1
|
Shaheen MNF, Ahmed NI, Elmahdy EM. Wastewater and Clinical Based Epidemiology for Viral Surveillance in the Nile Delta of Egypt. Curr Microbiol 2025; 82:296. [PMID: 40394397 DOI: 10.1007/s00284-025-04267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
The release of inadequately treated wastewater, containing human viruses, into the water environment or agricultural use represent a major problem in public health. In this study, SYBR Green-based real-time polymerase chain (qPCR) was applied to evaluate the prevalence of human polyomavirus (HPyV), papillomavirus (HPV), hepatitis A virus (HAV), and hepatitis E virus (HEV) in urban sewage and among children with acute gastroenteritis. The seasonal distribution in wastewater and viral removal by wastewater treatment process were also evaluated, over the 2 year sampling period. HPyV, HPV, HAV, and HEV were detected in 68%, 39.6% 42.4%, and 33.3% of the raw sewage, respectively, with highest incidence in winter season. In treated sewage samples, HPyV, HPV, HAV, and HEV were detected in 21%, 9.4%, 18.7%, and 0%, respectively. Furthermore, among the 200 diarrheal stool samples, HPyV, HPV, HAV, and HEV were detected in 72.5%, 50%, 13%, and 5%, respectively. HPyV was more prevalent in both environmental and clinical samples. The mean concentration of these viruses in raw sewage, treated sewage, and stool samples was 3.62 × 106 GC/ml, 4.03 × 103 GC/ml, and 4.05 × 106 GC/g, respectively. Examination of wastewater treatment process efficiency based on mean concentration values at entry and exit observed an overall reduction of 49.5%, 47.9%, 41.2%, 100%, for HPyV, HPV, HAV, and HEV, respectively. This study showed the benefit of environmental monitoring as an additional tool to investigate the epidemiology of these viruses circulating in a given community.
Collapse
Affiliation(s)
- Mohamed Nasr Fathi Shaheen
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Nehal Ismail Ahmed
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Elmahdy Mohamed Elmahdy
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Sfyri E, Tertipi N, Kefala V, Rallis E. Prevalence of Plantar Warts, Genital Warts, and Herpetic Infections in Greek Competitive Swimmers. Viruses 2024; 16:1782. [PMID: 39599896 PMCID: PMC11599054 DOI: 10.3390/v16111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Viral outbreaks are common in the sport community. Data regarding the prevalence of plantar warts, genital warts, herpes simplex type 1 (herpes labialis), herpes zoster, and genital herpes in competitive swimmers are lacking in the literature. The purpose of this study was to determine the prevalence of those viral infections among young competitive swimmers participating in Greek swimming clubs. Swimmers' parents and adult swimmers were asked to complete an anonymous questionnaire. In total, 1047 swimmers enrolled in this study. The measured parameters included gender, age, times of infections, and seasons when athletes may be more susceptible to infections. Practicing information such as type of swimming facility, number of training years, average hours of daily training, behaviors in swimming practice, and sunlight exposure was also recorded. All infections showed a significant difference in relation to "age" and "years of training". The gender significance was observed in herpes labialis (p = 0.016) and plantar warts (p = 0.05). The prevalence of all infections in swimmers who use outdoor facilities was higher. Certain behaviors such as walking barefoot on a pool deck and sharing swimming equipment correlate with herpes simplex and plantar warts. Virus infections can affect swimmers of all ages. In our study, plantar warts and herpes labialis are more common in swimmers. Herpes zoster and sexually transmitted viruses are rarer and affect adult swimmers. The impact of cutaneous infections on swimmers can affect performance and well-being. Effective prevention and management are essential to avoid complications. Proper hygiene, medical guidance, and treatment reduce swimmers' exposure to skin viruses.
Collapse
Affiliation(s)
- Eleni Sfyri
- Department of Biomedical Sciences, University of West Attica, Campus I, 12243 Athens, Greece; (N.T.); (V.K.); (E.R.)
| | | | | | | |
Collapse
|
3
|
Shaheen MNF, Ahmed N, Rady Badr K, Elmahdy EM. Detection and quantification of adenovirus, polyomavirus, and papillomavirus in urban sewage. JOURNAL OF WATER AND HEALTH 2024; 22:401-413. [PMID: 38421633 PMCID: wh_2024_322 DOI: 10.2166/wh.2024.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The objective of this study was to assess the occurrence and seasonal frequency of human adenovirus (HAdV), human polyomavirus (HPyV), and human papillomavirus (HPV) in urban sewage. The detection of these viruses was carried out by polymerase chain reaction (PCR), and then the viral concentrations in the positive samples were quantified by quantitative PCR (qPCR). Additionally, HAdV and HPyV genotyping was also performed by PCR. A total of 38/60 (63.3%) positive samples were found. HAdV was the most prevalent virus (26/60; 43.3%), followed by HPyV (21/60; 35%) and HPV (21/60; 35%). The viral concentrations ranged from 3.56 × 102 to 7.55 × 107 genome copies/L. The most common dual viral agents was found between HAdV and HPyV, in eight samples (8/38, 21%). HAdV types 40 and 41 as well as HPyV types JC and BK were identified, with HAdV-40 and HPyV JC being the most prevalent types. Furthermore, the detection rates of HAdV, HPyV, and HPV were higher during the winter season than the other seasons. The high prevalence of HAdV and HPyV supports their suitability as viral indicators of sewage contamination. Furthermore, this study demonstrates the advantages of environmental surveillance as a tool to elucidate the community-circulating viruses.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, 12622 Dokki, Cairo, Egypt E-mail: ;
| | - Nehal Ahmed
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, 12622 Dokki, Cairo, Egypt
| | - Kareem Rady Badr
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, 12622 Dokki, Cairo, Egypt
| | - Elmahdy Mohamed Elmahdy
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
4
|
Stolbikov AS, Salyaev RK, Nurminsky VN, Chernyshov MY. Investigation of the Presence of DNA of Highly Pathogenic Human Papillomaviruses in Water Bodies of the Lake Baikal Natural Territory. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:258-266. [PMID: 35932447 DOI: 10.1007/s12560-022-09529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Human papillomaviruses (HPVs) are extremely widespread throughout the world. There are more than 100 types of HPVs, of which at least 14 types represent high oncogenic risk viruses (World Health Organization, 2020). Numerous attempts were made to analyze various water sources in order to (i) reveal the presence of DNA of pathogenic human papillomaviruses in them and (ii) assess the potential risks of occurrence of epidemics caused by HPV. With time, the necessity to solve these important problems stimulated the formation of a new direction in the world medical and environmental investigations.This paper contains the investigation of the presence of DNA of highly dangerous types of human papillomaviruses (HPV6, HPV11, HPV16 and HPV18) in water bodies of the Baikal natural territory, in particular in the water reservoirs in and near the villages of Listvyanka, Bolshiye Koty, Kultuk and the cities of Baikalsk and Slyudyanka. In course of our work, the conditions good for the study of the biological material obtained from water samples by the PCR technique to reveal the presence of DNA of HPV6, HPV11, HPV16 and HPV18 papillomaviruses were chosen. PCR analysis was conducted with the aid of both the already well-known universal primers GP5 + /6 + and the primers developed by our team to be applied to the conservative domains of nucleotide sequences encoding the main capsid protein L1 of human papillomaviruses HPV6, HPV11 (these types of the virus contribute to the occurrence of anogenital condylomatosis and the development of respiratory papillomatosis) and HPV16, HPV16 (these types of virus contribute to the occurrence of cervical cancer).The analyzes conducted by our team have revealed the presence of DNA of the four types of HPVs (6, 11, 16 and 18) in the samples taken from various water sources of the Baikal natural territory.
Collapse
Affiliation(s)
- A S Stolbikov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, 132 Lermontov st, Irkutsk, 664033, Russia.
- Irkutsk State University, 1 Karl Marx st, Irkutsk, 664003, Russia.
| | - R K Salyaev
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, 132 Lermontov st, Irkutsk, 664033, Russia
| | - V N Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, 132 Lermontov st, Irkutsk, 664033, Russia
| | - M Yu Chernyshov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, 132 Lermontov st, Irkutsk, 664033, Russia
- Presidium of Irkutsk Scientific Center, Siberian Branch of Russian Academy of Sciences, 134 Lermontov st, Irkutsk, 664033, Russia
| |
Collapse
|
5
|
Vazifehdoost M, Eskandari F, Sohrabi A. Trends in Co-circulation of Oncogenic HPV Genotypes in Single and Multiple Infections among Unvaccinated Community. J Med Virol 2022; 94:3376-3385. [PMID: 35261047 PMCID: PMC9314791 DOI: 10.1002/jmv.27706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
Abstract
Cocirculation of multiple human papillomavirus (HPV) infections with low, probably high, and high‐risk genotypes are to be associated with various grades of infections and cancer progression. The oncogenic high‐risk HPVs are distributed and cocirculated throughout the world. This study was investigated to identify HPV genotypes related to genital disorders in unvaccinated women. The subjects were referred from clinics to a molecular lab for HPV testing in Iran as a low‐coverage vaccinated country. HPVs DNAs of cervical scrapping and genital tissue specimens of 1,133 un‐vaccinated women were genotyped using an in vitro diagnostic line probe (reverse hybridization) assay. In addition, phylogenetic trees were constructed on 100 MY09/MY11 polymerase chain reaction (PCR) amplicons of common genotypes of HPV L1 gene by Sanger sequencing. The mean age of the population study was 32.7 ± 8.0 and the mean age of HPV‐positive cases was 31.6 ± 7.8. HPV DNA was detected in 57.8% (655/1133) of women subjects and 42.2% (478/1133) of cases were undetected. Among 655 HPV‐positive cases, 639 subjects (56.4%) were related to defined genotypes and 16 subjects (1.4%) were untypeable. The highest prevalence rate of HPV genotypes was identified in the 25–34 years. The top 6 dominant HPVs in single and multiple genotypes were HPV6 (284/655 [43.4%]), HPV16 (111/655 [16.9%]), HPV31 (72/655 [11%]), HPV53 (67/655 [10.2%]), HPV11 (62/655 [9.5%]), and HPV52 (62/655 [9.5%]). Moreover, single, multiple and untypeable HPV genotypes were diagnosed as follows: 1 type (318/655 [48.5%]), 2 types (162/655 [24.8%]), 3 types (83/655 [12.7%]), 4 types (42/655 [6.5%]), more than 5 types (34/655 [5.3%]), and 1.4% un‐typeable subjects. The sequenced partial L1 gene of HPV genotypes (GenBank databases under the accession numbers: MH253467‐MH253566) confirmed and determined the cocirculated HPV genotypes' origins and addressed helpful insights into the future viral epidemiology investigations. Multiple HPV infections and cocirculation of various oncogenic HPV genotypes among the normal population (women and men) with asymptomatic forms are still challenging in unvaccinated communities. The preventive and organized surveillance programs for HPV screening are needed to be considered and compiled by health policy makers of low or unvaccinated countries.
Collapse
Affiliation(s)
- Manijheh Vazifehdoost
- Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran.,Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Amir Sohrabi
- Department of Medical Epidemiology and Biostatistics, Nobels väg 12A, Solna Campus, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
7
|
NGS Techniques Reveal a High Diversity of RNA Viral Pathogens and Papillomaviruses in Fresh Produce and Irrigation Water. Foods 2021; 10:foods10081820. [PMID: 34441597 PMCID: PMC8394881 DOI: 10.3390/foods10081820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Fresh fruits and vegetables are susceptible to microbial contamination at every stage of the food production chain, and as a potential source of pathogens, irrigation water quality is a critical factor. Next-generation sequencing (NGS) techniques have been flourishing and expanding to a wide variety of fields. However, their application in food safety remains insufficiently explored, and their sensitivity requires improvement. In this study, quantitative polymerase chain reaction (qPCR) assays showed low but frequent contamination of common circulating viral pathogens, which were found in 46.9% of samples of fresh produce: 6/12 lettuce samples, 4/12 strawberries samples, and 5/8 parsley samples. Furthermore, the application of two different NGS approaches, target enrichment sequencing (TES) for detecting viruses that infect vertebrates and amplicon deep sequencing (ADS), revealed a high diversity of viral pathogens, especially Norovirus (NoV) and Human Papillomavirus (HPV), in fresh produce and irrigation water. All NoV and HPV types found in fresh fruit and vegetable samples were also detected in irrigation water sources, indicating that these viruses are common circulating pathogens in the population and that irrigation water may be the most probable source of viral pathogens in food samples.
Collapse
|
8
|
A Review and Update on Waterborne Viral Diseases Associated with Swimming Pools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020166. [PMID: 30634384 PMCID: PMC6352248 DOI: 10.3390/ijerph16020166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/01/2022]
Abstract
Infectious agents, including bacteria, viruses, protozoa, and molds, may threaten the health of swimming pool bathers. Viruses are a major cause of recreationally-associated waterborne diseases linked to pools, lakes, ponds, thermal pools/spas, rivers, and hot springs. They can make their way into waters through the accidental release of fecal matter, body fluids (saliva, mucus), or skin flakes by symptomatic or asymptomatic carriers. We present an updated overview of epidemiological data on viral outbreaks, a project motivated, among other things, by the availability of improved viral detection methodologies. Special attention is paid to outbreak investigations (source of the outbreak, pathways of transmission, chlorination/disinfection). Epidemiological studies on incidents of viral contamination of swimming pools under non-epidemic conditions are also reviewed.
Collapse
|
9
|
Korajkic A, McMinn BR, Harwood VJ. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2842. [PMID: 30551597 PMCID: PMC6313479 DOI: 10.3390/ijerph15122842] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p < 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022⁻0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB > alternative indicators > MST markers > pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave, SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
10
|
Hamza H, Hamza IA. Oncogenic papillomavirus and polyomavirus in urban sewage in Egypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1413-1420. [PMID: 28854484 DOI: 10.1016/j.scitotenv.2017.08.218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 05/23/2023]
Abstract
Recently, the occurrence of oncogenic viruses in contaminated water and their potential for waterborne transmission has been reported. We addressed an environmental surveillance of both HPyVs (JCPyV and BKPyV) and HPVs in three wastewater treatment plants in Egypt. A high level of dissemination was found for both viruses. HPyVs (JCPyV and BKPyV) were found in ~73% of examined samples, while HPVs were detected in 30.5%. Sequence analysis of HPV positive samples revealed a wide variety of circulating genotypes representing both anogenital (HPV-6, HPV-16, HPV-53, HPV-44, HPV-31, HPV-43) and cutaneous (HPV-37, HPV-21, HPV-120, HPV-111, HPV-5) types. In addition, two unclassified sequences were identified, suggesting putative types. The median concentrations of HPyVs in inflow samples were 3.03×1005, 3.9×1005, and 1.44×1005GC/l in the three WWTPs, respectively. Whereas, the viral concentration in outflow reduced by one order of magnitude in WWTP-A and WWTP-C and two orders of magnitude in WWTP-B. On the other hand, the mean concentration of the quantified HPVs positive samples was 1.68×1003GC/l for inflow and a quite similar pattern in the outflow as well. These data provide an evidence about the actual circulation pattern of both viruses in the population. Also, the high abundance of HPyVs supports its potential as a possible fecal indicator. However, further investigations are required for both viruses to elucidate the potential health risk via contaminated water.
Collapse
Affiliation(s)
- Hazem Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt; Department of Hygiene, Social- and Environmental Medicine, Ruhr-University Bochum, Germany
| | - Ibrahim Ahmed Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt.
| |
Collapse
|
11
|
Fang HM, Gin KYH, Viswanath B, Petre M, Ghandehari M. Sensing Water-Borne Pathogens by Intrinsic Fluorescence. OPTICAL PHENOMENOLOGY AND APPLICATIONS 2018. [DOI: 10.1007/978-3-319-70715-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Di Bonito P, Iaconelli M, Gheit T, Tommasino M, Della Libera S, Bonadonna L, La Rosa G. Detection of oncogenic viruses in water environments by a Luminex-based multiplex platform for high throughput screening of infectious agents. WATER RESEARCH 2017; 123:549-555. [PMID: 28704770 DOI: 10.1016/j.watres.2017.06.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/27/2023]
Abstract
Recent studies documented the detection of viruses strongly associated with human cancer in urban sewages and other water environments worldwide. The aim of this study was to estimate the occurrence of human oncogenic viruses in environmental samples (sewage, river, marine, and pool/spa water) using highly sensitive and specific multiplex bead-based assays (Luminex technology). A total of 33 samples were analysed for 140 oncogenic viral agents, including mucosal and cutaneous human papillomaviruses (HPVs), human polyomaviruses (HPyV), human herpesviruses (HHV) and mouse mammary tumour virus (MMTV). Eighty-eight percent of the samples tested positive for at least one viral pathogen and the simultaneous presence of more than one virus was frequent (mean number of positivities/sample = 3.03). A total of 30 different Alpha, Beta and Gamma HPVs were detected, including mucosal and cutaneous types. The high-risk type HPV16 was the most frequently detected virus, identified in 73% of the samples. Of the 12 HPyVs tested, only two (BKPyV and MCPyV) were detected. At least one of these two was present in 48% of the samples. MMTV was detected in 21% of the samples, while herpesviruses - HHV-6 and HHV-1 - were detected in two samples (6%). The present study is the first to provide a comprehensive picture of the occurrence of oncogenic viruses belonging to different families and species in diverse water environments, and the first to successfully use, in environmental samples, a Luminex-based multiplex platform for high throughput screening of infectious agents. Our findings, showing that oncogenic viruses are ubiquitous in water environments, pave the way for future studies on the fate of these pathogens in water environments as well as on their potential for transmission via the waterborne route.
Collapse
Affiliation(s)
- P Di Bonito
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - T Gheit
- International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - M Tommasino
- International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - S Della Libera
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
13
|
Kim Y, Van Bonn W, Aw TG, Rose JB. Aquarium Viromes: Viromes of Human-Managed Aquatic Systems. Front Microbiol 2017; 8:1231. [PMID: 28713358 PMCID: PMC5492393 DOI: 10.3389/fmicb.2017.01231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems). Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs) in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment.
Collapse
Affiliation(s)
- Yiseul Kim
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States.,National Institute of Agricultural Sciences, Rural Development AdministrationWanju, South Korea
| | - William Van Bonn
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States.,A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, ChicagoIL, United States
| | - Tiong G Aw
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New OrleansLA, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States
| |
Collapse
|
14
|
Barth H, Solis M, Kack-Kack W, Soulier E, Velay A, Fafi-Kremer S. In Vitro and In Vivo Models for the Study of Human Polyomavirus Infection. Viruses 2016; 8:E292. [PMID: 27782080 PMCID: PMC5086624 DOI: 10.3390/v8100292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
Developments of genome amplification techniques have rapidly expanded the family of human polyomaviruses (PyV). Following infection early in life, PyV persist in their hosts and are generally of no clinical consequence. High-level replication of PyV can occur in patients under immunosuppressive or immunomodulatory therapy and causes severe clinical entities, such as progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy or Merkel cell carcinoma. The characterization of known and newly-discovered human PyV, their relationship to human health, and the mechanisms underlying pathogenesis remain to be elucidated. Here, we summarize the most widely-used in vitro and in vivo models to study the PyV-host interaction, pathogenesis and anti-viral drug screening. We discuss the strengths and limitations of the different models and the lessons learned.
Collapse
Affiliation(s)
- Heidi Barth
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Morgane Solis
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Wallys Kack-Kack
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Eric Soulier
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Aurélie Velay
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Samira Fafi-Kremer
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
15
|
Karachaliou M, Waterboer T, Casabonne D, Chalkiadaki G, Roumeliotaki T, Michel A, Stiakaki E, Chatzi L, Pawlita M, Kogevinas M, de Sanjose S. The Natural History of Human Polyomaviruses and Herpesviruses in Early Life--The Rhea Birth Cohort in Greece. Am J Epidemiol 2016; 183:671-9. [PMID: 26968942 DOI: 10.1093/aje/kwv281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022] Open
Abstract
Sparse data exist on the patterns and determinants of acquisition of polyomaviruses and herpesviruses in childhood. We measured immunoglobulin G seroreactivity against 10 polyomaviruses (BKPyV, JCPyV, KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10) and 5 herpesviruses (Epstein Barr virus (EBV), cytomegalovirus (CMV), herpes simplex virus types 1 and 2, human herpesvirus 8) using multiplex serology on blood samples collected at birth (cord blood, n = 626) and at follow-up at 3 years (n = 81) and 4 years (n = 690) of age among the Rhea birth cohort recruited in Greece from pregnant women in 2007-2008. We used Poisson regression with robust variance to identify determinants of seropositivity at age 4. Seroprevalence of polyomaviruses ranged from 38.5% to 99.8% in cord blood and from 20.9% to 82.3% at age 4. Seroprevalence of EBV, CMV, herpes simplex virus types 1 and 2, and human herpesvirus 8 was 99.4%, 74.9%, 26.2%, 8.0%, and 1.6% in cord blood and 52.5%, 25.8%, 3.6%, 1.4%, and 0% at age 4, respectively. Determinants of seropositivity at age 4 were cord seropositivity (JCPyV, HPyV7, HPyV10, CMV), vaginal delivery (HPyV10), breastfeeding (CMV), younger age at day-care entry (BKPyV, KIPyV, WUPyV, TSPyV, HPyV10, HPyV9, EBV, CMV), and swimming pool attendance (BKPyV, KIPyV, WUPyV, HPyV10). Television viewing, parental stress, and hygiene practices were inversely associated with the seroprevalence of polyomaviruses and herpesviruses.
Collapse
|