), Sydney, New South Wales, Australia
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - Christopher R. Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
9
|
Simeonovic CJ, Popp SK, Brown DJ, Li FJ, Lafferty ARA, Freeman C, Parish CR. Heparanase and Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:607-630. [PMID: 32274728 DOI: 10.1007/978-3-030-34521-1_24] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. The degradation of the glycosaminoglycan heparan sulfate (HS) by the endo-β-D-glycosidase heparanase plays a critical role in multiple stages of the disease process. Heparanase aids (i) migration of inflammatory leukocytes from the vasculature to the islets, (ii) intra-islet invasion by insulitis leukocytes, and (iii) selective destruction of beta cells. These disease stages are marked by the solubilization of HS in the subendothelial basement membrane (BM), HS breakdown in the peri-islet BM, and the degradation of HS inside beta cells, respectively. Significantly, healthy islet beta cells are enriched in highly sulfated HS which is essential for their viability, protection from damage by reactive oxygen species (ROS), beta cell function and differentiation. Consequently, mouse and human beta cells but not glucagon-producing alpha cells (which contain less-sulfated HS) are exquisitely vulnerable to heparanase-mediated damage. In vitro, the death of HS-depleted mouse and human beta cells can be prevented by HS replacement using highly sulfated HS mimetics or analogues. T1D progression in NOD mice and recent-onset T1D in humans correlate with increased expression of heparanase by circulating leukocytes of myeloid origin and heparanase-expressing insulitis leukocytes. Treatment of NOD mice with the heparanase inhibitor and HS replacer, PI-88, significantly reduced T1D incidence by 50%, impaired the development of insulitis and preserved beta cell HS. These outcomes identified heparanase as a novel destructive tool in T1D, distinct from the conventional cytotoxic and apoptosis-inducing mechanisms of autoreactive T cells. In contrast to exogenous catalytically active heparanase, endogenous heparanase may function in HS homeostasis, gene expression and insulin secretion in normal beta cells and immune gene expression in leukocytes. In established diabetes, the interplay between hyperglycemia, local inflammatory cells (e.g. macrophages) and heparanase contributes to secondary micro- and macro-vascular disease. We have identified dual activity heparanase inhibitors/HS replacers as a novel class of therapeutic for preventing T1D progression and potentially for mitigating secondary vascular disease that develops with long-term T1D.
Collapse
Affiliation(s)
- Charmaine J Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| | - Sarah K Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Debra J Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Fei-Ju Li
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Antony R A Lafferty
- Department of Paediatrics, The Canberra Hospital, Woden, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Craig Freeman
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Kaltenbach DD, Jaishankar D, Hao M, Beer JC, Volin MV, Desai UR, Tiwari V. Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Front Pharmacol 2018; 9:1315. [PMID: 30555321 PMCID: PMC6282075 DOI: 10.3389/fphar.2018.01315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
An extraordinary binding site generated in heparan sulfate (HS) structures, during its biosynthesis, provides a unique opportunity to interact with multiple protein ligands including viral proteins, and therefore adds tremendous value to this master molecule. An example of such a moiety is the sulfation at the C3 position of glucosamine residues in HS chain via 3-O sulfotransferase (3-OST) enzymes, which generates a unique virus-cell fusion receptor during herpes simplex virus (HSV) entry and spread. Emerging evidence now suggests that the unique patterns in HS sulfation assist multiple viruses in invading host cells at various steps of their life cycles. In addition, sulfated-HS structures are known to assist in invading host defense mechanisms and initiating multiple inflammatory processes; a critical event in the disease development. All these processes are detrimental for the host and therefore raise the question of how HS-sulfation is regulated. Epigenetic modulations have been shown to be implicated in these reactions during HSV infection as well as in HS modifying enzyme sulfotransferases, and therefore pose a critical component in answering it. Interestingly, heparanase (HPSE) activity is shown to be upregulated during virus infection and multiple other diseases assisting in virus replication to promote cell and tissue damage. These phenomena suggest that sulfotransferases and HPSE serve as key players in extracellular matrix remodeling and possibly generating unique signatures in a given disease. Therefore, identifying the epigenetic regulation of OST genes, and HPSE resulting in altered yet specific sulfation patterns in HS chain during virus infection, will be a significant a step toward developing potential diagnostic markers and designing novel therapies.
Collapse
Affiliation(s)
- Dominik D Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dinesh Jaishankar
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Meng Hao
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
11
|
Takahashi I, Yamada S, Nata K. Effects of heparan sulfate proteoglycan syndecan-4 on the insulin secretory response in a mouse pancreatic β-cell line, MIN6. Mol Cell Endocrinol 2018; 470:142-150. [PMID: 29042251 DOI: 10.1016/j.mce.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) comprise a core protein to which extracellular glycosaminoglycan chains are attached. Syndecan-4, one of the major HS-containing core proteins, is distributed on the cell surface, where they interact with various protein ligands and regulate a wide range of biological activities. Here, we propose that the core protein of HSPGs is involved in the insulin secretory response. To investigate the participation of HSPGs in the insulin-secretion mechanism, MIN6 cells, a mouse pancreatic β-cell line, were subcloned. The subcloned MIN6 cells were selected based on their insulin secretory response, the expression of HS and core proteins. The results from these screening experiments indicated that only syndecan-4-expressing subclones are able to secrete insulin in response to glucose. Silencing of syndecan-4 reduced glucose-induced insulin secretion, whereas the overexpression of syndecan-4 increased the insulin secretory response. These data indicate that the HSPG syndecan-4 plays important role(s) in the insulin secretory response.
Collapse
Affiliation(s)
- Iwao Takahashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba 028-3603, Japan.
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan.
| | - Koji Nata
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba 028-3603, Japan.
| |
Collapse
|
12
|
Simeonovic CJ, Popp SK, Starrs LM, Brown DJ, Ziolkowski AF, Ludwig B, Bornstein SR, Wilson JD, Pugliese A, Kay TWH, Thomas HE, Loudovaris T, Choong FJ, Freeman C, Parish CR. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans. PLoS One 2018; 13:e0191360. [PMID: 29415062 PMCID: PMC5802856 DOI: 10.1371/journal.pone.0191360] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.
Collapse
Affiliation(s)
- Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lora M. Starrs
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew F. Ziolkowski
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Barbara Ludwig
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - J. Dennis Wilson
- Department of Endocrinology, The Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Alberto Pugliese
- Diabetes Research Institute, Departments of Medicine, Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Thomas W. H. Kay
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Helen E. Thomas
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Thomas Loudovaris
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Fui Jiun Choong
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Craig Freeman
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher R. Parish
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Xu W, Niu T, Xu B, Navarro G, Schipma MJ, Mauvais-Jarvis F. Androgen receptor-deficient islet β-cells exhibit alteration in genetic markers of insulin secretion and inflammation. A transcriptome analysis in the male mouse. J Diabetes Complications 2017; 31:787-795. [PMID: 28343791 PMCID: PMC5472375 DOI: 10.1016/j.jdiacomp.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/19/2022]
Abstract
AIMS Testosterone action is mediated via the androgen receptor (AR). We have reported that male mice lacking AR selectively in β-cells (βARKO-/y) develop decreased glucose-stimulated insulin secretion (GSIS), producing glucose intolerance. We showed that testosterone action on AR in β-cells amplifies the insulinotropic action of GLP-1 on its receptor via a cAMP-dependent protein kinase-A pathway. METHODS To investigate AR-dependent gene networks in β-cells, we performed a high throughput whole transcriptome sequencing (RNA-Seq) in islets from male βARKO-/y and control mice. RESULTS We identified 214 differentially expressed genes (DEGs) (158 up- and 56 down-regulated) with a false discovery rate (FDR) < 0.05 and a fold change (FC) > 2. Our analysis of individual transcripts revealed alterations in β-cell genes involved in cellular inflammation/stress and insulin secretion. Based on 312 DEGs with an FDR < 0.05, the pathway analysis revealed 23 significantly enriched pathways, including cytokine-cytokine receptor interaction, Jak-STAT signaling, insulin signaling, MAPK signaling, type 2 diabetes (T2D) and pancreatic secretion. The gene ontology analysis confirmed the results of the individual DEGs and the pathway analysis in showing enriched biological processes encompassing inflammation, ion transport, exocytosis and insulin secretion. CONCLUSIONS AR-deficient islets exhibit altered expression of genes involved in inflammation and insulin secretion demonstrating the importance of androgen action in β-cell health in the male with implications for T2D development in men.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Crosses, Genetic
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Profiling
- Gene Expression Regulation
- Gene Ontology
- Genetic Markers
- High-Throughput Nucleotide Sequencing
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Organ Specificity
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Sequence Analysis, RNA
- Transcriptome
Collapse
Affiliation(s)
- Weiwei Xu
- Diabetes Discovery Research and Gender Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Beibei Xu
- Diabetes Discovery Research and Gender Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans
| | - Guadalupe Navarro
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery Research and Gender Medicine Laboratory, Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans.
| |
Collapse
|