1
|
Burford-Gorst CM, Kidd SP. Phenotypic Variation in Staphylococcus aureus during Colonisation Involves Antibiotic-Tolerant Cell Types. Antibiotics (Basel) 2024; 13:845. [PMID: 39335018 PMCID: PMC11428495 DOI: 10.3390/antibiotics13090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is a bacterial species that is commonly found colonising healthy individuals but that presents a paradoxical nature: simultaneously, it can migrate within the body and cause a range of diseases. Many of these become chronic by resisting immune responses, antimicrobial treatment, and medical intervention. In part, this ability to persist can be attributed to the adoption of multiple cell types within a single cellular population. These dynamics in the S. aureus cell population could be the result of its interplay with host cells or other co-colonising bacteria-often coagulase-negative Staphylococcal (CoNS) species. Further understanding of the unique traits of S. aureus alternative cell types, the drivers for their selection or formation during disease, as well as their presence even during non-pathological colonisation could advance the development of diagnostic tools and drugs tailored to target specific cells that are eventually responsible for chronic infections.
Collapse
Affiliation(s)
- Chloe M Burford-Gorst
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Zhao N, Cheng D, Yang Z, Liu Y, Wang Y, Jian Y, Wang H, Li M, Bae T, Liu Q. Virulence adaption to environment promotes the age-dependent nasal colonization of Staphylococcus aureus. Emerg Microbes Infect 2022; 11:1402-1415. [PMID: 35508433 PMCID: PMC9132443 DOI: 10.1080/22221751.2022.2074316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is an important human commensal bacteria colonizing the human body, especially the nasal cavity. The nasal carriage can be a source of S. aureus bacteremia. However, the bacterial factors contributing to nasal colonization are not completely understood. By analysing S. aureus strains from the nasal cavity of the children, young adults, and seniors, we found that the low activity of the SaeRS two-component system (TCS) is an important determinant for S. aureus to colonize in seniors. The senior group isolates of S. aureus showed a rather distinct sequence type composition as compared with other age group isolates. The senior group isolates showed not only a lower gene carriage of enterotoxins a, c, and q but also lower hemolytic activity against human red blood cells. Of regulators affecting hemolysin production (i.e. agr, saeRS, rot, rsp, and sarS), only the SaeRS TCS showed an age-dependent decrease of activity. The decreased virulence and better colonization ability of the senior group isolates of S. aureus were confirmed in the mouse model. The senior group isolates showed the lowest survival and the best adhesion and colonizing ability. Also, the senior nasal secretions supported S. aureus survival better than the child and young adult nasal secretions. These results indicated that the senior nasal cavity favours colonization of S. aureus with higher adhesion and lower virulence, to which the reduced SaeRS TCS activity contributes. Taken together, our results illustrate an example of bacterial adaptation to the changing host environment.
Collapse
Affiliation(s)
- Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Danhong Cheng
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ziyu Yang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Abstract
Staphylococcus aureus continues to be a common pathogen from community-acquired infections and for infections after surgical procedures. A review of the history of this pathogen indicates that it will likely continue to develop new virulence characteristics and that it will continue to develop new patterns of resistance. This presentation addresses the three major areas for surgeons in the future. First, vancomycin is losing its effectiveness against methicillin-resistant S. aureus (MRSA). The future antibiotic choices for treating this pathogen are discussed. Second, vancomycin is losing its effectiveness for prevention of MRSA infections at the surgical site, and another antibiotic choice needs to be developed for prevention of both methicillin-sensitive and methicillin-resistant staphylococci. Third, decolonization of staphylococci from the nasopharynx is discussed commonly in the literature, but valid evidence for this practice is limited. Controlled clinical trials to prevent surgical site infection by decolonization with mupirocin or other agents are needed. In summary, S. aureus will continue to challenge surgeons as an adaptable pathogen that can defy all of our treatment efforts.
Collapse
Affiliation(s)
- Donald E. Fry
- From the Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and the Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
4
|
Genome Sequencing and Analysis of Bacillus pumilus ICVB403 Isolated from Acartia tonsa Copepod Eggs Revealed Surfactin and Bacteriocin Production: Insights on Anti-Staphylococcus Activity. Probiotics Antimicrob Proteins 2020; 11:990-998. [PMID: 30229513 DOI: 10.1007/s12602-018-9461-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we show that Bacillus pumilus ICVB403 recently isolated from copepod eggs is able to produce, after 48-72 h of growth in Landy medium, extracellular inhibitory compounds, which are active against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 43300, MRSA-S1, Staphylococcus epidermidis 11EMB, Staphylococcus warneri 27EMB, and Staphylococcus hominis 13EMB. Moreover, these extracellular inhibitory compound(s) were able to potentiate erythromycin against the aforementioned staphylococci. The minimum inhibitory concentration (MIC) of erythromycin was reduced from 32 μg/mL to 8 μg/mL for MRSA ATCC 43300 and MRSA SA-1 strains, and from 32-64 μg/mL to 4 μg/mL for S. epidermidis 11EMB and S. hominis 13EMB strains.The genome sequencing and analysis of B. pumilus ICVB403 unveiled 3.666.195 nucleotides contained in 22 contigs with a G + C ratio of 42.0%, 3.826 coding sequences, and 73 RNAs. In silico analysis guided identification of two putative genes coding for synthesis of surfactin A, a lipopeptide with 7 amino acids, and for a circular bacteriocin belonging to the circularin A/uberolysin family, respectively.
Collapse
|
5
|
Krishna A, Holden MTG, Peacock SJ, Edwards AM, Wigneshweraraj S. Naturally occurring polymorphisms in the virulence regulator Rsp modulate Staphylococcus aureus survival in blood and antibiotic susceptibility. MICROBIOLOGY (READING, ENGLAND) 2018; 164:1189-1195. [PMID: 30028663 PMCID: PMC6230762 DOI: 10.1099/mic.0.000695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/03/2018] [Indexed: 01/20/2023]
Abstract
Nasal colonization by the pathogen Staphylococcus aureus is a risk factor for subsequent infection. Loss of function mutations in the gene encoding the virulence regulator Rsp are associated with the transition of S. aureus from a colonizing isolate to one that causes bacteraemia. Here, we report the identification of several novel activity-altering mutations in rsp detected in clinical isolates, including for the first time, mutations that enhance agr operon activity. We assessed how these mutations affected infection-relevant phenotypes and found loss and enhancement of function mutations to have contrasting effects on S. aureus survival in blood and antibiotic susceptibility. These findings add to the growing body of evidence that suggests S. aureus 'trades off' virulence for the acquisition of traits that benefit survival in the host, and indicates that infection severity and treatment options can be significantly affected by mutations in the virulence regulator rsp.
Collapse
Affiliation(s)
- Aishwarya Krishna
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Matthew T. G. Holden
- Wellcome Trust Sanger Institute, Hinxton, UK
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Sharon J. Peacock
- Wellcome Trust Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Carvalho SM, de Jong A, Kloosterman TG, Kuipers OP, Saraiva LM. The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress. Front Microbiol 2017; 8:1273. [PMID: 28744267 PMCID: PMC5504149 DOI: 10.3389/fmicb.2017.01273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth slow-metabolizing free hexoses, such as galactose. Here, we have used deep sequencing transcriptomic analysis (RNA-Seq) and 1H-NMR to uncover how S. aureus grown on galactose, a major carbon source present in the nasopharynx, survives the deleterious action of NO. We observed that, like on glucose, S. aureus withstands high concentrations of NO when using galactose. Data indicate that this resistance is, most likely, achieved through a distinct metabolism that relies on the increased production of amino acids, such as glutamate, threonine, and branched-chain amino acids (BCAAs). Moreover, we found that under NO stress the S. aureus α-acetolactate synthase (ALS) enzyme, which converts pyruvate into α-acetolactate, plays an important role. ALS is proposed to prevent intracellular acidification, to promote the production of BCAAs and the activation of the TCA cycle. Additionally, ALS is shown to contribute to the successful infection of murine macrophages. Furthermore, ALS contributes to the resistance of S. aureus to beta-lactam antibiotics such as methicillin and oxacillin.
Collapse
Affiliation(s)
- Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de LisboaOeiras, Portugal
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de LisboaOeiras, Portugal
| |
Collapse
|
7
|
Hussey SJK, Purves J, Allcock N, Fernandes VE, Monks PS, Ketley JM, Andrew PW, Morrissey JA. Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation. Environ Microbiol 2017; 19:1868-1880. [PMID: 28195384 PMCID: PMC6849702 DOI: 10.1111/1462-2920.13686] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 01/05/2023]
Abstract
Air pollution is the world's largest single environmental health risk (WHO). Particulate matter such as black carbon is one of the main components of air pollution. The effects of particulate matter on human health are well established however the effects on bacteria, organisms central to ecosystems in humans and in the natural environment, are poorly understood. We report here for the first time that black carbon drastically changes the development of bacterial biofilms, key aspects of bacterial colonisation and survival. Our data show that exposure to black carbon induces structural, compositional and functional changes in the biofilms of both S. pneumoniae and S. aureus. Importantly, the tolerance of the biofilms to multiple antibiotics and proteolytic degradation is significantly affected. Additionally, our results show that black carbon impacts bacterial colonisation in vivo. In a mouse nasopharyngeal colonisation model, black carbon caused S. pneumoniae to spread from the nasopharynx to the lungs, which is essential for subsequent infection. Therefore our study highlights that air pollution has a significant effect on bacteria that has been largely overlooked. Consequently these findings have important implications concerning the impact of air pollution on human health and bacterial ecosystems worldwide.
Collapse
Affiliation(s)
- Shane. J. K. Hussey
- Department of Genetics, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Joanne Purves
- Department of Genetics, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Natalie Allcock
- Centre for Core Biotechnology Services, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Vitor E. Fernandes
- Department of InfectionImmunity and Inflammation, Medical Sciences Building, University of Leicester, University RoadLeicesterLE1 9HNLeicestershire, UK
| | - Paul S. Monks
- Department of ChemistryUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Julian M. Ketley
- Department of Genetics, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| | - Peter W. Andrew
- Department of InfectionImmunity and Inflammation, Medical Sciences Building, University of Leicester, University RoadLeicesterLE1 9HNLeicestershire, UK
| | - Julie A. Morrissey
- Department of Genetics, Adrian BuildingUniversity of Leicester, University RoadLeicesterLE1 7RHLeicestershire, UK
| |
Collapse
|
8
|
Garcia-Romo GS, Gonzalez-Ibarra M, Donis-Hernandez FR, Zendejas-Buitron VM, Pedroza-Gonzalez A. Immunization with heat-inactivated Staphylococcus aureus induced an antibody response mediated by IgG1 and IgG2 in patients with recurrent tonsillitis. Microbiol Immunol 2016; 59:193-201. [PMID: 25648612 DOI: 10.1111/1348-0421.12241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
Currently Staphylococcus aureus is the predominant pathogen isolated from the respiratory tract of patients with recurrent tonsillitis. Because of an increase in multi-drug resistant strains of S. aureus, there is a pressing need for effective treatments and preventive approaches to reduce the risk of invasive and life-threatening infections. A preventive vaccine against S. aureus would have a tremendous clinical impact. However, multiple clinical trials have failed to identify an agent that can induce protective responses. Most trials have been based on subunit vaccines using one or a few purified antigens, which may not be enough to confer protection. Here, the impact of a whole-cell vaccine comprised of heat-inactivated S. aureus was investigated in patients with RT. The vaccine was well tolerated and had no significant local or systemic reactions. Immunization with heat-inactivated S. aureus elicited a significant antibody response characterized by production of IgG1 and IgG2 antibodies and, to a lesser extent, of IgA antibodies. Notably, this response was associated with an important decrease in the incidence of tonsillitis and bacterial colonization of the oropharyngeal mucosa. Our results show that whole-cell inactivated S. aureus is safe and capable of evoking specific antibody responses in patients with recurrent tonsillitis.
Collapse
Affiliation(s)
- Gina Stella Garcia-Romo
- Department of Immunology and Medical Mycology, Research Division, Hospital Juarez of Mexico, Mexico City, 07760, Mexico; Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, Mexico City, 54740, Mexico; Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA Leiden, the Netherlands
| | | | | | | | | |
Collapse
|
9
|
High Frequency of icaAD, clumping factors A/B, fib and eno Genes in Staphylococcus aureus Species Isolated From Wounds in Tehran, Iran during 2012-2013. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2015. [DOI: 10.5812/archcid.23033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Detection of mecA- and mecC-Positive Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates by the New Xpert MRSA Gen 3 PCR Assay. J Clin Microbiol 2015; 54:180-4. [PMID: 26491186 DOI: 10.1128/jcm.02081-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/17/2015] [Indexed: 12/24/2022] Open
Abstract
An advanced methicillin-resistant Staphylococcus aureus (MRSA) detection PCR approach targeting SCCmec-orfX along with mecA and mecC was evaluated for S. aureus and coagulase-negative staphylococci. The possession of mecA and/or mecC was correctly confirmed in all cases. All methicillin-susceptible S. aureus strains (n = 98; including staphylococcal cassette chromosome mec element [SCCmec] remnants) and 98.1% of the MRSA strains (n = 160, including 10 mecC-positive MRSA) were accurately categorized.
Collapse
|
11
|
Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. mBio 2015; 6:e02272-14. [PMID: 25691592 PMCID: PMC4337569 DOI: 10.1128/mbio.02272-14] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive, commensal bacterium known to asymptomatically colonize the human skin, nares, and gastrointestinal tract. Colonized individuals are at increased risk for developing S. aureus infections, which range from mild skin and soft tissue infections to more severe diseases, such as endocarditis, bacteremia, sepsis, and osteomyelitis. Different virulence factors are required for S. aureus to infect different body sites. In this study, virulence gene expression was analyzed in two S. aureus isolates during nasal colonization, bacteremia and in the heart during sepsis. These models were chosen to represent the stepwise progression of S. aureus from an asymptomatic colonizer to an invasive pathogen. Expression of 23 putative S. aureus virulence determinants, representing protein and carbohydrate adhesins, secreted toxins, and proteins involved in metal cation acquisition and immune evasion were analyzed. Consistent upregulation of sdrC, fnbA, fhuD, sstD, and hla was observed in the shift between colonization and invasive pathogen, suggesting a prominent role for these genes in staphylococcal pathogenesis. Finally, gene expression data were correlated to the roles of the genes in pathogenesis by using knockout mutants in the animal models. These results provide insights into how S. aureus modifies virulence gene expression between commensal and invasive pathogens. Many bacteria, such as Staphylococcus aureus, asymptomatically colonize human skin and nasal passages but can also cause invasive diseases, such as bacteremia, pneumonia, sepsis, and osteomyelitis. The goal of this study was to analyze differences in the expression of selected S. aureus genes during a commensal lifestyle and as an invasive pathogen to gain insight into the commensal-to-pathogen transition and how a bacterial pathogen adapts to different environments within a host (e.g., from nasal colonization to invasive pathogen). The gene expression data were also used to select genes for which to construct knockout mutants to assess the role of several proteins in nasal colonization and lethal bacteremia. These results not only provide insight into the factors involved in S. aureus disease pathogenesis but also provide potential therapeutic targets.
Collapse
|
12
|
Rodríguez Tamayo EA, Jiménez Quiceno JN. Factores relacionados con la colonización por Staphylococcus aureus. IATREIA 2014. [DOI: 10.17533/udea.iatreia.18007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Staphylococcus aureus tiene gran capacidad para colonizar la piel y las mucosas de los seres humanos y de diferentes animales. Varios estudios evidencian el papel de dicha colonización en la patogénesis y la epidemiología de las infecciones causadas por S. aureus. Se ha demostrado que los portadores nasales constituyen una fuente importante de propagación de la bacteria; una amplia proporción de las infecciones estafilocócicas invasivas asociadas al cuidado de la salud son de origen endógeno, y la colonización por cepas de S. aureus resistentes a meticilina (SARM), aún mal entendida, origina mayores complicaciones. La importancia de la colonización se ha definido con más profundidad en ambientes hospitalarios, pero recientemente se han hecho estudios en la comunidad con resultados contradictorios sobre la relación colonización-infección. En esta revisión se presentan algunas características relevantes del proceso de colonización por S. aureus, incluyendo las cepas de SARM, y se consideran los factores humanos y del microorganismo que influyen en él. Asimismo, se hace una revisión de los estudios colombianos al respecto.
Collapse
|
13
|
Tulinski P, Duim B, Wittink FR, Jonker MJ, Breit TM, van Putten JP, Wagenaar JA, Fluit AC. Staphylococcus aureus ST398 gene expression profiling during ex vivo colonization of porcine nasal epithelium. BMC Genomics 2014; 15:915. [PMID: 25331735 PMCID: PMC4210494 DOI: 10.1186/1471-2164-15-915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Staphylococcus aureus is a common human and animal opportunistic pathogen. In humans nasal carriage of S. aureus is a risk factor for various infections. Methicillin-resistant S. aureus ST398 is highly prevalent in pigs in Europe and North America. The mechanism of successful pig colonization by MRSA ST398 is poorly understood. Previously, we developed a nasal colonization model of porcine nasal mucosa explants to identify molecular traits involved in nasal MRSA colonization of pigs. Results We report the analysis of changes in the transcription of MRSA ST398 strain S0462 during colonization on the explant epithelium. Major regulated genes were encoding metabolic processes and regulation of these genes may represent metabolic adaptation to nasal mucosa explants. Colonization was not accompanied by significant changes in transcripts of the main virulence associated genes or known human colonization factors. Here, we documented regulation of two genes which have potential influence on S. aureus colonization; cysteine extracellular proteinase (scpA) and von Willebrand factor-binding protein (vWbp, encoded on SaPIbov5). Colonization with isogenic-deletion strains (Δvwbp and ΔscpA) did not alter the ex vivo nasal S. aureus colonization compared to wild type. Conclusions Our results suggest that nasal colonization with MRSA ST398 is a complex event that is accompanied with changes in bacterial gene expression regulation and metabolic adaptation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-915) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
14
|
Verstappen KM, Duim B, van Nes A, Snijders S, van Wamel WJB, Wagenaar JA. Experimental nasal colonization of piglets with methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Vet Microbiol 2014; 174:483-488. [PMID: 25448448 DOI: 10.1016/j.vetmic.2014.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/10/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus sequence type (ST)398 is widely spread among livestock. People in contact with livestock have a higher risk of testing positive for MRSA. Several experimental settings have been described to study in vivo colonization of MRSA in pigs, each having its own limitations. The aim of this study was to develop a nose-colonization model in pigs to quantitatively study the colonization of MRSA and the co-colonization of MSSA and MRSA. Two experiments were performed: in the first experiment piglets received an intranasal inoculation with MRSA ST398, spa-type t011, and in the second experiment piglets received an intranasal inoculation with two MSSA strains (ST398, spa-type t011 and t034) and two MRSA strains (also ST398, spa-type t011 and t034) to investigate co-colonization. Colonization was quantitatively monitored for 2 weeks in both experiments. Nasal colonization was successfully established in all piglets with stable numbers of S. aureus between 10(4) and 10(6) CFU. MSSA and MRSA were able to co-colonize.
Collapse
Affiliation(s)
- Koen M Verstappen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands
| | - Arie van Nes
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - Susan Snijders
- Department for Medical Microbiology, Erasmus Medical Centre, P.O. box 2040, 3000 CA Rotterdam, The Netherlands
| | - Willem J B van Wamel
- Department for Medical Microbiology, Erasmus Medical Centre, P.O. box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands; Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219 PH Lelystad, The Netherlands.
| |
Collapse
|
15
|
Cascioferro S, Cusimano MG, Schillaci D. Antiadhesion agents against Gram-positive pathogens. Future Microbiol 2014; 9:1209-20. [DOI: 10.2217/fmb.14.56] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT A fundamental step of Gram-positive pathogenesis is the bacterial adhesion to the host tissue involving interaction between bacterial surface molecules and host ligands. This review is focused on antivirulence compounds that target Gram-positive adhesins and on their potential development as therapeutic agents alternative or complementary to conventional antibiotics in the contrast of pathogens. In particular, compounds that target the sortase A, wall theicoic acid inhibitors, carbohydrates able to bind bacterial proteins and proteins capable of influencing the bacterial adhesion, were described. We further discuss the advantages and disadvantages of this strategy in the development of novel antimicrobials and the future perspective of this research field still at its first steps.
Collapse
Affiliation(s)
- Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| | - Maria Grazia Cusimano
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| |
Collapse
|
16
|
Kaźmierczak Z, Górski A, Dąbrowska K. Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses 2014; 6:2551-70. [PMID: 24988520 PMCID: PMC4113783 DOI: 10.3390/v6072551] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a common and often virulent pathogen in humans. This bacterium is widespread, being present on the skin and in the nose of healthy people. Staphylococcus aureus can cause infections with severe outcomes ranging from pustules to sepsis and death. The introduction of antibiotics led to a general belief that the problem of bacterial infections would be solved. Nonetheless, pathogens including staphylococci have evolved mechanisms of drug resistance. Among current attempts to address this problem, phage therapy offers a promising alternative to combat staphylococcal infections. Here, we present an overview of current knowledge on staphylococcal infections and bacteriophages able to kill Staphylococcus, including experimental studies and available data on their clinical use.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, Wroclaw 53-114, Poland.
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, Wroclaw 53-114, Poland.
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, Wroclaw 53-114, Poland.
| |
Collapse
|
17
|
A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 2014; 10:e1004089. [PMID: 24788600 PMCID: PMC4006915 DOI: 10.1371/journal.ppat.1004089] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/10/2014] [Indexed: 02/02/2023] Open
Abstract
Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization. About 20% of the human population is colonized by Staphylococcus aureus. The reservoir of S. aureus is mainly the human nose. Usually, colonization does not lead to infection and is therefore without symptoms. However, when hospitalized patients exhibit a suppressed immune system, they are at risk of getting infected by their own nasal S. aureus strain. Therefore, it is important to understand the events and mechanisms underlying colonization. Until now S. aureus nasal colonization is only partially understood. One bacterial key factor is a sugar polymer of S. aureus, termed cell wall teichoic acid (WTA), which is involved in S. aureus adhesion to cellular surfaces in the inner part of the nasal cavity. We show here that a receptor-protein, which is expressed on such cells, binds WTA and is thereby involved in adhesion of S. aureus to nasal cells. This mechanism has a strong impact on nasal colonization in an animal model that resembles the situation in the human nose. Most importantly, inhibition of WTA mediated adhesion strongly reduces nasal colonization in the animal model. Therefore we propose that targeting of this glycopolymer-receptor interaction could serve as a novel strategy to control S. aureus nasal colonization.
Collapse
|
18
|
Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014; 12:49-62. [PMID: 24336184 DOI: 10.1038/nrmicro3161] [Citation(s) in RCA: 1015] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is an important opportunistic pathogen and persistently colonizes about 20% of the human population. Its surface is 'decorated' with proteins that are covalently anchored to the cell wall peptidoglycan. Structural and functional analysis has identified four distinct classes of surface proteins, of which microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) are the largest class. These surface proteins have numerous functions, including adhesion to and invasion of host cells and tissues, evasion of immune responses and biofilm formation. Thus, cell wall-anchored proteins are essential virulence factors for the survival of S. aureus in the commensal state and during invasive infections, and targeting them with vaccines could combat S. aureus infections.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Joan A Geoghegan
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Vannakambadi K Ganesh
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
19
|
Brozyna JR, Sheldon JR, Heinrichs DE. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus. Microbiologyopen 2014; 3:182-95. [PMID: 24515974 PMCID: PMC3996567 DOI: 10.1002/mbo3.162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/24/2013] [Accepted: 12/30/2013] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus lugdunensis is both a commensal of humans and an opportunistic pathogen. Little is currently known about the molecular mechanisms underpinning the virulence of this bacterium. Here, we demonstrate that in contrast to S. aureus,S. lugdunensis makes neither staphyloferrin A (SA) nor staphyloferrin B (SB) in response to iron deprivation, owing to the absence of the SB gene cluster, and a large deletion in the SA biosynthetic gene cluster. As a result, the species grows poorly in serum-containing media, and this defect was complemented by introduction of the S. aureusSA gene cluster into S. lugdunensis. S. lugdunensis expresses the HtsABC and SirABC transporters for SA and SB, respectively; the latter gene set is found within the isd (heme acquisition) gene cluster. An isd deletion strain was significantly debilitated for iron acquisition from both heme and hemoglobin, and was also incapable of utilizing ferric-SB as an iron source, while an hts mutant could not grow on ferric-SA as an iron source. In iron-restricted coculture experiments, S. aureus significantly enhanced the growth of S. lugdunensis, in a manner dependent on staphyloferrin production by S. aureus, and the expression of the cognate transporters by S. lugdunensis.
Collapse
Affiliation(s)
- Jeremy R Brozyna
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | | | |
Collapse
|
20
|
Bello-Orti B, Costa-Hurtado M, Martinez-Moliner V, Segalés J, Aragon V. Time course Haemophilus parasuis infection reveals pathological differences between virulent and non-virulent strains in the respiratory tract. Vet Microbiol 2014; 170:430-7. [PMID: 24613292 DOI: 10.1016/j.vetmic.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/18/2022]
Abstract
Haemophilus parasuis is a common inhabitant of the upper respiratory tract of pigs and the etiological agent of Glässer's disease. However, the host-pathogen interaction remains to be well understood. In this work, 33 colostrum-deprived pigs were divided in 4 groups and each group was inoculated intranasally with a different H. parasuis strain (non-virulent strains SW114 and F9, and virulent strains Nagasaki and IT29755). Animals were necropsied at different times in order to determine the location of the bacteria in the respiratory tract of the host during infection. An immunohistochemistry method was developed to detect H. parasuis in nasal turbinates, trachea and lung. Also, the co-localization of H. parasuis with macrophages or neutrophils was examined by double immunohistochemistry and double immunofluorescence. Virulent strains showed a biofilm-like growth in nasal turbinates and trachea and were found easily in lung. Some virulent bacteria were detected in association with macrophages and neutrophils, but also inside pneumocyte-like cells. On the other hand, non-virulent strains were seldom detected in nasal turbinates and trachea, where they showed a microcolony pattern. Non-virulent strains were essentially not detected in lung. In conclusion, this work presents data showing differential localization of H. parasuis bacteria depending on their virulence. Interestingly, the intracellular location of virulent H. parasuis bacteria in non-phagocytic cells in lung could allow the persistence of the bacteria and constitute a virulence mechanism.
Collapse
Affiliation(s)
- Bernardo Bello-Orti
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Mar Costa-Hurtado
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Veronica Martinez-Moliner
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain.
| |
Collapse
|
21
|
Verhoeven PO, Gagnaire J, Botelho-Nevers E, Grattard F, Carricajo A, Lucht F, Pozzetto B, Berthelot P. Detection and clinical relevance of Staphylococcus aureus nasal carriage: an update. Expert Rev Anti Infect Ther 2014; 12:75-89. [PMID: 24308709 DOI: 10.1586/14787210.2014.859985] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus nasal carriage is a well-defined risk factor of infection with this bacterium. The increased risk of S. aureus infection in nasal carriers is supported by the fact that the strains isolated from both colonization and infection sites are indistinguishable in most of the cases. Persistent nasal carriage seems to be associated with an increased risk of infection and this status could be defined now in clinical routine by using one or two quantitative nasal samples. There is evidence for supporting the detection of nasal carriage of S. aureus in patients undergoing cardiac surgery and in those undergoing hemodialysis in order to implement decolonization measures. More studies are needed to determine which carriers have the highest risk of infection and why decolonization strategies failed to reduce S. aureus infection in some other groups of patients.
Collapse
Affiliation(s)
- Paul O Verhoeven
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, 42023 Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Askarian F, Sangvik M, Hanssen AM, Snipen L, Sollid JUE, Johannessen M. Staphylococcus aureus nasal isolates from healthy individuals cause highly variable host cell responses in vitro: the Tromsø Staph and Skin Study. Pathog Dis 2013; 70:158-66. [PMID: 24115641 DOI: 10.1111/2049-632x.12099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/30/2013] [Accepted: 06/08/2013] [Indexed: 11/30/2022] Open
Abstract
Studies on Staphylococcus aureus populations colonizing the nasal cavity reveal that some bacterial strains are more common, while others are rarely found. This study included five isolates with the most common spa types and five isolates with rare spa types from healthy population. Selected phenotypic traits and genomic content among nasal S. aureus isolates were compared. Besides the rather similar growth rates, our data revealed a high diversity among isolates; that is, in biofilm formation, the ability to attach to and be internalized in keratinocytes as well as ability to induce pro- and anti-inflammatory cytokines. The results showed that S. aureus isolates from healthy hosts are phenotypically diverse and cause highly variable host cell responses. Therefore, generalizing the results from one S. aureus isolate to all is highly questionable.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
23
|
Jansen KU, Girgenti DQ, Scully IL, Anderson AS. Vaccine review: "Staphyloccocus aureus vaccines: problems and prospects". Vaccine 2013; 31:2723-30. [PMID: 23624095 DOI: 10.1016/j.vaccine.2013.04.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is a leading cause of both healthcare- and community-associated infections globally. S. aureus exhibits diverse clinical presentations, ranging from benign carriage and superficial skin and soft tissue infections to deep wound and organ/space infections, biofilm-related prosthesis infections, life-threatening bacteremia and sepsis. This broad clinical spectrum, together with the high incidence of these disease manifestations and magnitude of the diverse populations at risk, presents a high unmet medical need and a substantial burden to the healthcare system. With the increasing propensity of S. aureus to develop resistance to essentially all classes of antibiotics, alternative strategies, such as prophylactic vaccination to prevent S. aureus infections, are actively being pursued in healthcare settings. Within the last decade, the S. aureus vaccine field has witnessed two major vaccine failures in phase 3 clinical trials designed to prevent S. aureus infections in either patients undergoing cardiothoracic surgery or patients with end-stage renal disease undergoing hemodialysis. This review summarizes the potential underlying reasons why these two approaches may have failed, and proposes avenues that may provide successful vaccine approaches to prevent S. aureus disease in the future.
Collapse
|
24
|
Holden MTG, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, Strommenger B, Layer F, Witte W, de Lencastre H, Skov R, Westh H, Zemlicková H, Coombs G, Kearns AM, Hill RLR, Edgeworth J, Gould I, Gant V, Cooke J, Edwards GF, McAdam PR, Templeton KE, McCann A, Zhou Z, Castillo-Ramírez S, Feil EJ, Hudson LO, Enright MC, Balloux F, Aanensen DM, Spratt BG, Fitzgerald JR, Parkhill J, Achtman M, Bentley SD, Nübel U. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 2013; 23:653-64. [PMID: 23299977 PMCID: PMC3613582 DOI: 10.1101/gr.147710.112] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens.
Collapse
Affiliation(s)
- Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB19 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Masclaux FG, Sakwinska O, Charrière N, Semaani E, Oppliger A. Concentration of airborne Staphylococcus aureus (MRSA and MSSA), total bacteria, and endotoxins in pig farms. ACTA ACUST UNITED AC 2013; 57:550-7. [PMID: 23293050 DOI: 10.1093/annhyg/mes098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Pigs are very often colonized by Staphylococcus aureus and transmission of such pig-associated S. aureus to humans can cause serious medical, hygiene, and economic problems. The transmission route of zoonotic pathogens colonizing farm animals to humans is not well established and bioaerosols could play an important role. The aim of this study was to assess the potential occupational risk of working with S. aureus-colonized pigs in Switzerland. We estimated the airborne contamination by S. aureus in 37 pig farms (20 nursery and 17 fattening units; 25 in summer, 12 in winter). Quantification of total airborne bacterial DNA, airborne Staphylococcus sp. DNA, fungi, and airborne endotoxins was also performed. In this experiment, the presence of cultivable airborne methicillin-resistant S. aureus (MRSA) CC398 in a pig farm in Switzerland was reported for the first time. Airborne methicillin-sensitive S. aureus (MSSA) was found in ~30% of farms. The average airborne concentration of DNA copy number of total bacteria and Staphylococcus sp. measured by quantitative polymerase chain reaction was very high, respectively reaching values of 75 (± 28) × 10(7) and 35 (± 9.8) × 10(5) copy numbers m(-3) in summer and 96 (± 19) × 10(8) and 40 (± 12) × 10(6) copy numbers m(-3) in winter. Total mean airborne concentrations of endotoxins (1298 units of endotoxin m(-3)) and fungi (5707 colony-forming units m(-3)) exceeded the Swiss recommended values and were higher in winter than in summer. In conclusion, Swiss pig farmers will have to tackle a new emerging occupational risk, which could also have a strong impact on public health. The need to inform pig farmers about biological occupational risks is therefore crucial.
Collapse
Affiliation(s)
- Frederic G Masclaux
- Institut universitaire romand de Santé au Travail, (Institute for Work and Health), University of Lausanne and Geneva, rue du Bugnon 21, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Abstract
A novel lytic bacteriophage, SA11, infecting Staphylococcus aureus was isolated, and the whole genome was sequenced. It belongs to the siphoviridae based on electron microscopic observation. It has a linear double-stranded DNA genome of 136,326 bp. Genomic analysis showed that it is distantly related to Staphylococcus phages A5W, K, ISP, Sb-1, and G1.
Collapse
|
27
|
Anderson AS, Miller AA, Donald RGK, Scully IL, Nanra JS, Cooper D, Jansen KU. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 2012; 8:1585-94. [PMID: 22922765 PMCID: PMC3601133 DOI: 10.4161/hv.21872] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus aureus is a major cause of healthcare-associated infections and is responsible for a substantial burden of disease in hospitalized patients. Despite increasingly rigorous infection control guidelines, the prevalence and corresponding negative impact of S. aureus infections remain considerable. Difficulties in controlling S. aureus infections as well as the associated treatment costs are exacerbated by increasing rates of resistance to available antibiotics. Despite ongoing efforts over the past 20 years, no licensed S. aureus vaccine is currently available. However, learnings from past clinical failures of vaccine candidates and a better understanding of the immunopathology of S. aureus colonization and infection have aided in the design of new vaccine candidates based on multiple important bacterial pathogenesis mechanisms. This review outlines important considerations in designing a vaccine for the prevention of S. aureus disease in healthcare settings.
Collapse
|