1
|
Bhat HM, Nazir R, Kashoo ZA, Bhat SA. Probiotic potential of LAB strains from native Kashmir Flavorella chickens of northwestern Himalayas: A focus on safety and gut health. Res Vet Sci 2025; 192:105698. [PMID: 40412344 DOI: 10.1016/j.rvsc.2025.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/06/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Lactic acid bacteria (LAB) possess notable functional characteristics, making them promising candidates for probiotic applications due to their ability to endure low pH and high bile salt concentrations while inhibiting enteric pathogens. This study evaluates the probiotic potential and safety of LAB strains isolated from the gastrointestinal tract of indigenous chickens of the Northwestern Himalayas. We assessed features such as antimicrobial activity, auto-aggregation, co-aggregation, haemolytic activity, antibiotic resistance, and virulence gene presence. Multivariate analysis using Principal Component Analysis (PCA) and heat mapping was conducted to evaluate variability among strains based on traits like pH and bile salt tolerance, autoaggregation and co-aggregation and antimicrobial activity. Five LAB strains were identified through 16S rDNA analysis: Lactobacillus johnsonii, Ligilactobacillus salivarius, Lactobacillus kitasatonis, Rummeliibacillus suwonensis, and Enterococcus faecalis. All strains demonstrated significant tolerance to acidic and bile salt conditions, robust aggregation abilities, and strong antibacterial activity. Safety evaluations revealed no haemolytic activity or virulence genes, except for Enterococcus faecalis, which harboured the esp gene. PCA and heat mapping identified strain NC10 as the most promising probiotic isolate due to its superior antimicrobial activity and bile tolerance. This study highlights the potential of indigenous LAB strains, particularly Ligilactobacillus salivarius NC10, as safe probiotics for enhancing poultry health. To the best of our knowledge, this study is the first to evaluate the probiotic attributes of LAB strains derived from native chickens of the Northwestern Himalayas in the Indian subcontinent. IMPORTANCE: This study underscores the potential of utilizing lactic acid bacteria (LAB) strains from indigenous chickens of the Northwestern Himalayas as safe and effective probiotics. Native breeds, such as the Kashmir Flavorella, have adapted to the region's unique environment, offering a rich source of microbiota with distinct probiotic traits. The identification of LAB strains, particularly Ligilactobacillus salivarius NC10, with exceptional antimicrobial activity and bile tolerance, opens avenues for improving poultry gut health and productivity. As antibiotic resistance emerges as a global challenge, exploring natural and safe alternatives like probiotics becomes increasingly vital. Additionally, the comprehensive safety evaluation, including the absence of haemolytic activity and virulence genes in most strains, highlights their suitability for probiotic applications. This research not only contributes to sustainable poultry farming practices but also emphasizes the need to preserve and harness the microbial diversity of indigenous animal breeds, ensuring food security and environmental sustainability.
Collapse
Affiliation(s)
- Haneef Mohammad Bhat
- Microbiology Research Laboratory, Centre of Research for Development, University of Kashmir, 190006, Srinagar, India
| | - Ruqeya Nazir
- Microbiology Research Laboratory, Centre of Research for Development, University of Kashmir, 190006, Srinagar, India.
| | - Zahid Amin Kashoo
- Division of Veterinary Microbiology and Immunology, SKUAST-K Shuhama Alusteng-190006, India
| | - Shabir Ahmad Bhat
- Microbiology Research Laboratory, Centre of Research for Development, University of Kashmir, 190006, Srinagar, India
| |
Collapse
|
2
|
Vergalito F, Bagnoli D, Maiuro L, Pannella G, Palombo V, Testa B, Coppola F, Di Marco RMA, Tremonte P, Lombardi SJ, Iorizzo M, Coppola R, Succi M. Akkermansia muciniphila: new insights into resistance to gastrointestinal stress, adhesion, and protein interaction with human mucins through optimised in vitro trials and bioinformatics tools. Front Microbiol 2024; 15:1462220. [PMID: 39564479 PMCID: PMC11573778 DOI: 10.3389/fmicb.2024.1462220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
According to the FAO/WHO guidelines, selection of probiotics requires the assessment of survival under gastrointestinal stress and adhesion to human epithelial cells. These attributes were evaluated on Akkermansia muciniphila ATCC BAA-835 simulating the gastrointestinal transit (GIT) immediately followed by adhesion to human intestinal cell lines (CaCo2, HT-29, and HT-29-MTX) as an alternative approach to in vitro methods performed with fresh cells in each trial. The survival rate after GIT, as determined by plate counts and fluorescent probes, was significantly higher for A. muciniphila (about 8 Log CFU/mL) than for the probiotic Lacticaseibacillus rhamnosus GG ATCC 53103 (about 3 Log CFU/mL). The use of Live/Dead assay highlighted that A. muciniphila forms cell aggregates in the gastric phase as protective mechanism, explaining its high viability in the intestine. The rate of adhesion to human cell lines was always lower for strains tested after simulated GIT than for strains that did not undergo simulated GIT. Akkermansia muciniphila exhibited significantly higher adhesion than Lbs. rhamnosus GG, particularly to the mucus-secreting HT-29-MTX cells across a range of concentrations (2-8 Log CFU/mL). Finally, the bioinformatic analysis of A. muciniphila proteome confirmed the Amuc_1434 as a potential factor in binding to the human MUC2 protein.
Collapse
Affiliation(s)
- Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Diletta Bagnoli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Lucia Maiuro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Rome, Italy
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Francesca Coppola
- Italian National Research Council (CNR), Institute of Food Sciences (ISA), Avellino, Italy
| | - Roberto M A Di Marco
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Silvia J Lombardi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
3
|
Chen B, Silvaraju S, Almunawar SNA, Heng YC, Lee JKY, Kittelmann S. Limosilactobacillus allomucosae sp. nov., a novel species isolated from wild boar faecal samples as a potential probiotic for domestic pigs. Syst Appl Microbiol 2024; 47:126556. [PMID: 39467427 DOI: 10.1016/j.syapm.2024.126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Six strains, WILCCON 0050, WILCCON 0051, WILCCON 0052, WILCCON 0053, WILCCON 0054, WILCCON 0055T, were isolated from four different faecal samples of wild boars on Pulau Ubin, Singapore, Singapore. Based on core genome phylogenetic analysis, the six strains formed a distinct clade within the genus Limosilactobacillus (Lm.), with the most closely related type strain being Lm. mucosae DSM 13345T. The minimum ANI, dDDH, and AAI values within these six strains were 97.8%, 78.8%, and 98.6%, respectively. In contrast, the ANI, dDDH, and AAI values with Lm. mucosae DSM 13345T were lower, ranging between 94.8-95.1%, 57.1-59.0%, and 95.9-97.0%, respectively. While ANI and AAI were close to the thresholds of 95% and 97% for bacterial species delineation, respectively, dDDH was significantly lower than the threshold value of 70%. Based on our phylogenomic, phenotypic and chemotaxonomic analyses, we propose a novel species with the name Limosilactobacillus allomucosae sp. nov., with WILCCON 0055T (DSM 117632T = LMG 33563T) as the designated type strain. In vitro investigations revealed the strains' ability to break down raffinose-family oligosaccharides, and to utilize prebiotics such as xylo-oligosaccharides and galacturonic acid, thereby enhancing fibre digestion and nutrient absorption. Moreover, strong auto-aggregation properties, as well as resistance to low pH and porcine bile were observed, suggesting their potential survival and persistence during passage through the gut. The high bile tolerance of these strains appears to be attributed to their ability to deconjugate a wide range of conjugated bile compounds. In silico analysis indicated a strong potential for mucin-binding activity, which aids their colonization in the gut. These characteristics indicate the potential suitability of strains of Lm. allomucosae as probiotics for domestic pigs.
Collapse
Affiliation(s)
- Binbin Chen
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | | | | | - Yu Chyuan Heng
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Jolie Kar Yi Lee
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore.
| |
Collapse
|
4
|
Lugli GA, Argentini C, Tarracchini C, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Longhi G, Bianchi MG, Taurino G, Bussolati O, Milani C, Turroni F, Ventura M. Characterization of a Bifidobacterium animalis subsp. lactis reference strain based on ecology and transcriptomics. Appl Environ Microbiol 2024; 90:e0108024. [PMID: 39235395 PMCID: PMC11497779 DOI: 10.1128/aem.01080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
Bifidobacteria are recognized as health-promoting bacteria that reside in the human gut, helping in the digestion of fiber, preventing infections, and producing essential compounds like vitamins. To date, Bifidobacterium animalis subsp. lactis, together with Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium breve, and Bifidobacterium longum, represents one of the species that are used as probiotic bacteria. Despite the extensive and detailed scientific research conducted on this microbial taxon, the molecular mechanisms by which B. animalis subsp. lactis exerts health benefits to its host are still largely unknown. Thus, we dissected the genetic repertoire and phylogenetic relationship of 162 strains of B. animalis subsp. lactis to select a representative reference strain of this taxon suitable for investigating its interaction with the host. The B. animalis subsp. lactis PRL2013 strain, which was isolated by a mucosal sample of a healthy adult, was chosen as the reference of the monophyletic cluster of human origin and revealed a greater adhesion index than that observed for another B. animalis subsp. lactis strain used in the industry as a probiotic supplement. Transcriptomics analyses of PRL2013 strain, when exposed to human cell monolayers, revealed 291 significantly upregulated genes, among which were found genes predicted to encode extracellular structures that may directly interact with human cells, such as extracellular polymeric substances, wall teichoic acids, and pili. IMPORTANCE To date, many Bifidobacterium animalis subsp. lactis strains have been isolated from human fecal samples. However, their presence in these samples does not necessarily suggest an ability to colonize the human gut. Furthermore, probiotics of non-human origin may not effectively interact with the gut epithelium, resulting in transient bacteria of the gut microbiota. In vitro experiments with human cells revealed that B. animalis subsp. lactis PRL2013, an autochthonous member of the human gut, shows colonization capability, leading to future applications in functional foods.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Kamber A, Bulut Albayrak C, Harsa HS. Studies on the Probiotic, Adhesion, and Induction Properties of Artisanal Lactic Acid Bacteria: to Customize a Gastrointestinal Niche to Trigger Anti-obesity Functions. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10357-6. [PMID: 39382740 DOI: 10.1007/s12602-024-10357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
The primary goals of this work are to explore the potential of probiotic lactic acid bacteria's (LAB) mucin/mucus layer thickening properties and to identify anti-obesity candidate strains that improve appropriate habitat for use with the Akkermansia group population in the future. The HT-29 cell binding, antimicrobial properties, adhesion to the mucin/mucus layer, growth in the presence of mucin, stability during in vitro gastrointestinal (GI) conditions, biofilm formation, and mucin/mucus thickness increment abilities were all assessed for artisanal LAB strains. Sixteen LAB strains out of 40 were chosen for further analysis based on their ability to withstand GI conditions. Thirteen strains remained viable in simulated intestinal fluid, while most showed high viability in gastric juice simulation. Furthermore, 35.9-65.4% of those 16 bacteria adhered to the mucin layer. Besides, different lactate levels were produced, and Streptococcus thermophilus UIN9 exhibited the highest biofilm development. In the HT-29 cell culture, the highest mucin levels were 333.87 µg/mL with O. AK8 at 50 mM lactate, 313.38 µg/mL with Lactobacillus acidophilus NRRL-B 1910 with initial mucin, and 311.41 µg/mL with Lacticaseibacillus casei NRRL-B 441 with initial mucin and 50 mM lactate. Nine LAB strains have been proposed as anti-obesity candidates, with olive isolates of Lactiplantibacillus plantarum being particularly important due to their ability to avoid mucin sugar consumption. Probiotic LAB's attachment to the colonic mucosa and its ability to stimulate HT-29 cells to secrete mucus are critical mechanisms that may support the development of Akkermansia.
Collapse
Affiliation(s)
- A Kamber
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye
| | - C Bulut Albayrak
- Food Engineering Department, Aydın Adnan Menderes University, Engineering Faculty, 09100, Aydın, Türkiye
| | - H S Harsa
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye.
| |
Collapse
|
6
|
Longhi G, Lugli GA, Tarracchini C, Fontana F, Bianchi MG, Carli E, Bussolati O, van Sinderen D, Turroni F, Ventura M. From raw milk cheese to the gut: investigating the colonization strategies of Bifidobacterium mongoliense. Appl Environ Microbiol 2024; 90:e0124424. [PMID: 39150265 PMCID: PMC11409640 DOI: 10.1128/aem.01244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the Bifidobacterium mongoliense species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between B. mongoliense and the human gut. Based on 128 raw milk cheeses collected from different Italian regions, we isolated and characterized 10 B. mongoliense strains. Comparative genomics allowed us to unveil the presence of enzymes required for the degradation of sialylated host-glycans in B. mongoliense, corroborating the appreciable growth on de Man-Rogosa-Sharpe (MRS) medium supplemented with 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL). The B. mongoliense BMONG18 was chosen, due to its superior ability to utilize 3'-SL and mucin as representative strain, to investigate its behavior when co-inoculated with other bifidobacterial species. Conversely, members of other bifidobacterial species did not appear to benefit from the presence of BMONG18, highlighting a competitive scenario for nutrient acquisition. Transcriptomic data of BMONG18 reveal no significant differences in gene expression when cultivated in a gut simulating medium (GSM), regardless of whether cheese was included or not. Furthermore, BMONG18 was shown to exhibit high adhesion capabilities to HT29-MTX human cells, in line with its colonization ability of a human host.IMPORTANCEFermented foods are nourishments produced through controlled microbial growth that play an essential role in worldwide human nutrition. Research interest in fermented foods has increased since the 80s, driven by growing awareness of their potential health benefits beyond mere nutritional content. Bifidobacterium mongoliense, previously identified throughout the production process of Parmigiano Reggiano cheese, was found to be capable of establishing itself in the intestines of its consumers. Our study underscores molecular mechanisms through which this bifidobacterial species, derived from food, interacts with the host and other gut microbiota members.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Dong W, Peng Y, Xu W, Zhou W, Yan Y, Mi J, Lu L, Cao Y, Zeng X. In vivo absorption and excretion in rats and in vitro digestion and fermentation by the human intestinal microbiota of 2- O-β-D-glucopyranosyl-L-ascorbic acid from the fruits of Lycium barbarum L. Food Funct 2024; 15:8477-8487. [PMID: 39054889 DOI: 10.1039/d4fo01894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
2-O-β-D-Glucopyranosyl-L-ascorbic acid (AA-2βG) from Lycium barbarum fruits has diverse bioactivities, yet its absorption and digestion are poorly understood. Therefore, the in vivo absorption of AA-2βG in rats was investigated in the present study. After oral administration to SD rats, AA-2βG was absorbed intact, reaching a peak plasma concentration of 472.32 ± 296.64 nM at 90 min, with fecal excretion peaking at 4-8 h and decreasing rapidly by 12-24 h, indicating a prolonged intestinal presence. Furthermore, the digestibility under simulated gastrointestinal conditions and the impact on the gut flora through in vitro fermentation of AA-2βG were investigated. The results reveal that AA-2βG resisted in in vitro simulated digestion, indicating potential interactions with the gut microbiota. The results of in vitro fermentation showed that AA-2βG regulated the composition of the gut microbiota by promoting Oscillospiraceae, Faecalibacterium, Limosilactobacillus, and Fusicatenibacter, while inhibiting Enterococcus, Phocaeicola, Bacteroides, and Streptococcus. Furthermore, at the species level, AA-2βG promoted the growth of Limosilactobacillus mucosae and Faecalibacterium prausnitzii, and inhibited the growth of Enterococcus. F. prausnitzii is a major producer of n-butyric acid, and the results of short-chain fatty acids also demonstrated a significant promotion of n-butyric acid. Therefore, the study on the absorption, excretion, and regulatory effects of AA-2βG on the gut microbiota supported its potential development as a functional food additive to enhance intestinal health and prevent diseases.
Collapse
Affiliation(s)
- Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
8
|
Keresztény T, Libisch B, Orbe SC, Nagy T, Kerényi Z, Kocsis R, Posta K, Papp PP, Olasz F. Isolation and Characterization of Lactic Acid Bacteria With Probiotic Attributes From Different Parts of the Gastrointestinal Tract of Free-living Wild Boars in Hungary. Probiotics Antimicrob Proteins 2024; 16:1221-1239. [PMID: 37353593 PMCID: PMC11322276 DOI: 10.1007/s12602-023-10113-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Lactic acid bacteria (LAB) in the microbiota play an important role in human and animal health and, when used as probiotics, can contribute to an increased growth performance in livestock management. Animals living in their native habitat can serve as natural sources of microorganisms, so isolation of LAB strains from wild boars could provide the opportunity to develop effective probiotics to improve production in swine industry. In this study, the probiotic potential of 56 LAB isolates, originated from the ileum, colon, caecum and faeces of 5 wild boars, were assessed in vitro in details. Their taxonomic identity at species level and their antibacterial activity against four representative strains of potentially pathogenic bacteria were determined. The ability to tolerate low pH and bile salt, antibiotic susceptibility, bile salt hydrolase activity and lack of hemolysis were tested. Draft genome sequences of ten Limosilactobacillus mucosae and three Leuconostoc suionicum strains were determined. Bioinformatic analysis excluded the presence of any known acquired antibiotic resistance genes. Three genes, encoding mesentericin B105 and two different bacteriocin-IIc class proteins, as well as two genes with possible involvement in mesentericin secretion (mesE) and transport (mesD) were identified in two L. suionicum strains. Lam29 protein, a component of an ABC transporter with proved function as mucin- and epithelial cell-adhesion factor, and a bile salt hydrolase gene were found in all ten L. mucosae genomes. Comprehensive reconsideration of all data helps to select candidate strains to assess their probiotic potential further in animal experiments.
Collapse
Affiliation(s)
- Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
| | - Stephanya Corral Orbe
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary
| | - Tibor Nagy
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life, Sciences, 2100, Gödöllő, Hungary
| | - Zoltán Kerényi
- Hungarian Dairy Research Institute Ltd, 9200, Mosonmagyaróvár, Hungary
| | - Róbert Kocsis
- Hungarian Dairy Research Institute Ltd, 9200, Mosonmagyaróvár, Hungary
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
| | - Péter P Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary.
| |
Collapse
|
9
|
Ermann Lundberg L, Pallabi Mishra P, Liu P, Forsberg MM, Sverremark-Ekström E, Grompone G, Håkansson S, Linninge C, Roos S. Bifidobacterium longum subsp. longum BG-L47 boosts growth and activity of Limosilactobacillus reuteri DSM 17938 and its extracellular membrane vesicles. Appl Environ Microbiol 2024; 90:e0024724. [PMID: 38888338 PMCID: PMC11267924 DOI: 10.1128/aem.00247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to identify a Bifidobacterium strain that improves the performance of Limosilactobacillus reuteri DSM 17938. Initial tests showed that Bifidobacterium longum subsp. longum strains boosted the growth of DSM 17938 during in vivo-like conditions. Further characterization revealed that one of the strains, BG-L47, had better bile and acid tolerance compared to BG-L48, as well as mucus adhesion compared to both BG-L48 and the control strain BB536. BG-L47 also had the capacity to metabolize a broad range of carbohydrates and sugar alcohols. Mapping of glycoside hydrolase (GH) genes of BG-L47 and BB536 revealed many GHs associated with plant-fiber utilization. However, BG-L47 had a broader phenotypic fiber utilization capacity. In addition, B. longum subsp. longum cells boosted the bioactivity of extracellular membrane vesicles (MV) produced by L. reuteri DSM 17938 during co-cultivation. Secreted 5'-nucleotidase (5'NT), an enzyme that converts AMP into the signal molecule adenosine, was increased in MV boosted by BG-L47. The MV exerted an improved antagonistic effect on the pain receptor transient receptor potential vanilloid 1 (TRPV1) and increased the expression of the immune development markers IL-6 and IL-1ß in a peripheral blood mononuclear cell (PBMC) model. Finally, the safety of BG-L47 was evaluated both by genome safety assessment and in a human safety study. Microbiota analysis showed that the treatment did not induce significant changes in the composition. In conclusion, B. longum subsp. longum BG-L47 has favorable physiological properties, can boost the in vitro activity of L. reuteri DSM 17938, and is safe for consumption, making it a candidate for further evaluation in probiotic studies. IMPORTANCE By using probiotics that contain a combination of strains with synergistic properties, the likelihood of achieving beneficial interactions with the host can increase. In this study, we first performed a broad screening of Bifidobacterium longum subsp. longum strains in terms of synergistic potential and physiological properties. We identified a superior strain, BG-L47, with favorable characteristics and potential to boost the activity of the known probiotic strain Limosilactobacillus reuteri DSM 17938. Furthermore, we demonstrated that BG-L47 is safe for consumption in a human randomized clinical study and by performing a genome safety assessment. This work illustrates that bacteria-bacteria interactions differ at the strain level and further provides a strategy for finding and selecting companion strains of probiotics.
Collapse
Affiliation(s)
- Ludwig Ermann Lundberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, Stockholm, Sweden
| | - Punya Pallabi Mishra
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Manuel Mata Forsberg
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Sebastian Håkansson
- BioGaia, Stockholm, Sweden
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Caroline Linninge
- BioGaia, Stockholm, Sweden
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, Stockholm, Sweden
| |
Collapse
|
10
|
Yao G, Zhao Z, Yang C, Zuo B, Sun Z, Wang J, Zhang H. Evaluating the probiotic effects of spraying lactiplantibacillus plantarum P-8 in neonatal piglets. BMC Microbiol 2024; 24:253. [PMID: 38982403 PMCID: PMC11232343 DOI: 10.1186/s12866-024-03332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Gut microbes play an important role in the growth and health of neonatal piglets. Probiotics can promote the healthy growth of neonatal piglets by regulating their gut microbes. The study investigated the effects of spraying Lactiplantibacillus plantarum P-8 (L. plantarum P-8) fermentation broth on the growth performance and gut microbes of neonatal piglets. RESULTS The animals were randomly divided into probiotics groups (109 neonatal piglets) and control groups (113 neonatal piglets). The probiotics group was sprayed with L. plantarum P-8 fermented liquid from 3 day before the expected date of the sow to the 7-day-old of piglets, while the control group was sprayed with equal dose of PBS. Average daily gain (ADG), immune and antioxidant status and metagenome sequencing were used to assess the changes in growth performance and gut microbiota of neonatal piglets. The results showed that L. plantarum P-8 treatment significantly improved the average daily gain (P < 0.05) of neonatal piglets. L. plantarum P-8 increased the activities of CAT and SOD but reduced the levels of IL-2 and IL-6, effectively regulating the antioxidant capacity and immunity in neonatal piglets. L. plantarum P-8 adjusted the overall structure of gut microflora improving gut homeostasis to a certain extent, and significantly increased the relative abundance of gut beneficial bacteria such as L. mucosae and L. plantarum. CONCLUSION Spraying L. plantarum P-8 can be a feasible and effective probiotic intervention not only improving the growth of neonatal piglets, regulating the antioxidant capacity and immunity of neonatal piglets, but also improving the gut homeostasis to a certain extent.
Collapse
Affiliation(s)
- Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China.
| |
Collapse
|
11
|
Lin Q, Lin S, Fan Z, Liu J, Ye D, Guo P. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut. Microorganisms 2024; 12:1026. [PMID: 38792855 PMCID: PMC11124445 DOI: 10.3390/microorganisms12051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy animal intestine hosts a diverse population of bacteria in a symbiotic relationship. These bacteria utilize nutrients in the host's intestinal environment for growth and reproduction. In return, they assist the host in digesting and metabolizing nutrients, fortifying the intestinal barrier, defending against potential pathogens, and maintaining gut health. Bacterial colonization is a crucial aspect of this interaction between bacteria and the intestine and involves the attachment of bacteria to intestinal mucus or epithelial cells through nonspecific or specific interactions. This process primarily relies on adhesins. The binding of bacterial adhesins to host receptors is a prerequisite for the long-term colonization of bacteria and serves as the foundation for the pathogenicity of pathogenic bacteria. Intervening in the adhesion and colonization of bacteria in animal intestines may offer an effective approach to treating gastrointestinal diseases and preventing pathogenic infections. Therefore, this paper reviews the situation and mechanisms of bacterial colonization, the colonization characteristics of various bacteria, and the factors influencing bacterial colonization. The aim of this study was to serve as a reference for further research on bacteria-gut interactions and improving animal gut health.
Collapse
Affiliation(s)
- Qingjie Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Shiying Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Zitao Fan
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Dingcheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Pingting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| |
Collapse
|
12
|
Zeber-Lubecka N, Kulecka M, Dabrowska M, Baginska-Drabiuk K, Glowienka-Stodolak M, Nowakowski A, Slabuszewska-Jozwiak A, Bednorz B, Jędrzejewska I, Piasecka M, Pawelec J, Wojciechowska-Lampka E, Ostrowski J. Cervical microbiota dysbiosis associated with high-risk Human Papillomavirus infection. PLoS One 2024; 19:e0302270. [PMID: 38669258 PMCID: PMC11051640 DOI: 10.1371/journal.pone.0302270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
High-risk Human Papillomavirus (HR-HPV) genotypes, specifically HPV16 and HPV18, pose a significant risk for the development of cervical intraepithelial neoplasia and cervical cancer. In the multifaceted cervical microenvironment, consisting of immune cells and diverse microbiota, Lactobacillus emerges as a pivotal factor, wielding significant influence in both stabilizing and disrupting the microbiome of the reproductive tract. To analyze the distinction between the cervical microbiota and Lactobacillus-dominant/non-dominant status of HR-HPV and non-infected healthy women, sixty-nine cervical swab samples were analyzed, included 44 with HR-HPV infection and healthy controls. All samples were recruited from Human Papillomavirus-based cervical cancer screening program and subjected to 16s rRNA sequencing analysis. Alpha and beta diversity analyses reveal no significant differences in the cervical microbiota of HR-HPV-infected women, including 16 and 18 HPV genotypes, and those with squamous intraepithelial lesion (SIL), compared to a control group. In this study we identified significantly lower abundance of Lactobacillus mucosae in women with HR-HPV infection compared to the control group. Furthermore, changes in bacterial diversity were noted in Lactobacillus non-dominant (LND) samples compared to Lactobacillus-dominant (LD) in both HR-HPV-infected and control groups. LND samples in HR-HPV-infected women exhibited a cervical dysbiotic state, characterized by Lactobacillus deficiency. In turn, the LD HR-HPV group showed an overrepresentation of Lactobacillus helveticus. In summary, our study highlighted the distinctive roles of L. mucosae and L. helveticus in HR-HPV infections, signaling a need for further research to demonstrate potential clinical implications of cervical microbiota dysbiosis.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Maria Glowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrzej Nowakowski
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Bożena Bednorz
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ilona Jędrzejewska
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piasecka
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Pawelec
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
13
|
Kavanova K, Kostovova I, Moravkova M, Kubasova T, Babak V, Crhanova M. Comparative Genome Analysis and Characterization of the Probiotic Properties of Lactic Acid Bacteria Isolated from the Gastrointestinal Tract of Wild Boars in the Czech Republic. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10259-7. [PMID: 38652229 DOI: 10.1007/s12602-024-10259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Probiotics are crucial components for maintaining a healthy gut microbiota in pigs, especially during the weaning period. Lactic acid bacteria (LAB) derived from the gastrointestinal tract of wild boars can serve as an abundant source of beneficial probiotic strains with suitable properties for use in pig husbandry. In this study, we analyzed and characterized 15 strains of Limosilactobacillus mucosae obtained from the gut contents of wild boars to assess their safety and suitability as probiotic candidates. The strains were compared using pan-genomic analysis with 49 L. mucosae strains obtained from the NCBI database. All isolated strains demonstrated their safety by showing an absence of transferrable antimicrobial resistance genes and hemolysin activity. Based on the presence of beneficial genes, five candidates with probiotic properties were selected and subjected to phenotypic profiling. These five selected isolates exhibited the ability to survive conditions mimicking passage through the host's digestive tract, such as low pH and the presence of bile salts. Furthermore, five selected strains demonstrated the presence of corresponding carbohydrate-active enzymes and the ability to utilize various carbohydrate substrates. These strains can enhance the digestibility of oligosaccharide or polysaccharide substrates found in food or feed, specifically resistant starch, α-galactosides, cellobiose, gentiobiose, and arabinoxylans. Based on the results obtained, the L. mucosae isolates tested in this study appear to be promising candidates for use as probiotics in pigs.
Collapse
Affiliation(s)
- Katerina Kavanova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Iveta Kostovova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Monika Moravkova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Tereza Kubasova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Vladimir Babak
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Magdalena Crhanova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| |
Collapse
|
14
|
Ma W, Zhang W, Wang X, Pan Y, Wang M, Xu Y, Gao J, Cui H, Li C, Chen H, Zhang H, Xia C, Wang Y. Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from the pigs with superior immune responses. Front Microbiol 2024; 15:1361860. [PMID: 38585699 PMCID: PMC10995931 DOI: 10.3389/fmicb.2024.1361860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengjie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfei Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junxin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
15
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Ecology- and genome-based identification of the Bifidobacterium adolescentis prototype of the healthy human gut microbiota. Appl Environ Microbiol 2024; 90:e0201423. [PMID: 38294252 PMCID: PMC10880601 DOI: 10.1128/aem.02014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Longhi G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Genomic and ecological approaches to identify the Bifidobacterium breve prototype of the healthy human gut microbiota. Front Microbiol 2024; 15:1349391. [PMID: 38426063 PMCID: PMC10902438 DOI: 10.3389/fmicb.2024.1349391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Oviedo-León JF, Cornejo-Mazón M, Ortiz-Hernández R, Torres-Ramírez N, Hernández-Sánchez H, Castro-Rodríguez DC. Exploration adhesion properties of Liquorilactobacillus and Lentilactobacillus isolated from two different sources of tepache kefir grains. PLoS One 2024; 19:e0297900. [PMID: 38324577 PMCID: PMC10849267 DOI: 10.1371/journal.pone.0297900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Due to the distinctive characteristics of probiotics, it is essential to pinpoint strains originating from diverse sources that prove efficacious in addressing a range of pathologies linked to dysfunction of the intestinal barrier. Nine strains of lactic acid bacteria were isolated from two different sources of tepache kefir grains (KAS2, KAS3, KAS4, KAS7, KAL4, KBS2, KBS3, KBL1 and KBL3), and were categorized to the genus Lacticaseibacillus, Liquorilactobacillus, and Lentilactobacillus by 16S rRNA gene. Kinetic behaviors of these strains were evaluated in MRS medium, and their probiotic potential was performed: resistance to low pH, tolerance to pepsin, pancreatin, bile salts, antibiotic resistance, hemolytic activity, and adhesion ability. KAS7 strain presented a higher growth rate (0.50 h-1) compared with KAS2 strain, who presented a lower growth rate (0.29 h-1). KBS2 strain was the only strain that survived the in vitro stomach simulation conditions (29.3%). Strain KBL1 demonstrated significantly higher viability (90.6%) in the in vitro intestine simulation conditions. Strain KAS2 demonstrated strong hydrophilic character with chloroform (85.6%) and xylol (57.6%) and a higher percentage of mucin adhesion (87.1%). However, strains KBS2 (84.8%) and KBL3 (89.5%) showed the highest autoaggregation values. In terms of adhesion to the intestinal epithelium in rats, strains KAS2, KAS3 and KAS4 showed values above 80%. The growth of the strains KAS2, KAS3, KAS4, KBS2, and KBL3 was inhibited by cefuroxime, cefotaxime, tetracycline, ampicillin, erythromycin, and cephalothin. Strains KBS2 (41.9% and 33.5%) and KBL3 (42.5% and 32.8%) had the highest co-aggregation values with S. aureus and E. coli. The results obtained in this study indicate that lactic acid bacteria isolated from tepache can be considered as candidates for potentially probiotic bacteria, laying the foundations to evaluate their probiotic functionality in vivo and thus to be used in the formulation of functional foods.
Collapse
Affiliation(s)
- Julián Fernando Oviedo-León
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Maribel Cornejo-Mazón
- Departamento Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Mexico City, Mexico
| | - Rosario Ortiz-Hernández
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Diana C. Castro-Rodríguez
- Investigadores CONAHCyT, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
18
|
Angal A, Shidture S, Syed J, Tiwari DP, Dubey AK, Bhaduri A, Pujari R. In vitro adhesion and anti-inflammatory properties of Limosilactobacillus fermentum FS-10 isolated from infant fecal sample. Int Microbiol 2024; 27:227-238. [PMID: 37269431 DOI: 10.1007/s10123-023-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.
Collapse
Affiliation(s)
- Ashvini Angal
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Shubham Shidture
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Jaserah Syed
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Deepika Pandey Tiwari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Ashok Kumar Dubey
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Anirban Bhaduri
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Radha Pujari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India.
| |
Collapse
|
19
|
Altavas PJD, Amoranto MBC, Kim SH, Kang DK, Balolong MP, Dalmacio LMM. Safety assessment of five candidate probiotic lactobacilli using comparative genome analysis. Access Microbiol 2024; 6:000715.v4. [PMID: 38361650 PMCID: PMC10866033 DOI: 10.1099/acmi.0.000715.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Micro-organisms belonging to the Lactobacillus genus complex are often used for oral consumption and are generally considered safe but can exhibit pathogenicity in rare and specific cases. Therefore, screening and understanding genetic factors that may contribute to pathogenicity can yield valuable insights regarding probiotic safety. Limosilactobacillus mucosae LM1, Lactiplantibacillus plantarum SK151, Lactiplantibacillus plantarum BS25, Limosilactobacillus fermentum SK152 and Lactobacillus johnsonii PF01 are current probiotics of interest; however, their safety profiles have not been explored. The genome sequences of LM1, SK151, SK152 and PF01 were downloaded from the NCBI GenBank, while that of L. plantarum BS25 was newly sequenced. These genomes were then annotated using the Rapid Annotation using Subsystem Technology tool kit pipeline. Subsequently, a command line blast was performed against the Virulence Factor Database (VFDB) and the Comprehensive Antibiotic Resistance Database (CARD) to identify potential virulence factors and antibiotic resistance (AR) genes. Furthermore, ResFinder was used to detect acquired AR genes. The query against the VFDB identified genes that have a role in bacterial survivability, platelet aggregation, surface adhesion, biofilm formation and immunoregulation; and no acquired AR genes were detected using CARD and ResFinder. The study shows that the query strains exhibit genes identical to those present in pathogenic bacteria with the genes matched primarily having roles related to survival and surface adherence. Our results contribute to the overall strategies that can be employed in pre-clinical safety assessments of potential probiotics. Gene mining using whole-genome data, coupled with experimental validation, can be implemented in future probiotic safety assessment strategies.
Collapse
Affiliation(s)
- Patrick Josemaria d.R Altavas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Mia Beatriz C. Amoranto
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Sang Hoon Kim
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Gyeonggi-do, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Gyeonggi-do, Republic of Korea
| | - Marilen P. Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Leslie Michelle M. Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| |
Collapse
|
20
|
Abdel Tawab FI, Abd Elkadr MH, Sultan AM, Hamed EO, El-Zayat AS, Ahmed MN. Probiotic potentials of lactic acid bacteria isolated from Egyptian fermented food. Sci Rep 2023; 13:16601. [PMID: 37789063 PMCID: PMC10547719 DOI: 10.1038/s41598-023-43752-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Lactic acid bacteria (LAB) are of major concern due to their health benefits. Fermented food products comprise variable LAB demonstrating probiotic properties. Discovering and evaluating new probiotics in fermented food products poses a global economic and health importance. Therefore, the present work aimed to investigate and evaluate the probiotic potentials of LAB strains isolated from Egyptian fermented food. In this study, we isolated and functionally characterized 100 bacterial strains isolated from different Egyptian fermented food sources as probiotics. Only four LAB strains amongst the isolated LAB showed probiotic attributes and are considered to be safe for their implementation as feed or dietary supplements. Additionally, they were shown to exert antimicrobial activities against pathogenic bacteria and anticancer effects against the colon cancer cell line Caco-2. The Enterococcus massiliensis IS06 strain was exclusively reported in this study as a probiotic strain with high antimicrobial, antioxidant, and anti-colon cancer activity. Hitherto, few studies have focused on elucidating the impact of probiotic supplementation in vivo. Therefore, in the current study, the safety of the four strains was tested in vivo through the supplementation of rats with potential probiotic strains for 21 days. The results revealed that probiotic bacterial supplementation in rats did not adversely affect the general health of rats. The Lactiplantibacillus plantarum IS07 strain significantly increased the growth performance of rats. Furthermore, the four strains exhibited increased levels of antioxidants such as superoxide dismutase and glutathione in vivo. Consistently, all strains also showed high antioxidant activity of the superoxide dismutase enzyme in vitro. Overall, these findings demonstrated that these isolated potential probiotics harbor desirable characteristics and can be applied widely as feed additives for animals or as dietary supplements for humans to exert their health benefits and combat serious diseases.
Collapse
Affiliation(s)
- Fatma I Abdel Tawab
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Institute, Agricultural Research Center, Giza, Egypt
| | - Menna H Abd Elkadr
- Microbiology Lab, Research Park, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Amany M Sultan
- Department of Biochemistry, Toxicology Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ehdaa O Hamed
- Department of Biochemistry, Toxicology Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ayatollah S El-Zayat
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt
| | - Marwa N Ahmed
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt.
| |
Collapse
|
21
|
Kim H, Yoo MS, Jeon H, Shim JJ, Park WJ, Kim JY, Lee JL. Probiotic Properties and Safety Evaluation of Lactobacillus plantarum HY7718 with Superior Storage Stability Isolated from Fermented Squid. Microorganisms 2023; 11:2254. [PMID: 37764098 PMCID: PMC10534859 DOI: 10.3390/microorganisms11092254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to identify new potential probiotics with improved storage stability and to evaluate their efficacy and safety. Sixty lactic acid bacteria strains were isolated from Korean traditional fermented foods, and their survival was tested under extreme conditions. Lactobacillus plantarum HY7718 (HY7718) showed the greatest stability during storage. HY7718 also showed a stable growth curve under industrial conditions. Whole genome sequencing revealed that the HY7718 genome comprises 3.26 Mbp, with 44.5% G + C content, and 3056 annotated Protein-coding DNA sequences (CDSs). HY7718 adhered to intestinal epithelial cells and was tolerant to gastric fluids. Additionally, HY7718 exhibited no hemolytic activity and was not resistant to antibiotics, confirming that it has probiotic properties and is safe for consumption. Additionally, we evaluated its effects on intestinal health using TNF-induced Caco-2 cells. HY7718 restored the expression of tight junction proteins such as zonular occludens (ZO-1, ZO-2), occludin (OCLN), and claudins (CLDN1, CLDN4), and regulated the expression of myosin light-chain kinase (MLCK), Elk-1, and nuclear factor kappa B subunit 1 (NFKB1). Moreover, HY7718 reduced the secretion of proinflammatory cytokines such as interleukin-6 (IL-6) and IL-8, as well as reducing the levels of peroxide-induced reactive oxygen species. In conclusion, HY7718 has probiotic properties, is safe, is stable under extreme storage conditions, and exerts positive effects on intestinal cells. These results suggest that L. plantarum HY7718 is a potential probiotic for use as a functional supplement in the food industry.
Collapse
Affiliation(s)
- Hyeonji Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Myeong-Seok Yoo
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Hyejin Jeon
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Woo-Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Jung-Lyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| |
Collapse
|
22
|
Maher JM, Drouillard JS, Baker AN, de Aguiar Veloso V, Kang Q, Kastner JJ, Gragg SE. Impact of the Probiotic Organism Megasphaera elsdenii on Escherichia coli O157:H7 Prevalence in Finishing Cattle. J Food Prot 2023; 86:100133. [PMID: 37479183 DOI: 10.1016/j.jfp.2023.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Feedlot cattle commonly shed the foodborne pathogen Escherichia coli O157:H7 in their feces. Megasphaera elsdenii (ME), a lactic acid-utilizing bacterium, is commonly administered to cattle to avoid lactate accumulation in the rumen and to control ruminal acidosis. The impact of administering ME on foodborne pathogen prevalence, specifically E. coli O157:H7, has not been explored. The purpose of this study was to quantify E. coli O157:H7 prevalence in finishing cattle administered ME. Cattle (n = 448) were assigned to treatments in a randomized complete block design with repeated measurements over two sampling periods. Treatments were arranged as a 2 × 2 factorial containing: ruminally protected lysine (RPL; included for a complementary study) fed at 0% or 0.45% of diet dry matter; with or without ME. Freeze-dried ME was administered as an oral drench (1 × 1010 CFU/steer on day one) and then top dressed onto basal diets (1 × 107 CFU/steer) daily thereafter. Rectoanal mucosal swabs (RAMS) were obtained from animals before harvest to determine the E. coli O157:H7 prevalence. The inclusion of RPL (P = 0.2136) and ME (P = 0.5012) did not impact E. coli O157:H7 prevalence, and RPL was not included in any significant interactions (P > 0.05). A significant interaction was observed between ME and sampling period (P = 0.0323), indicating that the effect of ME on E. coli O157:H7 prevalence varied over the sampling period. A diet containing ME reduced the odds of E. coli O157:H7 prevalence by 50% during sampling period 1 (8.0% and 14.7% for cattle with and without ME, respectively) and increased the odds by 23% during sampling period 2 (10.8% and 8.9% for cattle with and without ME, respectively). Administering ME in cattle diets did not impact E. coli O157:H7 in feedlot cattle. This is the first study to investigate the use of ME as a preharvest food safety intervention in cattle, and additional research is necessary to determine the efficacy.
Collapse
Affiliation(s)
- Joshua M Maher
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - James S Drouillard
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Adrian N Baker
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Vanessa de Aguiar Veloso
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Qing Kang
- Department of Statistics, Kansas State University, 1116 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Justin J Kastner
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, 1620 Denison Avenue, Manhattan, KS 66506, USA
| | - Sara E Gragg
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA.
| |
Collapse
|
23
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
24
|
Adak A, Bera M, Mukhopadhyay B. Synthesis of the Hexasaccharide Related to the Exopolysaccharide from Lactobacillus mucosae VG1 through Regioselective Glycosylation. Org Lett 2023; 25:4711-4714. [PMID: 37341417 DOI: 10.1021/acs.orglett.3c01639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Chemical synthesis of the hexasaccharide repeating unit associated with the exopolysaccharide of Lactobacillus mucosae VG1 is reported. The total synthesis is accomplished through a convergent [2 + 2 + 2] strategy using rationally protected monosaccharide derivatives. Chemoselective activation of the glycosyl donors and regioselective nucleophilicity of the acceptors were successfully employed throughout the chemical synthesis.
Collapse
Affiliation(s)
- Anirban Adak
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Madhumita Bera
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
25
|
Rizzo SM, Alessandri G, Lugli GA, Fontana F, Tarracchini C, Mancabelli L, Viappiani A, Bianchi MG, Bussolati O, van Sinderen D, Ventura M, Turroni F. Exploring Molecular Interactions between Human Milk Hormone Insulin and Bifidobacteria. Microbiol Spectr 2023; 11:e0066523. [PMID: 37191543 PMCID: PMC10269646 DOI: 10.1128/spectrum.00665-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic. In this context, insulin, in addition to being one of the most prevalent hormones in breast milk, is also involved in a metabolic disease that affects many pregnant women, i.e., gestational diabetes mellitus (GDM). Analysis of 3,620 publicly available metagenomic data sets revealed that the bifidobacterial community varies in relation to the different concentrations of this hormone in breast milk of healthy and diabetic mothers. Starting from this assumption, in this study, we explored possible molecular interactions between this hormone and bifidobacterial strains that represent bifidobacterial species commonly occurring in the infant gut using 'omics' approaches. Our findings revealed that insulin modulates the bifidobacterial community by apparently improving the persistence of the Bifidobacterium bifidum taxon in the infant gut environment compared to other typical infant-associated bifidobacterial species. IMPORTANCE Breast milk is a key factor in modulating the infant's intestinal microbiota composition. Even though the interaction between human milk sugars and bifidobacteria has been extensively studied, there are other bioactive compounds in human milk that may influence the gut microbiota, such as hormones. In this article, the molecular interaction of the human milk hormone insulin and the bifidobacterial communities colonizing the human gut in the early stages of life has been explored. This molecular cross talk was assessed using an in vitro gut microbiota model and then analyzed by various omics approaches, allowing the identification of genes associated with bacterial cell adaptation/colonization in the human intestine. Our findings provide insights into the manner by which assembly of the early gut microbiota may be regulated by host factors such as hormones carried by human milk.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | | | - Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| |
Collapse
|
26
|
Li J, Chen X, Zhao S, Chen J. Arsenic-Containing Medicine Treatment Disturbed the Human Intestinal Microbial Flora. TOXICS 2023; 11:toxics11050458. [PMID: 37235272 DOI: 10.3390/toxics11050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Human intestinal microbiome plays vital role in maintaining intestinal homeostasis and interacting with xenobiotics. Few investigations have been conducted to understand the effect of arsenic-containing medicine exposure on gut microbiome. Most animal experiments are onerous in terms of time and resources and not in line with the international effort to reduce animal experiments. We explored the overall microbial flora by 16S rRNA genes analysis in fecal samples from acute promyelocytic leukemia (APL) patients treated with arsenic trioxide (ATO) plus all-trans retinoic acid (ATRA). Gut microbiomes were found to be overwhelmingly dominated by Firmicutes and Bacteroidetes after taking medicines containing arsenic in APL patients. The fecal microbiota composition of APL patients after treatment showed lower diversity and uniformity shown by the alpha diversity indices of Chao, Shannon, and Simpson. Gut microbiome operational taxonomic unit (OTU) numbers were associated with arsenic in the feces. We evaluated Bifidobacterium adolescentis and Lactobacillus mucosae to be a keystone in APL patients after treatment. Bacteroides at phylum or genus taxonomic levels were consistently affected after treatment. In the most common gut bacteria Bacteroides fragilis, arsenic resistance genes were significantly induced by arsenic exposure in anaerobic pure culture experiments. Without an animal model, without taking arsenicals passively, the results evidence that arsenic exposure by drug treatment is not only associated with alterations in intestinal microbiome development at the abundance and diversity level, but also induced arsenic biotransformation genes (ABGs) at the function levels which may even extend to arsenic-related health outcomes in APL.
Collapse
Affiliation(s)
- Jiaojiao Li
- College of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China
| | - Xinshuo Chen
- College of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China
| | - Shixiang Zhao
- Hematology Department of First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
27
|
Mendoza RM, Kim SH, Vasquez R, Hwang IC, Park YS, Paik HD, Moon GS, Kang DK. Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria. Food Sci Biotechnol 2023; 32:389-412. [PMID: 36911331 PMCID: PMC9992694 DOI: 10.1007/s10068-022-01142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.
Collapse
Affiliation(s)
- Remilyn M. Mendoza
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gi-Seong Moon
- Division of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
28
|
Lando V, Valduga NZ, Moroni LS. Functional characterization of Lactobacilli strains with antimicrobial activity against Salmonella spp. and cell viability in fermented dairy product. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Almeida MEDE, Pessoa WFB, Melgaço ACC, Ramos LP, Rezende RP, Romano CC. In vitro selection and characterization of probiotic properties in eight lactobacillus strains isolated from cocoa fermentation. AN ACAD BRAS CIENC 2022; 94:e20220013. [PMID: 36541978 DOI: 10.1590/0001-3765202220220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 12/23/2022] Open
Abstract
Traditionally, probiotic microorganisms are isolated from human and animal intestinal microbiota. However, the demand for diversification of biofunctional products has driven the search for new sources of probiotic candidates, such as fermented foods and vegetables. The present study found that strains isolated from the fermentation of fine cocoa from southern Bahia have biotechnological potential for use as a probiotic, since they showed capacity for self-aggregation and co-aggregation, antimicrobial activity against intestinal pathogens and resistance to gastrointestinal transits. Scores of importance for each property were established in order to more accurately assess the probiotic potential of the strains. The tests carried out contemplate the criteria previously established for the selection of probiotic candidates.
Collapse
Affiliation(s)
- Milena E DE Almeida
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Wallace Felipe B Pessoa
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Campus I, Departmento de Fisiologia e Patologia, s/n, Via Pau Brasil, Conj. Pres. Castelo Branco III, 58051-900 João Pessoa, PB, Brazil
| | - Ana Clara C Melgaço
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Louise P Ramos
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Rachel P Rezende
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Departmento de Ciências Biológicas, Laboratório de Biotecnologia Microbiana, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Carla Cristina Romano
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| |
Collapse
|
30
|
Li Z, Zhang W, Su L, Huang Z, Zhang W, Ma L, Sun J, Guo J, Wen F, Mei K, El-Ashram S, Huang S, Zhao Y. Difference analysis of intestinal microbiota and metabolites in piglets of different breeds exposed to porcine epidemic diarrhea virus infection. Front Microbiol 2022; 13:990642. [PMID: 36386617 PMCID: PMC9665409 DOI: 10.3389/fmicb.2022.990642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
The gut microbial composition of the Luchuan (LC) piglet, one of China’s native breeds, has rarely been studied, especially when compared to other breeds. This study developed a porcine epidemic diarrhea virus (PEDV) infection model in LC and Largewhite (LW) piglets, and analyzed the patterns and differences of intestinal microbial communities and metabolites in piglets of these two breeds after infection. The diarrhea score, survival time, and distribution of viral antigens in the intestine of piglets infected with PEDV differed among breeds, with the jejunal immunohistochemistry score of LW piglets being significantly higher than that of LC piglets (P < 0.001). The results of 16S rRNA sequencing showed differences in microbial diversity and community composition in the intestine of piglets with different breeds between PEDV infection piglets and the healthy controls. There were differences in the species and number of dominant phyla and dominant genera in the same intestinal segment. The relative abundance of Shigella in the jejunum of LC piglets after PEDV infection was significantly lower than that of LW piglets (P < 0.05). The key microorganisms differed in the microbiota were Streptococcus alactolyticus, Roseburia faecis, Lactobacillus iners, Streptococcus equi, and Lactobacillus mucosae (P < 0.05). The non-targeted metabolite analysis revealed that intestinal metabolites showed great differences among the different breeds related to infection. Spearman correlation analysis was conducted to examine any links between the microbiota and metabolites. The metabolites in the intestine of different breeds related to infection were mainly involved in arginine biosynthesis, synaptic vesicle cycle, nicotinic acid and nicotinamide metabolism and mTOR signaling pathway, with significantly positive or negative correlations (P < 0.05) between the various microorganisms. This study provides a theoretical foundation for investigating the application of core microorganisms in the gut of piglets of different breeds in the digestive tracts of those infected with PEDV, and helps to tackle the antimicrobial resistance problem further.
Collapse
Affiliation(s)
- Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Wandi Zhang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Langju Su
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Zongyang Huang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | | | - Liangliang Ma
- Liaoning Agricultural Development Service Center, Shenyang, China
| | - Jingshuai Sun
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Kun Mei
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Saeed El-Ashram
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yunxiang Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Yunxiang Zhao,
| |
Collapse
|
31
|
Silva S, Costa EM, Oliveira H, Freitas VD, Morais RM, Calhau C, Pintado M. Impact of a Purified Blueberry Extract on In Vitro Probiotic Mucin-Adhesion and Its Effect on Probiotic/Intestinal Pathogen Systems. Molecules 2022; 27:6991. [PMID: 36296591 PMCID: PMC9611478 DOI: 10.3390/molecules27206991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 10/15/2023] Open
Abstract
Several arguments have been made to substantiate the need for natural antimicrobials for the food industry. With blueberry extracts, the most compelling are both their healthy connotation and the possibility of obtaining a multipurpose solution that can be an antioxidant, colorant, and antimicrobial. From an antimicrobial perspective, as blueberry/anthocyanin-rich extracts have been associated with a capacity to inhibit harmful bacteria while causing little to no inhibition on potential probiotic microorganisms, the study of potential benefits that come from synergies between the extract and probiotics may be of particular interest. Therefore, the present work aimed to evaluate the effect of an anthocyanin-rich extract on the adhesion of five different probiotics as well as their effect on the probiotics' capacity to compete with or block pathogen adhesion to a mucin/BSA-treated surface. The results showed that, despite some loss of probiotic adhesion, the combined presence of extract and probiotic is more effective in reducing the overall amount of adhered viable pathogen cells than the PROBIOTIC alone, regardless of the probiotic/pathogen system considered. Furthermore, in some instances, the combination of the extract with Bifidobacterium animalis Bo allowed for almost complete inhibition of pathogen adhesion.
Collapse
Affiliation(s)
- Sara Silva
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eduardo M. Costa
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Hélder Oliveira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Vitor De Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Rui M. Morais
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Conceição Calhau
- Nutrição e Metabolismo, NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- CINTESIS, Centro de Investigação em Tecnologias e Serviços de Saúde, Universidade do Porto, 4200-450 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
32
|
Zubri NSM, Ramasamy K, Rahman NZA. Characterization and potential oral probiotic properties of Lactobacillus plantarum FT 12 and Lactobacillus brevis FT 6 isolated from Malaysian fermented food. Arch Oral Biol 2022; 143:105515. [PMID: 36084351 DOI: 10.1016/j.archoralbio.2022.105515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study aims to characterise the lactic acid bacteria (LAB) isolated from local Malaysian fermented foods with oral probiotics properties. DESIGN The LAB strains isolated from Malaysian fermented foods, Lactobacillus brevis FT 6 and Lactobacillus plantarum FT 12, were assessed for their antimicrobial properties against Porphyromonas gingivalis ATCC 33277 via disc diffusion assay. Anti-biofilm properties were determined by treating the overnight P. gingivalis ATCC 33277 biofilm with different concentrations of LAB cell-free supernatant (LAB CFS). Quantification of biofilm was carried out by measuring the optical density of stained biofilm. The ability of L. brevis FT 6 and L. plantarum FT 12 to tolerate salivary amylase was also investigated. Acid production with different sugars was carried out by pH measurement and screening for potential antimicrobial organic acid by disc diffusion assay of neutralised probiotics CFS samples. In this study, L. rhamnosus ATCC 7469, a commercial strain was used to compare the efficacy of the isolated strain with the commercial strain. RESULTS Lactobacillus brevis FT 6 and L. plantarum FT 12 possess antimicrobial activity against P. gingivalis with inhibition diameters of more than 10 mm, and the results were comparable with L. rhamnosus ATCC 7469. The MIC and MBC assay results for all tested strains were recorded to be 25 µl/µl concentration. All LAB CFS reduced biofilm formation proportionally to the CFS concentration and tolerated salivary amylase with more than 50% viability. Overnight cultures of all lactic acid bacteria strains showed a pH reduction and neutralised CFS of all lactic acid bacteria strains did not show any inhibition towards P. gingivalis. CONCLUSIONS These results indicate that the isolated probiotics have the potential as probiotics to be used as a supportive oral health treatment, especially against a periodontal pathogen, P. gingivalis.
Collapse
|
33
|
Jung TH, Han KS, Park JH, Hwang HJ. Butyrate modulates mucin secretion and bacterial adherence in LoVo cells via MAPK signaling. PLoS One 2022; 17:e0269872. [PMID: 35834581 PMCID: PMC9282476 DOI: 10.1371/journal.pone.0269872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/29/2022] [Indexed: 11/25/2022] Open
Abstract
Short-chain fatty acids contribute to normal bowel function and prevent bacterial infections. In particular, butyrate is a promising candidate that plays an important role in regulating the functional integrity of the gastrointestinal tract by stimulating mucin secretion. We investigated whether butyrate treatment modulates mucin secretion and bacterial adherence in LoVo cells. In addition, the possible signaling pathways were also examined in connection with the upregulation of mucin secretion. The results showed that butyrate induced mucin secretion in LoVo cells, resulting in the inhibition of Escherichia coli adhesion by increasing the adherence of Lactobacillus acidophilus and Bifidobacterium longum. The gene expression analysis suggests that mitogen-activated protein kinase (MAPK) signaling pathways including Cdc42-PAK pathway appears to be involved in stimulating mucin secretion. More importantly, butyrate induced the increased actin expression and polymerization in LoVo cells, which could be attributable to the Cdc42-PAK signaling pathway, implicated in actin cytoskeleton and mucin secretion. Our results provide a molecular basis in modulating bacterial adherence and the MAPK signaling pathway for the improved homeostasis of colonic epithelial cells.
Collapse
Affiliation(s)
- Tae-Hwan Jung
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
| | - Kyoung-Sik Han
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
| | - Jeong-Hyeon Park
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Hyo-Jeong Hwang
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
- * E-mail:
| |
Collapse
|
34
|
Yadav M, Kumar T, Kanakan A, Maurya R, Pandey R, Chauhan NS. Isolation and Characterization of Human Intestinal Bacteria Cytobacillus oceanisediminis NB2 for Probiotic Potential. Front Microbiol 2022; 13:932795. [PMID: 35910631 PMCID: PMC9326467 DOI: 10.3389/fmicb.2022.932795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022] Open
Abstract
Systemic characterization of the human gut microbiota highlighted its vast therapeutic potential. Despite having enormous potential, the non-availability of their culture representatives created a bottleneck to understand the concept of microbiome-based therapeutics. The present study is aimed to isolate and evaluate the probiotic potential of a human gut isolate. Physiochemical, morphological, and phylogenetic characterization of a human gut isolate identifies it as a rod-shaped gram-negative microbe taxonomically affiliated with the Cytobacillus genus, having an optimal growth at 37°C in a partially alkaline environment (pH 8.0). This human gut isolate showed continuous growth in the presence of salts (up to 7% NaCl and 10% KCl), antibiotics, metals and metalloids [silver nitrate (up to 2 mM); lead acetate (up to 2 mM); sodium arsenate (up to 10 mM); potassium dichromate (up to 2 mM)], gastric and intestinal conditions, diverse temperature (25–50°C), and pH (5–9) conditions making it fit to survive in the highly variable gut environment. Genomic characterization identified the presence of gene clusters for diverse bio-catalytic activity, stress response, and antimicrobial activity, as well as it indicated the absence of pathogenic gene islands. A combination of functional features like anti-amylase, anti-lipase, glutenase, prolyl endopeptidase, lactase, bile salt hydrolase, cholesterol oxidase, and anti-pathogenic activity is indicative of its probiotic potential in various disorders. This was further substantiated by the CaCo-2 cell line assay confirming its cellular adherence and biosafety. Conclusively, human gut isolate possessed significant probiotic potential that can be used to promote animal and human health.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Tarun Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Akshay Kanakan
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Ranjeet Maurya
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
- *Correspondence: Nar Singh Chauhan
| |
Collapse
|
35
|
Zhang Q, Vasquez R, Yoo JM, Kim SH, Kang DK, Kim IH. Dietary Supplementation of Limosilactobacillus mucosae LM1 Enhances Immune Functions and Modulates Gut Microbiota Without Affecting the Growth Performance of Growing Pigs. Front Vet Sci 2022; 9:918114. [PMID: 35847647 PMCID: PMC9280434 DOI: 10.3389/fvets.2022.918114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
Limosilactobacillus mucosae LM1 (LM1) is previously isolated from the intestine of piglets, but its potential as a probiotic supplement has not yet been assessed in growing pigs. In this study, we analyzed the probiotic effect of LM1 on the growth performance, apparent total tract digestibility (ATTD) of nutrients, immune properties, intestinal morphology, and gut microbiota and their metabolites in growing pigs. The experiment included 145 Duroc × (Landrace × Yorkshire) pigs (average body weight: 21.21 ± 1.14 kg) distributed into five treatment groups. The pigs were fed either a control diet (CON), or the control diet supplemented with incremental doses of LM1, namely low-dose LM1 (LL, 8.3 × 108 CFU/kg), moderate-low dose LM1 (ML, 4.2 × 109 CFU/kg), moderate-high dose LM1 (MH, 8.3 × 109 CFU/kg), and high-dose LM1 (HH, 2.1 × 1010 CFU/kg) for 42 d. On d 42, 12 pigs from each of the CON and MH groups were slaughtered. The results indicated that the ATTD of nitrogen (N, P = 0.038) was improved with MH supplementation. In addition, increasing dose of LM1 improved the immune response in pigs by reducing serum pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-alpha) and increasing anti-inflammatory cytokines (interleukin-10). Pigs fed with MH LM1 also had higher jejunal villus height and ileal villus height: crypt depth ratio, demonstrating improved intestinal morphology. Moreover, moderate-high LM1 supplementation enriched SCFA-producing taxa such as Lactobacillus, Holdemanella, Peptococcus, Bifidobacterium, Eubacterium_hallii_group, and Lachnospiraceae_AC2044_group, which correlated positively with increased fecal levels of butyrate and iso-valerate. These results strongly suggest the probiotic potential of LM1 on growing pigs. Overall, the current study provides insights on the use of L. mucosae LM1 as a novel livestock probiotic to improve pig gut health.
Collapse
Affiliation(s)
| | | | | | | | - Dae-Kyung Kang
- Department of Animal Resources and Science, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resources and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
36
|
Wang J, Wu Z, Wang S, Wang X, Zhang D, Wang Q, Lin L, Wang G, Guo Z, Chen Y. Inhibitory effect of probiotic Bacillus spp. isolated from the digestive tract of Rhynchocypris Lagowskii on the adhesion of common pathogenic bacteria in the intestinal model. Microb Pathog 2022; 169:105623. [PMID: 35691482 DOI: 10.1016/j.micpath.2022.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Diseases of fish caused by pathogenic bacteria are an important constraint on aquaculture production. Antibiotics have been widely used to control infectious diseases, but this has led to the emergence of drug-resistant bacteria and affected human health. In this context, probiotics are used as an alternative to antibiotics for the prevention and control of diseases in aquaculture. The aim of this study was to obtain probiotic candidate strains of Bacillus spp. from the gut of Rhynchocypris Lagowskii. Strains were screened by enzyme-producing ability, antagonism assay and antibiotic susceptibility. The safety of the strains to host fish has also been established. The isolated Bacillus licheniformis (LSG1-1) and Bacillus subtilis (LSG2-1) were characterized and performed well in tolerance experiments. In addition, LSG1-1 and LSG2-1 were detected to have higher self-aggregation ability and surface hydrophobicity. In the in vitro adhesion model, LSG1-1 and LSG2-1 showed good adhesion ability and had obvious adhesion inhibitory effect on three pathogens of Aeromonas. Based on the characteristics observed so far, Bacillus licheniformis LSG1-1 and Bacillus subtilis LSG2-1 could form potential probiotic candidates in the digestive tract of R. lagowskii to help combat diseases in aquaculture.
Collapse
Affiliation(s)
- Jiajing Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Zhenchao Wu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Seng Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Lili Lin
- Fisheries Technology Promotion Station of Jilin Province, Changchun, 130012, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Zhixin Guo
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Tonghua Normal University, Tonghua, 134001, China
| | - Yuke Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
37
|
Nakahata M, Tominaga N, Saito K, Nishiyama K, Tanino Y, Saiki K, Kojima M, Sakai S. A bio‐synthetic hybrid hydrogel formed under physiological conditions consisting of mucin and a synthetic polymer carrying boronic acid. Macromol Biosci 2022; 22:e2200055. [DOI: 10.1002/mabi.202200055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Masaki Nakahata
- Department of Macromolecular Science Graduate School of Science Osaka University 1‐1 Machikaneyama‐cho Toyonaka Osaka 560‐0043 Japan
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3 Machikaneyama‐cho Toyonaka Osaka 560–8531 Japan
| | - Naoki Tominaga
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3 Machikaneyama‐cho Toyonaka Osaka 560–8531 Japan
| | - Keishi Saito
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3 Machikaneyama‐cho Toyonaka Osaka 560–8531 Japan
| | - Keita Nishiyama
- Department of Microbiology and Immunology School of Medicine Keio University 35 Shinanomachi Shinjuku Tokyo 160–8582 Japan
| | - Yuya Tanino
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3 Machikaneyama‐cho Toyonaka Osaka 560–8531 Japan
| | - Kiyoshiro Saiki
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3 Machikaneyama‐cho Toyonaka Osaka 560–8531 Japan
| | - Masaru Kojima
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3 Machikaneyama‐cho Toyonaka Osaka 560–8531 Japan
| | - Shinji Sakai
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3 Machikaneyama‐cho Toyonaka Osaka 560–8531 Japan
| |
Collapse
|
38
|
Duraisamy S, Husain F, Balakrishnan S, Sathyan A, Subramani P, Chidambaram P, Arokiyaraj S, Al-Qahtani WH, Rajabathar J, Kumarasamy A. Phenotypic Assessment of Probiotic and Bacteriocinogenic Efficacy of Indigenous LAB Strains from Human Breast Milk. Curr Issues Mol Biol 2022; 44:731-749. [PMID: 35723336 PMCID: PMC8929004 DOI: 10.3390/cimb44020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Breast milk is the combination of bioactive compounds and microflora that promote newborn’s proper growth, gut flora, and immunity. Thus, it is always considered the perfect food for newborns. Amongst their bioactives, probiotic communities—especially lactic acid bacteria (LAB)—are characterized from breast milk over the first month of parturition. In this study, seven LAB were characterized phenotypically and genotypically as Levilactobacillus brevis BDUMBT08 (MT673657), L. gastricus BDUMBT09 (MT774596), L. paracasei BDUMBT10 (MT775430), L. brevis BDUMBT11 (MW785062), L. casei BDUMBT12 (MW785063), L. casei BDUMBT13 (MW785178), and Brevibacillus brevis M2403 (MK371781) from human breast milk. Their tolerance to lysozyme, acid, bile, gastric juice, pancreatic juice, and NaCl and potential for mucoadhesion, auto-aggregation, and co-aggregation with pathogens are of great prominence in forecasting their gut colonizing ability. They proved their safety aspects as they were negative for virulence determinants such as hemolysis and biofilm production. Antibiogram of LAB showed their sensitivity to more than 90% of the antibiotics tested. Amongst seven LAB, three isolates (L. brevis BDUMBT08 and BDUMBT11, and L. gatricus BDUMBT09) proved their bacteriocin producing propensity. Although the seven LAB isolates differed in their behavior, their substantial probiotic properties with safety could be taken as promising probiotics for further studies to prove their in vivo effects, such as health benefits, in humans.
Collapse
Affiliation(s)
- Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | - Fazal Husain
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | | | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | - Prabhu Subramani
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India; (P.S.); (P.C.)
| | - Prahalathan Chidambaram
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India; (P.S.); (P.C.)
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea;
| | - Wahidah H. Al-Qahtani
- Department of Food Science and Nutrition, College of Food & Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
- Correspondence:
| |
Collapse
|
39
|
Salvador PBU, Dalmacio LMM, Kim SH, Kang DK, Balolong MP. Immunomodulatory potential of four candidate probiotic Lactobacillus strains from plant and animal origin using comparative genomic analysis. Access Microbiol 2022; 3:000299. [PMID: 35024559 PMCID: PMC8749136 DOI: 10.1099/acmi.0.000299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Probiotic strains from different origins have shown promise in recent decades for their health benefits, for example in promoting and regulating the immune system. The immunomodulatory potential of four Lactobacillus strains from animal and plant origins was evaluated in this paper based on their genomic information. Comparative genomic analysis was performed through genome alignment, average nucleotide identity (ANI) analysis and gene mining for putative immunomodulatory genes. The genomes of the four Lactobacillus strains show relative similarities in multiple regions, as observed in the genome alignment. However, ANI analysis showed that L. mucosae LM1 and L. fermentum SK152 are the most similar when considering their nucleotide sequences alone. Gene mining of putative immunomodulatory genes studied from L. plantarum WCFS1 yielded multiple results in the four potential probiotic strains, with L. plantarum SK151 showing the largest number of genes at around 74 hits, followed by L. johnsonii PF01 at 41 genes when adjusted for matches with at least 30 % identity. Looking at the immunomodulatory genes in each strain, L. plantarum SK151 and L. johnsonii PF01 may have wider activity, covering both immune activation and immune suppression, as compared to L. mucosae LM1 and L. fermentum SK152, which could be more effective in activating immune cells and the pro-inflammatory cascade rather than suppressing it. The similarities and differences between the four Lactobacillus species showed that there is no definitive trend based on the origin of isolation alone. Moreover, higher percentage identities between genomes do not directly correlate with higher similarities in potential activity, such as in immunomodulation. The immunomodulatory function of each of the four Lactobacillus strains should be observed and verified experimentally in the future, since some the activity of some genes may be strain-specific, which would not be identified through comparative genomics alone.
Collapse
Affiliation(s)
- Paul Benedic U Salvador
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Sang Hoon Kim
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Republic of Korea
| | - Marilen P Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| |
Collapse
|
40
|
Husain F, Duraisamy S, Balakrishnan S, Ranjith S, Chidambaram P, Kumarasamy A. Phenotypic assessment of safety and probiotic potential of native isolates from marine fish Moolgarda seheli towards sustainable aquaculture. Biologia (Bratisl) 2022; 77:775-790. [PMID: 35034969 PMCID: PMC8744026 DOI: 10.1007/s11756-021-00957-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023]
Abstract
Aquaculture is a highly productive and fast-growing agricultural sector. The occurrence of epidemic or sporadic disease outbreak is a major limiting factor in this sector, thus better alternatives are the need of the hour. Use of indigenous probiotics is a promising strategy to control infectious diseases. Thus, the present study was aimed to screen and characterize potent indigenous probiotics from marine fish, Moolgarda seheli, towards enhancing sustainable aquaculture production. Totally 347 bacterial isolates were obtained from M. seheli gastrointestinal tract, out of these, four isolates (KAF121, 124, 135, 136) were confirmed as potent probiotics in terms of biosafety, highly resistant to acidic pH, gastric juice, bile salt, high hydrophobicity to solvents, auto and co-aggregation potential. These four isolates also exhibited virtuous antioxidant activity. Further the isolates, KAF124 and 135 proved their efficiency in growth and survival of fish after challenged againt Aeromonas hydrophila. The isolates were identified based on their 16S rRNA gene sequence and the data were submitted to Genbank as Pseudomonas aeruginosa KAF121 (MH393516), Bacillus cereus KAF124 (MH393226), Bacillus thuringiensis KAF135 (MH393230), and Pseudomonas otitidis KAF136 (MH393230). The results conclude that two isolates, KAF124 and KAF135 are highly safe and potent probiotics which are first time isolated from the marine fish M. seheli. The two Bacillus strains could be used as better alternatives to antibiotics and other chemical-based drugs to prevent/control infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Fazal Husain
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Senthilkumar Balakrishnan
- Department of Medical and Molecular Microbiology, Microtech Laboratories, Attur, Tamil Nadu 636 102 India
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Prahalathan Chidambaram
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| |
Collapse
|
41
|
Indian oil sardine (Sardinella longiceps) gut derived Bacillus safensis SDG14 with enhanced probiotic competence for food and feed applications. Food Res Int 2021; 150:110475. [PMID: 34865744 DOI: 10.1016/j.foodres.2021.110475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
Probiotics are considered as functional food as they provide health benefits along with traditional nutrition. Spore forming probiotic Bacillus are of commercial interest than Lactic Acid Bacillus due to their relatively lower cost of production and higher survivability. In the present study we identified the bacterial strain SDG14 isolated from Indian oil Sardine by Average Nucleotide Identity of whole genome sequence. The whole genome of SDG14 was also explored for pathogenicity, the presence of genes responsible for probiotic traits such as spore formation, resistance to host gastrointestinal tract conditions, adhesion to intestinal mucosa, interference in pathogen survival, expression of bacteriocins, oxidative and other stress responses, absorption of nutrition, production of essential amino acids and vitamins. Wet lab experiments for probiotic characterization were also conducted. The organism was confirmed to be Bacillus safensis SDG14. The possible pathogenicity of the organism was also ruled out by in silico analysis. Bacillus safensis SDG14 was able to survive at pH 3 and bile salt concentration of 0.5% (w/v). The adhesion index of Bacillus safensis SDG14 on HEp-2 was 36.82 ± 5.93 and 45.54 ± 9.55 respectively after 60 and 90 min of incubation and self aggregation percentage was 18.4 ± 0.48% after 3 h. Bacillus safensis SDG14 produced bacteriocin and co-aggregated with E. coli, Salmonella Typhimurium and Pseudomonas aeruginosa. The genomic data supported the findings of wet lab study and vice versa. Bacillus safensis SDG14 was proved to be a non-pathogenic, spore forming, pH and bile salt resistant, bacteriocin, amino acid and vitamin producing probiotic with proposed food and feed applications.
Collapse
|
42
|
Lactobacillus reuteri and Enterococcus faecium from Poultry Gut Reduce Mucin Adhesion and Biofilm Formation of Cephalosporin and Fluoroquinolone-Resistant Salmonella enterica. Animals (Basel) 2021; 11:ani11123435. [PMID: 34944212 PMCID: PMC8697943 DOI: 10.3390/ani11123435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) can cause infection in poultry, livestock, and humans. Although the use of antimicrobials as feed additives is prohibited, the previous indiscriminate use and poor regulatory oversight in some parts of the world have resulted in increased bacterial resistance to antimicrobials, including cephalosporins and fluoroquinolones, which are among the limited treatment options available against NTS. This study aimed to isolate potential probiotic lactic acid bacteria (LAB) strains from the poultry gut to inhibit fluoroquinolone and cephalosporin resistant MDR Salmonella Typhimurium and S. Enteritidis. The safety profile of the LAB isolates was evaluated for the hemolytic activity, DNase activity, and antibiotic resistance. Based on the safety results, three possible probiotic LAB candidates for in vitro Salmonella control were chosen. Candidate LAB isolates were identified by 16S rDNA sequencing as Lactobacillus reuteri PFS4, Enterococcus faecium PFS13, and Enterococcus faecium PFS14. These strains demonstrated a good tolerance to gastrointestinal-related stresses, including gastric acid, bile, lysozyme, and phenol. In addition, the isolates that were able to auto aggregate had the ability to co-aggregate with MDR S. Typhimurium and S. Enteritidis. Furthermore, LAB strains competitively reduced the adhesion of pathogens to porcine mucin Type III in co-culture studies. The probiotic combination of the selected LAB isolates inhibited the biofilm formation of S. Typhimurium FML15 and S. Enteritidis FML18 by 90% and 92%, respectively. In addition, the cell-free supernatant (CFS) of the LAB culture significantly reduced the growth of Salmonella in vitro. Thus, L. reuteri PFS4, E. faecium PFS13, and E. faecium PFS 14 are potential probiotics that could be used to control MDR S. Typhimurium and S. Enteritidis in poultry. Future investigations are required to elucidate the in vivo potential of these probiotic candidates as Salmonella control agents in poultry and animal feed.
Collapse
|
43
|
Li YS, San Andres JV, Trenhaile-Grannemann MD, van Sambeek DM, Moore KC, Winkel SM, Fernando SC, Burkey TE, Miller PS. Effects of mannan oligosaccharides and Lactobacillus mucosae on growth performance, immune response, and gut health of weanling pigs challenged with Escherichia coli lipopolysaccharides. J Anim Sci 2021; 99:6456512. [PMID: 34879142 DOI: 10.1093/jas/skab286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Addition of pre- and probiotics may confer growth and health benefits when added to the diet of pigs. To determine the effects of feeding mannan oligosaccharide (MOS) and Lactobacillus mucosae (LM) as prebiotic and probiotic sources in weanling pigs under immune challenge, 96 weaned pigs were randomly allotted to 16 experimental pens within a 2 × 2 factorial arrangement of treatments. Control diets with or without 0.1% yeast-derived MOS were randomly assigned to pens and 109 cfu/pig LM broth or a control broth were top-dressed daily. Pigs were fed one of four dietary treatments (control, MOS, LM, and MOS+LM) in Phases I and II (days 0 to 7 and days 7 to 21 postweaning, respectively) and a common diet during Phase III (days 21 to 35 postweaning). On day 14, all pigs were challenged with 100 µg/kg body weight (BW) Escherichia coli lipopolysaccharide (LPS) via intraperitonial injection. Feed disappearance and pig BW were measured weekly. Blood and fecal samples were collected weekly, and additional blood samples were collected on days 1 and 3 post-LPS challenge. On days 15 and 21, one pig per pen was euthanized for collection of ileal mucosa and duodenal and ileal tissue samples. From days 0 to 14, feeding LM decreased gain-to-feed ratio (G:F; P < 0.05). An interaction between LM and MOS was observed for G:F on days 14 to 21 (P < 0.05); G:F in LM (715 g/kg) was greater compared with MOS+LM (P < 0.05; 600 g/kg) and control (P < 0.10; 615 g/kg), but was not different (P > 0.10) from MOS (674 g/kg). After pigs were fed a common diet (days 21 to 35), G:F was decreased (P < 0.05) in the LM treatment groups. Pigs fed diets that included MOS had increased serum immunoglobulin (Ig) G on days 1 and 3 post-LPS challenge and 2 wk after removal of treatments (P < 0.05) and on days 14 and 21 postweaning (P < 0.10) compared with pigs fed diets without MOS. On day 15, mucosal immunoglobulin G was increased (P < 0.05) in control vs. MOS and LM groups. Circulating IL-1β in control and MOS+LM pigs increased (P < 0.05) on day 1 post-LPS challenge but did not change (P > 0.10) in MOS and LM groups. On day 15, pigs fed LM had decreased (P < 0.05) ileal crypt depth compared with pigs fed the control diet. On day 21, fecal propionate and butyrate tended to be lower (P < 0.10) in pigs fed MOS vs. control and MOS+LM diet. These preliminary findings suggest that feeding LM alone improved feed efficiency and ileal morphological structure during the first week of LPS challenge; additionally, feeding LM and MOS may have beneficial effects relative to immune biomarkers.
Collapse
Affiliation(s)
- Yanshuo S Li
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - Joice V San Andres
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA.,Department of Animal Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | | | | | - Kelly C Moore
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - Shana M Winkel
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - Phillip S Miller
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
44
|
Akpinar A, Yerlikaya O. Some potential beneficial properties of
Lacticaseibacillus paracasei
subsp.
paracasei
and
Leuconostoc mesenteroides
strains originating from raw milk and kefir grains. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Asli Akpinar
- Faculty of Engineering Department of Food Engineering Manisa Celal Bayar University Manisa Turkey
| | - Oktay Yerlikaya
- Faculty of Agriculture Department of Dairy Technology Ege University Izmir Turkey
| |
Collapse
|
45
|
Exploring the Bile Stress Response of Lactobacillus mucosae LM1 through Exoproteome Analysis. Molecules 2021; 26:molecules26185695. [PMID: 34577166 PMCID: PMC8467624 DOI: 10.3390/molecules26185695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022] Open
Abstract
Lactobacillus sp. have long been studied for their great potential in probiotic applications. Recently, proteomics analysis has become a useful tool for studies on potential lactobacilli probiotics. Specifically, proteomics has helped determine and describe the physiological changes that lactic acid bacteria undergo in specific conditions, especially in the host gut. In particular, the extracellular proteome, or exoproteome, of lactobacilli contains proteins specific to host– or environment–microbe interactions. Using gel-free, label-free ultra-high performance liquid chromatography tandem mass spectrometry, we explored the exoproteome of the probiotic candidate Lactobacillus mucosae LM1 subjected to bile treatment, to determine the proteins it may use against bile stress in the gut. Bile stress increased the size of the LM1 exoproteome, secreting ribosomal proteins (50S ribosomal protein L27 and L16) and metabolic proteins (lactate dehydrogenase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate dehydrogenases, among others) that might have moonlighting functions in the LM1 bile stress response. Interestingly, membrane-associated proteins (transporters, peptidase, ligase and cell division protein ftsH) were among the key proteins whose secretion were induced by the LM1 bile stress response. These specific proteins from LM1 exoproteome will be useful in observing the proposed bile response mechanisms via in vitro experiments. Our data also reveal the possible beneficial effects of LM1 to the host gut.
Collapse
|
46
|
Pabari K, Pithva S, Kothari C, Purama RK, Kondepudi KK, Vyas BRM, Kothari R, Ambalam P. Evaluation of Probiotic Properties and Prebiotic Utilization Potential of Weissella paramesenteroides Isolated From Fruits. Probiotics Antimicrob Proteins 2021; 12:1126-1138. [PMID: 31942681 DOI: 10.1007/s12602-019-09630-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Weissella paramesenteroides has gained a considerable attention as bacteriocin and exopolysaccharide producers. However, potential of W. paramesenteroides to utilize different prebiotics is unexplored area of research. Fruits being vectors of various probiotics, five W. paramesenteroides strains, namely, FX1, FX2, FX5, FX9, and FX12, were isolated from different fruits. They were screened and selected based on their ability to survive at pH 2.5 and in 1.0% sodium taurocholate, high cell surface hydrophobicity, mucin adhesion, bile-induced biofilm formation, antimicrobial activity (AMA) against selected enteropathogens, and prebiotic utilization ability, implicating the functional properties of these strains. In vitro safety evaluation showed that strains were susceptible to antibiotics except vancomycin and did not harbor any virulent traits such as biogenic amine production, hemolysis, and DNase production. Based on their functionality, two strains FX5 and FX9 were selected for prebiotic utilization studies by thin layer chromatography (TLC) and short-chain fatty acids (SCFAs) production by high performance liquid chromatography. TLC profile evinced the ability of these two strains to utilize low molecular weight galactooligosaccharides (GOS) and fructooligosaccharides (FOS), as only the upper low molecular weight fractions were disappeared from cell-free-supernatants (CFS). Enhanced β-galactosidase activity correlated with galactose accumulation in residual CFS of GOS displayed GOS utilization ability. Both the strains exhibited AMA against E. coli and Staph. aureus and high SCFAs production in the presence of prebiotic, suggesting their synbiotic potential. Thus, W. paramesenteroides strains FX5 and FX9 exhibit potential probiotic properties with prebiotic utilization and can be taken forward to evaluate synergistic synbiotic potential in detail.
Collapse
Affiliation(s)
- Kinjal Pabari
- Department of Biotechnology, Christ College, Vidya Niketan, Saurashtra University, PO, Rajkot, Gujarat, 360005, India.,UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Sheetal Pithva
- Government Science College, Sector 15, Gandhinagar, India
| | - Charmy Kothari
- Department of Biotechnology, Christ College, Vidya Niketan, Saurashtra University, PO, Rajkot, Gujarat, 360005, India
| | - Ravi Kiran Purama
- National Institute of Plant Genome Research, Aruna Asaf Marg, Po Box No. 10531, New Delhi, India
| | | | | | - Ramesh Kothari
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India.
| | - Padma Ambalam
- Department of Biotechnology, Christ College, Vidya Niketan, Saurashtra University, PO, Rajkot, Gujarat, 360005, India.
| |
Collapse
|
47
|
Braschi G, D’Alessandro M, Gottardi D, Siroli L, Patrignani F, Lanciotti R. Effects of Sub-Lethal High Pressure Homogenization Treatment on the Adhesion Mechanisms and Stress Response Genes in Lactobacillus acidophilus 08. Front Microbiol 2021; 12:651711. [PMID: 34122365 PMCID: PMC8193580 DOI: 10.3389/fmicb.2021.651711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Cell surface hydrophobicity (CSH) and adhesion are very important phenotypical traits for probiotics that confer them a competitive advantage for the resilience in the human gastrointestinal tract. This study was aimed to understand the effects over time of a 50 MPa hyperbaric treatment on the surface properties of Lactobacillus acidophilus 08 including CSH, autoaggregation, and in vitro adhesion (mucin layer and Caco-2 cells). Moreover, a link between the hurdle applied and the expression of genes involved in the general stress response (groEL and clpP) and adhesion processes (efTu and slpA) was evaluated. High pressure homogenization (HPH) at 50 MPa significantly increased the CSH percentage (H%), autoaggregation and in vitro adhesion on mucin of L. acidophilus 08 cells compared with the untreated cells. Moreover, the hyperbaric hurdle induced an upregulation of the stress response genes groEL and ef-TU together with a down regulation of the clpP and S-layer slpA genes. Looking at the protein profile, HPH-treatment showed an increase in the number or intensity of protein bands at high and low molecular weights.
Collapse
Affiliation(s)
- Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| |
Collapse
|
48
|
Kim H, Shin M, Ryu S, Yun B, Oh S, Park DJ, Kim Y. Evaluation of Probiotic Characteristics of Newly Isolated Lactic Acid Bacteria from Dry-Aged Hanwoo Beef. Food Sci Anim Resour 2021; 41:468-480. [PMID: 34017955 PMCID: PMC8112308 DOI: 10.5851/kosfa.2021.e11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 11/09/2022] Open
Abstract
Dry aging is a traditional method that improves meat quality, and diverse
microbial communities are changed during the process. Lactic acid bacteria (LAB)
are widely present in fermented foods and has many beneficial effects, such as
immune enhancement and maintenance of intestinal homeostasis. In this study, we
conducted metagenomic analysis to evaluate the changes in the microbial
composition of dry-aged beef. We found that lactic acid bacterial strains were
abundant in dry-aged beef including Lactobacillus sakei and
Enterococcus faecalis. We investigated their abilities in
acid and bile tolerance, adhesion to the host, antibiotic resistance, and
antimicrobial activity as potential probiotics, confirming that L.
sakei and E. faecalis strains had remarkable
capability as probiotics. The isolates from dry-aged beef showed at least
70% survival under acidic conditions in addition to an increase in the
survival level under bile conditions. Antibiotic susceptibility and
antibacterial activity assays further verified their effectiveness in inhibiting
all pathogenic bacteria tested, and most of them had low resistance to
antibiotics. Finally, we used the Caenorhabditis elegans model
to confirm their life extension and influence on host resistance. In the model
system, 12D26 and 20D48 strains had great abilities to extend the nematode
lifespan and to improve host resistance, respectively. These results suggest the
potential use of newly isolated LAB strains from dry-aged beef as probiotic
candidates for production of fermented meat.
Collapse
Affiliation(s)
- Hayoung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Minhye Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Bohyun Yun
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | | | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
49
|
Pumriw S, Luang-In V, Samappito W. Screening of Probiotic Lactic Acid Bacteria Isolated from Fermented Pak-Sian for Use as a Starter Culture. Curr Microbiol 2021; 78:2695-2707. [PMID: 34019121 DOI: 10.1007/s00284-021-02521-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
The objective of this research was to evaluate the probiotic properties of lactic acid bacteria (LAB) isolated from fermented Pak-Sian, a traditional Thai food in the northeastern region of Thailand (Kalasin, Sakon Nakhon, Maha Sarakham, and Khon Kaen Provinces). A total of 61 LAB isolates isolated from selective MRS agar were screened by SDS-PAGE and identified by 16S rDNA analysis. Seventeen bacterial strains were found consisting of Pediococcus pentosaceus (6 strains) Lactiplantibacillus plantarum (5 strains), Levilactobacillus brevis (1 strain), Lactobacillus fermentum (3 strains), and Weissella cibaria (2 strains). A PH tree grouped 17 LAB strains into 5 clusters with three clusters only recorded from Sakon Nakhon Province. All strains were tested for probiotic properties. Results showed that 14 strains had the ability to resist pH 2.5 as resistant to bile salts and survive in gastric juices and the intestinal tract. LAB demonstrated antimicrobial activity against 4 pathogens: Staphylococcus aureus TISTR746, Salmonella typhimurium TISTR1472, Escherichia coli ATCC25922, and Bacillus cereus TISTR1449. Most LAB strains were resistant to all antibiotics tested, while some Lactobacillus strains were moderately susceptible to chloramphenicol, rifampicin, and ampicillin. None of the 14 strains produced biogenic amine and eight showed no hemolysis activity, indicating the safety of these strains. These 8 strains were selected to determine mucin adhesion capacity. Lactobacillus fermentum SK324 and Levilactobacillus brevis SK335 showed the highest adhesion capacity of 2.39 and 2.34%, respectively. These two strains showed promise as alternative starter cultures to improve probiotic health benefits of local fermented Pak-Sian products as a functional food.
Collapse
Affiliation(s)
- Supaporn Pumriw
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, 44150, Maha Sarakham, Thailand
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, 44150, Maha Sarakham, Thailand
| | - Wannee Samappito
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, 44150, Maha Sarakham, Thailand.
| |
Collapse
|
50
|
Prebiotic effects of olive pomace powders in the gut: In vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|