1
|
Cheong S, Aguirre-Siliezar K, Williams SR, Gaudin ACM, Pagliari P, Jay-Russell MT, Busch R, Maga EA, Pires AFA. Exploring the impact of grazing on fecal and soil microbiome dynamics in small ruminants in organic crop-livestock integration systems. PLoS One 2025; 20:e0316616. [PMID: 39823448 PMCID: PMC11741640 DOI: 10.1371/journal.pone.0316616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/19/2025] Open
Abstract
In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E. coli (gEc) in fecal and soil microbiomes. We collected samples from field trials of three treatments (fallow, a cover crop without grazing (non-graze CC), and a cover crop with grazing (graze CC)) grazed by sheep or goats between 2020 and 2022. No significant differences in non-O157 STEC prevalence were found between pre- and post-grazing fecal samples in either sheep or goats. However, gEc was more prevalent in graze CC soils compared to fallow or non-graze CC soils. Alpha diversity was influenced by the species of grazing animals and the region, as sheep fecal samples and soil from the California trials had greater alpha diversity than goat fecal samples and soil from the Minnesota trials. Beta diversity in sheep fecal samples differed by the presence or absence of non-O157 STEC, while in goat fecal samples, it differed between pre- and post-grazing events. Actinobacteria was negatively associated with non-O157 STEC presence in sheep fecal samples and decreased in post-grazing goat fecal samples. Grazing did not significantly affect soil microbial diversity or composition, and no interaction was observed between post-grazing fecal samples and the graze CC soil. The results suggest that soil contamination by foodborne pathogens and microbiome dynamics in ICLS are influenced by grazing animal species and regional factors, with interactions between fecal and soil microbial communities having minimal impact.
Collapse
Affiliation(s)
- Sejin Cheong
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America
| | - Kimberly Aguirre-Siliezar
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America
| | - Sequoia R. Williams
- Department of Plant Sciences, University of California-Davis, Davis, Davis, California, United States of America
| | - Amélie C. M. Gaudin
- Department of Plant Sciences, University of California-Davis, Davis, Davis, California, United States of America
| | - Paulo Pagliari
- Department of Soil, Water and Climate, College of Food, Agriculture and Natural Resources Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michele T. Jay-Russell
- Western Center for Food Safety, University of California-Davis, Davis, Davis, California, United States of America
| | - Roselle Busch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America
| | - Elizabeth A. Maga
- Department of Animal Science, University of California-Davis, Davis, Davis, California, United States of America
| | - Alda F. A. Pires
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America
| |
Collapse
|
2
|
Bogut A, Kołodziejek A, Minnich SA, Hovde CJ. CRISPR/Cas Systems as Diagnostic and Potential Therapeutic Tools for Enterohemorrhagic Escherichia coli. Arch Immunol Ther Exp (Warsz) 2025; 73:aite-2025-0003. [PMID: 39773393 DOI: 10.2478/aite-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Following its discovery as an adaptive immune system in prokaryotes, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been developed into a multifaceted genome editing tool. This review compiles findings aimed at implementation of this technology for selective elimination or attenuation of enterohemorrhagic Escherichia coli (EHEC). EHEC are important zoonotic foodborne pathogens that cause hemorrhagic colitis and can progress to the life-threatening hemolytic uremic syndrome (HUS). Advancements in the application of CRISPR methodology include laboratory detection and identification of EHEC, genotyping, screening for pathogenic potential, and engineering probiotics to reduce microbial shedding by cattle, the primary source of human infection. Genetically engineered phages or conjugative plasmids have been designed to target and inactivate genes whose products are critical for EHEC virulence.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Anna Kołodziejek
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A Minnich
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Carolyn J Hovde
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
3
|
Edison LK, Kudva IT, Kariyawasam S. Host-Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms 2024; 12:2009. [PMID: 39458318 PMCID: PMC11509540 DOI: 10.3390/microorganisms12102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a significant public health threat due to its ability to cause severe gastrointestinal diseases in humans, ranging from diarrhea to life-threatening conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). As the primary reservoir of STEC, cattle play a crucial role in its transmission through contaminated food and water, posing a considerable risk to human health. This comprehensive review explores host-pathogen interactions during STEC colonization of the bovine gut, focusing on the role of gut microbiota in modulating these interactions and influencing disease outcomes. We integrated findings from published transcriptomics, proteomics, and genomics studies to provide a thorough understanding of how STEC adheres to and colonizes the bovine gastrointestinal tract. The insights from this review offer potential avenues for the development of novel preventative and therapeutic strategies aimed at controlling STEC colonization in cattle, thereby reducing the risk of zoonotic transmission.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
4
|
Calvigioni M, Mazzantini D, Celandroni F, Ghelardi E. Animal and In Vitro Models as Powerful Tools to Decipher the Effects of Enteric Pathogens on the Human Gut Microbiota. Microorganisms 2023; 12:67. [PMID: 38257894 PMCID: PMC10818369 DOI: 10.3390/microorganisms12010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Examining the interplay between intestinal pathogens and the gut microbiota is crucial to fully comprehend the pathogenic role of enteropathogens and their broader impact on human health. Valid alternatives to human studies have been introduced in laboratory practice to evaluate the effects of infectious agents on the gut microbiota, thereby exploring their translational implications in intestinal functionality and overall health. Different animal species are currently used as valuable models for intestinal infections. In addition, considering the recent advances in bioengineering, futuristic in vitro models resembling the intestinal environment are also available for this purpose. In this review, the impact of the main human enteropathogens (i.e., Clostridioides difficile, Campylobacter jejuni, diarrheagenic Escherichia coli, non-typhoidal Salmonella enterica, Shigella flexneri and Shigella sonnei, Vibrio cholerae, and Bacillus cereus) on intestinal microbial communities is summarized, with specific emphasis on results derived from investigations employing animal and in vitro models.
Collapse
Affiliation(s)
| | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.C.)
| |
Collapse
|
5
|
Auvray F, Bièche-Terrier C, Um MM, Dupouy V, Nzuzi N, David L, Allais L, Drouet M, Oswald E, Bibbal D, Brugère H. Prevalence and characterization of the seven major serotypes of Shiga toxin-producing Escherichia coli (STEC) in veal calves slaughtered in France. Vet Microbiol 2023; 282:109754. [PMID: 37116423 DOI: 10.1016/j.vetmic.2023.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) belonging to the "top 7″ serotypes (i.e. O157:H7, O26:H11, O45:H2, O103:H2, O111:H8, O121:H19 and O145:H28) are considered as the main pathogenic enterohemorrhagic E. coli (EHEC). As ruminants, including calves, are a reservoir of pathogenic STEC, we investigated the prevalence, major virulence genes and genetic relatedness of top7 STEC in veal calves slaughtered in France, through the analysis of 500 fecal samples collected over one year. Thirty top7 STEC isolates were recovered from 28 calves. The two serotypes O103:H2 and O26:H11 accounted for 73% of STEC strains, followed by O145:H28 and O157:H7. STEC super-shedding levels were identified for two calves carrying STEC O103:H2 and O157:H7, respectively. Thirty-nine atypical enteropathogenic E. coli (aEPEC) were also recovered from calves. Overall, a prevalence of 5.6% top7 STEC-positive calves was found, thus higher than that previously determined for the French slaughtered adult cattle (1.8%), confirming the impact of animals age on STEC carriage. Most top7 STEC strains carried the stx1a subtype suggesting a low pathogenicity for humans. Seasonal variation in STEC carriage was also observed, with two peaks of higher prevalence during spring and fall. Genetic similarity of top7 STEC isolates was found for calves originating from the same fattening facilities, reflecting STEC circulation between animals kept in groups. This study indicates that veal calves grown for meat production are at higher risk of shedding top7 STEC compared to adult cattle. They thus represent ideal targets for the implementation of farm interventions aimed at reducing STEC burden in cattle and the food chain.
Collapse
Affiliation(s)
- Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| | | | - Maryse Michèle Um
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Nathalie Nzuzi
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Laure David
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Laurent Allais
- Institut de l'Elevage, Laboratoire Analyse et Technologie des Produits, Villers Bocage, France
| | - Marie Drouet
- Institut de l'Elevage, Service Qualité des Viandes, Villers Bocage, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Delphine Bibbal
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; InTheRes, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Hubert Brugère
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
6
|
Persad AK, Rajashekara G, LeJeune JT. Shiga toxin (stx) encoding genes in sheep and goats reared in Trinidad and Tobago. PLoS One 2022; 17:e0277564. [PMID: 36378686 PMCID: PMC9665368 DOI: 10.1371/journal.pone.0277564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/29/2022] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is estimated to cause over two million cases of human disease annually. Trinidad and Tobago is one of the largest livestock producer and consumer of sheep and goat meat in the Caribbean, however, the potential role of these animals in the epidemiology of STEC infections has not been previously described. To fill this critical gap in knowledge, the prevalence of Shiga toxin genes (stx1 and stx2) shed in the faeces of healthy sheep (n = 204) and goats (n = 105) in Trinidad was investigated. Based on PCR screening, goats had a higher stx prevalence than sheep (46% vs 35%, P = 0.06). Most of the recovered STEC isolates were positive for stx1 only; and only three isolates were positive for the eae gene. None of the recovered isolates belonged to the O157 serogroup. In both species, the prevalence of stx was higher in young animals versus older animals. Sheep reared on deep litter flooring (43%) had a higher prevalence than sheep reared other flooring types, however this was not the same for goats. The presence of cows on the same premise was not an associated predictor for STEC carriage in sheep or goats. This study demonstrates that although sheep and goats in Trinidad are reservoirs for stx-positive E. coli isolates, no fecal samples tested positive for O157 STEC, harbored. Furthermore, it appears that non-O157 stx-positive isolates harbored by these animals do not pose a significant threat to human health.
Collapse
Affiliation(s)
- Anil K. Persad
- Center for Food Animal Health, Ohio Agriculture Research and Development Center, The Ohio State University, Wooster, Ohio, United State of America
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, Eric Williams Medical Sciences Complex, Mt. Hope, Trinidad and Tobago, West Indies
| | - Gireesh Rajashekara
- Center for Food Animal Health, Ohio Agriculture Research and Development Center, The Ohio State University, Wooster, Ohio, United State of America
| | - Jeffrey T. LeJeune
- Center for Food Animal Health, Ohio Agriculture Research and Development Center, The Ohio State University, Wooster, Ohio, United State of America
- * E-mail:
| |
Collapse
|
7
|
Kempf F, La Ragione R, Chirullo B, Schouler C, Velge P. Super Shedding in Enteric Pathogens: A Review. Microorganisms 2022; 10:2101. [PMID: 36363692 PMCID: PMC9692634 DOI: 10.3390/microorganisms10112101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/24/2024] Open
Abstract
Super shedding occurs when a small number of individuals from a given host population shed high levels of a pathogen. Beyond this general definition, various interpretations of the shedding patterns have been proposed to identify super shedders, leading to the description of the super shedding phenomenon in a wide range of pathogens, in particular enteric pathogens, which are of considerable interest. Several underlying mechanisms may explain this observation, including factors related to the environment, the gut microbiota, the pathogen itself (i.e., genetic polymorphism), and the host (including immune factors). Moreover, data suggest that the interplay of these parameters, in particular at the host-pathogen-gut microbiota interface, is of crucial importance for the determination of the super shedding phenotype in enteric pathogens. As a phenomenon playing an important role in the epidemics of enteric diseases, the evidence of super shedding has highlighted the need to develop various control strategies.
Collapse
Affiliation(s)
- Florent Kempf
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Barbara Chirullo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 000161 Rome, Italy
| | | | - Philippe Velge
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| |
Collapse
|
8
|
Withenshaw SM, Smith RP, Davies R, Smith AEO, Gray E, Rodgers J. A systematized review and qualitative synthesis of potential risk factors associated with the occurrence of non‐O157 Shiga toxin‐producing
Escherichia coli
(STEC) in the primary production of cattle. Compr Rev Food Sci Food Saf 2022; 21:2363-2390. [DOI: 10.1111/1541-4337.12929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Susan M. Withenshaw
- Department of Epidemiological Sciences Animal and Plant Health Agency – Weybridge New Haw UK
| | - Richard P. Smith
- Department of Epidemiological Sciences Animal and Plant Health Agency – Weybridge New Haw UK
| | - Rob Davies
- Department of Bacteriology Animal and Plant Health Agency – Weybridge New Haw UK
| | - Alice E. O. Smith
- Department of Epidemiological Sciences Animal and Plant Health Agency – Weybridge New Haw UK
| | - Elizabeth Gray
- Department of Epidemiological Sciences Animal and Plant Health Agency – Weybridge New Haw UK
| | - John Rodgers
- Department of Bacteriology Animal and Plant Health Agency – Weybridge New Haw UK
| |
Collapse
|
9
|
Vasco K, Nohomovich B, Singh P, Venegas-Vargas C, Mosci RE, Rust S, Bartlett P, Norby B, Grooms D, Zhang L, Manning SD. Characterizing the Cattle Gut Microbiome in Farms with a High and Low Prevalence of Shiga Toxin Producing Escherichia coli. Microorganisms 2021; 9:microorganisms9081737. [PMID: 34442815 PMCID: PMC8399351 DOI: 10.3390/microorganisms9081737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Cattle are the main reservoirs of Shiga toxin producing Escherichia coli (STEC), a major foodborne pathogen associated with acute enteric disease and hemolytic-uremic syndrome in humans. A total of 397 beef and dairy cattle from 5 farms were included in this study, of which 660 samples were collected for 16S rRNA gene sequencing. The microbiota of farms with a high-STEC prevalence (HSP) had greater richness compared to those of farms with a low-STEC prevalence (LSP). Longitudinal analyses showed STEC-shedders from LSP farms had higher microbiome diversity; meanwhile, changes in the microbiome composition in HSP farms were independent of the STEC shedding status. Most of the bacterial genera associated with STEC shedding in dairy farms were also correlated with differences in the percentage of forage in diet and risk factors of STEC carriage such as days in milk, number of lactations, and warm temperatures. Identifying factors that alter the gut microbiota and enable STEC colonization in livestock could lead to novel strategies to prevent fecal shedding and the subsequent transmission to humans.
Collapse
Affiliation(s)
- Karla Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.V.); (B.N.); (P.S.); (R.E.M.); (L.Z.)
| | - Brian Nohomovich
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.V.); (B.N.); (P.S.); (R.E.M.); (L.Z.)
| | - Pallavi Singh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.V.); (B.N.); (P.S.); (R.E.M.); (L.Z.)
| | - Cristina Venegas-Vargas
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (C.V.-V.); (P.B.); (B.N.); (D.G.)
| | - Rebekah E. Mosci
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.V.); (B.N.); (P.S.); (R.E.M.); (L.Z.)
| | - Steven Rust
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Paul Bartlett
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (C.V.-V.); (P.B.); (B.N.); (D.G.)
| | - Bo Norby
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (C.V.-V.); (P.B.); (B.N.); (D.G.)
| | - Daniel Grooms
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (C.V.-V.); (P.B.); (B.N.); (D.G.)
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.V.); (B.N.); (P.S.); (R.E.M.); (L.Z.)
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.V.); (B.N.); (P.S.); (R.E.M.); (L.Z.)
- Correspondence:
| |
Collapse
|
10
|
Lee KS, Jeong YJ, Lee MS. Escherichia coli Shiga Toxins and Gut Microbiota Interactions. Toxins (Basel) 2021; 13:toxins13060416. [PMID: 34208170 PMCID: PMC8230793 DOI: 10.3390/toxins13060416] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are enterohemorrhagic bacteria that induce hemorrhagic colitis. This, in turn, may result in potentially lethal complications, such as hemolytic uremic syndrome (HUS), which is characterized by thrombocytopenia, acute renal failure, and neurological abnormalities. Both species of bacteria produce Shiga toxins (Stxs), a phage-encoded exotoxin inhibiting protein synthesis in host cells that are primarily responsible for bacterial virulence. Although most studies have focused on the pathogenic roles of Stxs as harmful substances capable of inducing cell death and as proinflammatory factors that sensitize the host target organs to damage, less is known about the interface between the commensalism of bacterial communities and the pathogenicity of the toxins. The gut contains more species of bacteria than any other organ, providing pathogenic bacteria that colonize the gut with a greater number of opportunities to encounter other bacterial species. Notably, the presence in the intestines of pathogenic EHEC producing Stxs associated with severe illness may have compounding effects on the diversity of the indigenous bacteria and bacterial communities in the gut. The present review focuses on studies describing the roles of Stxs in the complex interactions between pathogenic Shiga toxin-producing E. coli, the resident microbiome, and host tissues. The determination of these interactions may provide insights into the unresolved issues regarding these pathogens.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Yu-Jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (Y.-J.J.); (M.-S.L.)
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (Y.-J.J.); (M.-S.L.)
| |
Collapse
|
11
|
Changes in STEC and bacterial communities during enrichment of manufacturing beef in selective and non-selective media. Food Microbiol 2020; 96:103711. [PMID: 33494892 DOI: 10.1016/j.fm.2020.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022]
Abstract
Detection and isolation of Shiga toxin-producing Escherichia coli (STEC) from manufacturing beef is challenging and it may be affected by microbial changes during enrichment. This study was designed to understand population changes during enrichment of beef from an integrated (Samples A and B) and a fragmented (Samples C and D) abattoir. The samples were enriched in buffered peptone water (BPW), Assurance GDS MPX top 7 STEC mEHEC®, BAX® E. coli O157:H7 MP and PDX-STEC media then were processed for 16 S rRNA sequencing. Escherichia dominated Sample B enrichment broths regardless of the media used (71.6-97.9%) but only in mEHEC broth (79.6%) of Sample A. Escherichia was dominant in Sample C in mEHEC (95.2%) and PDX-STEC (99.2%) broths but less in BPW (58.5%) and MP (64.9%) broths. In Sample D, Clostridium dominated in mEHEC (65.5%), MP (80.2%) and PDX-STEC (90.6%) broths. O157 STEC was isolated from Sample C only. The study suggested that MP may not be as effective as mEHEC and PDX-STEC and that Clostridium could interfere with enrichment of Escherichia. Understanding the ecological changes during enrichment provides meaningful insight to optimising the enrichment protocol for STEC and subsequently enhance the efficiency of STEC detection.
Collapse
|
12
|
Engelen F, Thiry D, Devleesschauwer B, Mainil J, De Zutter L, Cox E. Occurrence of 'gang of five' Shiga toxin-producing Escherichia coli serogroups on Belgian dairy cattle farms by overshoe sampling. Lett Appl Microbiol 2020; 72:415-419. [PMID: 33277712 DOI: 10.1111/lam.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens responsible for global outbreaks. This study was conducted to investigate the occurrence of 'gang of five' STEC serogroups (O26, O103, O111, O145, O157) on Belgian dairy cattle farms by overshoe (OVS) sampling, and to evaluate the presence of virulence genes in the obtained isolates. A total of 88 OVS, collected from the pen beddings of 19 Belgian dairy cattle farms, were selectively enriched in mTSBn, followed by immunomagnetic separation and plating onto CT-SMAC for O157 STEC isolation, as well as in Brila broth, followed by a selective acid treatment and plating onto CHROMagarTM STEC and chromIDTM EHEC for non-O157 STEC isolation. Overall, 11 of 19 farms (58%) tested positive for presence of 'gang of five' STEC. O26 STEC was most frequently isolated from OVS (11/88; 12·5%), followed by O157 (10/88; 11·5%), O145 (3/88; 3·5%) and O103 (3/88; 3·5%). Additionally, 35% of the OVS collected from pens housing young cattle 1-24 months of age tested positive for 'gang of five' STEC, indicating that this age category is more likely to harbour STEC compared to new-born and adult cattle. Importantly, half of the obtained 'gang of five' STEC isolates (48%) possessed the eae and stx2 gene, suggesting a high pathogenic potential to humans.
Collapse
Affiliation(s)
- F Engelen
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University (UGent), Merelbeke, Belgium
| | - D Thiry
- Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège (ULiège), Liège, Belgium
| | - B Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.,Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - J Mainil
- Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège (ULiège), Liège, Belgium
| | - L De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University (UGent), Merelbeke, Belgium
| |
Collapse
|
13
|
Kang S, Ravensdale JT, Coorey R, Dykes GA, Barlow RS. Analysis of Bacterial Diversity in Relation to the Presence of the Top 7 Shiga Toxin-Producing Escherichia coli throughout Australian Beef Abattoirs. J Food Prot 2020; 83:1812-1821. [PMID: 32502254 DOI: 10.4315/jfp-20-109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/02/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT There is increasing evidence that diversity changes in bacterial communities of beef cattle correlate to the presence of Shiga toxin-producing Escherichia coli (STEC). However, studies that found an association between STEC and bacterial diversity have been focused on preslaughter stages in the beef supply chain. This study was designed to test a hypothesis that there are no differences in bacterial diversity between samples with and those without the presence of the top 7 STEC (O26, O45, O103, O111, O121, O145, and O157) throughout processing in an integrated (abattoir A) and a fragmented (abattoir B) Australian beef abattoir. Slaughter and boning room surface samples from each abattoir were analyzed using 16S rRNA amplicon sequencing and tested for the top 7 STEC following the Food Safety and Inspection Service protocol. Potential positives through slaughter were similar between the abattoirs (64 to 81%). However, abattoir B had substantially reduced potential positives in the boning room compared with abattoir A (abattoir A: 23 and 48%; abattoir B: 2 and 7%). Alpha diversity between the sample groups was not significantly different (P > 0.05) regardless of different STEC markers. Nonmetric multidimensional scaling of slaughter samples showed that the bacterial composition in fecal and hide samples shared the least similarity with the communities in carcass and environmental samples. Surface samples from slaughter (carcass and environmental) and boning (carcass, beef trim, and environmental) all appeared randomly plotted on the scale. This indicated that the STEC presence also did not have a significant effect (P > 0.05) on beta diversity. Although presence of STEC appeared to correlate with changes in diversity of fecal and hide bacterial communities in previous studies, it did not appear to have the same effect on other samples throughout processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Sanga Kang
- School of Public Health, Queensland, Australia.,CSIRO Agriculture and Food, Coopers Plains, Queensland, Australia.,(ORCID: https://orcid.org/0000-0002-9074-5043 [S.K.])
| | | | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | | | - Robert S Barlow
- CSIRO Agriculture and Food, Coopers Plains, Queensland, Australia
| |
Collapse
|
14
|
Sapountzis P, Segura A, Desvaux M, Forano E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8060877. [PMID: 32531983 PMCID: PMC7355788 DOI: 10.3390/microorganisms8060877] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Correspondence:
| | - Audrey Segura
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| |
Collapse
|
15
|
Moore RM, Harrison AO, McAllister SM, Polson SW, Wommack KE. Iroki: automatic customization and visualization of phylogenetic trees. PeerJ 2020; 8:e8584. [PMID: 32149022 PMCID: PMC7049256 DOI: 10.7717/peerj.8584] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 12/26/2022] Open
Abstract
Phylogenetic trees are an important analytical tool for evaluating community diversity and evolutionary history. In the case of microorganisms, the decreasing cost of sequencing has enabled researchers to generate ever-larger sequence datasets, which in turn have begun to fill gaps in the evolutionary history of microbial groups. However, phylogenetic analyses of these types of datasets create complex trees that can be challenging to interpret. Scientific inferences made by visual inspection of phylogenetic trees can be simplified and enhanced by customizing various parts of the tree. Yet, manual customization is time-consuming and error prone, and programs designed to assist in batch tree customization often require programming experience or complicated file formats for annotation. Iroki, a user-friendly web interface for tree visualization, addresses these issues by providing automatic customization of large trees based on metadata contained in tab-separated text files. Iroki’s utility for exploring biological and ecological trends in sequencing data was demonstrated through a variety of microbial ecology applications in which trees with hundreds to thousands of leaf nodes were customized according to extensive collections of metadata. The Iroki web application and documentation are available at https://www.iroki.net or through the VIROME portal http://virome.dbi.udel.edu. Iroki’s source code is released under the MIT license and is available at https://github.com/mooreryan/iroki.
Collapse
Affiliation(s)
- Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| | - Amelia O Harrison
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States of America
| | - Sean M McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States of America
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| | - K Eric Wommack
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
16
|
|
17
|
Stenkamp-Strahm C, Lombard J, Magnuson R, Linke L, Magzamen S, Urie N, Shivley C, McConnel C. Preweaned heifer management on US dairy operations: Part IV. Factors associated with the presence of Escherichia coli O157 in preweaned dairy heifers. J Dairy Sci 2018; 101:9214-9228. [DOI: 10.3168/jds.2018-14659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 01/03/2023]
|
18
|
Stenkamp-Strahm C, McConnel C, Magzamen S, Abdo Z, Reynolds S. Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cows. J Appl Microbiol 2018; 124:881-898. [PMID: 29280543 PMCID: PMC9491513 DOI: 10.1111/jam.13679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
AIMS Dairy cattle shed pathogenic Escherichia coli O157 (O157) in faeces, playing a role in human exposure. We aimed to measure faecal microbial communities in early lactation dairy cattle, and model outcomes with O157 shedding metrics. METHODS AND RESULTS Daily faecal samples were collected from 40 cattle on two Colorado dairies for five consecutive days, and characterized for O157. 16S rRNA gene sequencing was used to measure sample-level microbial communities. Alpha-diversity metrics were associated with O157 outcomes via regression modelling, adjusting for confounders. Differential abundance of taxa were identified between O157(+) and O157(-) samples and between shedding days of individuals, using matched Wilcoxon rank-sum tests, zero-inflated Gaussian (ZIG) regression and negative binomial regression. After removing an outlier, multi-day and intermittently shedding cows had lower average richness compared to those that never shed. ZIG modelling revealed Bacillus coagulans to be more abundant in O157(-) samples, while Moryella were more abundant in O157(+) samples. Negative binomial models and Wilcoxon tests revealed no differentially abundant taxa between O157(+) vs O157(-) samples, or between shedding days of individuals. CONCLUSIONS Microbial diversity and some taxa may be influenced by or affect O157 shedding by dairy cattle. SIGNIFICANCE AND IMPACT OF THE STUDY If future work corroborates these findings, dairy cow microbial community changes may be used to guide on-farm strategies that mitigate O157 dissemination, protecting the human food chain.
Collapse
Affiliation(s)
- C Stenkamp-Strahm
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - C McConnel
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - S Magzamen
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Z Abdo
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - S Reynolds
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
19
|
Delgado ML, Singh P, Funk JA, Moore JA, Cannell EM, Kanesfsky J, Manning SD, Scribner KT. Intestinal Microbial Community Dynamics of White-Tailed Deer (Odocoileus virginianus) in an Agroecosystem. MICROBIAL ECOLOGY 2017; 74:496-506. [PMID: 28293696 DOI: 10.1007/s00248-017-0961-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The intestinal microbiota has important functions that contribute to host health. The compositional dynamics of microbial communities are affected by many factors, including diet and presence of pathogens. In contrast to humans and domestic mammals, the composition and seasonal dynamics of intestinal microbiota of wildlife species remain comparatively understudied. White-tailed deer (Odocoileus virginianus) is an ecologically and economically important wildlife species that inhabits agricultural ecosystems and is known to be a reservoir of enteric pathogens. Nevertheless, there is a lack of knowledge of white-tailed deer intestinal microbiota diversity and taxonomic composition. This study's first objective was to characterize and compare the intestinal microbiota of 66 fecal samples from white-tailed deer collected during two sampling periods (March and June) using 16S rDNA pyrosequencing. Associations between community diversity and composition and factors including season, sex, host genetic relatedness, and spatial location were quantified. Results revealed that white-tailed deer intestinal microbiota was predominantly comprised of phyla Firmicutes and Proteobacteria, whose relative frequencies varied significantly between sampling periods. The second objective was to examine the associations between the presence of Escherichia coli and Salmonella, and microbiota composition and diversity. Results indicated that relative abundance of some microbial taxa varied when a pathogen was present. This study provides insights into microbial compositional dynamics of a wildlife species inhabiting coupled natural and agricultural landscapes. Data focus attention on the high prevalence of Proteobacteria particularly during the summer and highlight the need for future research regarding the role of white-tailed deer as a natural pathogen reservoir in agroecosystems.
Collapse
Affiliation(s)
- M Lisette Delgado
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd, East Lansing, MI, 48824, USA.
| | - Pallavi Singh
- Department of Microbiology and Molecular Genetics, Michigan State University, 194 Food Safety & Toxicology Building, East Lansing, MI, 48824, USA
| | - Julie A Funk
- College of Veterinary Medicine, Michigan State University, 736 Wilson Rd, East Lansing, MI, 48824, USA
| | - Jennifer A Moore
- Department of Biology, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401, USA
| | - Emily M Cannell
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd, East Lansing, MI, 48824, USA
| | - Jeannette Kanesfsky
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd, East Lansing, MI, 48824, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, 194 Food Safety & Toxicology Building, East Lansing, MI, 48824, USA
| | - Kim T Scribner
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd, East Lansing, MI, 48824, USA
| |
Collapse
|
20
|
Stein RA, Katz DE. Escherichia coli, cattle and the propagation of disease. FEMS Microbiol Lett 2017; 364:3059138. [PMID: 28333229 PMCID: PMC7108533 DOI: 10.1093/femsle/fnx050] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Several early models describing host–pathogen interaction have assumed that each individual host has approximately the same likelihood of becoming infected or of infecting others. More recently, a concept that has been increasingly emphasized in many studies is that for many infectious diseases, transmission is not homogeneous but highly skewed at the level of populations. In what became known as the ‘20/80 rule’, about 20% of the hosts in a population were found to contribute to about 80% of the transmission potential. These heterogeneities have been described for the interaction between many microorganisms and their human or animal hosts. Several epidemiological studies have reported transmission heterogeneities for Escherichia coli by cattle, a phenomenon with far-reaching agricultural, medical and public health implications. Focusing on E. coli as a case study, this paper will describe super-spreading and super-shedding by cattle, review the main factors that shape these transmission heterogeneities and examine the interface with human health. Escherichia coli super-shedding and super-spreading by cattle are shaped by microorganism-specific, cattle-specific and environmental factors. Understanding the factors that shape heterogeneities in E. coli dispersion by cattle and the implications for human health represent key components that are critical for targeted infection control initiatives.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Department of Natural Sciences, LaGuardia Community College, City University of New York, Long Island City, NY 11101, USA
| | - David E Katz
- Department of Internal Medicine, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem 91031, Israel
| |
Collapse
|
21
|
Cáceres ME, Etcheverría AI, Fernández D, Rodríguez EM, Padola NL. Variation in the Distribution of Putative Virulence and Colonization Factors in Shiga Toxin-Producing Escherichia coli Isolated from Different Categories of Cattle. Front Cell Infect Microbiol 2017; 7:147. [PMID: 28503491 PMCID: PMC5408013 DOI: 10.3389/fcimb.2017.00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are pathogens of significant public health concern. Several studies have confirmed that cattle are the main reservoir of STEC in Argentina and other countries. Although Shiga toxins represent the primary virulence factors of STEC, the adherence and colonization of the gut are also important in the pathogenesis of the bacteria. The aim of this study was to analyze and to compare the presence of putative virulence factors codified in plasmid -katP, espP, subA, stcE- and adhesins involved in colonization of cattle -efa1, iha- in 255 native STEC strains isolated from different categories of cattle from different production systems. The most prevalent gene in all strains was espP, and the less prevalent was stcE. katP was highly detected in strains isolated from young and rearing calves (33.3%), while subA was predominant in those isolated from adults (71.21%). Strains from young calves showed the highest percentage of efa1 (72.46%), while iha showed a high distribution in strains from rearing calves and adults (87.04 and 98.48% respectively). It was observed that espP and iha were widely distributed throughout all strains, whereas katP, stcE, and efa1 were more associated with the presence of eae and subA with the eae-negative strains. A great proportion of eae-negative strains were isolated from adults -dairy and grazing farms- and from rearing calves -dairy and feedlot-, while mostly of the eae-positive strains were isolated from dairy young calves. Data exposed indicate a correlation between the category of the animal and the production systems with the presence or absence of several genes implicated in adherence and virulence of STEC.
Collapse
Affiliation(s)
- María E Cáceres
- Laboratorio de Inmunoquímica y Biotecnología, Departamento de Sanidad Animal y Medicina Preventiva, Centro de Investigación Veterinaria Tandil, CONICET, CICPBATandil, Argentina
| | - Analía I Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Departamento de Sanidad Animal y Medicina Preventiva, Centro de Investigación Veterinaria Tandil, CONICET, CICPBATandil, Argentina
| | - Daniel Fernández
- Laboratorio de Inmunoquímica y Biotecnología, Departamento de Sanidad Animal y Medicina Preventiva, Facultad de Ciencias VeterinariasTandil, Argentina
| | - Edgardo M Rodríguez
- Área de Bioestadística, Departamento Sanidad Animal y Medicina Preventiva, Centro de Investigación Veterinaria, Facultad de Ciencias VeterinariasTandil, Argentina
| | - Nora L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Departamento de Sanidad Animal y Medicina Preventiva, Centro de Investigación Veterinaria Tandil, CONICET, CICPBATandil, Argentina
| |
Collapse
|
22
|
Dong HJ, Kim W, An JU, Kim J, Cho S. The Fecal Microbial Communities of Dairy Cattle Shedding Shiga Toxin–Producing Escherichia coli or Campylobacter jejuni. Foodborne Pathog Dis 2016; 13:502-8. [DOI: 10.1089/fpd.2016.2121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Hee-Jin Dong
- BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Woohyun Kim
- BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jae-Uk An
- BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Junhyung Kim
- BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Seongbeom Cho
- BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Chopyk J, Moore RM, DiSpirito Z, Stromberg ZR, Lewis GL, Renter DG, Cernicchiaro N, Moxley RA, Wommack KE. Presence of pathogenic Escherichia coli is correlated with bacterial community diversity and composition on pre-harvest cattle hides. MICROBIOME 2016; 4:9. [PMID: 27000779 PMCID: PMC4802634 DOI: 10.1186/s40168-016-0155-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/10/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Since 1982, specific serotypes of Shiga toxin-producing Escherichia coli (STEC) have been recognized as significant foodborne pathogens acquired from contaminated beef and, more recently, other food products. Cattle are the major reservoir hosts of these organisms, and while there have been advancements in food safety practices and industry standards, STEC still remains prevalent within beef cattle operations with cattle hides implicated as major sources of carcass contamination. To investigate whether the composition of hide-specific microbial communities are associated with STEC prevalence, 16S ribosomal RNA (rRNA) bacterial community profiles were obtained from hide and fecal samples collected from a large commercial feedlot over a 3-month period. These community data were examined amidst an extensive collection of prevalence data on a subgroup of STEC that cause illness in humans, referred to as enterohemorrhagic E. coli (EHEC). Fecal 16S rRNA gene OTUs (operational taxonomic units) were subtracted from the OTUs found within each hide 16S rRNA amplicon library to identify hide-specific bacterial populations. RESULTS Comparative analysis of alpha diversity revealed a significant correlation between low bacterial diversity and samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups: O26, O111, O103, O121, O45, and O145. This trend occurred regardless of diversity metric or fecal OTU presence. The number of EHEC serogroups present in the samples had a compounding effect on the inverse relationship between pathogen presence and bacterial diversity. Beta diversity data showed differences in bacterial community composition between samples containing O157 and non-O157 populations, with certain OTUs demonstrating significant changes in relative abundance. CONCLUSIONS The cumulative prevalence of the targeted EHEC serogroups was correlated with low bacterial community diversity on pre-harvest cattle hides. Understanding the relationship between indigenous hide bacterial communities and populations may provide strategies to limit EHEC in cattle and provide biomarkers for EHEC risk assessment.
Collapse
Affiliation(s)
- Jessica Chopyk
- Delaware Biotechnology Institute, University of Delaware, Delaware Biotechnology Inst., 15 Innovation Way, Newark, DE, 19711, USA
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, Delaware Biotechnology Inst., 15 Innovation Way, Newark, DE, 19711, USA
| | - Zachary DiSpirito
- Delaware Biotechnology Institute, University of Delaware, Delaware Biotechnology Inst., 15 Innovation Way, Newark, DE, 19711, USA
| | - Zachary R Stromberg
- Delaware Biotechnology Institute, University of Delaware, Delaware Biotechnology Inst., 15 Innovation Way, Newark, DE, 19711, USA
| | - Gentry L Lewis
- Delaware Biotechnology Institute, University of Delaware, Delaware Biotechnology Inst., 15 Innovation Way, Newark, DE, 19711, USA
| | - David G Renter
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Rodney A Moxley
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, Delaware Biotechnology Inst., 15 Innovation Way, Newark, DE, 19711, USA.
| |
Collapse
|
24
|
Mir RA, Weppelmann TA, Kang M, Bliss TM, DiLorenzo N, Lamb GC, Ahn S, Jeong KC. Association between animal age and the prevalence of Shiga toxin-producing Escherichia coli in a cohort of beef cattle. Vet Microbiol 2015; 175:325-31. [DOI: 10.1016/j.vetmic.2014.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 01/25/2023]
|