1
|
Menghani SV. Carcinogenetic mechanisms employed by the oral microbiome: A narrative review. Am J Med Sci 2025; 369:556-561. [PMID: 39788425 DOI: 10.1016/j.amjms.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Cancers of the oral cavity, lip, salivary gland, and oropharynx cause substantial global disease burden. While tobacco-use and alcohol use are highly associated with oral cancers, the rising incidence of disease in patients who do not use tobacco or alcohol points to additional carcinogenic risk factors. Chronic inflammation, disruption of the oral microbiome, and dysbiosis are becoming more widely implicated in the pathogenesis of oral cancer. Several studies have identified specific bacterial species enriched in patients with oral cancer, including Porphyromonas gingivalis and Fusobacterium nucleatum. In this narrative review, we describe potential carcinogenic mechanisms exhibited by these species and other microbes in the development of oral cancer.
Collapse
Affiliation(s)
- Sanjay V Menghani
- University of Arizona College of Medicine - Tucson, AZ, USA; Medical Scientist Training MD-PhD Program, University of Arizona College of Medicine Tucson, AZ, USA.
| |
Collapse
|
2
|
Coats SR, Su TH, Luderman Miller Z, King AJ, Ortiz J, Reddy A, Alaei SR, Jain S. Porphyromonas gingivalis outer membrane vesicles divert host innate immunity and promote inflammation via C4' monophosphorylated lipid A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae050. [PMID: 40131356 DOI: 10.1093/jimmun/vkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/05/2024] [Indexed: 03/27/2025]
Abstract
Porphyromonas gingivalis (Pg) is a prevalent pathogen that promotes human periodontal disease (PD) and exacerbates systemic comorbidities such as atherosclerosis, rheumatoid arthritis, and Alzheimer's disease. Pg produces nonphosphorylated tetra-acylated lipid A (NPLA) in its outer membrane (OM) that evades host Toll-like receptor 4 (TLR4), inflammasome pathways, and cationic peptides, enhancing bacterial survival. Here, we show that Pg also releases outer membrane vesicles (OMVs) that engage and divert host cell TLR4, inflammasome, and LL-37 responses away from the microbe. We determined that Pg OMVs are enriched for C4' monophosphoryl lipid A (C4'-MPLA), an established agonist for TLR4-TRIF-IFNβ and inflammasome-IL-1β responses. Comparisons of Pg 381 and Pg 33277 stationary phase cultures revealed higher OMV production by Pg 381, which correlates with its higher proinflammatory pathogenicity. The cationic peptide, polymyxin B (PMB), which selectively binds lipid A C4'-phosphate, reduces OMV-stimulated HEK cell TLR4 activation and THP-1 cell IL-1β production, confirming the proinflammatory role for OMV-C4'-MPLA. Similar to PMB, the host defense peptide, LL-37, inhibits OMV-C4'-MPLA-dependent HEK cell TLR4 activation. PMB and LL-37 also blocked OMV-C4'-MPLA-driven TLR4 activation in human umbilical vein endothelial cells. Finally, wild-type Pg-containing OM-NPLA is highly resistant to LL-37 antimicrobial activity, whereas the ΔlpxF mutant bacterium, retaining OM-C4'-MPLA, is killed by the peptide. In summary, Pg escapes host TLR4 signaling, inflammasome activation, and LL-37 interaction by retaining immunoevasive OM-NPLA. Moreover, Pg dispenses proinflammatory OMV-C4'-MPLA, which engages and redirects those host defenses. We suggest that OMV-C4'-MPLA triggers elevated IFNβ and IL-1β cytokines, which typify PD comorbidities, and drive PD-related alveolar bone loss.
Collapse
Affiliation(s)
- Stephen R Coats
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, United States
| | - Thet Hnin Su
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, United States
| | - Zoe Luderman Miller
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, United States
| | - Alisa J King
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, United States
| | - Joshua Ortiz
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, United States
| | - Angel Reddy
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, United States
| | - Sarah R Alaei
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, United States
| | - Sumita Jain
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, United States
| |
Collapse
|
3
|
He T, Li X, Liao CJ, Feng XY, Guo XY. Association of periodontal disease with the prognosis of chronic kidney disease: A meta-analysis. J Chin Med Assoc 2025; 88:170-177. [PMID: 39394056 DOI: 10.1097/jcma.0000000000001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND To assess the association between periodontal disease (PD) and the prognosis of chronic kidney disease (CKD). METHODS A systematic literature search was conducted using PubMed, Embase, and Cochrane Library to identify eligible cohort studies until April 2023. Relative risk (RR) with a 95% CI was used to evaluate the strength of the relationship between PD and CKD prognosis using the random-effects model. RESULTS Ten cohort studies involving 10 144 patients with CKD were selected for the meta-analysis. The summary results indicated that PD was associated with an increased risk of all-cause mortality in patients with CKD (RR: 1.32; 95% CI, 1.10-1.59; p = 0.003). Although no association was observed between PD and the risk of cardiac death in patients with CKD ( p = 0.180), while sensitivity analysis revealed PD may be associated with the risk of cardiac death (RR: 1.31; 95% CI, 1.05-1.64; p = 0.017). In addition, subgroup analyses revealed that the strength of the association of PD with the risks of all-cause mortality and cardiac death varies when stratified by region, sex, and CKD stage. CONCLUSION PD might exert a harmful effect on the risk of all-cause mortality, with a potential but unconfirmed association with cardiac death in patients with CKD.
Collapse
Affiliation(s)
- Tao He
- The State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
4
|
Alaei SR, King AJ, Banani K, Reddy A, Ortiz J, Knight AL, Haldeman J, Su TH, Park H, Coats SR, Jain S. Lipid a remodeling modulates outer membrane vesicle biogenesis by Porphyromonas gingivalis. J Bacteriol 2025; 207:e0033624. [PMID: 39660885 PMCID: PMC11784228 DOI: 10.1128/jb.00336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Outer membrane vesicles (OMVs) are small membrane enclosed sacs released from bacteria which serve as carriers of biomolecules that shape interactions with the surrounding environment. The periodontal pathogen, Porphyromonas gingivalis, is a prolific OMV producer. Here, we investigated how the structure of lipid A, a core outer membrane molecule, influences P. gingivalis OMV production, OMV-dependent TLR4 activation, and biofilm formation. We examined mutant strains of P. gingivalis 33277 deficient for enzymes that alter lipid A phosphorylation and acylation status. The lipid A C4'-phosphatase (lpxF)-deficient strain and strains bearing inactivating point mutations in the LpxF active site displayed markedly reduced OMV production relative to WT. In contrast, strains deficient for either the lipid A C1-phosphatase (lpxE) or the lipid A deacylase (PGN_1123; lpxZ) genes did not display alterations in OMV abundance compared to WT. These data indicate that lipid A C4'-phosphate removal is required for typical OMV formation. In addition, OMVs produced by ΔlpxF and ΔlpxZ strains, possessing only penta-acylated lipid A, stimulated robust TLR4 activation, whereas OMVs obtained from WT and ΔlpxE strains, containing predominantly tetra-acylated lipid A, did not. Hence, lipid A remodeling modulates the capacity of OMVs to engage host TLR4-dependent immunity. Finally, we demonstrate an inverse relationship between OMV abundance and biofilm density, with the ∆lpxF mutants forming denser biofilms than either WT, ΔlpxE, or ΔlpxZ strains. Therefore, OMVs may also contribute to pathogenesis by regulating biofilm formation and dispersal.IMPORTANCEPorphyromonas gingivalis is a bacterium strongly associated with periodontitis. P. gingivalis exports lipids, proteins, and other biomolecules that contribute to the bacterium's ability to persist in inflammatory conditions encountered during disease. These biomolecules are exported through several mechanisms, including via outer membrane vesicles (OMVs). Despite their ubiquity, the mechanisms that drive outer membrane vesicle production vary among bacteria and are not fully understood. In this study, we report that C4' dephosphorylation of lipid A, a major outer membrane molecule, is required for robust outer membrane vesicle production and biological function in P. gingivalis. This finding adds to the growing body of evidence that lipid A structure is an important factor in outer membrane vesicle biogenesis in diverse bacterial species.
Collapse
Affiliation(s)
- Sarah R. Alaei
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Alisa J. King
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Karim Banani
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Angel Reddy
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Joshua Ortiz
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Alexa L. Knight
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Jessica Haldeman
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Thet Hnin Su
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Hana Park
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Stephen R. Coats
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Sumita Jain
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Baskaran A, Ramya V, Beeula A, Shamala S, Devi M, Sivakumar K. Estimation of Salivary Ferritin Levels in Subjects with Chronic Periodontitis with Type 2 Diabetes Mellitus. Indian J Dent Res 2024; 35:378-381. [PMID: 40056062 DOI: 10.4103/ijdr.ijdr_211_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/11/2024] [Indexed: 03/30/2025] Open
Abstract
BACKGROUND Ferritin is an iron storage protein essential for iron homeostasis regulation and an indicator of iron stores. It is an acute phase reactant and is elevated in inflammation and chronic infection. Periodontitis is a chronic inflammatory disease with periodontopathogens possessing haemolytic activity which leads to increased local iron concentration and iron disorder. Inflammation and excess systemic iron are mediating risk factors of type 2 diabetes mellitus. AIM To evaluate and compare the salivary ferritin levels in subjects with chronic periodontitis with and without type 2 diabetes mellitus. METHODOLOGY Unstimulated saliva sample was collected by standardized spitting technique from 45 individuals, aged between 30 and 65 years divided into three groups. Group I-Healthy individuals, Group II-Subjects with chronic periodontitis with type 2 diabetes mellitus, Group III-Subjects with chronic periodontitis without type 2 diabetes mellitus. The salivary ferritin levels are analysed using latex-enhanced turbidimetric assay in an autoanalyzer. RESULTS The salivary ferritin level was elevated in chronic periodontitis with type 2 diabetes mellitus (Group II) and in chronic periodontitis without type 2 diabetes mellitus (Group III).
Collapse
Affiliation(s)
- Adhithya Baskaran
- Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Affiliated with Tamil Nadu Dr. M.G.R. Medical University, Melmaruvathur, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
6
|
Lee SY. Association between gingivitis, tooth loss and cardiovascular risk: Insights from a 10-year nationwide cohort study of 3.7 million Koreans. PLoS One 2024; 19:e0308250. [PMID: 39093905 PMCID: PMC11296644 DOI: 10.1371/journal.pone.0308250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND While studies have suggested an association between periodontal disease and an increased risk of cardiovascular disease, the strength of this association and its specific links to various types of cardiovascular disease have not been thoroughly investigated. This study aimed to examine how gingivitis and tooth loss affect cardiovascular diseases, probing their individual impacts. METHODS A retrospective cohort study was conducted, encompassing 3,779,490 individuals with no history of cardiovascular disease, utilizing data from the National Health Examination and the Korean National Health Insurance database from 2006 to 2019. Cox proportional hazards models were applied to estimate the association between tooth loss, gingivitis, and cardiovascular disease. RESULTS Following a median follow-up of 10.38 years, 17,942 new cardiovascular disease cases were identified, comprising 10,224 cases of angina pectoris, 6,182 cases of acute myocardial infarction, and 9,536 cases of stroke. It was observed that the risk of stroke was significantly higher in the tooth loss group compared to the control group (adjusted hazard ratio [aHR]: 1.09, 95% confidence interval [CI]: 1.04-1.15). In the group with gingivitis and tooth loss, the risk of stroke and cardiovascular disease was significantly higher than in the control group (aHR: 1.12, 95% CI: 1.04-1.20; aHR: 1.08, 95% CI: 1.03-1.14). The gingivitis group exhibited a higher risk associated with stroke (aHR: 1.05, 95% CI: 1.01-1.10) among individuals aged 50 and above. However, statistically significant associations between periodontal disease and angina pectoris were not observed, nor between periodontal disease and acute myocardial infarction except among those aged above 50. Furthermore, the association between periodontal disease and cardiovascular disease was found to be stronger among individuals over the age of 50, males, those with obesity, and smokers compared to the control group. CONCLUSIONS Our results emphasize the association of tooth loss and gingivitis with cardiovascular disease, specifically stroke, underlining the critical need for preventive oral healthcare. Tailored interventions are necessary to reduce the heightened risk of cardiovascular disease events, especially stroke, among older, obese individuals and smokers.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Seoul National University Hospital, Seoul, Republic of Korea
- Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Church L, Spahr A, Marschner S, Wallace J, Chow C, King S. Evaluating the impact of oral hygiene instruction and digital oral health education within cardiac rehabilitation clinics: A protocol for a novel, dual centre, parallel randomised controlled trial. PLoS One 2024; 19:e0306882. [PMID: 38990852 PMCID: PMC11239009 DOI: 10.1371/journal.pone.0306882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Diseases of the periodontal tissues including gingivitis and periodontitis can affect up to 90% and 50% of the population respectively. These conditions are multifactorial inflammatory conditions involving a dysbiotic biofilm that, if left untreated, can lead to the destruction of the supporting structures of the teeth and have significant systemic implications, specifically on cardiovascular health. The elevation of inflammatory markers, particularly high-sensitive C-reactive protein (hsCRP), are strongly associated with an increased risk of atherosclerosis, a key risk factor for cardiovascular disease (CVD). HsCRP as well as other inflammatory markers can be detected in blood samples as early as 21 days after ceasing toothbrushing, due to the immune response to stagnant oral biofilm. The most effective way to ensure oral biofilm cannot remain on oral tissues, thus preventing periodontitis and reducing inflammatory CVD risk, is with good oral hygiene. The primary aim of this study is to assess whether individualised oral hygiene instruction (OHI) partnered with a digital oral health education (DOHE) package can improve the oral health of patients living with CVD. METHODS AND ANALYSIS A total of 165 participants will be recruited from the Westmead and Blacktown Mt Druitt cardiac rehabilitation out-patient clinics into this dual centre, single blind, parallel design, randomised controlled trial. A baseline oral health clinical examination will be completed, followed by a self-report questionnaire before they are randomised in a 1:1:1 ratio into one of 3 arms as follows: individualised OHI partnered with DOHE (Group A), (Group B) DOHE only (Group B), and control/usual care (no oral health education) (Group C). Groups will have their intervention repeated at the 6-week follow-up. After completing the 12-week follow-up, Group B and Group C will receive tailored OHI. Group C will also receive the DOHE package. The primary outcome is the change in approximal plaque index score between baseline and 6-week follow up. ETHICS AND DISSEMINATION The study has been approved by the Western Sydney Local Health District Human Ethics Committee 2023/ETH00516. Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER ACTRN12623000449639p ANZCTR: https://www.anzctr.org.au/.
Collapse
Affiliation(s)
- Lauren Church
- The University of Sydney Dental School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Applied Research Centre, The University of Sydney, Westmead, New South Wales, Australia
| | - Axel Spahr
- The University of Sydney Dental School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Applied Research Centre, The University of Sydney, Westmead, New South Wales, Australia
| | - Simone Marschner
- Westmead Applied Research Centre, The University of Sydney, Westmead, New South Wales, Australia
| | - Janet Wallace
- School of Health Sciences, Oral Health, The University of Newcastle, Ourimbah, New South Wales, Australia
| | - Clara Chow
- Westmead Applied Research Centre, The University of Sydney, Westmead, New South Wales, Australia
- The University of Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Shalinie King
- The University of Sydney Dental School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Applied Research Centre, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
8
|
Church LA, Robins L, Xu F, Qin L, Tran A, Wallace JP, King S. Oral health education strategies for patients living with cardiovascular disease within hospital settings: a scoping review. Front Public Health 2024; 12:1389853. [PMID: 38962771 PMCID: PMC11220159 DOI: 10.3389/fpubh.2024.1389853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Objective To identify and describe the impact of current oral health education programmes provided to patients in cardiology hospital wards and outpatient clinics. Methods This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Scoping Reviews statement. Searches were conducted using electronic databases: Cochrane, Medline, and Scopus, as well as grey literature searching. Results Three eligible studies were identified. All included studies reported generalised poor oral health in their participants at baseline, with significant improvement at follow-up. They all reported significant reductions in plaque deposits and gingival bleeding. One study reported significantly less bacteria on participant tongues, as well as fewer days with post-operative atrial fibrillation in the intervention group. Furthermore, in this study, one patient in the intervention group developed pneumonia, whilst four patients in the control group did. Conclusion Oral health education for patients with cardiovascular disease is limited and many have poor oral health. Educational programmes to improve oral health behaviours in patients with cardiovascular disease can improve both oral and general health outcomes. Implications for public health Oral disease is a modifiable risk factor for cardiovascular disease. Integrating oral health education into cardiology hospital settings is a simple strategy to improve access to oral health information and improve both oral and cardiovascular outcomes.
Collapse
Affiliation(s)
- L. A. Church
- The University of Sydney Dental School, The University of Sydney, Sydney, NSW, Australia
- Westmead Applied Research Centre, The University of Sydney, Westmead, NSW, Australia
| | - L. Robins
- The University of Sydney Dental School, The University of Sydney, Sydney, NSW, Australia
| | - F. Xu
- The University of Sydney Dental School, The University of Sydney, Sydney, NSW, Australia
| | - L. Qin
- The University of Sydney Dental School, The University of Sydney, Sydney, NSW, Australia
| | - A. Tran
- The University of Sydney Dental School, The University of Sydney, Sydney, NSW, Australia
| | - J. P. Wallace
- School of Health Sciences, Oral Health, The University of Newcastle, Ourimbah, NSW, Australia
| | - S. King
- The University of Sydney Dental School, The University of Sydney, Sydney, NSW, Australia
- Westmead Applied Research Centre, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
9
|
Subramanian SK, Brahmbhatt B, Bailey-Lundberg JM, Thosani NC, Mutha P. Lifestyle Medicine for the Prevention and Treatment of Pancreatitis and Pancreatic Cancer. Diagnostics (Basel) 2024; 14:614. [PMID: 38535034 PMCID: PMC10968821 DOI: 10.3390/diagnostics14060614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2025] Open
Abstract
The incidence of pancreatitis and pancreatic cancer is on the upswing in the USA. These conditions often lead to higher healthcare costs due to the complex nature of diagnosis and the need for specialized medical interventions, surgical procedures, and prolonged medical management. The economic ramification encompasses direct healthcare expenses and indirect costs related to productivity losses, disability, and potential long-term care requirements. Increasing evidence underscores the importance of a healthy lifestyle in preventing and managing these conditions. Lifestyle medicine employs evidence-based interventions to promote health through six key pillars: embracing a whole-food, plant-predominant dietary pattern; regular physical activity; ensuring restorative sleep; managing stress effectively; removing harmful substances; and fostering positive social connections. This review provides a comprehensive overview of lifestyle interventions for managing and preventing the development of pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Sruthi Kapliyil Subramanian
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| | - Bhaumik Brahmbhatt
- Mayo Clinic, Division of Gastroenterology and Hepatology, Jacksonville, FL 32224, USA;
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA;
| | - Nirav C. Thosani
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| | - Pritesh Mutha
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| |
Collapse
|
10
|
Chopra A, Franco-Duarte R, Rajagopal A, Choowong P, Soares P, Rito T, Eberhard J, Jayasinghe TN. Exploring the presence of oral bacteria in non-oral sites of patients with cardiovascular diseases using whole metagenomic data. Sci Rep 2024; 14:1476. [PMID: 38233502 PMCID: PMC10794416 DOI: 10.1038/s41598-023-50891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass various conditions affecting the heart and its blood vessels and are often linked with oral microbes. Our data analysis aimed to identify oral bacteria from other non-oral sites (i.e., gut, arterial plaque and cultured blood) that could be linked with CVDs. Taxonomic profiling identified bacteria to the species level and compared with the Human Oral Microbiome Database (HOMD). The oral bacteria in the gut, cultured blood and arterial plaque samples were catalogued, with their average frequency calculated for each sample. Additionally, data were filtered by comparison with the Human Microbiome Project (HMP) database. We identified 17,243 microbial species, of which 410 were present in the HOMD database and further denominated as "oral", and were found in at least one gut sample, but only 221 and 169 species were identified in the cultured blood and plaque samples, respectively. Of the 410 species, 153 were present solely in oral-associated environments after comparison with the HMP database, irrespective of their presence in other body sites. Our results suggest a potential connection between the presence of specific species of oral bacterial and occurrence of CVDs. Detecting these oral bacterial species in non-oral sites of patients with CVDs could help uncover the link between oral health and general health, including cardiovascular conditions via bacterial translocation.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ricardo Franco-Duarte
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Phannaphat Choowong
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia
| | - Pedro Soares
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Teresa Rito
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Joerg Eberhard
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia
| | - Thilini N Jayasinghe
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia.
- The Charles Perkins Centre, The University of Sydney, University of Sydney, Sydney, Australia.
| |
Collapse
|
11
|
Heidari-Tajabadi F, Banakar M, Azizian R, Mousavi SM, Lai CW. Probiotics and metagenomics’ role in oral health. MICROBIAL METAGENOMICS IN EFFLUENT TREATMENT PLANT 2024:203-217. [DOI: 10.1016/b978-0-443-13531-6.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Kleiboeker BA, Frankfater C, Davey ME, Hsu FF. Lipidomic analysis of Porphyromonas gingivalis reveals novel glycerol bisphosphoceramide, phosphatidyl-, and phosphoglycerol dipeptide lipid families. J Lipid Res 2023; 64:100470. [PMID: 37924978 PMCID: PMC10757044 DOI: 10.1016/j.jlr.2023.100470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Porphyromonas gingivalis, like other members of the phylum Bacteroidetes (synonym Bacteroidota), synthesizes several classes of dihydroceramides and peptidolipids. Using a similar strategy as that recently used to delimit the lipidome of its close relative Bacteroides fragilis, we applied linear ion trap multiple-stage mass spectrometry (linear ion trap MSn) with high-resolution mass spectrometry, to structurally characterize the complete lipidome of P. gingivalis and compare it to B. fragilis. This analysis discovered that the P. gingivalis lipidome consists of several previously unidentified lipid families, including dihydroceramide-1-phosphophate, acylated dihydroceramide-1-phosphophate, phosphoglycerol glycylserine lipid, and bis(phosphodihydroceramide) glycerol. Interestingly, we also found a novel sphingolipid family containing a polyunsaturated long-chain base, and a new lipoglycylserine phosphatic acid containing unsaturated acyl chains not reported for the lipid family. The comprehensive coverage of the lipidome of P. gingivalis conducted in this study has revealed more than 140 lipid species including several novel lipids in over 20 lipid families/subfamilies.
Collapse
Affiliation(s)
- Brian A Kleiboeker
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl Frankfater
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary E Davey
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Kanie Y, Okamura A, Tomizuka K, Uchiyama T, Kanamori J, Imamura Y, Ebata T, Watanabe M. Quantitative Evaluation of Periodontitis for Predicting the Occurrence of Postoperative Pneumonia After Oncologic Esophagectomy. Ann Surg Oncol 2023; 30:8216-8222. [PMID: 37526753 DOI: 10.1245/s10434-023-14030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Periodontitis is a biofilm-associated inflammatory periodontal disease associated with postoperative complications after esophagectomy. However, few studies have evaluated the inflammatory burden posed by periodontitis quantitively for patients undergoing oncologic esophagectomy. This study aimed to clarify the relationship between periodontitis and postoperative pneumonia using periodontal inflammatory surface area (PISA). METHODS The study analyzed 251 patients who underwent esophagectomy for esophageal cancer. The patients were classified into low-PISA and high-PISA groups according to preoperative PISA, and the relationship between the occurrence and severity of postoperative pneumonia was investigated. RESULTS The high-PISA group (n = 69) included more males (P < 0.001) and patients with poor performance status (P < 0.024). Postoperative pneumonia occurred more frequently in the high-PISA group than in the low-PISA group (31.9 % vs. 15.9 %; P = 0.008), whereas the incidences of other complications did not differ significantly. In addition, the incidence of severe pneumonia was significantly higher in the high-PISA group (7.2 % vs. 1.6 %; P = 0.038). In the multivariable analysis for adjustment of preoperative confounders, age older than 70 years (odds ratio [OR], 2.62; P = 0.006), high PISA (OR, 2.45; P = 0.012), and smoking history (OR, 2.78; P = 0.006) were the independent variables predicting postoperative pneumonia. CONCLUSION Preoperative higher PISA was significantly associated with the occurrence of overall and severe postoperative pneumonia. The quantitative evaluation of periodontitis using PISA is a useful measure for predicting postoperative pneumonia, and intensive periodontal intervention may contribute to decreasing postoperative pneumonia.
Collapse
Affiliation(s)
- Yasukazu Kanie
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiko Okamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Ken Tomizuka
- Department of Dentistry, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takao Uchiyama
- Department of Dentistry, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun Kanamori
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomoki Ebata
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
14
|
Huang X, Xie M, Lu X, Mei F, Song W, Liu Y, Chen L. The Roles of Periodontal Bacteria in Atherosclerosis. Int J Mol Sci 2023; 24:12861. [PMID: 37629042 PMCID: PMC10454115 DOI: 10.3390/ijms241612861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major underlying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological evidence elucidating the association between these pathogens and AS-related diseases, and the diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disruption, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic plaques. Notably, the intricate interplay among bacteria underscores the complex impact of periodontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for the prevention and management of AS.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
15
|
Debertin J, Teles F, Martin LM, Lu J, Koestler DC, Kelsey KT, Beck JD, Platz EA, Michaud DS. Antibodies to oral pathobionts and colon cancer risk in the CLUE I cohort study. Int J Cancer 2023; 153:302-311. [PMID: 36971101 PMCID: PMC10389748 DOI: 10.1002/ijc.34527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Periodontitis has been associated with an increased risk for gastrointestinal cancers. The objective of our study was to investigate the association of antibodies to oral bacteria and the risk of colon cancer in a cohort setting. Using the CLUE I cohort, a prospective cohort initiated in 1974 in Washington County, Maryland, we conducted a nested case-control study to examine the association of levels of IgG antibodies to 11 oral bacterial species (13 total strains) with risk of colon cancer diagnosed a median of 16 years later (range: 1-26 years). Antibody response was measured using checkerboard immunoblotting assays. We included 200 colon cancer cases and 200 controls matched on age, sex, cigarette smoking status, time of blood draw and pipe or cigar smoking status. Controls were selected using incidence density sampling. Conditional logistic regression models were used to assess the association between antibody levels and colon cancer risk. In the overall analysis, we observed significant inverse associations for 6 of the 13 antibodies measured (P-trends <.05) and one positive association for antibody levels to Aggregatibacter actinomycetemcomitans (ATCC 29523; P-trend = .04). While we cannot rule out a role for periodontal disease in colon cancer risk, findings from our study suggest that a strong adaptive immune response may be associated with a lower risk of colon cancer. More studies will need to examine whether the positive associations we observed with antibodies to A. actinomycetemcomitans reflect a true causal association for this bacterium.
Collapse
Affiliation(s)
- Julia Debertin
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
| | - Flavia Teles
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Lynn M. Martin
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
- University of Kansas Cancer Center, Kansas City, KS
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - James D. Beck
- Division of Comprehensive Oral Health/Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
- Department of Epidemiology, Brown University, Providence, RI
| |
Collapse
|
16
|
Bangolo AI, Trivedi C, Jani I, Pender S, Khalid H, Alqinai B, Intisar A, Randhawa K, Moore J, De Deugd N, Faisal S, Suresh SB, Gopani P, Nagesh VK, Proverbs-Singh T, Weissman S. Impact of gut microbiome in the development and treatment of pancreatic cancer: Newer insights. World J Gastroenterol 2023; 29:3984-3998. [PMID: 37476590 PMCID: PMC10354587 DOI: 10.3748/wjg.v29.i25.3984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The gut microbiome plays an important role in the variation of pharmacologic response. This aspect is especially important in the era of precision medicine, where understanding how and to what extent the gut microbiome interacts with drugs and their actions will be key to individualizing therapy. The impact of the composition of the gut microbiome on the efficacy of newer cancer therapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell treatment has become an active area of research. Pancreatic adenocarcinoma (PAC) has a poor prognosis even in those with potentially resectable disease, and treatment options are very limited. Newer studies have concluded that there is a synergistic effect for immunotherapy in combination with cytotoxic drugs, in the treatment of PAC. A variety of commensal microbiota can affect the efficacy of conventional chemotherapy and immunotherapy by modulating the tumor microenvironment in the treatment of PAC. This review will provide newer insights on the impact that alterations made in the gut microbial system have in the development and treatment of PAC.
Collapse
Affiliation(s)
- Ayrton I Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Chinmay Trivedi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ishan Jani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Silvanna Pender
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hirra Khalid
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Budoor Alqinai
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Alina Intisar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Karamvir Randhawa
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Joseph Moore
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nicoleta De Deugd
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shaji Faisal
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Suchith Boodgere Suresh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Parva Gopani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tracy Proverbs-Singh
- Department of Gastrointestinal Malignancies, John Theurer Cancer Center, Hackensack, NJ 07601, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
17
|
Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, Mao Q, Liang Y. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms 2023; 11:1240. [PMID: 37317214 PMCID: PMC10221276 DOI: 10.3390/microorganisms11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.
Collapse
Affiliation(s)
- Yihan Chai
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xuqiu Shen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xu Feng
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| | - Yuelong Liang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| |
Collapse
|
18
|
Verma UP, Singh P, Verma AK. Correlation Between Chronic Periodontitis and Lung Cancer: A Systematic Review With Meta-Analysis. Cureus 2023; 15:e36476. [PMID: 37090288 PMCID: PMC10117959 DOI: 10.7759/cureus.36476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Periodontal disease is associated with many systemic diseases, such as cardiovascular diseases, atherosclerosis, diabetes mellitus, stroke, and pulmonary diseases. Interestingly, recent literature suggests that periodontal disease might be a risk factor for various cancers such as lung, colon, oesophageal, head, and neck cancers. However, the precise mechanistic link is lacking. Hence, in this meta-analysis, we aimed to investigate the correlation between periodontal disease and lung cancer in periodontally diseased patients. Data were searched for relevant studies from 2010 to 2022. We correlated periodontal disease and lung cancer based on adjusted ORs/HRs and associated CIs. I2 statistic was used to assess statistical heterogeneity. Publication bias was analyzed by visually inspecting the symmetry of the funnel plot and Egger's test. The study is registered in the International Prospective Register of Systematic Reviews (PROSPERO; registration no: CRD42023390819). A total of 194,850 participants from observational studies (two case-control studies and five cohort studies) were incorporated for the current analysis. The meta-analysis of included studies showed an overall effect size (risk ratio) of the periodontal disease group with respect to the non-periodontal disease group for lung neoplasm to be 1.41 (95% CI: 1.32-1.52). The value was more than 1, indicating that the periodontal disease group had a relatively higher lung cancer prevalence than the non-periodontal disease group. Further, the overall risk ratio was found to be statistically significant (p<0.00001). Moreover, the funnel plot suggested some degree of publication bias. Evidence in our study implicated that there is an increased risk of occurrence of lung cancer in chronic periodontitis patients.
Collapse
Affiliation(s)
- Umesh P Verma
- Department of Periodontology, King George's Medical University, Lucknow, IND
| | - Pooja Singh
- Department of Periodontology, King George's Medical University, Lucknow, IND
| | - Ajay K Verma
- Department of Pulmonary Medicine, King George's Medical University, Lucknow, IND
| |
Collapse
|
19
|
Ganther S, Fenno CJ, Kapila YL. Stimulation of Human Periodontal Ligament Fibroblasts Using Purified Dentilisin Extracted from Treponema denticola. Bio Protoc 2022; 12:e4571. [PMID: 36618097 PMCID: PMC9797361 DOI: 10.21769/bioprotoc.4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal disease is a chronic multifactorial disease triggered by a complex of bacterial species. These interact with host tissues to cause the release of a broad array of pro-inflammatory cytokines, chemokines, and tissue remodelers, such as matrix metalloproteinases (MMPs), which lead to the destruction of periodontal tissues. Patients with severe forms of periodontitis are left with a persistent pro-inflammatory transcriptional profile throughout the periodontium, even after clinical intervention, leading to the destruction of teeth-supporting tissues. The oral spirochete, Treponema denticola , is consistently found at significantly elevated levels at sites with advanced periodontal disease. Of all T. denticola virulence factors that have been described, its chymotrypsin-like protease complex, also called dentilisin, has demonstrated a multitude of cytopathic effects consistent with periodontal disease pathogenesis, including alterations in cellular adhesion activity, degradation of various endogenous extracellular matrix-substrates, degradation of host chemokines and cytokines, and ectopic activation of host MMPs. Thus, the following model of T. denticola -human periodontal ligament cell interactions may provide new knowledge about the mechanisms that drive the chronicity of periodontal disease at the protein, transcriptional, and epigenetic levels, which could afford new putative therapeutic targets. This protocol was validated in: PLOS Pathog (2021), DOI: 10.1371/journal.ppat.1009311.
Collapse
Affiliation(s)
- Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Christopher J. Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
- Department of Biosystems and Function, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Prevalence of Microorganisms in Atherosclerotic Plaques of Coronary Arteries: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8678967. [PMID: 36506809 PMCID: PMC9731758 DOI: 10.1155/2022/8678967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
Background In this systematic review and meta-analysis, the existence of pathogens in atherosclerotic plaques of coronary arteries was investigated in coronary arteries diseases (CAD) patients. Methods This study was designed and implemented up to 31 August 2020. The findings present according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) checklist. Two independent reviewers (I.RJ and S.H) performed a comprehensive search on four different English databases including PubMed, ISI, Scopus, and Embase. In order to assess the quality of the articles, a checklist prepared by The Joanna Briggs Institute (JBI) was used. Results Finally, 44 studies were selected. The prevalence of different microorganisms in coronary arteries were as follows: Aggregatibacter actinomycetemcomitans (46.2%), Campylobacter rectus (43.0%), Chlamydia pneumonia (42.8%), Cytomegalovirus (29.1%), Helicobacter pylori (18.9%), Herpes simplex virus type 1 (5.9%), Porphyromonas gingivalis (42.6%), Prevotella intermedia (47.6%), Tannerella forsythia (43.7%), and Treponema denticola (32.9%). Conclusion Based on the result of this meta-analysis, Prevotella intermedia and Aggregatibacter actinomycetemcomitans are the most common microorganisms in atherosclerotic plaques of coronary arteries and may have an important role in the development of atherosclerosis.
Collapse
|
21
|
Ye Z, Cao Y, Miao C, Liu W, Dong L, Lv Z, Iheozor-Ejiofor Z, Li C. Periodontal therapy for primary or secondary prevention of cardiovascular disease in people with periodontitis. Cochrane Database Syst Rev 2022; 10:CD009197. [PMID: 36194420 PMCID: PMC9531722 DOI: 10.1002/14651858.cd009197.pub5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND There may be an association between periodontitis and cardiovascular disease (CVD); however, the evidence so far has been uncertain about whether periodontal therapy can help prevent CVD in people diagnosed with chronic periodontitis. This is the third update of a review originally published in 2014, and most recently updated in 2019. Although there is a new multidimensional staging and grading system for periodontitis, we have retained the label 'chronic periodontitis' in this version of the review since available studies are based on the previous classification system. OBJECTIVES To investigate the effects of periodontal therapy for primary or secondary prevention of CVD in people with chronic periodontitis. SEARCH METHODS An information specialist searched five bibliographic databases up to 17 November 2021 and additional search methods were used to identify published, unpublished, and ongoing studies. We also searched the Chinese BioMedical Literature Database, the China National Knowledge Infrastructure, the VIP database, and Sciencepaper Online to March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared active periodontal therapy to no periodontal treatment or a different periodontal treatment. We included studies of participants with a diagnosis of chronic periodontitis, either with CVD (secondary prevention studies) or without CVD (primary prevention studies). DATA COLLECTION AND ANALYSIS Two review authors carried out the study identification, data extraction, and 'Risk of bias' assessment independently and in duplicate. They resolved any discrepancies by discussion, or with a third review author. We adopted a formal pilot-tested data extraction form, and used the Cochrane tool to assess the risk of bias in the studies. We used GRADE criteria to assess the certainty of the evidence. MAIN RESULTS There are no new completed RCTs on this topic since we published our last update in 2019. We included two RCTs in the review. One study focused on the primary prevention of CVD, and the other addressed secondary prevention. We evaluated both as being at high risk of bias. Our primary outcomes of interest were death (all-cause and CVD-related) and all cardiovascular events, measured at one-year follow-up or longer. For primary prevention of CVD in participants with periodontitis and metabolic syndrome, one study (165 participants) provided very low-certainty evidence. There was only one death in the study; we were unable to determine whether scaling and root planning plus amoxicillin and metronidazole could reduce incidence of all-cause death (Peto odds ratio (OR) 7.48, 95% confidence interval (CI) 0.15 to 376.98), or all CVD-related death (Peto OR 7.48, 95% CI 0.15 to 376.98). We could not exclude the possibility that scaling and root planning plus amoxicillin and metronidazole could increase cardiovascular events (Peto OR 7.77, 95% CI 1.07 to 56.1) compared with supragingival scaling measured at 12-month follow-up. For secondary prevention of CVD, one pilot study randomised 303 participants to receive scaling and root planning plus oral hygiene instruction (periodontal treatment) or oral hygiene instruction plus a copy of radiographs and recommendation to follow-up with a dentist (community care). As cardiovascular events had been measured for different time periods of between 6 and 25 months, and only 37 participants were available with at least one-year follow-up, we did not consider the data to be sufficiently robust for inclusion in this review. The study did not evaluate all-cause death and all CVD-related death. We are unable to draw any conclusions about the effects of periodontal therapy on secondary prevention of CVD. AUTHORS' CONCLUSIONS For primary prevention of cardiovascular disease (CVD) in people diagnosed with periodontitis and metabolic syndrome, very low-certainty evidence was inconclusive about the effects of scaling and root planning plus antibiotics compared to supragingival scaling. There is no reliable evidence available regarding secondary prevention of CVD in people diagnosed with chronic periodontitis and CVD. Further trials are needed to reach conclusions about whether treatment for periodontal disease can help prevent occurrence or recurrence of CVD.
Collapse
Affiliation(s)
- Zelin Ye
- Department of Imaging, West China School of Stomatology, Chengdu, China
| | - Yubin Cao
- Department of Head and Neck Oncology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Dong
- Department of Cardiovascular Medicine, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, China
| | - Zongkai Lv
- Department of Stomatology, Nan Chong Central Hospital, Second Clinical Medical College of Chuan Bei Medical College, Nanchong, China
| | | | - Chunjie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Foss CA, Ordonez AA, Naik R, Das D, Hall A, Wu Y, Dannals RF, Jain SK, Pomper MG, Horti AG. PET/CT imaging of CSF1R in a mouse model of tuberculosis. Eur J Nucl Med Mol Imaging 2022; 49:4088-4096. [PMID: 35713665 PMCID: PMC9922090 DOI: 10.1007/s00259-022-05862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Macrophages represent an essential means of sequestration and immune evasion for Mycobacterium tuberculosis. Pulmonary tuberculosis (TB) is characterized by dense collections of tissue-specific and recruited macrophages, both of which abundantly express CSF1R on their outer surface. 4-Cyano-N-(5-(1-(dimethylglycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide (JNJ-28312141) is a reported high affinity, CSF1R-selective antagonist. We report the radiosynthesis of 4-cyano-N-(5-(1-(N-methyl-N-([11C]methyl)glycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide ([11C]JNJ-28312141) and non-invasive detection of granulomatous and diffuse lesions in a mouse model of TB using positron emission tomography (PET). METHODS Nor-methyl-JNJ-28312141 precursor was radiolabeled with [11C]iodomethane to produce [11C]JNJ-28312141. PET/CT imaging was performed in the C3HeB/FeJ murine model of chronic pulmonary TB to co-localize radiotracer uptake with granulomatous lesions observed on CT. Additionally, CSF1R, Iba1 fluorescence immunohistochemistry was performed to co-localize CSF1R target with reactive macrophages in infected and healthy mice. RESULTS Radiosynthesis of [11C]JNJ-28312141 averaged a non-decay-corrected yield of 18.7 ± 2.1%, radiochemical purity of 99%, and specific activity averaging 658 ± 141 GBq/µmol at the end-of-synthesis. PET/CT imaging in healthy mice showed hepatobiliary [13.39-25.34% ID/g, percentage of injected dose per gram of tissue (ID/g)] and kidney uptake (12.35% ID/g) at 40-50 min post-injection. Infected mice showed focal pulmonary lesion uptake (5.58-12.49% ID/g), hepatobiliary uptake (15.30-40.50% ID/g), cervical node uptake, and renal uptake (11.66-29.33% ID/g). The ratio of infected lesioned lung/healthy lung uptake is 5.91:1, while the ratio of lesion uptake to adjacent infected radiolucent lung is 2.8:1. Pre-administration of 1 mg/kg of unlabeled JNJ-28312141 with [11C]JNJ-28312141 in infected animals resulted in substantial blockade. Fluorescence microscopy of infected and uninfected whole lung sections exclusively co-localized CSF1R staining with abundant Iba1 + macrophages. Healthy lung exhibited no CSF1R staining and very few Iba1 + macrophages. CONCLUSION [11C]JNJ-28312141 binds specifically to CSF1R + macrophages and delineates granulomatous foci of disease in a murine model of pulmonary TB.
Collapse
Affiliation(s)
- Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Baltimore, MD, USA.
| | - Alvaro A Ordonez
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Baltimore, MD, USA
| | - Ravi Naik
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Deepankar Das
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Hall
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yunkou Wu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Robert F Dannals
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sanjay K Jain
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Baltimore, MD, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew G Horti
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Sato S, Kamata Y, Kessoku T, Shimizu T, Kobayashi T, Kurihashi T, Takashiba S, Hatanaka K, Hamada N, Kodama T, Higurashi T, Taguri M, Yoneda M, Usuda H, Wada K, Nakajima A, Morozumi T, Minabe M. A cross-sectional study assessing the relationship between non-alcoholic fatty liver disease and periodontal disease. Sci Rep 2022; 12:13621. [PMID: 35948584 PMCID: PMC9365789 DOI: 10.1038/s41598-022-17917-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
The risk factors for non-alcoholic fatty liver disease (NAFLD) progression are not completely known. Porphyromonas gingivalis infection is a risk factor for systemic diseases. We investigated the association of P. gingivalis infection with the risk of non-alcoholic steatohepatitis progression. Here, hematological tests, periodontal examination, and saliva collection were performed for 164 patients with NAFLD. P. gingivalis was identified in saliva using polymerase chain reaction. Hepatic steatosis and stiffness were evaluated using vibration-controlled transient elastography (VCTE) and magnetic resonance imaging. In patients with NAFLD, P. gingivalis positivity (P. gingivalis ratio ≥ 0.01%) in saliva correlated with liver stiffness determined using magnetic resonance elastography (MRE; p < 0.0001). A P. gingivalis ratio of 0.01% corresponds to 100,000 cells/mL and indicates the proportion of P. gingivalis in the total number of bacteria in the oral cavity. Patients with NAFLD and advanced fibrosis on MRE showed significantly elevated endotoxin activity; those who had > 10 periodontal pockets with depths ≥ 4 mm had significantly increased hepatic stiffness on both VCTE and MRE.
Collapse
Affiliation(s)
- Satsuki Sato
- Department of Highly Advanced Oral Stomatology, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan
| | - Yohei Kamata
- Department of Highly Advanced Oral Stomatology, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan.
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tomoko Shimizu
- Department of Highly Advanced Oral Stomatology, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeo Kurihashi
- Department of Internal Medicine, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Kazu Hatanaka
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Toshiro Kodama
- Department of Implantology and Periodontology, Graduate School of Dentistry, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masataka Taguri
- Department of Biostatistics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University School of Medicine, 89-1 Enya-cho Izumo, Shimane, 693-0581, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University School of Medicine, 89-1 Enya-cho Izumo, Shimane, 693-0581, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Toshiya Morozumi
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Masato Minabe
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| |
Collapse
|
24
|
Kim S, Bando Y, Chang C, Kwon J, Tarverti B, Kim D, Lee SH, Ton-That H, Kim R, Nara PL, Park NH. Topical application of Porphyromonas gingivalis into the gingival pocket in mice leads to chronic‑active infection, periodontitis and systemic inflammation. Int J Mol Med 2022; 50:103. [PMID: 35703359 PMCID: PMC9242655 DOI: 10.3892/ijmm.2022.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis (Pg), one of the 'red-complex' perio-pathogens known to play a critical role in the development of periodontitis, has been used in various animal models to mimic human bacteria-induced periodontitis. In order to achieve a more realistic animal model of human Pg infection, the present study investigated whether repeated small-volume topical applications of Pg directly into the gingival pocket can induce local infection, including periodontitis and systemic vascular inflammation in wild-type mice. Freshly cultured Pg was topically applied directly into the gingival pocket of the second molars for 5 weeks (3 times/week). After the final application, the mice were left in cages for 4 or 8 weeks and sacrificed. The status of Pg colony formation in the pocket, gingival inflammation, alveolar bone loss, the expression levels of pro-inflammatory cytokines in the serum and aorta, the presence of anti-Pg lipopolysaccharide (LPS) and gingipain (Kpg and RgpB) antibodies in the serum, as well as the accumulation of Pg LPS and gingipain aggregates in the gingiva and arterial wall were evaluated. The topical application of Pg into the gingival pocket induced the following local and systemic pathohistological changes in mice when examined at 4 or 8 weeks after the final topical Pg application: Pg colonization in the majority of gingival pockets; increased gingival pocket depths; gingival inflammation indicated by the increased expression of TNF-α, IL-6 and IL-1β; significant loss of alveolar bone at the sites of topical Pg application; and increased levels of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-17, IL-13, KC and IFN-γ in the serum in comparison to those from mice receiving PBS. In addition, the Pg application/colonization model induced anti-Pg LPS and gingipain antibodies in serum, as well as the accumulation of Pg LPS and gingipain aggregates in the gingivae and arterial walls. To the best of our knowledge, this mouse model represents the first example of creating a more sustained local infection in the gingival tissues of wild-type mice and may prove to be useful for the investigation of the more natural and complete pathogenesis of the bacteria in the development of local oral and systemic diseases, such as atherosclerosis. It may also be useful for the determination of a treatment/prevention/efficacy model associated with Pg-induced colonization periodontitis in mice.
Collapse
Affiliation(s)
- Sharon Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yasuhiko Bando
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Chungyu Chang
- Section of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Jeonga Kwon
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Berta Tarverti
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Doohyun Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Hung Ton-That
- Section of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Reuben Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Peter L Nara
- Keystone Bio Incorporated, Suite 200, St. Louis, MO 63110, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Chen CC, Ho WL, Lin CH, Chen HH. Stratified analysis of the association between periodontitis and female breast cancer based on age, comorbidities and level of urbanization: A population-based nested case-control study. PLoS One 2022; 17:e0271948. [PMID: 35881627 PMCID: PMC9321417 DOI: 10.1371/journal.pone.0271948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To conduct stratified analysis of the association between periodontitis exposure and the risk of female breast cancer based on age, comorbidities and level of urbanization. METHODS Using claims data taken from the 1997-2013 Taiwanese National Health Insurance Research Database (NHIRD), we identified 60,756 newly-diagnosed female breast cancer patients during the period 2003-2013 from all beneficiaries. We then randomly selected 243,024 women without breast cancer matching (1:4) for age and the year of the index date during 1997-2013 from a one million representative population acting as the control group. A conditional logistic regression analysis was used to examine the association between periodontitis (ICD-9-CM codes 523.3-4) and the risk of breast cancer, shown as an odds ratio (OR) with a 95% confidence interval (CI) after adjustments for the Charlson Comorbidity Index (CCI) and level of urbanization. Subgroup analyses were conducted based on age, CCI and level of urbanization. RESULTS The mean ± standard deviation age was 53 ± 14 years. After adjusting for potential confounders, the risk of female breast cancer was found to be associated with a history of periodontitis (OR, 1.12; 95% CI, 1.10-1.14). Such an association was significantly different between patients aged < 65 years (OR, 1.09; 95% CI, 1.06-1.11) and patients aged ≥ 65 years (OR, 1.23; 95% CI, 1.18-1.28; p for interaction <0.001), as well as between patients where the CCI = 0 (OR, 1.17; 95% CI, 1.15-1.20) and patients with CCI > 0 (OR, 0.99; 95% CI, 0.96-1.03; p for interaction <0.001). The highest level of urbanization was also associated with the risk of breast cancer. CONCLUSIONS This population-based nested case-control study demonstrated that periodontitis was significantly associated with the risk of female breast cancer and such an association was modified by both age and comorbidities.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Program in Translational Medicine, National Chung-Hsing University, Taichung, Taiwan
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Li Ho
- Division of Allergy, Immunology and Rheumatology, Chiayi Branch, Taichung Veterans General Hospital Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hua Chen
- Program in Translational Medicine, National Chung-Hsing University, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, Chung-Hsing University, Taichung, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan
- Division of General Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Lu H, Wu H, Yang Y, Feng X, Ma X, Xie Y, Xie D, Wang W, Lo ECM, Ye W. Relationship between chronic periodontitis and inflammatory cytokines in patients undergoing maintenance hemodialysis. Clin Oral Investig 2022; 26:6699-6709. [PMID: 35861756 DOI: 10.1007/s00784-022-04629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To investigate the correlation between serum and gingival crevicular fluid (GCF) levels of inflammatory cytokines and the association with periodontal parameters in patients with maintenance hemodialysis (MHD) and healthy control. MATERIALS AND METHODS Patients who were undergoing MHD were enrolled as the MHD group. Healthy individuals who underwent oral examination were selected as the control group after matching for the MHD group. All participants underwent a full-mouth periodontal evaluation, and the levels of eight inflammatory cytokines, including IL-1β, IL-17, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-8 (MMP-8), and C-reactive protein (CRP), in the GCF and serum were measured. RESULTS A total of 63 MHD patients and 75 healthy persons were included. The prevalence of moderate/severe periodontitis was significantly higher in the MHD group than in the control group (88.9 vs. 66.7%, P < 0.05). The GCF levels of CRP, TNF-α, MCP-1, and MMP-8 were higher in patients in the MHD group with moderate/severe periodontitis than in the control group (P < 0.05). Serum CRP, MCP-1, TNF-α, and MMP-8 levels were positively correlated with the GCF CRP levels (P < 0.05). The GCF and serum CRP levels were positively correlated with the periodontal clinical parameters (P < 0.05). CONCLUSIONS Serum CRP, MCP-1, TNF-α, and MMP-8 may relate with the GCF CRP levels. The GCF and serum CRP levels correlated positively with the periodontal clinical parameters, including the VPI, PPD, and CAL, indicating that CRP may play an important role between periodontitis and ESRD. CLINICAL RELEVANCE The present study indicated that GCF and serum CRP levels correlated positively with the periodontal clinical parameters, and the CRP levels may be selected as an indicator to evaluate the severity of inflammation and the effectiveness, prognosis of periodontal treatment in ESRD patients.
Collapse
Affiliation(s)
- Haixia Lu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| | - Hongyu Wu
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, 356 Beijingdong Road, Shanghai, China
| | - Yuanmeng Yang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| | - Xiping Feng
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| | - Xiaoxin Ma
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| | - Yingxin Xie
- Department of Nephrology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Danshu Xie
- Department of Nephrology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Wenji Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Edward Chin Man Lo
- Dental Public Health, Faculty of Dentistry, University of Hong Kong, 34 Hospital Road, Hong Kong, China
| | - Wei Ye
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China.
| |
Collapse
|
27
|
Wu F, Yang L, Hao Y, Zhou B, Hu J, Yang Y, Bedi S, Sanichar NG, Cheng C, Perez-Perez G, Tseng W, Tseng W, Tseng M, Francois F, Khan AR, Li Y, Blaser MJ, Shu XO, Long J, Li H, Pei Z, Chen Y. Oral and gastric microbiome in relation to gastric intestinal metaplasia. Int J Cancer 2022; 150:928-940. [PMID: 34664721 PMCID: PMC8770574 DOI: 10.1002/ijc.33848] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Evidence suggests that Helicobacter pylori plays a role in gastric cancer (GC) initiation. However, epidemiologic studies on the specific role of other bacteria in the development of GC are lacking. We conducted a case-control study of 89 cases with gastric intestinal metaplasia (IM) and 89 matched controls who underwent upper gastrointestinal endoscopy at three sites affiliated with NYU Langone Health. We performed shotgun metagenomic sequencing using oral wash samples from 89 case-control pairs and antral mucosal brushing samples from 55 case-control pairs. We examined the associations of relative abundances of bacterial taxa and functional pathways with IM using conditional logistic regression with and without elastic-net penalty. Compared with controls, oral species Peptostreptococcus stomatis, Johnsonella ignava, Neisseria elongata and Neisseria flavescens were enriched in cases (odds ratios [ORs] = 1.29-1.50, P = .004-.01) while Lactobacillus gasseri, Streptococcus mutans, S parasanguinis and S sanguinis were under-represented (ORs = 0.66-0.76, P = .006-.042) in cases. Species J ignava and Filifactor alocis in the gastric microbiota were enriched (ORs = 3.27 and 1.43, P = .005 and .035, respectively), while S mutans, S parasanguinis and S sanguinis were under-represented (ORs = 0.61-0.75, P = .024-.046), in cases compared with controls. The lipopolysaccharide and ubiquinol biosynthesis pathways were more abundant in IM, while the sugar degradation pathways were under-represented in IM. The findings suggest potential roles of certain oral and gastric microbiota, which are correlated with regulation of pathways associated with inflammation, in the development of gastric precancerous lesions.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Liying Yang
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Yuhan Hao
- Department of Biology, New York University, New York, New York, USA
| | - Boyan Zhou
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Jiyuan Hu
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Yaohua Yang
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sukhleen Bedi
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Navin Ganesh Sanichar
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Charley Cheng
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Guillermo Perez-Perez
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Wenche Tseng
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | | | - Mengkao Tseng
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Fritz Francois
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Abraham R Khan
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Yihong Li
- Department of Microbiology and Immunology, Cornell University Master of Public Health Program, Ithaca, New York, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jirong Long
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Huilin Li
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Zhiheng Pei
- Department of Medicine, New York University School of Medicine, New York, New York, USA.,Department of Pathology, New York University School of Medicine, New York, New York, USA.,Department of Pathology and Lab Service, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, New York, USA.,Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Teles F, Collman RG, Mominkhan D, Wang Y. Viruses, periodontitis, and comorbidities. Periodontol 2000 2022; 89:190-206. [PMID: 35244970 DOI: 10.1111/prd.12435] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seminal studies published in the 1990s and 2000s explored connections between periodontal diseases and systemic conditions, revealing potential contributions of periodontal diseases in the initiation or worsening of systemic conditions. The resulting field of periodontal medicine led to the publication of studies indicating that periodontal diseases can influence the risk of systemic conditions, including adverse pregnancy outcomes, cardiovascular and respiratory diseases, as well as Alzheimer disease and cancers. In general, these studies hypothesized that the periodontal bacterial insult and/or the associated proinflammatory cascade could contribute to the pathogenesis of these systemic diseases. While investigations of the biological basis of the connections between periodontal diseases and systemic conditions generally emphasized the bacteriome, it is also biologically plausible, under an analogous hypothesis, that other types of organisms may have a similar role. Human viruses would be logical "suspects" in this role, given their ubiquity in the oral cavity, association with periodontal diseases, and ability to elicit strong inflammatory response, compromise immune responses, and synergize with bacteria in favor of a more pathogenic microbial consortium. In this review, the current knowledge of the role of viruses in connecting periodontal diseases and systemic conditions is examined. We will also delve into the mechanistic basis for such connections and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, School of Dental Medicine, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dana Mominkhan
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol 2022; 22:53. [PMID: 35151278 PMCID: PMC8840051 DOI: 10.1186/s12866-022-02465-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis.
Main body
In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis.
Conclusion
Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.
Collapse
|
30
|
Philips CA, Augustine P, Ganesan K, Ranade S, Chopra V, Patil K, Shende S, Ahamed R, Kumbar S, Rajesh S, George T, Mohanan M, Mohan N, Phadke N, Rani M, Narayanan A, Jagan SM. The role of gut microbiota in clinical complications, disease severity, and treatment response in severe alcoholic hepatitis. Indian J Gastroenterol 2022; 41:37-51. [PMID: 34989986 DOI: 10.1007/s12664-021-01157-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/01/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dysbiotic gut bacteria engage in the development and progression of severe alcoholic hepatitis (SAH). We aimed to characterize bacterial communities associated with clinical events (CE), identify significant bacteria linked to CE, and define bacterial relationships associated with specific CE and outcomes at baseline and after treatment in SAH. METHODS We performed 16-s rRNA sequencing on stool samples (n=38) collected at admission and the last follow-up within 90 days in SAH patients (n=26; 12 corticosteroids; 14 granulocyte colony-stimulating factor, [G-CSF]). Validated pipelines were used to plot bacterial communities, profile functional metabolism, and identify significant taxa and functional metabolites. Conet/NetworkX® was utilized to identify significant non-random patterns of bacterial co-presence and mutual exclusion for clinical events. RESULTS All the patients were males with median discriminant function (DF) 64, Child-Turcotte-Pugh (CTP) 12, and model for end-stage liver disease (MELD) score 25.5. At admission, 27%, 42%, and 58% had acute kidney injury (AKI), hepatic encephalopathy (HE), and infections respectively; 38.5% died at end of follow-up. Specific bacterial families were associated with HE, sepsis, disease severity, and death. Lachnobacterium and Catenibacterium were associated with HE, and Pediococcus with death after steroid treatment. Change from Enterococcus (promotes AH) to Barnesiella (inhibits E. faecium) was significant after G-CSF. Phenylpropanoid-biosynthesis (innate-immunity) and glycerophospholipid-metabolism (cellular-integrity) pathways in those without infections and the death, respectively, were upregulated. Mutual interactions between Enterococcus cecorum, Acinetobacter schindleri, and Mitsuokella correlated with admission AKI. CONCLUSIONS Specific gut microbiota, their interactions, and metabolites are associated with complications of SAH and treatment outcomes. Microbiota-based precision medicine as adjuvant treatment may be a new therapeutic area.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682 028, India.
- Philip Augustine Associates (P) Ltd, Ernakulam Medical Center, Room no: 3. Ground Floor, Kochi, 682 028, India.
| | - Philip Augustine
- Gastroenterology and Advanced G.I. Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682 028, India
| | - Karthik Ganesan
- Biomedical Software and Instrumentation, Department of Bioinformatics, Helicalbio, Ann Arbor, MI, USA
| | - Shatakshi Ranade
- Molecular, Cellular and Developmental Biology, Genepath-Dx, Pune, 411 004, India
| | - Varun Chopra
- Molecular, Cellular and Developmental Biology, Genepath-Dx, Pune, 411 004, India
| | - Kunal Patil
- Molecular, Cellular and Developmental Biology, Genepath-Dx, Pune, 411 004, India
| | - Sonie Shende
- Molecular, Cellular and Developmental Biology, Genepath-Dx, Pune, 411 004, India
| | - Rizwan Ahamed
- Gastroenterology and Advanced G.I. Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682 028, India
| | - Sandeep Kumbar
- Gastroenterology and Advanced G.I. Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682 028, India
| | - Sasidharan Rajesh
- Interventional Radiology, The Liver Unit and Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682 028, India
| | - Tom George
- Interventional Radiology, The Liver Unit and Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682 028, India
| | - Meera Mohanan
- Anaesthesia and Critical Care, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682 028, India
| | - Narain Mohan
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, 682 028, India
| | - Nikhil Phadke
- Molecular, Cellular and Developmental Biology, Genepath-Dx, Pune, 411 004, India
| | - Mridula Rani
- Molecular, Cellular and Developmental Biology, Genepath-Dx, Pune, 411 004, India
| | - Arjun Narayanan
- National Urban Health Mission, Ernakulam District Hospital, Kochi, 682 011, India
| | - Suchetha M Jagan
- National Urban Health Mission, Ernakulam District Hospital, Kochi, 682 011, India
| |
Collapse
|
31
|
James LM, Georgopoulos AP. At the Root of 3 “Long” Diseases: Persistent Antigens Inflicting Chronic Damage on the Brain and Other Organs in Gulf War Illness, Long-COVID-19, and Chronic Fatigue Syndrome. Neurosci Insights 2022; 17:26331055221114817. [PMID: 35910083 PMCID: PMC9335483 DOI: 10.1177/26331055221114817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
Several foreign antigens such as those derived from viruses and bacteria have been linked to long-term deleterious effects on the brain and other organs; yet, health outcomes subsequent to foreign antigen exposure vary depending in large part on the host’s immune system, in general, and on human leukocyte antigen (HLA) composition, in particular. Here we first provide a brief description of 3 conditions characterized by persistent long-term symptoms, namely long-COVID-19, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and Gulf War Illness (GWI), followed by a brief overview of the role of HLA in the immune response to foreign antigens. We then discuss our Persistent Antigen (PA) hypothesis and highlight associations between antigen persistence due to HLA-antigen incongruence and chronic health conditions in general and the 3 “long” diseases above in particular. This review is not intended to cover the breadth and depth of symptomatology of those diseases but is specifically focused on the hypothesis that the presence of persistent antigens underlies their pathogenesis.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
32
|
Yang Y, Wang L, Zhang H, Luo L. Mixed lineage kinase domain-like pseudokinase-mediated necroptosis aggravates periodontitis progression. J Mol Med (Berl) 2022; 100:77-86. [PMID: 34647144 DOI: 10.1007/s00109-021-02126-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Necroptosis is a form of cell death that is reportedly involved in the pathogenesis of periodontitis. The role of Mlkl-involved necroptosis remains unclear. Herein, this project aimed to explore the role of MLKL-mediated necroptosis in periodontitis in vitro and in vivo. Expression of RIPK3, MLKL, and phosphorylated MLKL was observed in gingival tissues obtained from healthy subjects or patients with periodontitis. The cell viability of Porphyromonas gingivalis lipopolysaccharide (LPS-Pg)-treated cells was detected. In wild type or Mlkl deficiency mice with ligature-induced periodontitis, alveolar bone loss and osteoclast activation were assessed. mRNA levels of inflammatory cytokines in bone marrow-derived macrophages were tested by qRT-PCR. Increased expression of RIPK3, MLKL, and phosphorylated MLKL was observed in gingival tissues obtained from patients with periodontitis. Porphyromonas gingivalis lipopolysaccharide (LPS-Pg)-treated cells developed necroptosis after caspase inhibition and negatively regulated the NF-κB signaling pathway. In mice with ligature-induced periodontitis, Mlkl deficiency reduced alveolar bone loss and weakened osteoclast activation. Furthermore, genetic ablation of Mlkl in LPS-Pg-treated bone marrow-derived macrophages increased the mRNA levels of tumor necrosis factor-α, interleukin (Il)-1β, Il-6, cyclooxygenase 2, matrix metalloproteinase 9, and receptor activator of nuclear factor kappa-B ligand. Our data indicated that MLKL-mediated necroptosis aggravates the development of periodontitis in a Mlkl-deficient mouse. This will provide a new sight for the understanding of etiology and therapies of periodontitis. KEY MESSAGES: MLKL expression was up-regulated in inflamed human gingival tissue. Mlkl deficiency affected the progression of periodontitis. Necroptosis played a major role in mice periodontitis model. Knockout of Mlkl had a significant effect on inflammatory responses.
Collapse
Affiliation(s)
- Yanan Yang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China.
| |
Collapse
|
33
|
Sammallahti H, Kokkola A, Rezasoltani S, Ghanbari R, Asadzadeh Aghdaei H, Knuutila S, Puolakkainen P, Sarhadi VK. Microbiota Alterations and Their Association with Oncogenomic Changes in Pancreatic Cancer Patients. Int J Mol Sci 2021; 22:12978. [PMID: 34884776 PMCID: PMC8658013 DOI: 10.3390/ijms222312978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease with a high mortality and poor prognosis. The human microbiome is a key factor in many malignancies, having the ability to alter host metabolism and immune responses and participate in tumorigenesis. Gut microbes have an influence on physiological functions of the healthy pancreas and are themselves controlled by pancreatic secretions. An altered oral microbiota may colonize the pancreas and cause local inflammation by the action of its metabolites, which may lead to carcinogenesis. The mechanisms behind dysbiosis and PC development are not completely clear. Herein, we review the complex interactions between PC tumorigenesis and the microbiota, and especially the question, whether and how an altered microbiota induces oncogenomic changes, or vice versa, whether cancer mutations have an impact on microbiota composition. In addition, the role of the microbiota in drug efficacy in PC chemo- and immunotherapies is discussed. Possible future scenarios are the intentional manipulation of the gut microbiota in combination with therapy or the utilization of microbial profiles for the noninvasive screening and monitoring of PC.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Arto Kokkola
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran P.O. Box 1411713135, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| |
Collapse
|
34
|
Lactobacillus casei Zhang exerts probiotic effects to antibiotic-treated rats. Comput Struct Biotechnol J 2021; 19:5888-5897. [PMID: 34815833 PMCID: PMC8573083 DOI: 10.1016/j.csbj.2021.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Probiotics administration can facilitate the restoration of host gut microbiota/metabolome after antibiotic treatment. Yet, the mechanism behind such beneficial effects remains unclear. This study constructed a rat model of antibiotic-induced gut dysbiosis to monitor the effects and mechanism of probiotic (Lactobacillus casei Zhang) treatment in maintaining gut homeostasis and restoring the gut microbiota/metabolome. Forty rats were randomly divided into four groups (n = 10 per group): control receiving only saline (Ctrl), antibiotic (AB-Ctrl), antibiotic followed by probiotic (AB-Prob), and antibiotic plus probiotic followed by probiotic (AB + Prob). Rat fecal microbiota and sera were collected at four time points from pre-treatment to post-treatment. The probiotic-treated group (AB + Prob) had significantly more Parabacteroides (P.) goldsteinii after one week of antibiotic and probiotic intervention but fewer antibiotic resistance genes (ARGs)-possessing bacteria (Clostridioides difficile and Burkholderiales bacterium). Consistently, metabolomics data revealed that both probiotic groups had more acetic acid, propionic acid, butyric acid, and valeric acid post treatment. Moreover, a potential probiotic species, P. goldsteinii, strongly correlated with L. casei, as well as propionic acid, butyric acid, and valeric acid. Furthermore, administering probiotic lowered the serum IL-1α level. In contrast, the antibiotic-recipients had a higher irreversible level of IL-1α, suggesting inflammation of the rats. Thus, antibiotic treatment not only led to host gut dysbiosis, but inflammatory responses and an increase in gut ARGs. Daily L. casei Zhang supplementation could alleviate the side effect of cefdinir intervention and facilitate the restoration of gut microbial homeostasis, and these probiotic effects might involve P. goldsteinii-mediated beneficial activities.
Collapse
|
35
|
Gugnacki P, Sierko E. Is There an Interplay between Oral Microbiome, Head and Neck Carcinoma and Radiation-Induced Oral Mucositis? Cancers (Basel) 2021; 13:5902. [PMID: 34885015 PMCID: PMC8656742 DOI: 10.3390/cancers13235902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck carcinoma is one of the most common human malignancy types and it ranks as the sixth most common cancer worldwide. Nowadays, a great potential of microbiome research is observed in oncology-investigating the effect of oral microbiome in oncogenesis, occurrence of treatment side effects and response to anticancer therapies. The microbiome is a unique collection of microorganisms and their genetic material, interactions and products residing within the mucous membranes. The aim of this paper is to summarize current research on the oral microbiome and its impact on the development of head and neck cancer and radiation-induced oral mucositis. Human microbiome might determine an oncogenic effect by, among other things, inducing chronic inflammatory response, instigating cellular antiapoptotic signals, modulation of anticancer immunity or influencing xenobiotic metabolism. Influence of oral microbiome on radiation-induced oral mucositis is expressed by the production of additional inflammatory cytokines and facilitates progression and aggravation of mucositis. Exacerbated acute radiation reaction and bacterial superinfections lead to the deterioration of the patient's condition and worsening of the quality of life. Simultaneously, positive effects of probiotics on the course of radiation-induced oral mucositis have been observed. Understanding the impact on the emerging acute radiation reaction on the composition of the microflora can be helpful in developing a multifactorial model to forecast the course of radiation-induced oral mucositis. Investigating these processes will allow us to create optimized and personalized preventive measures and treatment aimed at their formation mechanism. Further studies are needed to better establish the structure of the oral microbiome as well as the dynamics of its changes before and after therapy. It will help to expand the understanding of the biological function of commensal and pathogenic oral microbiota in HNC carcinogenesis and the development of radiation-induced oral mucositis.
Collapse
Affiliation(s)
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, 15-025 Bialystok, Poland;
| |
Collapse
|
36
|
Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol 2000 2021; 87:107-131. [PMID: 34463991 PMCID: PMC8457218 DOI: 10.1111/prd.12393] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.
Collapse
Affiliation(s)
- Lea Sedghi
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent DiMassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony Harrington
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yvonne L. Kapila
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
37
|
Li JJ, Zhu M, Kashyap PC, Chia N, Tran NH, McWilliams RR, Bekaii-Saab TS, Ma WW. The role of microbiome in pancreatic cancer. Cancer Metastasis Rev 2021; 40:777-789. [PMID: 34455517 PMCID: PMC8402962 DOI: 10.1007/s10555-021-09982-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Recent studies of the human microbiome have offered new insights into how the microbiome can impact cancer development and treatment. Specifically, in pancreatic ductal adenocarcinoma (PDAC), the microbiota has been shown to modulate PDAC risk, contribute to tumorigenesis, impact the tumor microenvironment, and alter treatment response. These findings provide rationale for further investigations into leveraging the microbiome to develop new strategies to diagnose and treat PDAC patients. There is growing evidence that microbiome analyses have the potential to become easily performed, non-invasive diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. More excitingly, there is now emerging interest in developing interventions based on the modulation of microbiota. Fecal microbiota transplantation, probiotics, dietary changes, and antibiotics are all potential strategies to augment the efficacy of current therapeutics and reduce toxicities. While there are still challenges to overcome, this is a rapidly growing field that holds promise for translation into clinical practice and provides a new approach to improving patient outcomes.
Collapse
Affiliation(s)
- Jenny Jing Li
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Mojun Zhu
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Purna C Kashyap
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nguyen H Tran
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Robert R McWilliams
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology/Oncology, Mayo Clinic, 2779 E. Mayo Boulevard, Phoenix, AZ, USA
| | - Wen Wee Ma
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|
38
|
Bregaint S, Boyer E, Fong SB, Meuric V, Bonnaure-Mallet M, Jolivet-Gougeon A. Porphyromonas gingivalis outside the oral cavity. Odontology 2021; 110:1-19. [PMID: 34410562 DOI: 10.1007/s10266-021-00647-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/31/2021] [Indexed: 12/14/2022]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacillus present in periodontal disease, is considered one of the major pathogens in periodontitis. A literature search for English original studies, case series and review articles published up to December 2019 was performed using the MEDLINE, PubMed and GoogleScholar databases, with the search terms "Porphyromonas gingivalis" AND the potentially associated condition or systemic disease Abstracts and full text articles were used to make a review of published research literature on P. gingivalis outside the oral cavity. The main points of interest of this narrative review were: (i) a potential direct action of the bacterium and not the systemic effects of the inflammatory acute-phase response induced by the periodontitis, (ii) the presence of the bacterium (viable or not) in the organ, or (iii) the presence of its virulence factors. Virulence factors (gingipains, capsule, fimbriae, hemagglutinins, lipopolysaccharide, hemolysin, iron uptake transporters, toxic outer membrane blebs/vesicles, and DNA) associated with P. gingivalis can deregulate certain functions in humans, particularly host immune systems, and cause various local and systemic pathologies. The most recent studies linking P. gingivalis to systemic diseases were discussed, remembering particularly the molecular mechanisms involved in different infections, including cerebral, cardiovascular, pulmonary, bone, digestive and peri-natal infections. Recent involvement of P. gingivalis in neurological diseases has been demonstrated. P. gingivalis modulates cellular homeostasis and increases markers of inflammation. It is also a factor in the oxidative stress involved in beta-amyloid production.
Collapse
Affiliation(s)
- Steeve Bregaint
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Emile Boyer
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Shao Bing Fong
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Vincent Meuric
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Martine Bonnaure-Mallet
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Anne Jolivet-Gougeon
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France. .,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France.
| |
Collapse
|
39
|
Diomede F, Fonticoli L, Guarnieri S, Della Rocca Y, Rajan TS, Fontana A, Trubiani O, Marconi GD, Pizzicannella J. The Effect of Liposomal Curcumin as an Anti-Inflammatory Strategy on Lipopolysaccharide e from Porphyromonas gingivalis Treated Endothelial Committed Neural Crest Derived Stem Cells: Morphological and Molecular Mechanisms. Int J Mol Sci 2021; 22:7534. [PMID: 34299157 PMCID: PMC8305631 DOI: 10.3390/ijms22147534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin, a yellow polyphenol extracted from the turmeric root is used as a diet supplement. It exhibits anti-inflammatory, antioxidant, and antitumor properties by modulating different intracellular mechanisms. Due to their low solubility in water, the curcumin molecules must be encapsulated into liposomes to improve the bioavailability and biomedical potential. For the periodontal tissue and systemic health, it is essential to regulate the local inflammatory response. In this study, the possible beneficial effect of liposomes loaded with curcumin (CurLIP) in neural crest-derived human periodontal ligament stem cells (hPDLSCs) and in endothelial-differentiated hPDLSCs (e-hPDLSCs) induced with an inflammatory stimulus (lipopolysaccharide obtained from Porphyromonas gingivalis, LPS-G) was evaluated. The CurLIP formulation exhibited a significant anti-inflammatory effect by the downregulation of Toll-like receptor-4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa light chain enhancer of activated B cells (NFkB)/NLR Family Pyrin Domain Containing 3 (NLRP3)/Caspase-1/Interleukin (IL)-1β inflammation cascade and reactive oxygen species (ROS) formation. Moreover, the exposure to LPS-G caused significant alterations in the expression of epigenetic modifiers, such as DNA Methyltransferase 1 (DNMT1) and P300, while the CurLIP treatment showed physiological expression. Overall, our in vitro study provides novel mechanistic insights into the intracellular pathway exert by CurLIP in the regulation of inflammation and epigenetic modifications.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | | | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | | |
Collapse
|
40
|
|
41
|
Fang C, Wu L, Zhu C, Xie W, Hu H, Zeng X. A potential therapeutic strategy for prostatic disease by targeting the oral microbiome. Med Res Rev 2021; 41:1812-1834. [PMID: 33377531 PMCID: PMC8246803 DOI: 10.1002/med.21778] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Nowadays, human microbiome research is rapidly growing and emerging evidence has witnessed the critical role that oral microbiome plays in the process of human health and disease. Oral microbial dysbiosis has been confirmed as a contributory cause for diseases in multiple body systems, ranging from the oral cavity to the gastrointestinal, endocrine, immune, cardiovascular, and even nervous system. As research progressing, oral microbiome-based diagnosis and therapy are proposed and applied, which may represent potential drug targets in systemic diseases. Recent studies have uncovered the possible association between periodontal disease and prostatic disease, suggesting new prevention and therapeutic treatment for the disease by targeting periodontal pathogens. Thus, we performed this review to first explore the association between the oral microbiome and prostatic disease, according to current knowledge based on published articles, and then mainly focus on the underlying molecular and cellular mechanisms and the potential prevention and treatment derived from these mechanistic studies.
Collapse
Affiliation(s)
- Cheng Fang
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Lan Wu
- Department of StomatologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Cong Zhu
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Wen‐Zhong Xie
- Department of StomatologyKaifeng University Health Science CenterKaifengHenanChina
| | - Hailiang Hu
- Department of PathologyDuke University School of MedicineDurhamNorth CarolinaUSA
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Xian‐Tao Zeng
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
42
|
Periodontal Disease and Tooth Loss Are Associated with Lung Cancer Risk. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5107696. [PMID: 32802852 PMCID: PMC7403933 DOI: 10.1155/2020/5107696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023]
Abstract
Background The associations between periodontal disease, tooth loss, and lung cancer risk remain debatable. Therefore, the purpose of the present study is to evaluate whether periodontal disease and tooth loss are associated with lung cancer risk. Methods A literature search was performed for relevant studies using PubMed and Embase databases. Risk ratio (RR) with 95% confidence interval (CI) was applied as effect size to summarize the associations between periodontal disease, tooth loss, and lung cancer risk. A further dose-response analysis was also performed. Results A total of twelve studies comprising 263,238 participants were included. The results indicated that periodontal disease was positively associated with lung cancer risk (RR = 1.37, 95%CI = 1.16‐1.63). There was a positive association between tooth loss and lung cancer risk (RR = 1.69, 95%CI = 1.46‐1.96). Moreover, there was a significantly linear dose-response relationship between tooth loss and lung cancer risk, and every 5 increment in tooth loss was associated with 10% increased lung cancer risk. Similar results were obtained in subgroup analysis. Conclusions Periodontal disease and tooth loss are increased risk factors for lung cancer. Prevention and treatment of periodontal disease may be effective potential prevention strategies for lung cancer.
Collapse
|
43
|
Yang Y, He X, Xia S, Liu F, Luo L. Porphyromonas gingivalis facilitated the foam cell formation via lysosomal integral membrane protein 2 (LIMP2). J Periodontal Res 2021; 56:265-274. [PMID: 33372271 DOI: 10.1111/jre.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The involvement of lysosomal integral membrane protein 2 (LIMP2) in cholesterol transport and formation of foam cells under the infection of Porphyromonas gingivalis (P. gingivalis) is yet to be elucidated. The current study verified the role and explored the mechanism of LIMP2 in promoting foam cell formation by P. gingivalis. BACKGROUND An association between periodontitis and atherosclerosis (AS) has been established. P. gingivalis is a key pathogen of periodontitis that promotes foam cell formation by regulating activities of CD36 scavenger receptors expressed on the macrophages. LIMP2, a member of CD36 superfamily, is involved in cholesterol efflux. However, whether LIMP2 is involved in the formation of foam cells promoted by P. gingivalis remains unclear. METHODS The formation of foam cells was examined by Oil Red O staining. The knockdown of limp2 was identified by qRT-PCR. The accumulation of cholesterol was monitored by Cholesterol Assay Kit. The location of P. gingivalis was visualized by confocal microscopy. Cathepsin L activity was monitored with Magic Red Cathepsin L Assay Kit. The key genes and pathways in P. gingivalis-infected macrophages were explored by RNA sequencing. The protein level was investigated by Western blotting. RESULTS Porphyromonas gingivalis increases foam cells formation and upregulates the expression of LIMP2 in foam cells. The knockdown of limp2 decreases the number of foam cells and increases cholesterol export, which is related to lysosomal functions. In addition, the interaction between LIMP2 and caveolin-1(CAV1) might contribute to this process, and NF-κB and JNK activity is required for increased expression of P. gingivalis-induced LIMP2. CONCLUSIONS This study suggested that LIMP2 is involved in the foam cells formation facilitated by P. gingivalis, which favors a close connection between periodontitis and atherosclerosis (AS).
Collapse
Affiliation(s)
- Yanan Yang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Xiaoli He
- Dental Diseases Prevention & Treatment Center of Jiading District, Shanghai, China
| | - Siying Xia
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lijun Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
45
|
Bhatia E, Sharma S, Jadhav K, Banerjee R. Combinatorial liposomes of berberine and curcumin inhibit biofilm formation and intracellular methicillin resistant Staphylococcus aureus infections and associated inflammation. J Mater Chem B 2021; 9:864-875. [PMID: 33392614 DOI: 10.1039/d0tb02036b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increase in drug-resistant strains of Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has led to an increased rate of infection-related mortality. The emergence of drug resistance has rendered many antibiotics ineffective. The poor penetration and retention of antibiotics in mammalian cells lead to recurrent latent infections. Thus, there is an increasing need for biodegradable, non-toxic anti-infectives that are effective in treating MRSA infections. Phytochemicals such as berberine (BBR) and curcumin (CCR) have long been explored for their antibacterial activities, but their efficacy is often limited due to low bioavailability, water solubility, and poor cell penetration. When used in combination these antimicrobials did not show any synergistic effect against MRSA. Here, both of them were co-encapsulated in liposomes (BCL) and evaluated for biocompatibility, synergistic antimicrobial activity, intracellular infections, associated inflammation, and on biofilms formed by MRSA. Co-encapsulation of BBR and CCR in liposomes decreased their MICs by 87% and 96%, respectively, as compared to their free forms with a FICI of 0.13, indicating synergy between them. BCL inhibited the growth of MRSA and prevented biofilm formation better than free drugs. Co-culture studies showed that intracellular infection was reduced to 77% post BCL treatment. It also reduced the production of pro-inflammatory cytokines by macrophages following infection. The liposomes were found to be five times more efficient than clindamycin and can be used as a potential antimicrobial carrier against intracellular infections.
Collapse
Affiliation(s)
- Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai-400076, Maharashtra, India.
| | | | | | | |
Collapse
|
46
|
Abstract
ABSTRACT Microorganisms can help maintain homeostasis in humans by providing nutrition, maintaining hormone balance, and regulating inflammatory responses. In the case of imbalances, these microbes can cause various diseases, even malignancy. Pancreatic cancer (PC) is characterized by high tumor invasiveness, distant metastasis, and insensitivity to traditional chemotherapeutic drugs, and it is confirmed that PC is closely related to microorganisms. Recently, most studies based on clinical samples or case reports discussed the positive or negative relationships between microorganisms and PC. However, the specific mechanisms are blurry, especially the involved immunological pathways, and the roles of beneficial flora have usually been ignored. We reviewed studies published through September 2020 as identified using PubMed, MEDLINE, and Web of Science. We mainly introduced the traits of oral, gastrointestinal, and intratumoral microbes in PC and summarized the roles of these microbes in tumorigenesis and tumoral development through immunological pathways, in addition to illustrating the relationships between metabolic diseases with PC by microorganism. In addition, we identified microorganisms as biomarkers for early diagnosis and immunotherapy. This review will be significant for greater understanding the effect of microorganisms in PC and provide more meaningful guidance for future clinical applications.
Collapse
Affiliation(s)
- Xin Wei
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Chunlei Mei
- Institute of Reproductive Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Li
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| | - Yingjun Xie
- From the Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun
| |
Collapse
|
47
|
Xue Y, Li Q, Park CG, Klena JD, Anisimov AP, Sun Z, Wei X, Chen T. Proteus mirabilis Targets Atherosclerosis Plaques in Human Coronary Arteries via DC-SIGN (CD209). Front Immunol 2021; 11:579010. [PMID: 33488579 PMCID: PMC7820866 DOI: 10.3389/fimmu.2020.579010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial DNAs are constantly detected in atherosclerotic plaques (APs), suggesting that a combination of chronic infection and inflammation may have roles in AP formation. A series of studies suggested that certain Gram-negative bacteria were able to interact with dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin [DC-SIGN; cluster of differentiation (CD) 209] or langerin (CD207), thereby resulting in deposition of CD209s at infection sites. We wondered if Proteus mirabilis (a member of Proteobacteria family) could interact with APs through CD209/CD207. In this study, we first demonstrated that CD209/CD207 were also receptors for P. mirabilis that mediated adherence and phagocytosis by macrophages. P. mirabilis interacted with fresh and CD209s/CD207-expressing APs cut from human coronary arteries, rather than in healthy and smooth arteries. These interactions were inhibited by addition of a ligand-mimic oligosaccharide and the coverage of the ligand, as well as by anti-CD209 antibody. Finally, the hearts from an atherosclerotic mouse model contained higher numbers of P. mirabilis than that of control mice during infection-challenging. We therefore concluded that the P. mirabilis interacts with APs in human coronary arteries via CD209s/CD207. It may be possible to slow down the progress of atherosclerosis by blocking the interactions between CD209s/CD207 and certain atherosclerosis-involved bacteria with ligand-mimic oligosaccharides.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Bacterial Adhesion/drug effects
- CHO Cells
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/microbiology
- Coronary Artery Disease/pathology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/microbiology
- Coronary Vessels/pathology
- Cricetulus
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/metabolism
- Ligands
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/microbiology
- Male
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Oligosaccharides/pharmacology
- Plaque, Atherosclerotic
- Proteus mirabilis/growth & development
- Proteus mirabilis/metabolism
- RAW 264.7 Cells
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 FOUR Project for Medical Science, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - John D. Klena
- Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, State Research Center for Applied Microbiology and Biotechnology, Especially Dangerous Infections Department, Obolensk, Russia
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Karabulut A. The Role of Microbiologic Agents in the Progression of the Atherosclerosis: a Comprehensive Review. J Saudi Heart Assoc 2020; 32:440-450. [PMID: 33299789 PMCID: PMC7721457 DOI: 10.37616/2212-5043.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/07/2022] Open
Abstract
Atherosclerosis is a leading cause of disability, morbidity and mortality in the world. Atherosclerosis is accepted as a chronic progressive inflammatory disease. The inflammatory cascade in the vascular wall is well-defined. However, the predictors and contributors of the inflammatory response in atherosclerosis are not completely understood. Systemic and local inflammation, which enhance the burden of inflammation in the vascular wall, have been proposed as risk factors for the progression of atherosclerosis. Infectious micro-organisms are one of the major triggering factors for local and systemic inflammation. In this review, we aimed to emphasize the linkage between micro-organisms and the progression of atherosclerosis. We briefly summarize the current medical literature and discuss the future perspectives of the linkage between microbial agents and atherosclerosis representing cause and effect.
Collapse
Affiliation(s)
- Ahmet Karabulut
- Department of Cardiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey.,Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
49
|
Neilands J, Kinnby B. Porphyromonas gingivalis initiates coagulation and secretes polyphosphates - A mechanism for sustaining chronic inflammation? Microb Pathog 2020; 162:104648. [PMID: 33242642 DOI: 10.1016/j.micpath.2020.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Periodontitis is a chronic inflammation resulting in destruction of tooth-supporting bone. Chronic inflammation is characterized by extravascular fibrin deposition. Fibrin is central to destruction of bone; monocytes bind to fibrin and form osteoclasts, thus providing a link between coagulation and the tissue destructive processes in periodontitis. The oral microbiome is essential to oral health. However, local ecological changes, such as increased biofilm formation, result in a dysbiotic microbiome characterized by an increase of protease-producing species e.g. Porphyromonas gingivalis. Proteases initiate inflammation and may cleave coagulation factors. Polyphosphates (polyP) may also provide bacteria with procoagulant properties similar to platelet-released polyP. P. gingivalis has also been found in remote locations related to vascular pathology and Alzheimer's disease. OBJECTIVES The aim of this study was to investigate procoagulant activity of ten different species of oral bacteria present in oral health and disease as well as presence of polyP and fibrin formation in planktonic and biofilm bacteria. METHODS Oral bacteria were studied for protease production and procoagulant activity. The presence of polyP and formation of fibrin was observed using confocal microscopy. RESULTS P. gingivalis showed strong protease activity and was the only species exerting procoagulant activity. Confocal microscopy showed polyP intracellularly in planktonic bacteria and extracellularly after biofilm formation. Fibrin formation emanated from planktonic bacteria and from both bacteria and polyP in biofilm cultures. CONCLUSIONS The procoagulant activity of P. gingivalis could explain its role in chronic inflammation, locally in oral tissues as well as in remote locations.
Collapse
Affiliation(s)
- Jessica Neilands
- Dept of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Bertil Kinnby
- Dept of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.
| |
Collapse
|
50
|
Giuffrè M, Moretti R, Campisciano G, da Silveira ABM, Monda VM, Comar M, Di Bella S, Antonello RM, Luzzati R, Crocè LS. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J Clin Med 2020; 9:3705. [PMID: 33218203 PMCID: PMC7699249 DOI: 10.3390/jcm9113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian organisms form intimate interfaces with commensal and pathogenic gut microorganisms. Increasing evidence suggests a close interaction between gut microorganisms and the enteric nervous system (ENS), as the first interface to the central nervous system. Each microorganism can exert a different effect on the ENS, including phenotypical neuronal changes or the induction of chemical transmitters that interact with ENS neurons. Some pathogenic bacteria take advantage of the ENS to create a more suitable environment for their growth or to promote the effects of their toxins. In addition, some commensal bacteria can affect the central nervous system (CNS) by locally interacting with the ENS. From the current knowledge emerges an interesting field that may shape future concepts on the pathogen-host synergic interaction. The aim of this narrative review is to report the current findings regarding the inter-relationships between bacteria, viruses, and parasites and the ENS.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Giuseppina Campisciano
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | | | | | - Manola Comar
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | - Stefano Di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberta Maria Antonello
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberto Luzzati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Lory Saveria Crocè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| |
Collapse
|