1
|
Wiull K, Haugen LK, Eijsink VGH, Mathiesen G. CRISPR/Cas9-mediated genomic insertion of functional genes into Lactiplantibacillus plantarum WCFS1. Microbiol Spectr 2025; 13:e0202524. [PMID: 39817779 PMCID: PMC11792511 DOI: 10.1128/spectrum.02025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Lactiplantibacillus plantarum, a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in L. plantarum. The knock-in plasmid was designed with a cassette-like structure to simplify the insertion of target DNA and streamline the CRISPR/Cas9 genome editing, bringing it one step closer to becoming a routine procedure. We demonstrate that the system enables efficient insertion of expression cassettes for both inducible and constitutive production of a fluorescent reporter protein, mCherry, and for inducible production of the receptor-binding domain (RBD) of the SARS-CoV-2 virus. Two variants of RBD were successfully expressed, one directed to the cytoplasm and one directed to the cell surface. All the knock-in strains produced the target protein, although with lower yields than strains with plasmid-encoded expression. IMPORTANCE Genetic engineering of lactic acid bacteria, such as Lactiplantibacillus plantarum, has proven to be difficult. This study presents an inducible two-plasmid CRISPR/Cas9-system for inserting genes into the chromosome of Lactiplantibacillus plantarum. Our system successfully knock-in four expression cassettes varying in length from ~800-1,300 bp with high efficiency and insert an expression cassette encoding a SARS-CoV-2 antigen receptor-binding domain (RBD) with an anchor mediating surface display, which has not been achieved previously using CRISPR/Cas9. We demonstrate the production of the insertion genes. Importantly, the plasmid carrying the SgRNA, Cas9, and homology-directed repair template is designed for easy component exchange. These plasmids represent valuable contributions to the field as they could facilitate rapid CRISPR/Cas9 engineering of L. plantarum strains.
Collapse
Affiliation(s)
- Kamilla Wiull
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Lisa K. Haugen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Elnar AG, Jang Y, Kim GB. Heterologous Expression and Polyphasic Analysis of CLA-Converting Linoleic Acid Isomerase from Bifidobacterium breve JKL2022. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1425-1440. [PMID: 39586027 DOI: 10.1021/acs.jafc.4c05746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The probiotic Bifidobacterium breve is known for its efficient conjugated linoleic acid (CLA) conversion, yet their CLA conversion pathway remains underexplored. This study investigated B. breve JKL2022 for its CLA conversion in actively growing cells, washed cell states, and in crude protein extracts. Moreover, the study aimed to confirm the CLA-converting enzyme in strain JKL2022 and optimize its purification through heterologous expression of fusion proteins (LAI_sGFP and MBP_LAI). JKL2022 exhibited superior CLA conversion compared to genetically similar B. breve strains (JCM7017, JCM7019, JCM1192, and JCM1273), particularly the observed CLA conversion in washed cells (60.14 ± 7.60%) and crude protein fractions (96.11 ± 6.63%). The multipass transmembrane linoleic acid isomerase (LAI) was cloned into the E. coli BL21(DE3) as free LAI or modified with superfolder-GFP or MBP tags and expressed with 0.01 mM IPTG at 37 °C, resulting in highly active protein fractions. LAI was characterized by predictive modeling, molecular docking, and phylogenetic analyses. Moreover, reverse transcription-quantitative PCR analysis revealed upregulation (20-140× higher expression) of lai in JKL2022 compared with that in the JCM strains. Nevertheless, upscaling the production and purification of LAI for downstream applications remains a challenge, primarily because of their membrane-spanning configuration.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| | - Yujin Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| |
Collapse
|
3
|
Zhang Z, Niu H, Qu Q, Guo D, Wan X, Yang Q, Mo Z, Tan S, Xiang Q, Tian X, Yang H, Liu Z. Advancements in Lactiplantibacillus plantarum: probiotic characteristics, gene editing technologies and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39745813 DOI: 10.1080/10408398.2024.2448562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The exploration of microorganisms in fermented products has become a pivotal area of scientific research, primarily due to their widespread availability and profound potential to improve human health. Among these, Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) stands out as a versatile lactic acid bacterium, prevalent across diverse ecological niches. Its appeal extends beyond its well-documented probiotic benefits to include the remarkable plasticity of its genome, which has captivated both scientific and industrial stakeholders. Despite this interest, substantial challenges persist in fully understanding and harnessing the potential of L. plantarum. This review aims to illuminate the probiotic attributes of L. plantarum, consolidate current advancements in gene editing technologies, and explore the multifaceted applications of both wild-type and genetically engineered strains.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haorui Niu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Qu
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Dingming Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Tan
- Department of Biotechnology, Wuhan No. 2 High School, Wuhan, China
| | - Qian Xiang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Liu XX, Dou H, Liu L, Wang GQ, Xiong ZQ, Ai LZ. Regulatory Effect of Transcriptional Regulator TetR on the Synthesis of Conjugated Linoleic Acid in Lactiplantibacillus plantarum AR195. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25827-25835. [PMID: 39514760 DOI: 10.1021/acs.jafc.4c08591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Conjugated linoleic acid (CLA) possesses anticancer, anti-inflammatory, and antiobesity properties, making it a significant research focus. In this study, we identified TetR, a TetR/AcrR family transcriptional regulator encoded by AR1031, as the transcriptional regulator of CLA synthesis in Lactiplantibacillus plantarum AR195. TetR binds to the promoter regions of the CLA synthesis genes, including the cla operon and cla-hy, thereby enhancing CLA biosynthesis. Knockout of tetR led to the downregulation of cla-hy by 68%, cla-dh by 86%, and cla-dc by 33%, resulting in reduced CLA yield. Further bioinformatic analysis and segmented electrophoretic mobility shift assay (EMSA) experiments revealed that TetR recognizes a conserved sequence (5'-TGTAGATTG-n4-CTTCA-3') and binds to multiple sites within the regulatory region of the cla operon and cla-hy, thus promoting CLA biosynthesis. Overexpression of tetR increased the CLA yield by 7%. These findings provide precise insights into the regulation of CLA biosynthesis and suggest strategies for enhancing CLA production.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Dou
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lei Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guang-Qiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhi-Qiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
5
|
Chen Y, Ma W, Zhao J, Stanton C, Ross RP, Zhang H, Chen W, Yang B. Lactobacillus plantarum Ameliorates Colorectal Cancer by Ameliorating the Intestinal Barrier through the CLA-PPAR-γ Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19766-19785. [PMID: 39186442 DOI: 10.1021/acs.jafc.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) is the third-largest cancer worldwide. Lactobacillus can regulate the intestinal barrier and gut microbiota. However, the mechanisms of Lactobacillus that alleviate CRC remained unknown. This study aimed to explore the regulatory effect of Lactobacillus plantarum on CRC and its potential mechanism. CCFM8661 treatment significantly ameliorated CRC compared with phosphate-buffered solution (PBS) treatment in ApcMin/+ mice. In addition, conjugated linoleic acid (CLA) was proved to be the key metabolite for CCFM8661 in ameliorating CRC by molecular biology techniques. Peroxisome proliferator-activated receptor γ (PPAR-γ) was proved to be the key receptor in ameliorating CRC by inhibitor intervention experiments. Moreover, supplementation with CCFM8661 ameliorated CRC by producing CLA to inhibit NF-κB pathway and pro-inflammatory cytokines, up-regulate ZO-1, Claudin-1, and MUC2, and promote tumor cell apoptosis in a PPAR-γ-dependent manner. Metagenomic analysis showed that CCFM8661 treatment significantly increased Odoribacter splanchnicus, which could ameliorate CRC by repairing the intestinal barrier. Clinical results showed that intestinal CLA, butyric acid, PPAR-γ, and Lactobacillus were significantly decreased in CRC patients, and these indicators were significantly negatively correlated with CRC. CCFM8661 alleviated CRC by ameliorating the intestinal barrier through the CLA-PPAR-γ axis. These results will promote the development of dietary probiotic supplements for CRC.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
6
|
Jang Y, Elnar AG, Hur SJ, Kim GB. Factors influencing conjugated linoleic acid content of dairy products: challenges and strategies. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39041900 DOI: 10.1080/10408398.2024.2376111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Conjugated linoleic acid (CLA), a bioactive fatty acid that provides various physiological benefits, has gained increasing attention in the food industry, and various studies have focused on enhancing its content in dairy products. The factors influencing CLA content in dairy products vary significantly, including lactation stage, breed type, seasonality, feed, management methods of the animals, the manufacturing processes, storage, and ripening periods of the product. Additionally, the incorporation of CLA-producing probiotic bacteria, such as Lactobacillus, Lactococcus, Bifidobacterium, and Propionibacterium, is an emerging study in this field. Studies have revealed that factors affecting the CLA content in milk affect that in dairy products as well. Furthermore, the species and strains of CLA-producing bacteria, fermentation conditions, ripening period, and type of dairy product are also contributing factors. However, production of CLA-enhanced dairy products using CLA-producing bacteria while maintaining their optimal viability and maximizing exposure to free linoleic acid remains limited. The current review emphasized the factors affecting the CLA content and related mechanisms, challenges in the application of CLA-producing probiotic bacteria, and strategies to address these challenges and enhance CLA production in dairy products. Therefore, the development of functional dairy products with enhanced CLA levels is expected to be possible.
Collapse
Affiliation(s)
- Yujin Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
7
|
Mei Y, Chang L, Ji Y, Yang B, Zhao J, Chen H, Chen W. Biomolecular investigations into BBI reveal an enzymatic mechanism for PUFA isomerisation in bifidobacterium CFA bioconversion strains. Int J Biol Macromol 2024; 268:131836. [PMID: 38692553 DOI: 10.1016/j.ijbiomac.2024.131836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Multiple species of Bifidobacterium exhibit the ability to bioconvert conjugated fatty acids (CFAs), which is considered an important pathway for these strains to promote host health. However, there has been limited progress in understanding the enzymatic mechanism of CFA bioconversion by bifidobacteria, despite the increasing number of studies identifying CFA-producing strains. The protein responsible for polyunsaturated fatty acid (PUFA) isomerization in B. breve CCFM683 has recently been discovered and named BBI, providing a starting point for exploring Bifidobacterium isomerases (BIs). This study presents the sequence classification of membrane-bound isomerases from four common Bifidobacterium species that produce CFA. Heterologous expression, purification, and enzymatic studies of the typical sequences revealed that all possess a single c9, t11 isomer as the product and share common features in terms of enzymatic properties and catalytic kinetics. Using molecular docking and alanine scanning, Lys84, Tyr198, Asn202, and Leu245 located in the binding pocket were identified as critical to the catalytic activity, a finding further confirmed by site-directed mutagenesis-based screening assays. Overall, these findings provide insightful knowledge concerning the molecular mechanisms of BIs. This will open up additional opportunities for the use of bifidobacteria and CFAs in probiotic foods and precision nutrition.
Collapse
Affiliation(s)
- Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yibin Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
8
|
Iorizzo M, Di Martino C, Letizia F, Crawford TW, Paventi G. Production of Conjugated Linoleic Acid (CLA) by Lactiplantibacillus plantarum: A Review with Emphasis on Fermented Foods. Foods 2024; 13:975. [PMID: 38611281 PMCID: PMC11012127 DOI: 10.3390/foods13070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The term Conjugated Linoleic Acid (CLA) refers generically to a class of positional and geometric conjugated dienoic isomers of linoleic acid. Among the isomers of linoleic acid cis9, trans11-CLA (c9, t11-CLA) and trans10, cis12-CLA (t10, c12-CLA) are found to be biologically active isomers, and they occur naturally in milk, dairy products and meat from ruminants. In addition, some vegetables and some seafoods have also been reported to contain CLA. Although the CLA levels in these natural sources are insufficient to confer the essential health benefits, anti-carcinogenic or anti-cancer effects are of current interest. In the rumen, CLA is an intermediate of isomerization and the biohydrogenation process of linoleic acid to stearic acid conducted by ruminal microorganisms. In addition to rumen bacteria, some other bacteria, such as Propionibacterium, Bifidobacterium and some lactic acid bacteria (LAB) are also capable of producing CLA. In this regard, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) has demonstrated the ability to produce CLA isomers from linoleic acid by multiple enzymatic activities, including hydration, dehydration, and isomerization. L. plantarum is one of the most versatile species of LAB and the bacterium is widely used in the food industry as a microbial food culture. Thus, in this review we critically analyzed the literature produced in the last ten years with the aim to highlight the potentiality as well as the optimal conditions for CLA production by L. plantarum. Evidence was provided suggesting that the use of appropriate strains of L. plantarum, as a starter or additional culture in the production of some fermented foods, can be considered a critical factor in the design of new CLA-enriched functional foods.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | | | - Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| |
Collapse
|
9
|
Fontes AL, Neves B, Conde T, Couto D, Pimentel LL, Rodríguez-Alcalá LM, Domingues MR, Gomes AM. Short-communication: Study of fatty acid metabolites in microbial conjugated fatty acids-enrichment of milk and discovery of additional undescribed conjugated linolenic acid isomers. Food Chem 2024; 432:137276. [PMID: 37659326 DOI: 10.1016/j.foodchem.2023.137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Microbially enriched food in conjugated linoleic (CLA) and conjugated linolenic (CLNA) acids is intensively studied nowadays. The conversion of linoleic (LA) and α-linolenic acids (α-LNA) into these compounds may involve different fatty acid (FA) intermediates. This research aimed to investigate potential FA byproducts in milk during microbial CLA/CLNA-enrichment using Bifidobacterium breve DSM 20091. Milk fermented with pure α-LNA showed a decrease in free myristic acid, while pure LA led to an increase in free stearic acid. No additional FA compounds were found alongside CLA/CLNA isomers. The strain produced several CLA isomers from LA, but only when administered alone. Nonetheless, when α-LNA was assayed, additional CLNA isomers, never reported before for bifidobacteria, were observed. In conclusion, except for stearic acid in the presence of LA, no side-FA metabolites were released during milk microbial CLA/CLNA-enrichment. Results suggest either CLA/CLNA production occurs in one single-step or intermediates biotransformation is very fast.
Collapse
Affiliation(s)
- Ana Luiza Fontes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Associated Laboratory for Green Chemistry - LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Lígia Leão Pimentel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
10
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
11
|
Mao B, Guo W, Huang Z, Tang X, Zhang Q, Yang B, Zhao J, Cui S, Zhang H. Production of conjugated fatty acids in probiotic-fermented walnut milk with the addition of lipase. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Mei Y, Li X, Yang B, Zhao J, Zhang H, Chen H, Chen W. Heterologous expression of a novel linoleic acid isomerase BBI, and effect of fusion tags on its performance. Curr Res Food Sci 2022; 5:2053-2060. [DOI: 10.1016/j.crfs.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022] Open
|
13
|
The Arginine Repressor ArgR 2 Controls Conjugated Linoleic Acid Biosynthesis by Activating the cla Operon in Lactiplantibacillus plantarum. Microbiol Spectr 2022; 10:e0261921. [PMID: 35652699 PMCID: PMC9241672 DOI: 10.1128/spectrum.02619-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CLA (conjugated linoleic acid) has attracted substantial attention due to its physiological functions, including regulating immunity, reducing obesity, and contributing to cancer suppression. In Lactiplantibacillus plantarum, CLA oleate hydratase (CLA-HY), CLA short-chain dehydrogenase (CLA-DH), and CLA acetoacetate decarboxylase (CLA-DC) catalyze the biotransformation of linoleic acid (LA) to CLA. However, the underlying transcriptional regulation mechanism of this pathway remains largely unknown. In this study, the potential transcriptional regulators that might bind to the cla promoter of L. plantarum AR195 were investigated by DNA pulldown. Interestingly, ArgR2, the transcriptional regulator of arginine metabolism, was identified as a potential regulator involved in the regulation of CLA biotransformation. Electrophoretic mobility shift assay (EMSA) and molecular interaction results demonstrated the specific binding of ArgR2 to the regulatory region of the cla operon. The knockout of argR2 led to the downregulation of cla-dh and cla-dc by 91% and 34%, respectively, resulting in a decline in the CLA yield by 14%. A segmental EMSA revealed that ArgR2 bound to three distinct sites in the cla regulatory region, and these binding sites were highly conserved and rich in AT. The regulatory mechanism of ArgR2 on CLA biosynthesis further expanded our knowledge of the regulatory mechanism of CLA biosynthesis in L. plantarum and laid the theoretical foundation for the production and application of CLA. IMPORTANCE CLA (conjugated linoleic acid) has received extensive attention owing to its important physiological functions. CLA from natural sources is far from meeting people's demands. Lactic acid bacteria can efficiently synthesize cis-9,trans-11-CLA and trans-10,cis-12-CLA, which possess physiological activities. However, little is known about the regulatory mechanism. In this study, we identified that the biosynthesis of CLA in L. plantarum AR195 was transcriptionally regulated by the arginine biosynthesis regulatory protein ArgR2. The regulation mechanism of ArgR2 on CLA biosynthesis lays a theoretical foundation for the regulation of CLA synthesis and industrial production.
Collapse
|
14
|
Peng S, Zhang Y, Guo Q, Wang C, Gaenzle MG, Zhao M. Characterization of a recombinant 10-linoleic acid hydratase from Lactiplantibacillus plantarum ZS2058 and biosynthesis of 10- hydroxy-cis-12-octadecenoic acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2212-2219. [PMID: 34606621 DOI: 10.1002/jsfa.11559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 10-Hydroxy-cis-12-octadecenoic acid (10-HOE, 10-OH C18:1), an emerging functional fatty acid, has anti-fungal and anti-inflammatory effects. 10-HOE is synthesized by bacterial 10-linoleic acid hydratase (10-LHT) with linoleic acid as the substate. However, the characterization of 10-LHT and its targeted synthesis of 10-HOE have been rarely reported. In this study, the recombinant 10-LHT from Lactiplantibacillus plantarum ZS2058 was characterized, and the biocatalysis of 10-HOE using crude enzyme was optimized. RESULTS The recombinant 10-LHT catalyzed the conversion of linoleic acid (C18:2) to 10-HOE as identified using gas chromatography-mass spectrometry (GC-MS). It showed a molecular weight of about 70 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and was a flavin adenine dinucleotide (FAD)-dependent enzyme. The activity of 10-LHT was optimal at pH 6.5 and 25 °C, and it was pH-stable but thermo-sensitive. The optimal condition for the 10-HOE biosynthesis using crude enzyme was 5 g L-1 linoleic acid (C18:2), 148.0 U mL-1 10-LHT, 0.05 mmol L-1 FAD, 2% methanol and 100 mmol L-1 sodium chloride at 25 °C and pH 6.5. A conversion yield of 47.8 ± 1.5% and the corresponding 10-HOE concentration of 2.4 ± 0.1 g L-1 were achieved at 48 h under the optimal reaction conditions. CONCLUSION This work achieved the highest conversion yield of 10-HOE with the highest substrate concentration, and provides some useful information for the industrial production of 10-HOE. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuyue Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yanzhen Zhang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Qianwan Guo
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Chenchen Wang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Michael G Gaenzle
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
15
|
Research progress on conjugated linoleic acid bio-conversion in Bifidobacterium. Int J Food Microbiol 2022; 369:109593. [DOI: 10.1016/j.ijfoodmicro.2022.109593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
|
16
|
Tegopoulos K, Stergiou OS, Kiousi DE, Tsifintaris M, Koletsou E, Papageorgiou AC, Argyri AA, Chorianopoulos N, Galanis A, Kolovos P. Genomic and Phylogenetic Analysis of Lactiplantibacillus plantarum L125, and Evaluation of Its Anti-Proliferative and Cytotoxic Activity in Cancer Cells. Biomedicines 2021; 9:biomedicines9111718. [PMID: 34829947 PMCID: PMC8615743 DOI: 10.3390/biomedicines9111718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/24/2023] Open
Abstract
Lactiplantibacillus plantarum is a diverse species that includes nomadic strains isolated from a variety of environmental niches. Several L. plantarum strains are being incorporated in fermented foodstuffs as starter cultures, while some of them have also been characterized as probiotics. In this study, we present the draft genome sequence of L. plantarum L125, a potential probiotic strain presenting biotechnological interest, originally isolated from a traditional fermented meat product. Phylogenetic and comparative genomic analysis with other potential probiotic L. plantarum strains were performed to determine its evolutionary relationships. Furthermore, we located genes involved in the probiotic phenotype by whole genome annotation. Indeed, genes coding for proteins mediating host–microbe interactions and bile salt, heat and cold stress tolerance were identified. Concerning the potential health-promoting attributes of the novel strain, we determined that L. plantarum L125 carries an incomplete plantaricin gene cluster, in agreement with previous in vitro findings, where no bacteriocin-like activity was detected. Moreover, we showed that cell-free culture supernatant (CFCS) of L. plantarum L125 exerts anti-proliferative, anti-clonogenic and anti-migration activity against the human colon adenocarcinoma cell line, HT-29. Conclusively, L. plantarum L125 presents desirable probiotic traits. Future studies will elucidate further its biological and health-related properties.
Collapse
Affiliation(s)
- Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Odysseas Sotirios Stergiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Ellie Koletsou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Aristotelis C. Papageorgiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, Lycovrissi, 14123 Attiki, Greece; (A.A.A.); (N.C.)
| | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, Lycovrissi, 14123 Attiki, Greece; (A.A.A.); (N.C.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
- Correspondence: (A.G.); (P.K.)
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
- Correspondence: (A.G.); (P.K.)
| |
Collapse
|
17
|
Mei Y, Chen H, Yang B, Zhao J, Zhang H, Chen W. Linoleic Acid Triggered a Metabolomic Stress Condition in Three Species of Bifidobacteria Characterized by Different Conjugated Linoleic Acid-Producing Abilities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11311-11321. [PMID: 34523917 DOI: 10.1021/acs.jafc.1c03752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abundant conjugated linoleic acid (CLA) producers exist among Bifidobacterium species. This CLA production is related to the mitigation of LA toxicity. However, there is still a lack of information on the metabolic response underlying this detoxification strategy. In this study, six bifidobacteria strains belonging to three different species were used to characterize growth and CLA accumulation in the presence of LA. A combination of non-targeted metabolomics techniques and biochemical indicators were used to explore metabolic profile changes in response to LA and the expression of important factors driving CLA production in Bifidobacterium species. The results suggested that free LA had growth inhibitory effects on bifidobacteria, resulting in a global metabolic stress response that caused metabolic reprogramming on all tested strains and promoted malondialdehyde production, inducing a redox imbalance. In particular, a strong decrease in reduced glutathione level was observed in Bifidobacterium breve CCFM683 [log2(FC) = -3.29]. Furthermore, LA-induced oxidative stress is an important factor driving high CLA production in certain strains.
Collapse
Affiliation(s)
- Yongchao Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
18
|
Liu XX, Zhang HY, Song X, Yang Y, Xiong ZQ, Xia YJ, Ai LZ. Reasons for the differences in biotransformation of conjugated linoleic acid by Lactobacillus plantarum. J Dairy Sci 2021; 104:11466-11473. [PMID: 34454770 DOI: 10.3168/jds.2021-20532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted a great deal of attention for its functions in weight loss, regulation of metabolism, and antioxidant capabilities. Many microorganisms, including rumen bacteria, propionic acid bacilli, and Lactobacillus, have CLA biotransformation ability. The CLA production capability of different species is different, as are those different strains of the same species. However, the reasons for this discrepancy remain unclear. In this study, 14 strains of Lactobacillus plantarum were found, through gas chromatography-mass spectrometry analysis, to be capable of converting linoleic acid to CLA. The transcriptional levels of CLA-related genes in the high- (AR195, WCFS1, and AR488) and low-yield strains (AR176, AR269, and AR611) were analyzed using real-time quantitative PCR. The transcriptional levels of cla-hy, cla-dh, and cla-dc in AR195 were the lowest in the exponential phase, but it had the highest CLA yield. Correlation analysis showed no correlation between CLA yield and the transcription level of these genes in the exponential phase. The results showed that a high transcriptional level in the exponential phase of cla-hy, cla-dh, and cla-dc did not necessarily lead to high CLA production. Investigation of the transcription level in different growth phases showed that the CLA biotransformation abilities of Lactobacillus plantarum strains significantly depended on the transcriptional maintenance of cla-hy, cla-dh, and cla-dc. We observed a correlation between CLA production and increased levels of cla-hy transcription, but a prerequisite is needed: the transcription of cla-dh and cla-dc should be upregulated and maintained a high transcriptional level during the platform period. This study provides a new strategy for screening high CLA-producing strains. It also lays a theoretical foundation for regulating CLA biotransformation and increasing the yield of CLA.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hong-Yun Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhi-Qiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong-Jun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
19
|
Yang B, Gao H, Qi H, Chen Y, Ross RP, Stanton C, Zhao J, Zhang H, Chen H, Chen W. Linoleate Isomerase Complex Contributes to Metabolism and Remission of DSS-Induced Colitis in Mice of Lactobacillus plantarum ZS2058. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8160-8171. [PMID: 34281339 DOI: 10.1021/acs.jafc.1c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A linoleate isomerase complex including myosin-cross-reactive antigen, short-chain dehydrogenase/oxidoreductase, and acetoacetate decarboxylase has been confirmed as the pivotal factor for conjugated linoleic acid (CLA) production in Lactobacillus plantarum. However, its role in the metabolism and health-associated benefits of Lactobacillus remain unclear. In the current study, the mild type, knockout, and complemented mutants of the linoleate isomerase complex of L. plantarum ZS2058 were used to investigate those putative effects. The metabonomic results showed that a linoleate isomerase complex could significantly influence the glycol-metabolism, lipid metabolism, and antioxidant compounds. Especially, with the stress of linoleic acid, linoleate isomerase complex knockout mutants induced the increase of several antioxidant compounds, such as glutamic acid, glycine, l-cysteine, glycerol, and l-sorbosone. Moreover, the linoleate isomerase complex played a pivotal role in ameliorating DSS-induced colitis. The knockout mutants showed effects similar to those in the DSS group, whereas complementation of the corresponding gene in the knockout mutants could restore the anti-inflammatory activity, wherein the integrity of a mucus layer was repaired, the level of pro-inflammatory cytokines decreased, and the amount of anti-inflammatory cytokines increased significantly. All the results indicated that the linoleate isomerase complex plays a key role in CLA production and metabolism as well as the health-associated benefits of L. plantarum ZS2058. These results are conducive to promote clinical trials and product development of probiotics for colitis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Liu Y, Xiao W, Yu L, Tian F, Wang G, Lu W, Narbad A, Chen W, Zhai Q. Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food Funct 2021; 12:1121-1134. [PMID: 33427835 DOI: 10.1039/d0fo02616f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate IBS symptoms and that these effects are strain-specific. Therefore, this study aimed to investigate the key physiological characteristics and functional genes contributing to the IBS-alleviating effects of Lactobacillus. An IBS model was established by subjecting C57BL/6 mice to Citrobacter rodentium ingestion and water avoidance stress. Lactobacillus strains with different physiological characteristics were administered to mice intragastrically for 4 weeks (5 × 109 CFU/0.2 mL per mouse per day). Indicators of colonic inflammation, visceral hypersensitivity, and gut microbiota were also evaluated. Finally, differences in functional genes between Lactobacillus strains were analyzed by a comparative genomic analysis, and the relationships between the physiological characteristics, functional genes, and IBS-alleviating effects of the strains were quantified using correlation analysis. Among the eight tested Lactobacillus strains, only Lactobacillus plantarum CCFM8610 significantly inhibited the expression of IL-1β, IL-6, PAR-2, and mast cell tryptase. L. plantarum CCFM8610 also significantly increased the intestinal barrier function, inhibited visceral hypersensitivity symptoms, and modulated the gut microbiota diversity and composition. The correlation analysis of factors associated with the IBS-alleviating effects of Lactobacillus revealed the ability to synthesize conjugated linoleic acid as the most strongly associated physiological characteristic and COG1028-related genes as the most strongly associated functional genes. In conclusion, these findings can facilitate the rapid screening of Lactobacillus strains with IBS-alleviating effects and lay a foundation for studies of the related mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Arjan Narbad
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China and Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
LysR Family Regulator LttR Controls Production of Conjugated Linoleic Acid in Lactobacillus plantarum by Directly Activating the cla Operon. Appl Environ Microbiol 2021; 87:AEM.02798-20. [PMID: 33397697 DOI: 10.1128/aem.02798-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Conjugated linoleic acids (CLAs) have attracted more attention as functional lipids due to their potential physiological activities, including anticancer, anti-inflammatory, anti-cardiovascular disease, and antidiabetes activities. Microbiological synthesis of CLA has become a compelling method due to its high isomer selectivity and convenient separation and purification processes. In Lactobacillus plantarum, the generation of CLA from linoleic acids (LAs) requires the combination of CLA oleate hydratase (CLA-HY), CLA short-chain dehydrogenase (CLA-DH), and CLA acetoacetate decarboxylase (CLA-DC), which are separately encoded by cla-hy, cla-dh, and cla-dc. However, the regulatory mechanisms of CLA synthesis remain unknown. In this study, we found that a LysR family transcriptional regulator, LTTR, directly bound to the promoter region of the cla operon and activated the transcription of cla-dh and cla-dc. The binding motif was also predicted by bioinformatics analysis and verified by electrophoretic mobility shift assays (EMSAs) and DNase I footprinting assays. The lttR overexpression strain showed a 5-fold increase in CLA production. Moreover, we uncovered that the transcription of lttR is activated by LA. These results indicate that LttR senses LA and promotes CLA production by activating the transcription of cla-dh and cla-dc. This study reveals a new regulatory mechanism in CLA biotransformation and provides a new potential metabolic engineering strategy to increase the yield of CLA.IMPORTANCE Our work has identified a novel transcriptional regulator, LTTR, that regulates the production of CLA by activating the transcription of cla-dh and cla-dc, essential genes participating in CLA synthesis in Lactobacillus plantarum This study provides insight into the regulatory mechanism of CLA synthesis and broadens our understanding of the synthesis and regulatory mechanisms of the biosynthesis of CLA.
Collapse
|
22
|
He Z, Yang B, Liu X, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. Short communication: Genotype-phenotype association analysis revealed different utilization ability of 2'-fucosyllactose in Bifidobacterium genus. J Dairy Sci 2020; 104:1518-1523. [PMID: 33358168 DOI: 10.3168/jds.2020-19013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023]
Abstract
The oligosaccharide 2'-fucosyllactose (2'FL) in human breast milk selectively promotes the proliferation of bifidobacteria. One hundred fifty-one Bifidobacterium strains were evaluated for their capacity to utilize 2'FL based on the combination of phenotype and genotype association analysis. Through genotype analysis, 37 strains were predicted to have the ability to use 2'FL, including Bifidobacteriumbifidum, Bifidobacteriumbreve, Bifidobacteriumlongum ssp. longum, Bifidobacteriumlongum ssp. infantis, and Bifidobacteriumdentium, whereas Bifidobacteriumadolescentis, Bifidobacteriumanimalis, Bifidobacteriumpseudocatenulatum, and Bifidobacteriumangulatum could not use 2'FL. For in vitro utilization, there were noteworthy differences for 2'FL usage among different species, which were 100% consistent with genotype prediction. The results indicated that 2'FL utilization ability differed even within the same species, and Bifidobacterium followed the currently well-known pathway to utilize 2'FL, which could provide guidance to develop personalized prebiotics for different bifidobacteria via gene-trait matching analysis.
Collapse
Affiliation(s)
- Zhujun He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China; APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China; Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
23
|
Liu Y, Sheng Y, Pan Q, Xue Y, Yu L, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Identification of the key physiological characteristics of Lactobacillus plantarum strains for ulcerative colitis alleviation. Food Funct 2020; 11:1279-1291. [PMID: 31984399 DOI: 10.1039/c9fo02935d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactobacillus plantarum is a probiotic that is widely used to prevent ulcerative colitis (UC). However, the effects of this species are strain-specific. We believe that the physiological characteristics of L. plantarum strains may affect their UC-alleviating function. Therefore, this study investigated the relationship between the alleviating effect of L. plantarum strains on UC and their physiological characteristics in vitro. The physiological characteristics of 14 L. plantarum strains were assayed in vitro, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid (CLA) synthesis. To create animal models, colitis was established in C57BL/6 mice by adding 3.5% dextran sulfate sodium to drinking water for 7 days. L. plantarum strains with significantly different physiological characteristics were orally administered to the mice at a dose of 3 × 109 CFU. The results indicated that among the tested L. plantarum strains, L. plantarum N13 and L. plantarum CCFM8610 significantly alleviated colitis in the mice, as observed from the restoration of the body weight and disease activity index (DAI) score, recovery of the gut microbiota composition, reduced expression of pro-inflammatory cytokines, and significantly inhibited expression of p65. Correlation analysis indicated that four of the measured physiological characteristics (gastrointestinal transit tolerance, HT-29 cell adhesion, generation time, and CLA synthesis) were related to the UC-alleviating effects to different degrees. The strongest correlation was observed between the CLA synthesis ability and UC-alleviating effects (with Pearson correlation coefficients for IL-1β, IL-6, IL-17F, TNF-α, myeloperoxidase, and the DAI all below -0.95). The ability to synthesize CLA may be the key physiological characteristic of L. plantarum in UC alleviation. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qiqi Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
24
|
Yang B. Letter to editor. Gut Microbes 2020; 11:633-634. [PMID: 32116125 PMCID: PMC7527074 DOI: 10.1080/19490976.2020.1728184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A recent paper published in Gut Microbes, namely "Prevention of enteric bacterial infections and modulation of gut microbiota with conjugated linoleic acids producing Lactobacillus in mice", misdescribed the MCRA recombinant hydroxyl fatty acid-producing Lactobacillus casei as conjugated linoleic acid producer.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China,CONTACT Bo Yang School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu214122, China
| |
Collapse
|
25
|
Characteristics of bifidobacterial conjugated fatty acid and hydroxy fatty acid production and its potential application in fermented milk. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Yang B, Chen H, Gao H, Ren Q, Zhang H, Chen W. Genetic determinates for conjugated linolenic acid production in Lactobacillus plantarum ZS2058. J Appl Microbiol 2019; 128:191-201. [PMID: 31561280 DOI: 10.1111/jam.14466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
AIMS To investigate the genetic determinates for conjugated linolenic acid (CLNA) production in Lactobacillus plantarum ZS2058, a high CLNA producer. METHODS AND RESULTS After culturing with α-linolenic acid (ALA) in the medium, the fatty acid compositions of supernatant fluid and cell pellets were analysed via GC-MS. cis9,trans11,cis15-CLNA was identified to be the predominant isomer. And during CLNA production, 10-hydroxy-cis12-cis15-octadecenoic acid (10-HOEA) and 10-oxo-cis12-cis15-octadecenoic acid (10-OXOA) were accumulated. The E. coli recombinants harbouring genes encoding myosin-cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC), respectively, were analysed for their roles in CLNA production. The results indicated that MCRA converted ALA to 10-HOEA, following converted to 10-OXOA by DH. While with the combination of three recombinants, ALA could be transformed into CLNA plus 10-HOEA and 10-OXOA. When the three genes were deleted, none of the L. plantarum ZS2058 knockout mutants could produce any CLNA, after complementation, and all the complementary mutants recovered the CLNA-production ability at similar levels as the wild strain. CONCLUSIONS Lactobacillus plantarum ZS2058 produced CLNA from ALA with 10-HOEA and 10-OXOA as intermediates. The triple-component isomerase of MCRA, DH and DC was the unique genetic determinant for CLNA generation. SIGNIFICANCE AND IMPACT OF THE STUDY The current results firstly provided conclusive evidence that the triple-component isomerase complex was shared by both CLA and CLNA production in lactobacilli.
Collapse
Affiliation(s)
- B Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Q Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
27
|
Gao H, Yang B, Stanton C, Ross RP, Zhang H, Chen H, Chen W. Role of 10-hydroxy-cis-12-octadecenic acid in transforming linoleic acid into conjugated linoleic acid by bifidobacteria. Appl Microbiol Biotechnol 2019; 103:7151-7160. [DOI: 10.1007/s00253-019-09886-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/21/2019] [Accepted: 05/01/2019] [Indexed: 11/30/2022]
|
28
|
Salsinha AS, Pimentel LL, Fontes AL, Gomes AM, Rodríguez-Alcalá LM. Microbial Production of Conjugated Linoleic Acid and Conjugated Linolenic Acid Relies on a Multienzymatic System. Microbiol Mol Biol Rev 2018; 82:e00019-18. [PMID: 30158254 PMCID: PMC6298612 DOI: 10.1128/mmbr.00019-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) have gained significant attention due to their anticarcinogenic and lipid/energy metabolism-modulatory effects. However, their concentration in foodstuffs is insufficient for any therapeutic application to be implemented. From a biotechnological standpoint, microbial production of these conjugated fatty acids (CFAs) has been explored as an alternative, and strains of the genera Propionibacterium, Lactobacillus, and Bifidobacterium have shown promising producing capacities. Current screening research works are generally based on direct analytical determination of production capacity (e.g., trial and error), representing an important bottleneck in these studies. This review aims to summarize the available information regarding identified genes and proteins involved in CLA/CLNA production by these groups of bacteria and, consequently, the possible enzymatic reactions behind such metabolic processes. Linoleate isomerase (LAI) was the first enzyme to be described to be involved in the microbiological transformation of linoleic acids (LAs) and linolenic acids (LNAs) into CFA isomers. Thus, the availability of lai gene sequences has allowed the development of genetic screening tools. Nevertheless, several studies have reported that LAIs have significant homology with myosin-cross-reactive antigen (MCRA) proteins, which are involved in the synthesis of hydroxy fatty acids, as shown by hydratase activity. Furthermore, it has been suggested that CLA and/or CLNA production results from a stress response performed by the activation of more than one gene in a multiple-step reaction. Studies on CFA biochemical pathways are essential to understand and characterize the metabolic mechanism behind this process, unraveling all the gene products that may be involved. As some of these bacteria have shown modulation of lipid metabolism in vivo, further research to be focused on this topic may help us to understand the role of the gut microbiota in human health.
Collapse
Affiliation(s)
- Ana S Salsinha
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Lígia L Pimentel
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Centro de Investigação em Tecnologias e Sistemas de Informação em Saúde, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Unidade de Investigação de Química Orgânica, Produtos Naturais e Agroalimentares, Universidade de Aveiro, Aveiro, Portugal
| | - Ana L Fontes
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Unidade de Investigação de Química Orgânica, Produtos Naturais e Agroalimentares, Universidade de Aveiro, Aveiro, Portugal
| | - Ana M Gomes
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Luis M Rodríguez-Alcalá
- Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago de Chile, Chile
| |
Collapse
|