1
|
Feng G, Zhou X, Fang X, He Y, Lin T, Mu L, Yang H, Wu J. A non-bactericidal glycine-rich peptide enhances cutaneous wound healing in mice via the activation of the TLR4/MAPK/NF-κB pathway. Biochem Pharmacol 2025; 236:116912. [PMID: 40164342 DOI: 10.1016/j.bcp.2025.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Although the antibacterial properties of glycine-rich peptides from prokaryotes to eukaryotes have been well characterized, their role in skin wound healing remains poorly understood, especially non-bactericidal glycine-rich peptides. Herein, a novel glycine-rich (46.5%) peptide (Smaragin, SRGSRGGRGGRGGGGRGGRGRSGSGSSIAGGGSRGSRGGSQYA) was identified from the skin of the tree frog Zhangixalus smaragdinus. Unlike other glycine-rich peptides, Smaragin showed no antimicrobial activity in vitro but significantly enhance wound healing in full-thickness dermal wounds in mice. In comparison with other wound healing-promoting peptides, Smaragin did not directly affect the proliferation and migration of keratinocytes, vascular endothelial cells, and fibroblasts. However, it notably increased phagocytes infiltration at the wound site by 0.5-day post-injury. Smaragin was not a direct chemoattractant for phagocytes, but it stimulated macrophages to secrete chemokines CXCL1 and CXCL2, which indirectly enhanced the migration of phagocytes, keratinocytes and vascular endothelial cells. Moreover, Smaragin promoted the polarization of macrophages from a pro-inflammatory M1-type to an anti-inflammatory M2 phenotype at the wound, which is associated with angiogenic activity. As expected, CD31, the most common analyzed marker of angiogenesis, showed a significant increase in vascular network area. Subsequent studies revealed that Smaragin promoted the chemokine level and polarization of macrophages via the TLR4/MAPK/NF-κB pathway, which enhanced the number of phagocytes and the regeneration of the epidermis and blood vessels at the wound, thereby accelerating skin wound healing in mice. These findings highlight the skin healing properties of non-bactericidal glycine-rich peptides and display the potential of Smaragin as a promising candidate for developing effective wound healing therapies.
Collapse
Affiliation(s)
- Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoyan Zhou
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaojie Fang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Yanmei He
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Ting Lin
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Lam LY, Liang TR, Wu WJ, Lam HYP. Intestinal Lactobacillus johnsonii protects against neuroangiostrongyliasis in BALB/c mice through modulation of immune response. PLoS Negl Trop Dis 2025; 19:e0012977. [PMID: 40198714 PMCID: PMC11978024 DOI: 10.1371/journal.pntd.0012977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Neuroangiostrongyliasis is characterized by eosinophilic meningoencephalitis with a robust onset of severe neurological symptoms, by which immunological factors and peripheral metabolites have been postulated to affect the course of the disease. The gut-brain axis provides a bidirectional communication between the gut and the central nervous system, and therefore, understanding the gut microbiome may provide us with a deeper insight into the pathogenesis of angiostrongyliasis. Using 16S rRNA sequencing, we identified an increase in the abundance of different Lactobacillus species in Angiostrongylus cantonensis-infected mice, which was correlated to the disease severity. However, attempts to inoculate L. johnsonii into A. cantonensis-infected mice surprisingly revealed an improvement in neuroinflammation and prolonged survival. RNA sequencing suggested an immune-modulatory effect of L. johnsonii, which was confirmed by ELISA, showing increased levels of IL-10 and reduced levels of IL-2, IL-4, IL-5, and MCP-1 in the brain. Nevertheless, L. johnsonii-associated improvements were not associated with microbiome-related metabolites, as UHPLC-MS/MS analysis revealed no change in short-chain fatty acids, tryptophan metabolites, and bile acids. Our results suggest that while intestinal L. johnsonii appears to be linked to the progression of neuroangiostrongyliasis, these bacteria are likely attempting to modulate the dysregulated immune response to combat the disease. This is one of the first studies to investigate the gut microbiome in mice with A. cantonensis infection, which extends our knowledge from the microbiome-point-of-view of the pathogenesis of angiostrongyliasis and how the body defends against A. cantonensis. This work also extends to possible treatment approaches using L. johnsonii as probiotics.
Collapse
Affiliation(s)
- Long Yin Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Ahmadi P, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Ahmadi‐Khorram M, Javanmardi Z, Tabasi NS, Esmaeili S. The Impacts of Lactobacillus delbrueckii and Lactobacillus rhamnosus to Promote In Vitro Anti-Inflammatory Profile of RA-Macrophages. Food Sci Nutr 2025; 13:e70068. [PMID: 40099178 PMCID: PMC11911130 DOI: 10.1002/fsn3.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent and debilitating autoimmune disease. Numerous studies have demonstrated promising results regarding the use of probiotics as a therapeutic approach to alleviate RA symptoms. This study isolated monocytes from the PBMCs of RA patients and healthy donors. These monocytes were then differentiated into macrophages and divided into five groups: untreated, LPS-treated, L. delbrueckii (Del)-treated, L. rhamnosus (Ram)-treated, and a mixed treatment group. Three macrophage subpopulations-M0, M1, and M2-were identified in all treatment groups, with variations observed in the population percentages of each subpopulation and the expression levels of CD14, CD80, and HLA-DR. Flow cytometry results indicated that, compared to the untreated and LPS-treated groups, treatment with probiotic bacteria (Del, Ram, and Mix) stimulated the polarization of macrophages toward the M2 phenotype while suppressing the percentage of the M1 population. Additionally, the expression of CD14, a Pathogen-Associated Molecular Pattern (PAMP) and phagocytosis-inducing receptor, was significantly reduced in the probiotic-treated groups. Probiotic treatment also profoundly influenced antigen presentation by suppressing CD80, a ligand for the CD28 co-stimulatory marker on T cells, and HLA-DR, which presents antigens to the T cell receptors of Th4 cells. Interestingly, quantitative real-time PCR results indicated that probiotic treatment of macrophages significantly increased the expression of IL-10 and TGF-β, both anti-inflammatory cytokines, while significantly decreasing the expression of inflammatory cytokines, including IL-12, IL-1β, and TNF-α, in both healthy controls and RA patients. It seems that these probiotics may have a regulatory effect on macrophages, affecting their polarization, antigen presentation patterns, phagocytosis, and cytokine secretion profiles. This suggests that these probiotics may have therapeutic and prophylactic effects on RA.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Immunology Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Mahmoudi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Immunology Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Houshang Rafatpanah
- Division of Inflammation and Inflammatory Diseases, Immunology Research CentreMashhad University of Medical SciencesMashhadIran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Ahmadi‐Khorram
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Javanmardi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Immunology Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | | | - Seyed‐Alireza Esmaeili
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Immunology Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
5
|
Balabanova L, Bondarev G, Seitkalieva A, Son O, Tekutyeva L. Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms. Biomedicines 2024; 12:2502. [PMID: 39595068 PMCID: PMC11591857 DOI: 10.3390/biomedicines12112502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The endogenous ecto-enzyme and exogenously administered alkaline phosphatase (ALP) have been evidenced to significantly attenuate inflammatory conditions, including Toll-like receptor 4 (TLR4)-related signaling and cytokine overexpression, barrier tissue dysfunction and oxidative stress, and metabolic syndrome and insulin resistance, in experimental models of colitis, liver failure, and renal and cardiac ischemia-reperfusion injury. This suggests multiple mechanisms of ALP anti-inflammatory action that remain to be fully elucidated. METHODS Recent studies have contributed to a deeper comprehension of the role played by ALP in immune metabolism. This review outlines the established effects of ALP on lipopolysaccharide (LPS)-induced inflammation, including the neutralization of LPS and the modulation of purinergic signaling. RESULTS The additional mechanisms of anti-inflammatory activity of ALP observed in different pathologies are proposed. CONCLUSIONS The anti-inflammatory pathways of ALP may include a scavenger receptor (CD36)-mediated activation of β-oxidation and oxidative phosphorylation, caveolin-dependent endocytosis, and selective autophagy-dependent degradation.
Collapse
Affiliation(s)
- Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia;
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| | - Georgii Bondarev
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| | - Aleksandra Seitkalieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia;
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| | - Oksana Son
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| | - Liudmila Tekutyeva
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| |
Collapse
|
6
|
Devi MB, Bhattacharya A, Kumar A, Singh CT, Das S, Sarma HK, Mukherjee AK, Khan MR. Potential probiotic Lactiplantibacillus plantarum strains alleviate TNF-α by regulating ADAM17 protein and ameliorate gut integrity through tight junction protein expression in in vitro model. Cell Commun Signal 2024; 22:520. [PMID: 39468700 PMCID: PMC11514838 DOI: 10.1186/s12964-024-01900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Lactiplantibacillus species are extensively studied for their ability to regulate host immune responses and functional therapeutic potentials. Nevertheless, there is a lack of understanding on the mechanisms of interactions with the hosts during immunoregulatory activities. METHODS Two Lactiplantibacillus plantarum strains MKMB01 and MKMB02 were tested for probiotic potential following Indian Council of Medical Research (ICMR) guidelines. Human colorectal adenocarcinoma cells such as HT-29, caco-2, and human monocytic cell THP-1 were also used to study the potential of MKMB01 and MKMB02 in regulating the host immune response when challenged with enteric pathogen Salmonella enterica typhimurium. Cells were pre-treated with MKMB01 and MKMB02 for 4 h and then stimulated with Salmonella. qRT-PCR and ELISA were used to analyze the genes and protein expression. Confocal microscopy and field emission scanning electron microscopy (FESEM) were used to visualize the effects. An Agilent Seahorse XF analyzer was used to determine real-time mitochondrial functioning. RESULTS Both probiotic strains could defend against Salmonella by maintaining gut integrity via expressing tight junction proteins (TJPs), MUC-2, and toll-like receptors (TLRs) negative regulators such as single Ig IL-1-related receptor (SIGIRR), toll-interacting protein (Tollip), interleukin-1 receptor-associated kinase (IRAK)-M, A20, and anti-inflammatory transforming growth factor-β and interleukin-10. Both strains also downregulated the expression of pro-inflammatory cytokines/chemokines interleukin-1β, monocyte chemoattractant protein (MCP)-1, tumor necrosis factor-alpha (TNF-α), interleukin 6, and nitric oxide (NO). Moreover, TNF-α sheddase protein, a disintegrin and metalloproteinase domain 17 (ADAM17), and its regulator iRhom2 were downregulated by both strains. Moreover, the bacteria also ameliorated Salmonella-induced mitochondrial dysfunction by restoring bioenergetic profiles, such as non-mitochondrial respiration, spare respiratory capacity (SRC), basal respiration, adenosine triphosphate (ATP) production, and maximal respiration. CONCLUSIONS MKMB01 and MKMB02 can reduce pathogen-induced gut-associated disorders and therefore should be further explored for their probiotic potential.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Arun Kumar
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Chingtham Thanil Singh
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Das
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
| | - Hridip Kumar Sarma
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India
- Microbial Biotechnology and Protein Research laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, 781035, Assam, India.
| |
Collapse
|
7
|
Shi M, Fan H, Liu H, Zhang Y. Effects of saponins R b1 and R e in American ginseng intervention on intestinal microbiota of aging model. Front Nutr 2024; 11:1435778. [PMID: 39346650 PMCID: PMC11428427 DOI: 10.3389/fnut.2024.1435778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Aging brings about physiological dysfunction, disease, and eventual mortality. An increasing number of studies indicate that aging can easily lead to dysbiosis of the gut microbiota, which can further affect digestion, nerves, cognition, emotions, and more. Therefore, gut bacteria play an important role in regulating the physical functions of aging populations. While saponins, the primary components of American ginseng, are frequently utilized for treating common ailments in the elderly due to their potent antioxidant properties, there is a scarcity of comprehensive studies on aging organisms. This study focused on 18 month old aging mice and investigated the effects of single intervention and combined intervention of Rb1 and Re, the main components of Panax quinquefolium saponins, on the gut microbiota of aging mice. High throughput 16s RNA gene sequencing analysis was performed on the gut contents of the tested mice, and the results showed that Rb1 and Re had a significant impact on the gut microbiota. Rb1, Re, and Rb1 + Re can effectively enhance the diversity of gut microbiota, especially in the combined Rb1 + Re group, which can recover to the level of young mice. Re can promote the abundance of probiotics such as Lactobacillus, Lactobacillaceae, and Lactobacillus, and inhibit the abundance of harmful bacteria such as Enterobacteriaceae. This indicates that the intervention of Rb1, Re, and Rb1 + Re can maintain the homeostasis of gut microbiota, and the combined application of Rb1 + Re has a better effect. The relationship between aging, brain gut axis, and gut microbiota is very close. Saponins can improve the gut microbiota of aging individuals by maintaining the balance of gut microbiota and the normal function of the brain gut axis, enabling the body to achieve a gut microbiota homeostasis closer to that of young healthy mice.
Collapse
Affiliation(s)
- Mao Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - HongXiu Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - HongCheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - YanRong Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Taufer CR, da Silva J, Rampelotto PH. The Influence of Probiotic Lactobacilli on COVID-19 and the Microbiota. Nutrients 2024; 16:1350. [PMID: 38732597 PMCID: PMC11085918 DOI: 10.3390/nu16091350] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024] Open
Abstract
This comprehensive review explores the potential of using lactobacilli as a probiotic in the management of COVID-19. Our findings suggest that lactobacilli show promise in reducing the risk of death, gastrointestinal and overall symptoms, and respiratory failure, as well as in lowering cytokines and inflammatory markers associated with the disease. The molecular mechanisms by which lactobacilli protect against COVID-19 and other viral infections may be related to the reduction in inflammation, modulation of the immune response, and direct interaction with viruses to produce antiviral substances. However, the selected studies demonstrate the presence of mixed findings for various clinical, biochemical, hematological, and immunological parameters, which may be attributed to methodological differences among studies. We highlight the importance of clearly describing randomization processes to minimize bias and caution against small sample sizes and inappropriate statistical tests that could lead to errors. This review offers valuable insights into the therapeutic potential of lactobacilli in the context of COVID-19 and identifies avenues for further research and applications. These findings hold promise for the development of novel approaches to managing COVID-19 and warrant further investigation into the potential benefits of lactobacilli in combating the disease.
Collapse
Affiliation(s)
- Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Juliana da Silva
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Health and Human Development, Universidade La Salle, Canoas 92010-000, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
10
|
Zheng J, Ahmad AA, Yang C, Liang Z, Shen W, Liu J, Yan Z, Han J, Yang Y, Dong P, Lan X, Salekdeh GH, Ding X. Orally Administered Lactobacillus rhamnosus CY12 Alleviates DSS-Induced Colitis in Mice by Restoring the Intestinal Barrier and Inhibiting the TLR4-MyD88-NF-κB Pathway via Intestinal Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38598717 DOI: 10.1021/acs.jafc.3c07279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Oral ingestion of probiotics is a promising approach to relieving inflammatory disease through regulating the gut microbiota. A newly discovered strain, Lactobacillus rhamnosus CY12 (LCY12), obtained from cattle-yak milk, displayed numerous probiotic properties. These included enhanced viability in low pH and bile environments, adhesion capabilities, and potent antimicrobial effects. The research aimed to explore the beneficial impacts of the novel LCY12 strain on colitis in mice induced by dextran sulfate sodium (DSS) and to elucidate the underlying molecular mechanisms. The results of the study showed that administration of LCY12 effectively helped to reduce the negative effects of DSS-induced body weight loss, disease activity index score, colon length shortening, loss of goblet cells, and overall histopathological scores in the intestines. Simultaneously, LCY12 administration significantly alleviated intestinal inflammation and safeguarded intestinal barrier integrity by enhancing IL-10 levels, while dampening IL-6, IL-1β, and TNF-α production. Additionally, LCY12 boosted the presence of tight junction proteins. Furthermore, LCY12 hindered the TLR4/MyD88/NF-κB signaling pathway by downregulating TLR4 and MyD88 expression, inactivating phosphorylated IκBα, and preventing translocation of NF-κB p65 from the cytoplasm to the nucleus. The LCY12 also increased specific intestinal microbial communities and short-chain fatty acid (SCFA) production. Altogether, LCY12 oral administration alleviated colitis induced with DSS in mice by improving intestinal barrier function and regulating inflammatory cytokines, SCFA production, and intestinal microbiota.
Collapse
Affiliation(s)
- Juanshan Zheng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anum Ali Ahmad
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Chen Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jing Liu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yayuan Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengcheng Dong
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xianyong Lan
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
11
|
Tao T, Zhang L, Yu T, Ma J, Lu S, Ren J, Li X, Guo X. Exopolysaccharide production by Lactobacillus plantarum T10 is responsible for the probiotic activity in enhancing intestinal barrier function in vitro and in vivo. Food Funct 2024; 15:3583-3599. [PMID: 38469921 DOI: 10.1039/d4fo00526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Lactobacillus probiotics exert their effects in a strain-specific and metabolite-specific manner. This study aims to identify lactobacilli that can effectively enhance the intestinal barrier function both in vitro and in vivo and to investigate the underlying metabolite and molecular mechanisms involved. Nine Lactobacillus isolates were evaluated for their ability to enhance the IPEC-J2 cellular barrier function and for their anti-inflammatory and anti-apoptotic effects in IPEC-J2 cells after an enterotoxigenic Escherichia coli challenge. Of the nine isolates, L. plantarum T10 demonstrated significant advantages in enhancing the cellular barrier function and displayed anti-inflammatory and anti-apoptotic activities in vitro. The bioactivities of L. plantarum T10 were primarily attributed to the production of exopolysaccharides, which exerted their effects through the TLR-mediated p38 MAPK pathway in ETEC-challenged IPEC-J2 cells. Furthermore, the production of EPS by L. plantarum T10 led to the alleviation of dextran sulfate sodium-induced colitis by reducing intestinal damage and enhancing the intestinal barrier function in mice. The EPS is classified as a heteropolysaccharide with an average molecular weight of 23.0 kDa. It is primarily composed of mannose, glucose, and ribose. These findings have practical implications for the targeted screening of lactobacilli used in the production of probiotics and postbiotics with strain-specific features of exopolysaccharides.
Collapse
Affiliation(s)
- Ting Tao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Jiaxue Ma
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Jing Ren
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Xiangyu Li
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan 430073, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| |
Collapse
|
12
|
Wu Y, Zhang X, Liu X, Li Y, Han D, Pi Y, Whitmore MA, Lu X, Zhang G, Zheng J, Wang J. Strain specificity of lactobacilli with promoted colonization by galactooligosaccharides administration in protecting intestinal barriers during Salmonella infection. J Adv Res 2024; 56:1-14. [PMID: 36894120 PMCID: PMC10834803 DOI: 10.1016/j.jare.2023.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Galactooligosaccharides (GOS) are lactogenic prebiotics that exert health benefits by stimulating the growth of different Lactobacillus strains in the gastrointestinal (GI) tract. OBJECTIVES This study aimed to investigate the mechanism of action of different GOS-enriched lactobacilli in intestinal health. METHODS Piglets and mice were supplemented with GOS to identify specific enrichment of Lactobacillus. The protective effects of individual GOS-enriched lactobacilli were investigated in Salmonella-infected mice. Macrophage depletion and transcriptome analysis were further performed to assess the involvement of macrophages and the underlying mechanisms of individual lactobacilli. An in vitro cell co-culture system was also used to evaluate the anti-adhesive and anti-invasive activities of lactobacilli against Salmonella in epithelial cells. RESULTS GOS markedly increased the relative abundance of three lactobacilli including L. delbrueckii, L. johnsonii, and L. reuteri in both piglets and mice. Supplementation with GOS further alleviated Salmonella infection in mice. L. delbrueckii (ATCC®BAA 365™), but not L. johnsonii or L. reuteri, enhanced propionate production in the intestinal tract and ameliorated Salmonella-induced intestinal inflammation and barrier dysfunction by suppressing the JAK2-STAT3 signaling and M1 macrophage polarization. L. johnsonii (BNCC 186110), on the other hand, inhibited Salmonella adhesion and invasion of epithelial cells through competitive exclusion. However, L. reuteri (BNCC 186135) failed to protect mice against Salmonella infection. CONCLUSION GOS-enriched lactobacilli show a differential role in protecting against Salmonella-induced intestinal barrier dysfunction and inflammation. Our results provide novel insights into the mechanism of action of GOS and individual Lactobacillus strains in the control and prevention of intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Taufer CR, Rampelotto PH. Lactobacilli in COVID-19: A Systematic Review Based on Next-Generation Sequencing Studies. Microorganisms 2024; 12:284. [PMID: 38399688 PMCID: PMC10891515 DOI: 10.3390/microorganisms12020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The global pandemic was caused by the SARS-CoV-2 virus, known as COVID-19, which primarily affects the respiratory and intestinal systems and impacts the microbial communities of patients. This systematic review involved a comprehensive search across the major literature databases to explore the relationship between lactobacilli and COVID-19. Our emphasis was on investigations employing NGS technologies to explore this connection. Our analysis of nine selected studies revealed that lactobacilli have a reduced abundance in the disease and an association with disease severity. The protective mechanisms of lactobacilli in COVID-19 and other viral infections are likely to be multifaceted, involving complex interactions between the microbiota, the host immune system, and the virus itself. Moreover, upon closely examining the NGS methodologies and associated statistical analyses in each research study, we have noted concerns regarding the approach used to delineate the varying abundance of lactobacilli, which involves potential biases and the exclusion of pertinent data elements. These findings provide new insight into the relationship between COVID-19 and lactobacilli, highlighting the potential for microbiota modulation in COVID-19 treatment.
Collapse
Affiliation(s)
- Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
14
|
Adejumo SA, Oli AN, ROWAIYE AB, IGBOKWE NH, EZEJIEGU CK, YAHAYA ZS. Immunomodulatory Benefits of Probiotic Bacteria: A Review of Evidence. OBM GENETICS 2023; 07:1-73. [DOI: 10.21926/obm.genet.2304206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Over the past few decades, probiotics have emerged as a viable medical tool for preventing and/or treating diseases. This narrative review provides recent findings on Probiotics and their benefits on the host immune system. It also highlights the specific mechanisms through which probiotics mediate those benefits. The study also explores the topical or systemic probiotic administration method. Authors screened databases like Google Scholar, Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure database, using various keyword combinations such as: “probiotic” AND “Immunomodulation” OR “probiotic” AND “Immunoregulation” OR “probiotic” AND “Immunostimulation”, for relevant literature written in English only. The review shows that probiotics can regulate the host immune system, including regulating T cells, dendritic cells, intestinal epithelial cells, and several signal pathways, and confer health benefits. Although several clinical trials also revealed the prospects and efficacy of probiotics as immunomodulators and treatment of diseases, there is a need for thorough future investigations on the effectiveness of specific strains of probiotics involved in immunomodulation.
Collapse
|
15
|
Wang M, Liu H, Huang M, Huang Y, Ming Y, Chen W, Chen Y, Tang Z, Jia B. Immunomodulatory functions of microorganisms in tissue regenerative healing. Acta Biomater 2023; 172:38-52. [PMID: 37816417 DOI: 10.1016/j.actbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a crucial regulatory role in this process. This review summarises our current understanding of microorganism-immune system interactions, with a focus on how these interactions impact the renewal and repair ability of tissues, including skin, bone, gut, liver, and nerves. This review concludes with a discussion of the mechanisms by which microbes act on various types of immune cells to affect tissue regeneration, offers potential strategies for using microbial therapies to enhance the regenerative repair function of tissues, and suggest novel therapeutic approaches for regenerative medicine. STATEMENT OF SIGNIFICANCE: Microbiological communities have crucial impacts on human health and illness by participating in energy collection and storage and performing various metabolic processes. External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a critical regulatory role in this process. This study reviews the important correlation between microorganisms and the immune system and investigates the mechanism of various microorganism that participate in the regeneration and repair of tissues and organs by modulating immune system.
Collapse
Affiliation(s)
- Min Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Meng Y, Hu Y, Wei M, Wang K, Wang Y, Wang S, Hu Q, Wei H, Zhang Z. Amelioration of hyperuricemia by Lactobacillus acidophilus F02 with uric acid-lowering ability via modulation of NLRP3 inflammasome and gut microbiota homeostasis. J Funct Foods 2023; 111:105903. [DOI: 10.1016/j.jff.2023.105903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
17
|
Sun Y, Zhang Y, Wang T, Wen L, Xing T, Peng J, Liang Y. Picroside III Ameliorates Colitis in Mice: A Study Based on Colon Transcriptome and Fecal 16S Amplicon Profiling. Chem Biodivers 2023; 20:e202301806. [PMID: 38009836 DOI: 10.1002/cbdv.202301806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Picroside III (Pic), an iridoid glycoside derived from Picrorhiza scrophulariiflora, exhibits therapeutic potential in mending damage to the intestinal mucosa. This study aimed to explore Pic's regulatory impact on intestinal inflammation and the gut microbiota in mice with dextran sulfate sodium (DSS)-induced colitis. The findings revealed that pretreatment with Pic mitigated the DSS-induced escalation of the disease activity index (DAI), alleviated intestinal damage, and attenuated intestinal inflammation in mice. RNA-seq analysis, complemented by experimental validation, elucidated that Pic significantly hindered Akt phosphorylation in the colon tissues of colitis-afflicted mice. Furthermore, 16S rRNA sequencing demonstrated that Pic pretreatment effectively rectified microbial dysbiosis in colitis mice by elevating the abundance of Lactobacillus murinus and Lactobacillus gasseri. These observations suggest that Pic's efficacy in colitis treatment stems from its inhibition of intestinal inflammation via the suppression of the PI3K-Akt pathway and modulation of gut microbiota. This study contributes novel scientific insights into the potential application of Pic in the management of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Yating Sun
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yingdi Zhang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Tao Wang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Liping Wen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tianhang Xing
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yue Liang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
| |
Collapse
|
18
|
Zhao H, Huang M, Jiang L. Potential Roles and Future Perspectives of Chitinase 3-like 1 in Macrophage Polarization and the Development of Diseases. Int J Mol Sci 2023; 24:16149. [PMID: 38003338 PMCID: PMC10671302 DOI: 10.3390/ijms242216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.
Collapse
Affiliation(s)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| |
Collapse
|
19
|
Yang Y, Sheng J, Sheng Y, Wang J, Zhou X, Li W, Kong Y. Lapachol treats non-alcoholic fatty liver disease by modulating the M1 polarization of Kupffer cells via PKM2. Int Immunopharmacol 2023; 120:110380. [PMID: 37244116 DOI: 10.1016/j.intimp.2023.110380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
AIM This study investigated the mechanism of action of lapachol (LAP) against non-alcoholic fatty liver disease (NAFLD). METHODS Primary Kupffer cells (KCs) of rats were used for in-vitro experiments. The proportion of M1 cells was assayed by flow cytometry, the levels of M1 inflammatory markers were determined by enzyme-linked immunosorbent assay (ELISA) combined with real-time quantitative fluorescence PCR (RT-qPCR), the expression of p-PKM2 was detected by Western-Blotting. A SD rat model of NAFLD was established with high-fat diet. Following LAP intervention, the changes in blood glucose/lipid, insulin resistance and liver function were detected, and the hepatic histopathologic changes were examined by histological staining. RESULTS The results showed that LAP could inhibit the M1 polarization of KCs, lower the levels of inflammatory cytokines, and suppress the activation of PKM2. The effect of LAP could be counteracted after using PKM2 inhibitor PKM2-IN-1 or knocking out PKM2. Small molecule docking revealed that LAP could inhibit the phosphorylation process of PKM2 by binding to ARG-246, the phosphorylation site of PKM2. In rat experiments, LAP could ameliorate the liver function and lipid metabolism of NAFLD rats, and inhibit the hepatic histopathologic changes. CONCLUSION Our study found that LAP can inhibit the phosphorylation of PKM2 by binding to PKM2-ARG-246, thereby regulating the M1 polarization of KCs and inhibiting the inflammatory response of liver tissues to treat NAFLD. LAP has potential as a novel pharmaceutical for treating NAFLD.
Collapse
Affiliation(s)
- Yi Yang
- The Second Affiliated Hospital of Jiaxing University, 314001, China
| | - Jian Sheng
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Yongjia Sheng
- The Second Affiliated Hospital of Jiaxing University, 314001, China
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University, 314001, China
| | - Xiaohong Zhou
- The Second Affiliated Hospital of Jiaxing University, 314001, China
| | - Wenyan Li
- The Second Affiliated Hospital of Jiaxing University, 314001, China
| | - Yun Kong
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| |
Collapse
|
20
|
Zhang X, Liu Y, Xiao C, Guan Y, Gao Z, Huang W. Research Advances in Nucleic Acid Delivery System for Rheumatoid Arthritis Therapy. Pharmaceutics 2023; 15:1237. [PMID: 37111722 PMCID: PMC10145518 DOI: 10.3390/pharmaceutics15041237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the lives of nearly 1% of the total population worldwide. With the understanding of RA, more and more therapeutic drugs have been developed. However, lots of them possess severe side effects, and gene therapy may be a potential method for RA treatment. A nanoparticle delivery system is vital for gene therapy, as it can keep the nucleic acids stable and enhance the efficiency of transfection in vivo. With the development of materials science, pharmaceutics and pathology, more novel nanomaterials and intelligent strategies are applied to better and safer gene therapy for RA. In this review, we first summarized the existing nanomaterials and active targeting ligands used for RA gene therapy. Then, we introduced various gene delivery systems for RA treatment, which may enlighten the relevant research in the future.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
21
|
Wang A, Li P, Ma F, Li X, Mu G, Tuo Y. Mixed Lactiplantibacillus plantarum strains alleviated DSS-induced intestinal inflammation of Balb/c mice via the 5-HT/5-HT7R/NF-κB signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
22
|
Cellat M, Tekeli İO, Türk E, Aydin T, Uyar A, İşler CT, Gökçek İ, Etyemez M, Güvenç M. Inula viscosa ameliorates acetic acid induced ulcerative colitis in rats. Biotech Histochem 2023; 98:255-266. [PMID: 37165766 DOI: 10.1080/10520295.2023.2176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Increased pro-inflammatory cytokines and oxidative stress contribute to the pathophysiology of ulcerative colitis (UC). Inula viscosa is a plant with antioxidant and anti-inflammatory properties. We investigated the effect of an ethanolic extract of I. viscosa on an experimental UC model created using acetic acid. Rats were divided into four groups of eight: group 1, control; group 2, 3% acetic acid group; group 3, 100 mg/kg sulfasalazine + 3% acetic acid group; group 4, 400 mg/kg I. viscosa + 3% acetic acid. I. viscosa and sulfasalazine were administered by oral gavage and 3% acetic acid was administered per rectum. We found that I. viscosa treatment decreased colon malondialdehyde, tumor necrosis factor-α, interleukin-1 beta and nuclear factor kappa B levels; it increased reduced glutathione, nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and kelch-like ECH-associated protein 1 levels and glutathione peroxidase enzyme activity. Group 1 colon exhibited normal histological structure. Slight inflammatory cell infiltration and edema and insignificant slight erosion in crypts were detected in colon tissues of group 4. We found that I. viscosa reduced oxidative stress and inflammation, which was protective against UC by inducing the Nrf-2/Keap-1/HO-1 pathway in the colon.
Collapse
Affiliation(s)
- Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İbrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Erdinç Türk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İshak Gökçek
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
23
|
Moon HJ, Oh SH, Park KB, Cha YS. Kimchi and Leuconostoc mesenteroides DRC 1506 Alleviate Dextran Sulfate Sodium (DSS)-Induced Colitis via Attenuating Inflammatory Responses. Foods 2023; 12:foods12030584. [PMID: 36766113 PMCID: PMC9914003 DOI: 10.3390/foods12030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Ulcerative colitis (UC) is caused by inflammation only in the mucosa of the colon, and its incidence is increasing worldwide. The intake of probiotics is known to have a beneficial effect on the development of UC. In this study, we investigated the alleviating effects of kimchi (KC), a fermented food rich in probiotics, and Leuconostoc mesenteroides DRC 1506 (DRC) isolated from kimchi on UC. A freeze-dried kimchi suspension and DRC were orally given to mice at a dose of 1 × 109 CFU/day for 3 weeks. Furthermore, 3% dextran sulfate sodium (DSS) in drinking water was given to induce UC. The KC and DRC groups reduced symptoms of colitis, such as disease activity index, decrease in colon length, colon weight-to-length ratio, and pathological damage to the colon caused by DSS treatment. The KC and DRC groups decreased the levels of pro-inflammatory cytokine (TNF-α) and increased anti-inflammatory cytokine (IL-10) in the colon tissues. At the mRNA and protein expression levels in the colon tissue, KC and DRC groups downregulated inflammatory factors and upregulated tight junction-related factors. Therefore, DRC, as well as KC supplementation, are potent in alleviating UC by improving the inflammatory response and mucosal barrier function in the colon.
Collapse
Affiliation(s)
- Hye-Jung Moon
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Suk-Heung Oh
- Department of Food & Biotechnology & Woosuk Institute of Smart Convergence Life Care, Woosuk University, Wanju 55338, Republic of Korea
| | - Ki-Bum Park
- Institute of Kimchi Technology, Daesang Co., Icheon 17384, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: ; Tel.: +82-63-270-3822
| |
Collapse
|
24
|
Jeong SG, Kim HM, Lee M, Yang JE, Park HW. Use of Vegetable Waste as a Culture Medium Ingredient Improves the Antimicrobial and Immunomodulatory Activities of Lactiplantibacillus plantarum WiKim0125 Isolated from Kimchi. J Microbiol Biotechnol 2023; 33:75-82. [PMID: 36517044 PMCID: PMC9895991 DOI: 10.4014/jmb.2210.10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Lactic acid bacteria (LAB) isolated from kimchi (a traditional Korean dish typically made of fermented cabbage) can provide various health benefits, including anti-obesity, antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. In this study, we examined the antimicrobial and immunomodulatory effects of Lactiplantibacillus plantarum WiKim0125 cultured in de Man, Rogosa, and Sharpe (MRS) medium containing vegetable waste. Live bacterial cells were eliminated via supernatant filtration or heat treatment. The cell-free supernatant (CFS) obtained from culture broth containing kimchi cabbage waste (KCW), cabbage waste (CW), or onion waste (OW) showed significantly higher antimicrobial activity against skin pathogens (Propionibacterium acnes and Staphylococcus aureus) and foodborne pathogens (Escherichia coli and Salmonella typhimurium), with inhibition zones ranging between 4.4 and 8.5 mm, compared to that in conventional MRS medium (4.0-7.3 mm). In lipopolysaccharide-stimulated RAW264.7 cells, both supernatant and heat-inactivated Lb. plantarum WiKim0125 from culture media containing KCW and CW suppressed the production of inflammatory cytokines (72.8% and 49.6%, respectively) and nitric oxide (62.2% and 66.7%, respectively) without affecting cell viability. These results indicate that vegetable waste can potentially increase the antimicrobial and immunoregulatory potency of LAB while presenting a molecular basis for applying postbiotics to health products.
Collapse
Affiliation(s)
- Seul-Gi Jeong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Moeun Lee
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea,Corresponding author Phone: +82-62-610-1728 Fax: +82-62-610-1850 E-mail:
| |
Collapse
|
25
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111910. [PMID: 36431045 PMCID: PMC9696601 DOI: 10.3390/life12111910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The intestine barrier, the front line of normal body defense, relies on its structural integrity, microbial composition and barrier immunity. The intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. Although it occupies a relatively small proportion of the intestinal microbiota, Lactobacilli has been discovered to have a significant impact on the intestine tract in previous studies. It is undeniable that some Lactobacillus strains present probiotic properties through maintaining the micro-ecological balance via different mechanisms, such as mucosal barrier function and barrier immunity, to prevent infection and even to solve some neurology issues by microbiota-gut-brain/liver/lung axis communication. Notably, not only living cells but also Lactobacillus derivatives (postbiotics: soluble secreted products and para-probiotics: cell structural components) may exert antipathogenic effects and beneficial functions for the gut mucosal barrier. However, substantial research on specific effects, safety and action mechanisms in vivo should be done. In clinical application of humans and animals, there are still doubts about the precise evaluation of Lactobacilli's safety, therapeutic effect, dosage and other aspects. Therefore, we provide an overview of central issues on the impacts of Lactobacillus casei (L. casei) and their products on the intestinal mucosal barrier and some diseases and highlight the urgent need for further studies.
Collapse
Affiliation(s)
- Da Qin
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| |
Collapse
|
27
|
Xu X, Liu R, Zhou X, Zhang Z, Zhu T, Huang Y, Chai L, Wang Y, Zhao Z, Li W, Mao G. Characterization of exosomes derived from IPEC-J2 treated with probiotic Bacillus amyloliquefaciens SC06 and its regulation of macrophage functions. Front Immunol 2022; 13:1033471. [PMID: 36439093 PMCID: PMC9682075 DOI: 10.3389/fimmu.2022.1033471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Probiotics can maintain or improve health by modulating the response of immune cells in the gastrointestinal tract. However, the mechanisms by which probiotics promote macrophage (Mφ) activity are poorly understood. Here, we evaluated exosomes derived from intestinal epithelial cells treated with Bacillus amyloliquefaciens SC06 (Ba) and investigated the regulation of Mφ phagocytosis, apoptosis, and polarization. We isolated two exosomes from intestinal porcine epithelial cell lines (IPEC-J2) with or without Ba-treatment, named Ba-Exo and Exo, respectively. They had typical sizes and a cup-shaped morphology, and their surfaces presented typical exosomes-associated proteins, including CD63, ALIX, and TSG101. Ba-Exo and Exo could entrer Mφ (3D4/21 cells) effectively. Moreover, an in vitro phagocytosis assay demonstrated that Ba-Exo can promote phagocytosis of Mφ. Similar to Exo, Ba-Exo had no effect on Mφ apoptosis. Furthermore, Ba-Exo significantly increased inducible nitric oxide synthase (iNOS), declined the expression of arginase 1 (Arg1) in Mφ, and stimulated Mφ polarization to M1. To explore the differences in the regulation of Mφ polarization between Ba-Exo and Exo, we performed reverse transcription quantitative polymerase chain reaction analysis of the small RNAs and found that miR-222 increased in the Ba-Exo group compared to that in the Exo group. These results provide a new perspective on the relationship between probiotics and intestinal immunity.
Collapse
Affiliation(s)
- Xiaogang Xu
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Rongrong Liu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xuqiang Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Tianjun Zhu
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Core Facilities, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Chai
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yazhen Wang
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenlei Zhao
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Genxiang Mao, ; Weifen Li, ; Zhenlei Zhao,
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China,*Correspondence: Genxiang Mao, ; Weifen Li, ; Zhenlei Zhao,
| | - Genxiang Mao
- Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Genxiang Mao, ; Weifen Li, ; Zhenlei Zhao,
| |
Collapse
|
28
|
Xia H, Zhou B, Sui J, Ma W, Wang S, Yang L, Sun G. Lycium barbarum Polysaccharide Regulates the Lipid Metabolism and Alters Gut Microbiota in High-Fat Diet Induced Obese Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912093. [PMID: 36231391 PMCID: PMC9566073 DOI: 10.3390/ijerph191912093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 05/13/2023]
Abstract
Bioactive compounds provide new insights into the prevention and treatment of obesity. Lycium barbarum polysaccharide (LBP), a biological macromolecule extracted from Goji berry, has displayed potential for regulating lipid metabolism. However, the relationship between gut microbiota regulation and lipid metabolism is not entirely clear. In the present study, 50, 100, and 150 mg/kg LBP were intragastrically administered to C57BL/6J male mice fed with a high-fat diet simultaneously lasting for twelve weeks. The results showed that 150 mg/kg LBP showed significant results and all doses of LBP feeding (50, 100, 150 mg/kg) remarkably decreased both serum and liver total cholesterol (TC) and triglyceride (TG) levels. Treatment of 150 mg/kg LBP seems to be more effective in weight loss, lowering free fatty acid (FFA) levels in serum and liver tissues of mice. LBP feeding increased the gene expression of adiponectin and decreased the gene expression of peroxisome proliferator-activated receptor γ, Cluster of Differentiation 36, acetyl-coA carboxylase, and fatty acid synthase in a dose-dependent manner. In addition, the 16s rDNA Sequencing analysis showed that 150 mg/kg LBP feeding may significantly increase the richness of gut microbiota by up-regulation of the ACE and Chao1 index and altered β-diversity among groups. Treatment of 150 mg/kg LBP feeding significantly regulated the microbial distribution by decreasing the relative abundance of Firmicutes and increasing the relative abundance of Bacteroidetes at the phylum level. Furthermore, the relative abundance of Faecalibaculum, Pantoea, and uncultured_bacterium_f_Muribaculaceae at the genus level was significantly affected by LBP feeding. A significant correlation was observed between body weight, TC, TG, FFA and bile acid and phyla at the genus level. The above results indicate that LBP plays a vital role in preventing obesity by co-regulating lipid metabolism and gut microbiota, but its effects vary with the dose.
Collapse
Affiliation(s)
- Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Beijia Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wenqing Ma
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-02583272567
| |
Collapse
|
29
|
Yu L, Chen Y, Duan H, Qiao N, Wang G, Zhao J, Zhai Q, Tian F, Chen W. Latilactobacillus sakei: a candidate probiotic with a key role in food fermentations and health promotion. Crit Rev Food Sci Nutr 2022; 64:978-995. [PMID: 35997270 DOI: 10.1080/10408398.2022.2111402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
30
|
Serra D, Henriques JF, Sousa FJ, Laranjo M, Resende R, Ferreira-Marques M, de Freitas V, Silva G, Peça J, Dinis TCP, Almeida LM. Attenuation of Autism-like Behaviors by an Anthocyanin-Rich Extract from Portuguese Blueberries via Microbiota-Gut-Brain Axis Modulation in a Valproic Acid Mouse Model. Int J Mol Sci 2022; 23:9259. [PMID: 36012528 PMCID: PMC9409076 DOI: 10.3390/ijms23169259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental pathologies whose current treatment is neither curative nor effective. Anthocyanins are naturally occurring compounds abundant in blueberries and in other red fruits which have been shown to be successful in the treatment of several neurological diseases, at least in in vitro and in vivo disease models. The aim of the present work was to study the ability of an anthocyanin-rich extract (ARE) obtained from Portuguese blueberries to alleviate autism-like symptoms in a valproic acid (VPA) mouse model of ASD and to get insights into the underlying molecular mechanisms of such benefits. Therefore, pregnant BALB/c females were treated subcutaneously with a single dose of VPA (500 mg/kg) or saline on gestational day 12.5. Male offspring mice were orally treated with the ARE from Portuguese blueberries (30 mg/kg/day) or the vehicle for three weeks, and further subjected to behavioral tests and biochemical analysis. Our data suggested that the ARE treatment alleviated autism-like behaviors in in utero VPA-exposed mice and, at the same time, decreased both neuroinflammation and gut inflammation, modulated the gut microbiota composition, increased serotonin levels in cerebral prefrontal cortex and gut, and reduced the synaptic dysfunction verified in autistic mice. Overall, our work suggests that anthocyanins extracted from Portuguese blueberries could constitute an effective strategy to ameliorate typical autistic behaviors through modulation of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Diana Serra
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Joana F. Henriques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Fábio J. Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana Laranjo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Rosa Resende
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV—Research Unit, Faculty of Science, Porto University, 4099-002 Porto, Portugal
| | - Gabriela Silva
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - João Peça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Department of Life Science, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Teresa C. P. Dinis
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Leonor M. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
31
|
Kassab RB, Elbaz M, Oyouni AAA, Mufti AH, Theyab A, Al-Brakati A, Mohamed HA, Hebishy AMS, Elmallah MIY, Abdelfattah MS, Abdel Moneim AE. Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid-induced colitis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55790-55802. [PMID: 35320477 DOI: 10.1007/s11356-022-19747-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune inflammatory disease associated with extensive mucosal damage. Prodigiosins (PGs) are natural bacterial pigments with well-known antioxidant and immunosuppressive properties. In the current study, we examined the possible protective effect of PGs loaded with selenium nanoparticles (PGs-SeNPs) against acetic acid (AcOH)-induced UC in rats. Thirty-five rats were separated into five equal groups with seven animals/group: control, UC, PGs (300 mg/kg), sodium selenite (Na2SeO3, 2 mg/kg), PGs-SeNPs (0.5 mg/kg), and 5-aminosalicylates (5-ASA, 200 mg/kg). Interestingly, PGs-SeNPs administration lessened colon inflammation and mucosal damage as indicated by inhibiting inflammatory markers upon AcOH injection. Furthermore, PGs-SeNPs improved the colonic antioxidant capacity and prevented oxidative insults as evidenced by the upregulation of Nrf2- and its downstream antioxidants along with the decreased pro-oxidants [reactive oxygen species (ROS), carbonyl protein, malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), and nitric oxide (NO] in the colon tissue. Furthermore, PGs-SeNPs protected intestinal cell loss through blockade apoptotic cascade by decreasing pro-apoptotic proteins [Bcl-2-associated X protein (Bax) and caspase-3] and increasing anti-apoptotic protein, B cell lymphoma 2 (Bcl2). Collectively, PGs-SeNPs could be used as an alternative anti-colitic option due to their strong anti-inflammatory, antioxidant, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Mohamad Elbaz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Atif A A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad H Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Hala A Mohamed
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ali M S Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | | | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
32
|
Yin Y, Guo J, Liu Z, Xu S, Zheng S. Selenium Deficiency Aggravates Heat Stress Pneumonia in Chickens by Disrupting the M1/M2 Balance. Biol Trace Elem Res 2022; 200:3315-3325. [PMID: 34482496 DOI: 10.1007/s12011-021-02905-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Selenium (Se) is an essential trace element found in the body. Se deficiency and M1/M2 imbalance are closely related to inflammation. Heat stress can decrease immune function and cause inflammation. In order to investigate whether Se deficiency can aggravate pneumonia caused by heat stress and the role of M1/M2 imbalance in the occurrence of pneumonia, 100 AA broilers were divided into two groups and fed the conventional diet (0.2 mg/kg Se) and the Se-deficient diet (0.03 mg/kg Se). After 40 days of feeding, the normal feeding group was randomly divided into a control group and a heat stress group. At the same time, the Se-deficient diet feeding group was randomly divided into a low Se group and a low Se heat stress group, with 25 chickens in each group. The model was established by exposure at 40℃. Six hours later, broilers were euthanized, and their lung tissues were collected. Hematoxylin and eosin staining, immunofluorescence, quantitative real-time PCR, and western blotting were used to detect lung histopathological changes and the expression of M1/M2 markers, nuclear receptor-κB (NF-κB) pathway genes, and heat shock proteins. Meanwhile, the activity and content of oxidative stress-related indices were also detected. We found that the expression of interleukin-1β, interleukin-6, interleukin-12, and tumor necrosis factor-α was upregulated and the expression of interleukin-2, interleukin-10, and interferon-γ was downregulated. Immunofluorescence showed that the expression of CD16 was increased, the expression of CD163 was weakened, and the M1/M2 imbalance was present. In addition, the NF-κB pathway was activated by the increased expressions of heat shock proteins and oxidative stress. There was an increase in malondialdehyde, nitric oxide, and inducible nitric oxide synthase content, while the activity of total antioxidant capacity, glutathione peroxidase, catalase, and superoxide dismutase decreased, and the expression of NF-κB and cyclooxygenase-2 increased. These results suggest that low Se induces M1/M2 imbalance through oxidative stress activation of the NF-κB pathway and aggravates lung tissue inflammation caused by heat stress. This study offers a theoretical basis for exploring the pathogenesis of various kinds of inflammation induced by Se deficiency from the perspective of M1/M2 and provides a reference for the prevention of such diseases.
Collapse
Affiliation(s)
- Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhaoyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
33
|
Li P, Xu Y, Cao Y, Ding Z. Polypeptides Isolated from Lactococcus lactis Alleviates Lipopolysaccharide (LPS)-Induced Inflammation in Ctenopharyngodon idella. Int J Mol Sci 2022; 23:ijms23126733. [PMID: 35743169 PMCID: PMC9224536 DOI: 10.3390/ijms23126733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The main purpose of the present study was to evaluate the anti-inflammatory activity of Lactococcus lactis BL52 and isolate active substances responsible for anti-inflammatory activity. Head-kidney (HK) macrophages were used for in vitro bioassay-guided isolation, and the structure of the two peptides was identified by mass spectrometry analysis. Lipopolysaccharide (LPS)-induced inflammatory responses in Ctenopharyngodon idella were also examined to evaluate the in vivo anti-inflammatory activity of active substances. Two active peptides were isolated by HPLC from L. lactis BL52, and an in vitro anti-inflammatory assay demonstrated that peptide ALBL1 and ALBL2 dose-dependently inhibited LPS-induced inflammatory cytokines TNF-α, IL-6, and IL-1β and inflammatory factors NO and PGE 2 production in macrophages (p < 0.05). After being treated with 20 mg/Kg peptide ALBL1 and ALBL2, the expression levels of TNF-α, IL-6, IL-1β, NO, and PGE 2 were significantly inhibited (p < 0.05). Results from the in vivo test showed that when the concentration of peptide ALBL1 and ALBL2 reached 30 mg/Kg, the LPS-induced upregulations of TNF-α, IL-6, IL-1β, NO, and PGE 2 were prevented. In addition, peptide ALBL1 and ALBL2 blocked the expression of Toll-like receptor 2 (TLR2) and then suppressed the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and degradation inhibitor of IκBα. Moreover, C. idella treated with peptide ALBL1 and ALBL2 can relieve pathological inflammatory responses caused by LPS. These results suggest that the anti-inflammatory properties of peptide ALBL1 and ALBL2 might be a result from the inhibition of IL-6, IL-1β, and TNF-α expressions through the downregulation of Toll2/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Pei Li
- College of Life Science and Technology, Guangxi University, Nanning 530004, China;
- Institute for Fishery Sciences, Guangxi University, Nanning 530004, China
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China;
| | - Youqing Xu
- Institute for Fishery Sciences, Guangxi University, Nanning 530004, China
- Correspondence: or (Y.X.); or (Z.D.)
| | - Yupo Cao
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China;
| | - Zhaokun Ding
- Institute for Fishery Sciences, Guangxi University, Nanning 530004, China
- Correspondence: or (Y.X.); or (Z.D.)
| |
Collapse
|
34
|
Liu Z, Zhao J, Sun R, Wang M, Wang K, Li Y, Shang H, Hou J, Jiang Z. Lactobacillus plantarum 23-1 improves intestinal inflammation and barrier function through the TLR4/NF-κB signaling pathway in obese mice. Food Funct 2022; 13:5971-5986. [PMID: 35546499 DOI: 10.1039/d1fo04316a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a natural active ingredient, lactic acid bacteria have potential anti-inflammatory effects. In this study, male C57BL/6J mice were given a high-fat diet (HFD) to establish an obese mouse model. Lactobacillus plantarum 23-1 (LP23-1) with prebiotic characteristics was intervened for 8 weeks to evaluate its remission effect on obese animals and related mechanisms. The effects of LP23-1 on lipid accumulation and intestinal inflammation in HFD-fed mice were systematically evaluated by detecting lipid accumulation, blood lipid level, pathological changes in the liver and small intestine, oxidative stress and inflammatory cell level, lipid transport-related gene expression, the inflammatory signaling pathway, and intestinal tight junction (TJ) mRNA and protein expression. The results showed that LP23-1 could significantly reduce the body weight and fat index of HFD-fed mice, improve the lipid levels of serum and liver, reduce the histopathological damage to the liver and small intestine, and alleviate oxidative stress and inflammatory response caused by obesity. In addition, reverse transcription-polymerase chain reaction and western blot analysis showed that LP23-1 could regulate the mRNA expression of lipid transport-related genes; activate the TLR4/NF-κB signaling pathway; reduce intestinal inflammation; improve the mRNA and protein expression of intestinal TJ proteins zona occludens-1 (ZO-1), occludin, claudin-1, and Muc2; repair intestinal mucosal injury; and enhance intestinal barrier function. The aforementioned results showed that LP23-1 through the TLR4/NF-κB signaling pathway and intestinal barrier function reduced obesity symptoms. This study provided new insights into the mechanism of LP23-1 in reducing obesity and provided a theoretical basis for developing new functional foods.
Collapse
Affiliation(s)
- Zhijing Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jiale Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Rongbo Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Min Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Kunyang Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yanan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hang Shang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
35
|
Rice yogurt with various beans fermented by lactic acid bacteria from kimchi. Food Sci Biotechnol 2022; 31:819-825. [DOI: 10.1007/s10068-022-01096-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 05/02/2022] [Indexed: 12/26/2022] Open
|
36
|
Tan T, Huang Q, Chu W, Li B, Wu J, Xia Q, Cao X. Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis. Drug Deliv 2022; 29:692-701. [PMID: 35225122 PMCID: PMC8890522 DOI: 10.1080/10717544.2022.2044936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macrophages can transform into M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes, which mediate the immune/inflammatory response in rheumatoid arthritis (RA). Activated M1 phenotype macrophages and overexpression of folate (FA) receptors are abundant in inflammatory synovium and joints and promote the progression of RA. Germacrone (GER) can regulate the T helper 1 cell (Th1)/the T helper 2 cell (Th2) balance to delay the progression of arthritis. To deliver GER to inflammatory tissue cells to reverse M1-type proinflammatory cells and reduce inflammation, FA receptor-targeting nanocarriers loaded with GER were developed. In activated macrophages, FA-NPs/DiD showed significantly higher uptake efficiency than NPs/DiD. In vitro experiments confirmed that FA-NPs/GER could promote the transformation of M1 macrophages into M2 macrophages. In adjuvant-induced arthritis (AIA) rats, the biodistribution profiles showed selective accumulation at the inflammatory site of FA-NPs/GER, and significantly reduced the swelling and inflammation infiltration of the rat's foot. The levels of pro-inflammatory cytokines (TNF-α, IL-1β) in the rat's inflammatory tissue were significantly lower than other treatment groups, which indicated a significant therapeutic effect in AIA rats. Taken together, macrophage-targeting nanocarriers loaded with GER are a safe and effective method for the treatment of RA.
Collapse
Affiliation(s)
- Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Jingjing Wu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People's Republic of China
| |
Collapse
|
37
|
Immunomodulatory effects of Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124 isolated from kimchi on lipopolysaccharide-induced RAW264.7 cells and dextran sulfate sodium-induced colitis in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Sun P, Su J, Wang X, Zhou M, Zhao Y, Gu H. Nucleic Acids for Potential Treatment of Rheumatoid Arthritis. ACS APPLIED BIO MATERIALS 2022; 5:1990-2008. [PMID: 35118863 DOI: 10.1021/acsabm.1c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a common systemic inflammatory autoimmune disease that severely affects the life quality of patients. Current therapeutics in clinic mainly focus on alleviating the development of RA or relieving the pain of patients. The emerging biological disease-modifying antirheumatic drugs (DMARDs) require long-term treatment to achieve the expected efficacy. With the development of bionanotechnology, nucleic acids fulfill characters as therapeutics or nanocarriers and can therefore be alternatives to combat RA. This review summarizes the therapeutic RNAs developed through RNA interference (RNAi), nucleic acid aptamers, DNA nanostructures-based drug delivery systems, and nucleic acid vaccines for the applications in RA therapy and diagnosis. Furthermore, prospects of nucleic acids for RA therapy are intensively discussed as well.
Collapse
Affiliation(s)
- Pengchao Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingjing Su
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xiaonan Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Mo Zhou
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
39
|
Probiotics During the Therapeutic Management of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:353-375. [DOI: 10.1007/978-3-030-96881-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
SHI J, LI H, LIANG S, EVIVIE SE, HUO G, LI B, LIU F. Selected lactobacilli strains inhibit inflammation in LPS-induced RAW264.7 macrophages by suppressing the TLR4-mediated NF-κB and MAPKs activation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.107621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jialu SHI
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Huizhen LI
- Northeast Agricultural University, China; Northeast Agricultural University, China; Jiangnan University, China
| | - Shengnan LIANG
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Smith Etareri EVIVIE
- Northeast Agricultural University, China; Northeast Agricultural University, China; University of Benin, Nigeria; University of Benin, Nigeria
| | - Guicheng HUO
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Bailiang LI
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Fei LIU
- Northeast Agricultural University, China; Northeast Agricultural University, China
| |
Collapse
|
41
|
Gong Z, Han S, Liang T, Zhang H, Sun Q, Pan H, Wang H, Yang J, Cheng L, Lv X, Yue Q, Fan L, Xie J. Mycobacterium tuberculosis effector PPE36 attenuates host cytokine storm damage via inhibiting macrophage M1 polarization. J Cell Physiol 2021; 236:7405-7420. [PMID: 33959974 DOI: 10.1002/jcp.30411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis remains a serious global public health threat. Macrophage polarization is crucial for the innate immunity against M. tuberculosis. However, how M. tuberculosis interferes with macrophage polarization is elusive. We demonstrated here that M. tuberculosis PPE36 (Rv2108) blocked macrophage M1 polarization, preventing the cytokine storm, and alleviating inflammatory damage to mouse immune organs. PPE36 inhibited the polarization of THP-1 cell differentiation to M1 macrophages, reduced mitochondrial dehydrogenase activity, inhibited the expression of CD16, and repressed the expression of pro-inflammatory cytokines IL-6 and TNF-α, as well as chemokines CXCL9, CXCL10, CCL3, and CCL5. Intriguingly, in the mouse infection model, PPE36 significantly alleviated the inflammatory damage of immune organs caused by a cytokine storm. Furthermore, we found that PPE36 inhibited the polarization of macrophages into mature M1 macrophages by suppressing the ERK signaling. The study provided novel insights into the function and mechanism of action of M. tuberculosis effector PPE36 both at the cellular and animal level.
Collapse
Affiliation(s)
- Zhen Gong
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Shuang Han
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Tian Liang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Hongyang Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Qingyu Sun
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Huimin Pan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Haolin Wang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Jiao Yang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Liting Cheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xi Lv
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Qijia Yue
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| |
Collapse
|
42
|
Zhu Y, Ruan S, Shen H, Guan Q, Zhai L, Yang Y. Oridonin regulates the polarized state of Kupffer cells to alleviate nonalcoholic fatty liver disease through ROS-NF-κB. Int Immunopharmacol 2021; 101:108290. [PMID: 34717194 DOI: 10.1016/j.intimp.2021.108290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Oridonin (Ori) is a kind of diterpenoid small molecule, but its role in nonalcoholic fatty liver disease (NAFLD) has not been reported yet. This study aimed to explore the pharmacological function of Ori in liver protection through the reactive oxygen species (ROS)-mediated polarization of Kupffer cells (KCs). In the present work, KCs were adopted for study in vitro. To be specific, LPS and IFN-γ were utilized to induce M1 polarization, then the influence of Ori intervention on the expression of inflammatory factors IL-1β, IL-6 and TNF-α was detected by enzyme-linked immunosorbent assay (ELISA), that of CD86 and P65 was measured through fluorescence staining, that of p-P65 and p-P50 was detected by Western blotting (WB) assay, and ROS expression was measured by using the DCFH-DA probe. The C57BL/6J mice were fed with the high fat diet (HFD) to construct the NAFLD model, and intervened with Ori. The blood glucose (BG), body weight (BW), food intake and water intake of mice were monitored; meanwhile, glucose and insulin tolerance tests were conducted. The liver tissues of mice were subjected to H&E staining and oil red O staining. Moreover, the serum ALT, AST and TG levels in mice were monitored, the CD86 and CD206 levels were measured through histochemical staining, the expression of inflammatory factors was detected by ELISA, and the p-P65 and p-P50 protein levels were detected by WB assay. Ori suppressed the M1 polarization of KCs, reduced the levels of inflammatory factors, and decreased the expression of ROS, p-P65 and p-P50. In animal experiments, Ori improved lipid deposition and liver injury in the liver tissues of NAFLD mice, increased the proportion of M2 cells (up-regulated CD206 expression), reduced that of M1 cells (down-regulated CD86 expression), and decreased the serum ALT, AST and TG levels. This study discovered that Ori suppressed ROS production and regulated the M1 polarization of KCs, thus protecting the liver in NAFLD.
Collapse
Affiliation(s)
- Yu Zhu
- Department of critical medicine, The Second Affiliated Hospital of Jiaxing University, China
| | - Shuiliang Ruan
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, China
| | - Heping Shen
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China
| | - Qiaobing Guan
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China
| | - Liping Zhai
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China.
| | - Yi Yang
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China.
| |
Collapse
|
43
|
Wang M, Zhang J, Zhang J, Sun K, Li Q, Kuang B, Wang MMZ, Hou S, Gong N. Methyl eugenol attenuates liver ischemia reperfusion injury via activating PI3K/Akt signaling. Int Immunopharmacol 2021; 99:108023. [PMID: 34358859 DOI: 10.1016/j.intimp.2021.108023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Liver ischemia reperfusion injury (LIRI) often occurs during liver transplantation, resection, and various circulatory shock procedures, leading to severe metabolic disorders, inflammatory immune responses, oxidative stress injury, and cell apoptosis. Methyl eugenol (ME) is structurally similar to eugenol and has anti-inflammatory and apoptotic pharmacological effects. However, whether ME protects the liver from LIRI damage requires further investigation. METHODS We established a partially warm LIRI model by subjecting C57BL/6J mice to 60 min of ischemia, followed by reperfusion for 6 h. We also established a hypoxia-reoxygenation injury (H/R) cell model by subjecting AML12 (a mouse liver cell line) cells to 24 h hypoxia, followed by 18 h normoxia. The extent of liver injury was assessed by serum transaminase concentrations, hematoxylin and eosin staining, quantitative real-time PCR, myeloperoxidase activity, and TUNEL analysis. Apoptosis was detected using flow cytometry. The protein levels of p-PI3K, PI3K, p-Akt, Akt, p-Bad, Bad, Bcl-2, Bax, and cleaved caspase-3 were detected by western blotting. LY294002, an inhibitor of PI3K/Akt signaling, was used to elucidate the relationship between ME and PI3K/Akt signaling. RESULTS ME successfully alleviated LIRI-induced liver injury, inflammatory response, and apoptosis induced, as well as liver cell injury induced by hypoxia reoxygenation. ME is known to activate the PI3K/Akt signaling pathway in hepatocyte injury in vivo and in vitro, and when this signaling pathway is inhibited, the protective effect of ME is abrogated. CONCLUSIONS The use of ME is a potential therapeutic approach for regulating LIRI by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Mengqin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Jiasi Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Kailun Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - M M Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China.
| |
Collapse
|
44
|
Zhao L, Xie Q, Etareri Evivie S, Liu D, Dong J, Ping L, Liu F, Li B, Huo G. Bifidobacterium dentium N8 with potential probiotic characteristics prevents LPS-induced intestinal barrier injury by alleviating the inflammatory response and regulating the tight junction in Caco-2 cell monolayers. Food Funct 2021; 12:7171-7184. [PMID: 34269367 DOI: 10.1039/d1fo01164b] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The intestinal barrier is vital for preventing inflammatory bowel disease (IBD). This study aimed to investigate the potential mechanism behind the protective effects of B. dentium N8 on the intestinal barrier using the lipopolysaccharide (LPS)-induced Caco-2 cells model. Our probiotic validation results showed that B. dentium N8 had a higher adhesion ability and a more substantial inhibition effect on Escherichia coli ATCC 25922 adhesion to HT-29 cells. Regarding the epithelial integrity, B. dentium N8 significantly increased the trans-epithelial electrical resistance (TEER) value and decreased the paracellular permeability of Caco-2 cells stimulated by lipopolysaccharide (LPS). In addition, B. dentium N8 significantly increased ZO-1, occludin, and claudin-1 mRNA expression. B. dentium N8 downregulated the mRNA expression level of TLR4 and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Furthermore, B. dentium N8 had a better protective effect on the intestinal barrier than that of E7. Comparative genomics of B. dentium N8 and E7 showed B. dentium N8 had the specific genes encoding for adhesion ability and immune system regulation. The findings provide the theoretical basis for B. dentium N8 possessing a protective effect on the intestinal barrier, which indicate that it could be used as a novel therapy for IBD.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The Conditioned Medium of Lactobacillus rhamnoides GG Regulates Microglia/Macrophage Polarization and Improves Functional Recovery after Spinal Cord Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3376496. [PMID: 34337004 PMCID: PMC8289592 DOI: 10.1155/2021/3376496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Lactobacillus rhamnoides, a human intestinal colonizer, can act through various pathways to induce microglia/macrophages to produce cytokines and to polarize microglia/macrophages to different phenotypes to reduce the inflammatory response. In this article, we evaluated the treatment potential of the Lactobacillus rhamnoides GG conditioned medium (LGG-CM) in rat model with SCI (acute spinal cord injury), including functional, neurophysiological, and histological outcomes and the underlying neuroprotective mechanisms. In our experiment, LGG-CM (30 mg/kg) was injected directly into the injury site in rats immediately after SCI. Measured by the BBB scale (Basso, Beattie, and Bresnahan locomotor rating scale) and inclined plane test, rats in the LGG-CM-treated group showed better locomotor scores. Moreover, compared to the vehicle treatment group, LGG-CM increased the mRNA level of the M2 marker (CD206), and decreased that of the M1 marker (iNOS). Western blot assays showed that LGG-CM-treated SCI rats had a higher grayscale ratio of p65 and a lower ratio of p-IκBα/IκBα. Our study shows that local injection of LGG-CM after acute SCI can inhibit inflammatory responses and improve motor function recovery. These effects may be related with the inhibition to the NF-κB (The nuclear factor-kappa B) signal pathway which leads to M2 microglia/macrophage polarization.
Collapse
|
46
|
Labib AY, Ammar RM, El-Naga RN, El-Bahy AAZ, Tadros MG, Michel HE. Mechanistic insights into the protective effect of paracetamol against rotenone-induced Parkinson's disease in rats: Possible role of endocannabinoid system modulation. Int Immunopharmacol 2021; 94:107431. [PMID: 33578261 DOI: 10.1016/j.intimp.2021.107431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a disabling progressive neurodegenerative disease. So far, PD's treatment remains symptomatic with no curative effects. Aside from its blatant analgesic and antipyretic efficacy, recent studies highlighted the endowed neuroprotective potentials of paracetamol (PCM). To this end: the present study investigated: (1) Possible protective role of PCM against rotenone-induced PD-like neurotoxicity in rats, and (2) the mechanisms underlying its neuroprotective actions including cannabinoid receptors' modulation. A dose-response study was conducted using three doses of PCM (25, 50, and 100 mg/kg/day, i.p.) and their effects on body weight changes, spontaneous locomotor activity, rotarod test, tyrosine hydroxylase (TH) and α-synuclein expression, and striatal dopamine (DA) content were evaluated. Results revealed that PCM (100 mg/kg/day, i.p.) halted PD motor impairment, prevented rotenone-induced weight loss, restored normal histological tissue structure, reversed rotenone-induced reduction in TH expression and striatal DA content, and markedly decreased midbrain and striatal α-synuclein expression in rotenone-treated rats. Accordingly, PCM (100 mg/kg/day, i.p.) was selected for further mechanistic investigations, where it ameliorated rotenone-induced oxidative stress, neuro-inflammation, apoptosis, and disturbed cannabinoid receptors' expression. In conclusion, our findings imply a multi-target neuroprotective effect of PCM in PD which could be attributed to its antioxidant, anti-inflammatory and anti-apoptotic activities, in addition to cannabinoid receptors' modulation.
Collapse
Affiliation(s)
- Aya Yassin Labib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Ramy M Ammar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Alshaymaa Amin Zaki El-Bahy
- Department of Pharmacology and Toxicology, School of Pharmaceutical Science, University of Hertfordshire, Hosted by Global Academic Foundation, New Administrative City, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
47
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
48
|
Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Ethanolic Garcinia mangostana extract and α-mangostin improve dextran sulfate sodium-induced ulcerative colitis via the suppression of inflammatory and oxidative responses in ICR mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113384. [PMID: 32927006 DOI: 10.1016/j.jep.2020.113384] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is an inflammatory disorder of the colon. Garcinia mangostana Linn. (GM) has been traditionally used for its anti-inflammatory and antioxidant activities. AIM OF THE STUDY The effects of GM and its bioactive constituent α-mangostin on dextran sulfate sodium (DSS)-induced UC in mice were investigated. MATERIALS AND METHODS Adult ICR mice (n = 63) were pretreated with ethanolic GM extract at 40, 200, and 1000 mg/kg/day (GM40, GM200, and GM1000), α-mangostin at 30 mg/kg/day, or sulfasalazine at 100 mg/kg/day (SA) for 7 consecutive days. On days 4-7, UC was induced in the mice by the oral administration of DSS (40 kDa, 6 g/kg/day), while control mice received distilled water. The UC disease activity index (DAI) and histological changes were recorded. The activities of myeloperoxidase, catalase, and superoxide dismutase, and the levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) were determined. The mRNA expression of inflammatory related genes including proinflammatory cytokine Tnf-α, Toll-like receptor (Tlr-2), adhesion molecules (Icam-1 and Vcam-1), and monocyte chemoattractant protein (Mcp-1) were evaluated. RESULTS Treatment with GM or α-mangostin decreased the UC DAI and protected against colon shortening and spleen and kidney enlargement. GM and α-mangostin prevented histological damage, reduced mast cell infiltration in the colon, and decreased myeloperoxidase activity. GM and α-mangostin increased catalase and superoxide dismutase activity and decreased ROS, NO, and MDA production. GM downregulated mRNA expression of Tnf-α, Tlr-2, Icam-1, Vcam-1, and Mcp-1. CONCLUSIONS GM and α-mangostin attenuated the severity of DSS-induced UC via anti-inflammatory and antioxidant effects. Therefore, GM is a promising candidate for development into a novel therapeutic agent for UC.
Collapse
Affiliation(s)
- Nitima Tatiya-Aphiradee
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
49
|
Huang YL, Zhang FL, Tang XL, Yang XJ. Telocytes Enhances M1 Differentiation and Phagocytosis While Inhibits Mitochondria-Mediated Apoptosis Via Activation of NF-κB in Macrophages. Cell Transplant 2021; 30:9636897211002762. [PMID: 33787355 PMCID: PMC8020100 DOI: 10.1177/09636897211002762] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Telocytes (TCs), which are a recently discovered interstitial cell type present in various organs and tissues, perform multiple biological functions and participate in extensive crosstalk with neighboring cells. Endometriosis (EMs) is a gynecological disease characterized by the presence of viable endometrial debris and impaired macrophage phagocytosis in the peritoneal environment. Here, CD34/vimentin-positive TCs were co-cultured with RAW264.7 cells in vitro. M1/M2 differentiation-related markers were detected; phagocytosis, energy metabolism, proliferation, apoptosis, and pathway mechanisms were studied; and the mitochondrial membrane potential (ΔΨm) was measured. Furthermore, in an EMs mouse model, the differentiation of macrophages in response to treatment with TC-conditioned medium (TCM) in vivo was studied. The results showed that upon in vitro co-culture with TCM, RAW264.7 cells differentiated more toward the M1 phenotype with enhancement of phagocytosis, increase in energy metabolism and proliferation owing to reduced the loss of ΔΨm, and suppression of dexamethasone-induced apoptosis. Further, along with the activation of NF-κB, Bcl-2 and Bcl-xl, the expression of Bax, cleaved-caspase9, and cleaved-caspase3 reduced in RAW264.7 cells. In addition, the M1 subtype was found to be the dominant phenotype among tissue and peritoneal macrophages in the EMs model subjected to in vivo TCM treatment. In conclusion, TCs enhanced M1 differentiation and phagocytosis while inhibiting apoptosis via the activation of NF-κB in macrophages, which potentially inhibited the onset of EMs. Our findings provide a potential research target and the scope for developing a promising therapeutic strategy for EMs.
Collapse
Affiliation(s)
- Yue-Lin Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu Province, PR China
| | - Fei-Lei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu Province, PR China
| | - Xue-Ling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu Province, PR China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu Province, PR China
| |
Collapse
|
50
|
Xu L, Zhou J, Qu G, Lin Z, Fan Q, Wang C, Wang Q. Recombinant lactobacillin PlnK adjusts the gut microbiome distribution in broilers. Br Poult Sci 2020; 61:390-399. [PMID: 32302217 DOI: 10.1080/00071668.2020.1752911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. The heterologous expression and biological function of the Lactobacillus bacteriocin plantaricin K (PlnK) remain largely unknown. 2. In this study, PlnK was efficiently expressed in competent E. coli BL21 (used in transformation and protein expression) after 12 h, at 37°C and in 0.4 mmol/l isopropyl β- d-1-thiogalactopyranoside (IPTG). 3. The inhibitory bacterial spectrum of recombinant PlnK was investigated and indicated that levels of PlnK above 0.10 mg/ml produced an obvious inhibitory effect on gram-positive bacteria and gram-negative bacteria in vitro. 4. The effects of PlnK on intestinal immune function and the gut microbiome distribution in broilers were studied. The results revealed that, after consuming 2.50 × 10-3 mg/ml of PlnK in water for one week, at the phylum level, the abundance of Firmicutes was increased and the abundance of Bacleroidetes was decreased. At the family level, the abundance of Lachnospiraceae, Ruminococcaceae and Streptococcaceae were significantly improved, but the abundance of Bacteroidaceae was reduced. At the genus level, the abundances of Lachnoclostridium, Streptococcus and Ruminococcaceae-UCG-013, were significantly up-regulated, and the abundance of Bacteroides was down-regulated. 5. After oral liquid intake of PlnK for one week, levels of secretory immunoglobulin A (sIgA) in the duodenal mucus were not significantly increased, but the mRNA levels of TLR3, MDA5, IFN-α, IFN-β, IFITM3 and IFITM10 in the duodenum were significantly reduced. 6. This study demonstrated that the recombinant PlnK could adjust the intestinal microbiome distribution and downregulate the IFN pathway.
Collapse
Affiliation(s)
- L Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University , Fuzhou, P.R. China
| | - J Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University , Fuzhou, P.R. China
| | - G Qu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University , Fuzhou, P.R. China
| | - Z Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University , Fuzhou, P.R. China
| | - Q Fan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University , Fuzhou, P.R. China
| | - C Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University , Fuzhou, P.R. China
| | - Q Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University , Fuzhou, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou , Fujian, P.R. China
| |
Collapse
|