1
|
Sanaei E, de Roode JC. The role of host plants in driving pathogen susceptibility in insects through chemicals, immune responses and microbiota. Biol Rev Camb Philos Soc 2025; 100:1347-1364. [PMID: 39916634 DOI: 10.1111/brv.70003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 05/31/2025]
Abstract
In this comprehensive exploration, we delve into the pivotal role of host plants in shaping the intricate interactions between herbivorous insects and their pathogens. Recent decades have seen a surge in studies that demonstrate that host plants are crucial drivers of the interactions between insects and pathogens, providing novel insights into the direct and indirect interactions that shape tri-trophic interactions. These studies have built on a wide range of pathogens, from viruses to bacteria, and from protozoans to fungi. We summarise these studies, and discuss the mechanisms of plant-mediated insect resistance to infection, ranging from the toxicity of plant chemicals to pathogens to enhancement of anti-pathogen immune responses, and modulation of the insect's microbiome. Although we provide evidence for the roles of all these mechanisms, we also point out that the majority of existing studies are phenomenological, describing patterns without addressing the underlying mechanisms. To further our understanding of these tri-trophic interactions, we therefore urge researchers to design their studies to enable them specifically to distinguish the mechanisms by which plants affect insect susceptibility to pathogens.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Biology Department, Emory University, 1510 Clifton Road, Atlanta, Georgia, 30322, USA
| | - Jacobus C de Roode
- Biology Department, Emory University, 1510 Clifton Road, Atlanta, Georgia, 30322, USA
| |
Collapse
|
2
|
Siddiqui JA, Fan R, Liu Y, Syed AH, Benlin Y, Chu Q, Ding Z, Ghani MI, Liu X, Wakil W, Liu DD, Chen X, Cernava T, Smagghe G. The larval gut of Spodoptera frugiperda harbours culturable bacteria with metabolic versatility after insecticide exposure. INSECT MOLECULAR BIOLOGY 2025; 34:452-469. [PMID: 39952648 DOI: 10.1111/imb.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
Spodoptera frugiperda (fall armyworm) poses a substantial risk to crops worldwide, resulting in considerable economic damage. The gut microbiota of insects plays crucial roles in digestion, nutrition, immunity, growth and, sometimes, the degradation of insecticides. The current study examines the effect of synthetic insecticides on the gut microbiome of third instar S. frugiperda larvae using both culture-dependent techniques and 16S rRNA gene sequencing for bacterial community profiling and diversity analysis. In untreated larvae, the sequencing approach revealed a diverse microbiome dominated by the phyla Firmicutes, Proteobacteria and Bacteroidota, with key genera including Bacteroides, Faecalibacterium and Pelomonas. In parallel, 323 bacterial strains were isolated and assigned to the orders Bacillales, Burkholderiales, Enterobacterales, Flavobacteriales, Lactobacillales, Micrococcales, Neisseriaies, Pseudomonadales, Sphingobacteriales and Xanthomonadales. The prevailing culturable species included Serratia marcescens, Klebsiella variicola and Enterobacter quasiroggenkampii. Treatment with sublethal concentrations of three insecticides (broflanilide, spinosad and indoxacarb) caused significant changes in gut microbiome diversity and composition. Treated larvae showed a shift towards increased Proteobacteria abundance and decreased Firmicutes. Specifically, Acinetobacter and Rhodococcus were dominant in treated samples. Functional predictions highlighted significant metabolic versatility involving nutrient processing, immune response, detoxification, xenobiotic metabolism, and stress response, suggesting microbial adaptation to insecticide exposure. Network correlation analysis highlighted disrupted microbial interactions and altered community structures under insecticide treatment. These findings enhance our understanding of how insecticides impact the gut microbiota in S. frugiperda and may inform future strategies for managing pest resistance through microbiome-based approaches.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Ruidong Fan
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Yanjiang Liu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ali Hassan Syed
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Yi Benlin
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Qingshuai Chu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Zeyang Ding
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Muhammad Imran Ghani
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Xuemi Liu
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
| | - Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Dong-Dong Liu
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Xiaoyulong Chen
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Guizhou Provincial Science and Technology Department, Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guiyang, China
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Guy Smagghe
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Govindharaj GPP, Annamalai M, Choudhary JS, Khan RM, Basana-Gowda G, Patil N, Panda RM, Srivastava K, Mohapatra SD. Significant variations of bacterial communities among the developmental stages of Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae). Sci Rep 2025; 15:8552. [PMID: 40074819 PMCID: PMC11903862 DOI: 10.1038/s41598-025-93048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The yellow stemborer, Scirpophaga incertulas, is a monophagous pest of rice, attacking the crop from its vegetative to reproductive stages. Microorganisms are crucial in influencing the insect's life cycle, evolution, and ecology, presenting an avenue for understanding and improving management strategies. Present research employed advanced next-generation sequencing technology to investigate the microbiota of S. incertulas, a previously unexplored area for developmental stage associated microbial diversity. The study used 16 S rRNA V3-V4 region amplicon sequencing to determine the diversity of bacteria associated with different developmental stages of S. incertulas. Taxonomically, bacterial communities were classified into 25 phyla, encompassing 46 classes, 101 orders, 197 families, and 364 genera. The major phyla identified were Proteobacteria (39%), Firmicutes (39%), Actinobacteria (11%), and Bacteroidetes (7%), with Proteobacteria being the most predominant across all developmental stages except the larval stage, where Firmicutes took precedence. Moraxellaceae, Bacillaceae, Xanthomonadaceae, Sphingobacteriaceae, and Flavobacteriaceae were predominant families across all the developmental stages. However, in the egg and adult stages, the abundance of Bacillaceae was notably lower, whereas Prevotellaceae found significantly higher in adult stages. Dominant genera across all stages included Acinetobacter, Bacillus, Lactobacillus, Enterococcus, and Pseudomonas. The result showed that the highest number of Operational Taxonomic Units (OTUs) were in the larval stage (426 OTUs), the lowest in adults (251 OTUs), and the egg stage (254 OTUs). This suggests that the microbiota may play a role in the growth and development of S. incertulas. The predicted functional assessment of the associated S. incertulas microbiota revealed that the microbiota primarily participated in metabolic pathways, secondary metabolite biosynthesis, energy metabolism, signaling, and cellular processes. Our findings shed light on the significant variations in the microbial community and their predicted functions present in S. incertulas across developmental stages. The present study findings will help in developing novel microbiota-based management strategies.
Collapse
Affiliation(s)
| | - M Annamalai
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Jaipal Singh Choudhary
- Farming System Research Centre for Hill and Plateau Region, ICAR-Research Complex for the Eastern Region, Ranchi, 834 010, India.
| | - Rashid Mumtaz Khan
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia.
| | - G Basana-Gowda
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Naveenkumar Patil
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Rudra Madhab Panda
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Kuldeep Srivastava
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - S D Mohapatra
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, 753006, India
| |
Collapse
|
4
|
Sanaei E, Chavez J, Harris EV, Alcaide TY, Baffour-Addo K, Bugay MJ, Adams KL, Zelaya A, de Roode JC, Gerardo NM. Microbiome analysis of monarch butterflies reveals effects of development and diet. FEMS Microbiol Ecol 2024; 100:fiae143. [PMID: 39557647 DOI: 10.1093/femsec/fiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Diet profoundly influences the composition of an animal's microbiome, especially in holometabolous insects, offering a valuable model to explore the impact of diet on gut microbiome dynamics throughout metamorphosis. Here, we use monarch butterflies (Danaus plexippus), specialist herbivores that feed as larvae on many species of chemically well-defined milkweed plants (Asclepias sp.), to investigate the impacts of development and diet on the composition of the gut microbial community. While a few microbial taxa are conserved across life stages of monarchs, the microbiome appears to be highly dynamic throughout the life cycle. Microbial diversity gradually diminishes throughout the larval instars, ultimately reaching its lowest point during the pupal stage and then recovering again in the adult stage. The microbial composition then undergoes a substantial shift upon the transition from pupa to adult, with female adults having significantly different microbial communities than the eggs that they lay, indicating limited evidence for vertical transmission of gut microbiota. While diet did not significantly impact overall microbial composition, our results suggest that fourth instar larvae exhibit higher microbial diversity when consuming milkweed with high concentrations of toxic cardenolide phytochemicals. This study underscores how diet and developmental stage collectively shape the monarch's gut microbiota.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Joselyne Chavez
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, United States
| | - Erica V Harris
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Agnes Scott College, Department of Medical Sciences, Decatur, GA 30030, United States
| | - Tiffanie Y Alcaide
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Keisha Baffour-Addo
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- University of Michigan School of Medicine, Ann Arbor, MI 48109, United States
| | - Mahal J Bugay
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Kandis L Adams
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, Earlham College, Richmond, IN 47374, United States
| | - Anna Zelaya
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, California State University, San Bernardino, CA 92407, United States
| | - Jacobus C de Roode
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Nicole M Gerardo
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
5
|
Naveed WA, Liu Q, Lu C, Huang X. Unveiling symbiotic bacterial communities in insects feeding on the latex-rich plant Ficus microcarpa. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:652-662. [PMID: 39421892 DOI: 10.1017/s0007485324000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The diversity and health of insects that feed on plants are closely related to their mutualistic symbionts and host plants. These symbiotic partners significantly influence various metabolic activities in these insects. However, the symbiotic bacterial community of toxic plant feeders still needs further characterisation. This study aims to unravel bacterial communities associated with the different species of insect representing three insect orders: Thysanoptera, Hemiptera, and Lepidoptera, along with their predicted functional role, which exclusively feeds on latex-rich plant species Ficus microcarpa. By using 16S rRNA gene high-throughput sequencing, the analysis was able to define the major alignment of the bacterial population, primarily comprising Proteobacteria, Firmicutes, Bacteroidota, Actinobacteriota, and Acidobacteriota. Significant differences in symbiotic organisms between three insect groups were discovered by the study: hemipterans had Burkholderia and Buchnera, and lepidopterans had Acinetobacter. At the same time, Pseudomonas was detected in high abundance in both lepidopteran and thysanopteran insects. Furthermore, these symbionts exhibit consistent core functions, potentially explaining how different insects can consume the same host plant. The identified core functions of symbionts open avenues for innovative approaches in utilising these relationships to develop environment-friendly solutions for pest control, with broader implications for agriculture and environmental conservation.
Collapse
Affiliation(s)
- Waleed Afzal Naveed
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Gloder G, Bourne ME, Cuny MAC, Verreth C, Crauwels S, Dicke M, Poelman E, Jacquemyn H, Lievens B. Caterpillar-parasitoid interactions: species-specific influences on host microbiome composition. FEMS Microbiol Ecol 2024; 100:fiae115. [PMID: 39165109 PMCID: PMC11407444 DOI: 10.1093/femsec/fiae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024] Open
Abstract
There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae. Both internal and external bacterial densities were significantly higher for P. brassicae than P. rapae, while no differences were found between parasitized and nonparasitized caterpillars. In contrast, parasitism significantly affected the composition of the internal and external microbiome of the caterpillars and the parasitoid larvae, but the effects were dependent on the host and parasitoid species. Irrespective of host species, a Wolbachia species was exclusively found inside caterpillars parasitized by C. glomerata, as well as in the corresponding developing parasitoid larvae. Similarly, a Nosema species was abundantly present inside parasitized caterpillars and the parasitoid larvae, but this was independent of the host and the parasitoid species. We conclude that parasitism has pronounced effects on host microbiomes, but the effects depend on both the host and parasitoid species.
Collapse
Affiliation(s)
- Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
Zhang B, Yang W, He Q, Chen H, Che B, Bai X. Analysis of differential effects of host plants on the gut microbes of Rhoptroceros cyatheae. Front Microbiol 2024; 15:1392586. [PMID: 38962140 PMCID: PMC11221597 DOI: 10.3389/fmicb.2024.1392586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
As an indispensable part of insects, intestinal symbiotic bacteria play a vital role in the growth and development of insects and their adaptability. Rhoptroceros cyatheae, the main pest of the relict plant Alsophila spinulosa, poses a serious threat to the development of the A. spinulosa population. In the present study, 16S rDNA and internal transcribed spacer high-throughput sequencing techniques were used to analyze the structure of intestinal microbes and the diversity of the insect feeding on two different plants, as well as the similarities between the intestinal microorganisms of R. cyatheae. The dominant bacteria of leaf endophytes were also compared based on the sequencing data. The results showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla of intestinal bacteria, and Ascomycota was the dominant phylum of intestinal fungi. Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Methylobacterium-Methylorubrum, and Enterococcus were the dominant genera in the intestine of R. cyatheae feeding on two plants, and the relative abundance was significantly different between the two groups. Candida was the common dominant genus of intestinal fungi in the two groups, and no significant difference was observed in its abundance between the two groups. This showed that compared with the intestinal fungi of R. cyatheae, the abundance of the intestinal bacteria was greatly affected by food. The common core microbiota between the microorganisms in A. spinulosa leaves and the insect gut indicated the presence of a microbial exchange between the two. The network correlation diagram showed that the gut microbes of R. cyatheae feeding on Gymnosphaera metteniana were more closely related to each other, which could help the host to better cope with the adverse external environment. This study provides a theoretical basis for the adaptation mechanism of R. cyatheae and a new direction for the effective prevention and control of R. cyatheae.
Collapse
Affiliation(s)
- Bingchen Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qinqin He
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| | - Hangdan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Bingjie Che
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiaojie Bai
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| |
Collapse
|
8
|
Kumari A, Choudhary JS, Thakur AK, Banra S, Oraon PK, Kumari K, Sahu SK, Albeshr MF. Substantially altered bacterial diversity associated with developmental stages of litchi stink bug, Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae). Heliyon 2024; 10:e32384. [PMID: 38961890 PMCID: PMC11219338 DOI: 10.1016/j.heliyon.2024.e32384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The mutualistic symbiotic relationship between insects and bacteria greatly influences the growth and development of host insects. Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae), also referred to as the litchi stink bug, has recently been established as an important insect pest of Litchi chinensis Sonn. and causes substantial yield loss in India. To design effective and environmentally safe management strategies, an understanding of the diversity and functions of microbiota harbored across the development stages is very important. The assessment of the diversity of development-associated bacteria in T. javanica and their predicted functions was conducted using 16S rRNA gene sequences obtained by the Illumina MiSeq technology. The result showed that taxonomic analysis of associated bacteria in different developmental stages includes a total of 46 phyla, encompassing 139 classes, 271 orders, 474 families, and 893 genera of bacteria. All developmental stages of T. javanica shared a total of 42.82 percent of operational taxonomic units (OTUs), with a 97 % similarity threshold. Alpha diversity indices showed maximum species richness in the egg and adult stages. The phyla Proteobacteria followed by Firmicutes, Bacteriodetes, and Actinobacteria, exhibited the highest levels of abundance across all the developmental stages of T. javanica. Microbiota were most different between the egg and the 4th nymphal stage (χ2 = 711.67) and least different between the 2nd and 4th nymphal instars (χ2 = 44.45). The predicted functions of the microbiota associated with T. javanica are mainly involved in amino acid metabolism, cell motility, cellular processes and signaling, glycan biosynthesis and metabolism, lipid metabolism, and membrane transport. The present study documentation and information on symbiotic bacteria across T. javanica life stages will prompt the development of novel biological management strategies.
Collapse
Affiliation(s)
- Anita Kumari
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Jaipal Singh Choudhary
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, Jharkhand, 834010, India
| | - Anand Kumar Thakur
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Sushmita Banra
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Priti Kumari Oraon
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Kanika Kumari
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Subhash Kumar Sahu
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Mohammed Fahad Albeshr
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Marulanda-Moreno SM, Saldamando-Benjumea CI, Vivero Gomez R, Cadavid-Restrepo G, Moreno-Herrera CX. Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ 2024; 12:e17087. [PMID: 38623496 PMCID: PMC11017975 DOI: 10.7717/peerj.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024] Open
Abstract
Background Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.
Collapse
Affiliation(s)
- Sandra María Marulanda-Moreno
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Clara Inés Saldamando-Benjumea
- Grupo de Biotecnología Vegetal UNALMED-CIB. Línea en Ecología y Evolución de Insectos, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Rafael Vivero Gomez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| |
Collapse
|
10
|
Lateef AA, Azeez AA, Ren W, Hamisu HS, Oke OA, Asiegbu FO. Bacterial biota associated with the invasive insect pest Tuta absoluta (Meyrick). Sci Rep 2024; 14:8268. [PMID: 38594362 PMCID: PMC11003966 DOI: 10.1038/s41598-024-58753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Tuta absoluta (the tomato pinworm) is an invasive insect pest with a highly damaging effect on tomatoes causing between 80 and 100% yield losses if left uncontrolled. Resistance to chemical pesticides have been reported in some T. absoluta populations. Insect microbiome plays an important role in the behavior, physiology, and survivability of their host. In a bid to explore and develop an alternative control method, the associated microbiome of this insect was studied. In this study, we unraveled the bacterial biota of T. absoluta larvae and adults by sequencing and analyzing the 16S rRNA V3-V4 gene regions using Illumina NovaSeq PE250. Out of 2,092,015 amplicon sequence variants (ASVs) recovered from 30 samples (15 larvae and 15 adults), 1,268,810 and 823,205 ASVs were obtained from the larvae and adults, respectively. A total of 433 bacterial genera were shared between the adults and larval samples while 264 and 139 genera were unique to the larvae and adults, respectively. Amplicon metagenomic analyses of the sequences showed the dominance of the phylum Proteobacteria in the adult samples while Firmicutes and Proteobacteria dominated in the larval samples. Linear discriminant analysis effect size (LEfSe) comparison revealed the genera Pseudomonas, Delftia and Ralstonia to be differentially enriched in the adult samples while Enterococcus, Enterobacter, Lactococcus, Klebsiella and Wiessella were differentially abundant in the larvae. The diversity indices showed that the bacterial communities were not different between the insect samples collected from different geographical regions. However, the bacterial communities significantly differed based on the sample type between larvae and adults. A co-occurrence network of significantly correlated taxa revealed a strong interaction between the microbial communities. The functional analysis of the microbiome using FAPROTAX showed that denitrification, arsenite oxidation, methylotrophy and methanotrophy as the active functional groups of the adult and larvae microbiomes. Our results have revealed the core taxonomic, functional, and interacting microbiota of T. absoluta and these indicate that the larvae and adults harbor a similar but transitory set of bacteria. The results provide a novel insight and a basis for exploring microbiome-based biocontrol strategy for this invasive insect pest as well as the ecological significance of some of the identified microbiota is discussed.
Collapse
Affiliation(s)
- A A Lateef
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
- Department of Plant Biology, University of Ilorin, Kwara State, Ilorin, Nigeria.
| | - A A Azeez
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Rainforest Research Station, Forestry Research Institute of Nigeria, Jericho Hill, Ibadan, Nigeria
| | - W Ren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - H S Hamisu
- National Horticultural Research Institute, Ibadan, Nigeria
| | - O A Oke
- National Horticultural Research Institute, Ibadan, Nigeria
| | - F O Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Liu Y, Zhang L, Cai X, Rutikanga A, Qiu B, Hou Y. The Diversity of Wolbachia and Other Bacterial Symbionts in Spodoptera frugiperda. INSECTS 2024; 15:217. [PMID: 38667347 PMCID: PMC11050099 DOI: 10.3390/insects15040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize and wheat. Here, we investigated the infection, composition, abundance, and diversity of bacterial symbionts, especially Wolbachia, in different tissues of S. frugiperda female adults. The infection prevalence frequencies of Wolbachia in five provinces of China, namely Pu'er, Yunnan; Nanning, Guangxi; Sanya, Hainan; Yunfu, Guangdong; and Nanping, Fujian, were assessed. The results indicated that Proteobacteria, Firmicutes, and Bacteroidetes were the three most dominant bacterial phyla in S. frugiperda adults. At the genus level, the abundant microbiota, which included Enterobacter and Enterococcus, varied in abundance between tissues of S. frugiperda. Wolbachia was found in the ovaries and salivary glands of S. frugiperda adults, and was present in 33.33% of the Pu'er, Yunnan, 23.33% of the Nanning, Guangxi, and 13.33% of the Sanya, Hainan populations, but Wolbachia was absent in the Yunfu, Guangdong and Nanping, Fujian populations. Further phylogenetic analyses revealed that all of the Wolbachia strains from the different S. frugiperda populations belonged to the supergroup B and were named the wFru strain. Since there were Wolbachia strains inducing cytoplasmic incompatibility in supergroup B, these findings may provide a foundation for developing potential biocontrol techniques against S. frugiperda.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Lina Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| | - Xiangyun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| | - Alexandre Rutikanga
- College of Agriculture and Animal Husbandry, University of Rwanda, Kigali 999051, Rwanda
| | - Baoli Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| |
Collapse
|
12
|
El Hamss H, Maruthi MN, Omongo CA, Wang HL, van Brunschot S, Colvin J, Delatte H. Microbiome diversity and composition in Bemisia tabaci SSA1-SG1 whitefly are influenced by their host's life stage. Microbiol Res 2024; 278:127538. [PMID: 37952351 DOI: 10.1016/j.micres.2023.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Within the Bemisia tabaci group of cryptic whitefly species, many are damaging agricultural pests and plant-virus vectors, conferring upon this group the status of one of the world's top 100 most invasive and destructive species, affecting farmers' income and threatening their livelihoods. Studies on the microbiome of whitefly life stages are scarce, although their composition and diversity greatly influence whitefly fitness and development. We used high-throughput sequencing to understand microbiome diversity in different developmental stages of the B. tabaci sub-Saharan Africa 1 (SSA1-SG1) species of the whitefly from Uganda. Endosymbionts (Portiera, Arsenophonus, Wolbachia, and Hemipteriphilus were detected but excluded from further statistical analysis as they were not influenced by life stage using Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS, p = 0.925 and Bray, p = 0.903). Our results showed significant differences in the meta microbiome composition in different life stages of SSA1-SG1. The diversity was significantly higher in eggs (Shannon, p = 0.024; Simpson, p = 0.047) than that in nymphs and pupae, while the number of microbial species observed by the amplicon sequence variant (ASV) was not significant (n(ASV), p = 0.094). At the phylum and genus levels, the dominant constituents in the microbiome changed significantly during various developmental stages, with Halomonas being present in eggs, whereas Bacillus and Caldalkalibacillus were consistently found across all life stages. These findings provide the first description of differing meta microbiome diversity in the life stage of whiteflies, suggesting their putative role in whitefly development.
Collapse
Affiliation(s)
- Hajar El Hamss
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom.
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom.
| | - Christopher A Omongo
- Root Crops Programme, National Crops Resource Research Institute (RCP-NaCRRI), Kampala, Uganda
| | - Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom; School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom
| | | |
Collapse
|
13
|
Du XX, Cao SK, Xiao HY, Yang CJ, Zeng AP, Chen G, Yu H. Feeding Spodoptera exigua larvae with gut-derived Escherichia sp. increases larval juvenile hormone levels inhibiting cannibalism. Commun Biol 2023; 6:1086. [PMID: 37884600 PMCID: PMC10603045 DOI: 10.1038/s42003-023-05466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Feed quality influences insect cannibalistic behavior and gut microbial communities. In the present study, Spodoptera exigua larvae were fed six different artificial diets, and one of these diets (Diet 3) delayed larval cannibalistic behavior and reduced the cannibalism ratio after ingestion. Diet 3-fed larvae had the highest gut bacterial load (1.396 ± 0.556 × 1014 bacteria/mg gut), whereas Diet 2-fed larvae had the lowest gut bacterial load (3.076 ± 1.368 × 1012 bacteria/mg gut). The gut bacterial composition and diversity of different diet-fed S. exigua larvae varied according to the 16S rRNA gene sequence analysis. Enterobacteriaceae was specific to the Diet 3-fed larval gut. Fifteen culturable bacterial isolates were obtained from the midgut of Diet 3-fed larvae. Of these, ten belonged to Escherichia sp. After administration with Diet 1- or 2-fed S. exigua larvae, two bacterial isolates (SePC-12 and -37) delayed cannibalistic behavior in both tested larval groups. Diet 2-fed larvae had the lowest Juvenile hormone (JH) concentration and were more aggressive against intraspecific predation. However, SePC-12 loading increased the JH hormone levels in Diet 2-fed larvae and inhibited their cannibalism. Bacteria in the larval midgut are involved in the stabilization of JH levels, thereby regulating host larval cannibalistic behavior.
Collapse
Affiliation(s)
- Xing-Xing Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Sheng-Kai Cao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hua-Yan Xiao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ai-Ping Zeng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
14
|
Fu J, Wang J, Huang X, Guan B, Feng Q, Deng H. Composition and diversity of gut microbiota across developmental stages of Spodoptera frugiperda and its effect on the reproduction. Front Microbiol 2023; 14:1237684. [PMID: 37789854 PMCID: PMC10543693 DOI: 10.3389/fmicb.2023.1237684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Spodoptera frugiperda is a serious world-wide agricultural pest. Gut microorganisms play crucial roles in growth, development, immunity and behavior of host insects. Methods Here, we reported the composition of gut microbiota in a laboratory-reared strain of S. frugiperda using 16S rDNA sequencing and the effects of gut microbiota on the reproduction. Results Proteobacteria and Firmicutes were the predominant bacteria and the taxonomic composition varied during the life cycle. Alpha diversity indices indicated that the eggs had higher bacterial diversity than larvae, pupae and adults. Furthermore, eggs harbored a higher abundance of Ralstonia, Sediminibacterium and microbes of unclassified taxonomy. The dynamics changes in bacterial communities resulted in differences in the metabolic functions of the gut microbiota during development. Interestingly, the laid eggs in antibiotic treatment groups did not hatch much due to the gut dysbacteriosis, the results showed gut microbiota had a significant impact on the male reproduction. Discussion Our findings provide new perspectives to understand the intricate associations between microbiota and host, and have value for the development of S. frugiperda management strategies focusing on the pest gut microbiota.
Collapse
Affiliation(s)
- Junrui Fu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junhan Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ximei Huang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Boyang Guan
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
15
|
Gao H, Jiang S, Wang Y, Hu M, Xue Y, Cao B, Dou H, Li R, Yi X, Jiang L, Zhang B, Li Y. Comparison of gut bacterial communities of Hyphantriacunea Drury (Lepidoptera, Arctiidae), based on 16S rRNA full-length sequencing. Biodivers Data J 2023; 11:e98143. [PMID: 38327372 PMCID: PMC10848398 DOI: 10.3897/bdj.11.e98143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/14/2023] [Indexed: 02/09/2024] Open
Abstract
There are a large number of microorganisms in the gut of insects, which form a symbiotic relationship with the host during the long-term co-evolution process and have a significant impact on the host's nutrition, physiology, development, immunity, stress tolerance and other aspects. However, the composition of the gut microbes of Hyphantriacunea remains unclear. In order to investigate the difference and diversity of intestinal microbiota of H.cunea larvae feeding on different host plants, we used PacBio sequencing technology for the first time to sequence the 16S rRNA full-length gene of the intestinal microbiota of H.cunea. The species classification, β diversity and function of intestinal microflora of the 5th instar larvae of four species of H.cunea feeding on apricot, plum, redbud and Chinese ash were analysed. The results showed that a total of nine phyla and 65 genera were identified by PacBio sequencing, amongst which Firmicutes was the dominant phylum and Enterococcus was the dominant genus, with an average relative abundance of 59.29% and 52.16%, respectively. PERMANOVA analysis and cluster heat map showed that the intestinal microbiomes of H.cunea larvae, fed on different hosts, were significantly different. LEfSe analysis confirmed the effect of host diet on intestinal community structure and PICRUSt2 analysis showed that most of the predictive functions were closely related to material transport and synthetic, metabolic and cellular processes. The results of this study laid a foundation for revealing the interaction between the intestinal microorganisms of H.cunea and its hosts and provided ideas for exploring new green prevention and control strategies of H.cunea.
Collapse
Affiliation(s)
- Hui Gao
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
- School of Life Sciences, Shandong University, Qingdao, ChinaSchool of Life Sciences, Shandong UniversityQingdaoChina
| | - Sai Jiang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Yinan Wang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Meng Hu
- Forestry Protection and Development Service Center of Jining City, Jining, ChinaForestry Protection and Development Service Center of Jining CityJiningChina
| | - Yuyan Xue
- Qufu Bureau of Natural Resources and Planning, Qufu, ChinaQufu Bureau of Natural Resources and PlanningQufuChina
| | - Bing Cao
- Animal Husbandry and Fisheries Development Centre of Tengzhou, Tengzhou, ChinaAnimal Husbandry and Fisheries Development Centre of TengzhouTengzhouChina
| | - Hailong Dou
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Ran Li
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Lina Jiang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia Autonomous Region, ChinaCollege of Life Sciences and Technology, Inner Mongolia Normal UniversityHohhot, Inner Mongolia Autonomous RegionChina
| | - Yujian Li
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| |
Collapse
|
16
|
Li Y, Chang L, Xu K, Zhang S, Gao F, Fan Y. Research Progresses on the Function and Detection Methods of Insect Gut Microbes. Microorganisms 2023; 11:1208. [PMID: 37317182 DOI: 10.3390/microorganisms11051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The insect gut is home to an extensive array of microbes that play a crucial role in the digestion and absorption of nutrients, as well as in the protection against pathogenic microorganisms. The variety of these gut microbes is impacted by factors such as age, diet, pesticides, antibiotics, sex, and caste. Increasing evidence indicates that disturbances in the gut microbiota can lead to compromised insect health, and that its diversity has a far-reaching impact on the host's health. In recent years, the use of molecular biology techniques to conduct rapid, qualitative, and quantitative research on the host intestinal microbial diversity has become a major focus, thanks to the advancement of metagenomics and bioinformatics technologies. This paper reviews the main functions, influencing factors, and detection methods of insect gut microbes, in order to provide a reference and theoretical basis for better research utilization of gut microbes and management of harmful insects.
Collapse
Affiliation(s)
- Yazi Li
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Liyun Chang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Ke Xu
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Shuhong Zhang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Fengju Gao
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Yongshan Fan
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| |
Collapse
|
17
|
Han S, Zhou Y, Wang D, Qin Q, Song P, He Y. Effect of Different Host Plants on the Diversity of Gut Bacterial Communities of Spodoptera frugiperda (J. E. Smith, 1797). INSECTS 2023; 14:264. [PMID: 36975949 PMCID: PMC10053068 DOI: 10.3390/insects14030264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Intestinal symbiotic bacteria have formed an interdependent symbiotic relationship with many insect species after long-term coevolution, which plays a critical role in host growth and adaptation. Spodoptera frugiperda (J. E. Smith) is a worldwide significant migratory invasive pest. As a polyphagous pest, S. frugiperda can harm more than 350 plants and poses a severe threat to food security and agricultural production. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity and structure of the gut bacteria of this pest feeding on six diets (maize, wheat, rice, honeysuckle flowers, honeysuckle leaves, and Chinese yam). The results showed that the S. frugiperda fed on rice had the highest bacterial richness and diversity, whereas the larvae fed on honeysuckle flowers had the lowest abundance and diversity of gut bacterial communities. Firmicutes, Actinobacteriota, and Proteobacteria were the most dominant bacterial phyla. PICRUSt2 analysis indicated that most of the functional prediction categories were concentrated in metabolic bacteria. Our results confirmed that the gut bacterial diversity and community composition of S. frugiperda were affected significantly by host diets. This study provided a theoretical basis for clarifying the host adaptation mechanism of S. frugiperda, which also provided a new direction to improve polyphagous pest management strategies.
Collapse
|
18
|
Du L, Xue H, Hu F, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Luo J, Cui J, Gao X. Dynamics of symbiotic bacterial community in whole life stage of Harmonia axyridis (Coleoptera: Coccinellidae). Front Microbiol 2022; 13:1050329. [PMID: 36532478 PMCID: PMC9751998 DOI: 10.3389/fmicb.2022.1050329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 02/06/2024] Open
Abstract
INTRODUCTION Bacteria play critical roles in the reproduction, metabolism, physiology, and detoxification of their insect hosts. The ladybird beetle (Harmonia axyridis) harbors a myriad of endosymbiotic microbes. However, to date, little is known about how the microbial composition of H. axyridis varies throughout its life cycle. METHODS In this study, 16S rRNA amplicon sequencing and quantitative PCR were employed to investigate the diversity and dynamics of bacterial symbionts across the egg, larval, pupae, and adults stages of H. axyridis. RESULTS Higher bacterial community richness and diversity were observed in eggs, followed by those in adults and pupae. The community richness index differed significantly between second-instar larvae and other developmental stages. Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla. Staphylococcus, Enterobacter, Glutamicibacter, and Acinetobacter were the dominant bacteria genera; however, their relative abundances fluctuated across host developmental stages. Interestingly, the larval stage harbored high proportions of Firmicutes, whereas the adult microbial community largely consisted of Proteobacteria. DISCUSSION This study is the first to determine the symbiotic bacterial composition across key life stages of H. axyridis. These outcomes can foster the development of environmental risk assessments and novel biological control strategies.
Collapse
Affiliation(s)
- Lingen Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hui Xue
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fangmei Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jichao Ji
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Zhou L, Chen C, Wang X. Gut Bacterial Diversity and Community Structure of Spodoptera exigua (Lepidoptera: Noctuidae) in the Welsh Onion-producing Areas of North China. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1102-1114. [PMID: 35765845 DOI: 10.1093/jee/toac103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 06/15/2023]
Abstract
Gut microbiota play an important role in digestion, development, nutritional metabolism, and detoxification in insects. However, scant information exists on the gut bacterial variation, composition, and community structure of the beet armyworm, Spodoptera exigua (Hübner), and how its gut microbiota has adapted to different geographical environments. Using 16S rRNA high-throughput sequencing technology, we detected 3,837,408 high-quality reads and 1,457 operational taxonomic units (OTUs) in 47 gut samples of S. exigua collected from ten sites in northern China. Overall, we identified 697 bacterial genera from 30 phyla, among which Proteobacteria and Firmicutes were the most dominant phyla. Gut bacterial alpha-diversity metrics revealed significant differences among these populations. We detected the highest alpha bacterial diversity in Xinming, northern Liaoning Province, and the lowest bacterial diversity in Zhangwu, western Liaoning Province. Beta diversity indicated that the gut microbial community structure of S. exigua in Liaoning Province was significantly different from that of other populations. There was a similar microbial community structure among populations in the adjacent province, suggesting that the environment influences bacterial succession in this pest. Finally, PICRUSt analysis demonstrated that microbial functions closely associated with the gut microbiomes mainly included membrane transport, carbohydrate metabolism and replication, and amino acid metabolism.
Collapse
Affiliation(s)
- Lihong Zhou
- Institute of Flower, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, 110161, P.R. China
| | - Chen Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| | - Xingya Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P.R. China
| |
Collapse
|
20
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
21
|
Similar Bacterial Communities among Different Populations of a Newly Emerging Invasive Species, Tuta absoluta (Meyrick). INSECTS 2022; 13:insects13030252. [PMID: 35323550 PMCID: PMC8951508 DOI: 10.3390/insects13030252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary As an invasive pest in China, the moth Tuta absoluta has spread extremely quickly, and now causes serious harm to the Chinese tomato industry. Understanding gut microbial diversity and composition can potentially identify the adaptive potential of introduced species. In this study, we found there were no significant differences in microbial diversity among three geographical populations, and the gut microbial compositions were similar among the Spanish, Xinjiang and Yunnan geographical populations. Abstract Microorganisms in the guts of insects enhance the adaptability of their hosts with different lifestyles, or those that live in different habitats. Tuta absoluta is an invasive pest that is a serious threat to tomato production in China. It has quickly spread and colonized Xinjiang, Yunnan and other provinces and regions. We used Illumina HiSeq next generation sequencing of the 16S rRNA gene to study and analyze the composition and diversity of the gut microbiota of three geographical populations of T. absoluta. At the phylum level, the most common bacteria in T. absoluta across all three geographical populations were Proteobacteria and Firmicutes. An uncultured bacterium in the Enterobacteriaceae was the dominant bacterial genus in the T. absoluta gut microbiotas. There were no significant differences in alpha diversity metrics among the Spanish, Yunnan and Xinjiang populations. The structures of the gut microbiota of the three populations were similar based on PCoA and NMDS results. The results confirmed that the microbial structures of T. absoluta from different regions were similar.
Collapse
|
22
|
Liu ZH, Yang ZW, Zhang J, Luo JY, Men Y, Wang YH, Xie Q. Stage correlation of symbiotic bacterial community and function in the development of litchi bugs (Hemiptera: Tessaratomidae). Antonie van Leeuwenhoek 2021; 115:125-139. [PMID: 34843017 DOI: 10.1007/s10482-021-01685-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Bacterial symbionts of insects have been shown to play important roles in host fitness. However, little is known about the bacterial community of Tessaratoma papillosa which is one of the most destructive pests of the well-known fruits Litchi chinensis Sonn and Dimocarpus longan Lour in Oriental Region, especially in South-east Asia and adjacent areas. In this study, we surveyed the bacterial community diversity and dynamics of T. papillosa in all developmental stages with both culture-dependent and culture-independent methods by the third-generation sequencing technology. Five bacterial phyla were identified in seven developmental stages of T. papillosa. Proteobacteria was the dominant phylum and Pantoea was the dominant genus of T. papillosa. The results of alpha and beta diversity analyses showed that egg stage had the most complex bacterial community. Some of different developmental stages showed similarities, which were clustered into three phases: (1) egg stage, (2) early nymph stages (instars 1-3), and (3) late nymph stages (instars 4-5) and adult stage. Functional prediction indicated that the bacterial community played different roles in these three phases. Furthermore, 109 different bacterial strains were isolated and identified from various developmental stages. This study revealed the relationship between the symbiotic bacteria and the development of T. papillosa, and may thus contribute to the biological control techniques of T. papillosa in the future.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Wen Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. .,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
23
|
Gloder G, Bourne ME, Verreth C, Wilberts L, Bossaert S, Crauwels S, Dicke M, Poelman EH, Jacquemyn H, Lievens B. Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Anim Microbiome 2021; 3:73. [PMID: 34654483 PMCID: PMC8520287 DOI: 10.1186/s42523-021-00135-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/01/2021] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture. RESULTS Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids. CONCLUSION We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.
Collapse
Affiliation(s)
- Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Mitchel E. Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Liesbet Wilberts
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sofie Bossaert
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
24
|
Castro BMM, Santos-Rasera JR, Alves DS, Marucci RC, Carvalho GA, Carvalho HWP. Ingestion and effects of cerium oxide nanoparticles on Spodoptera frugiperda (Lepidoptera: Noctuidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116905. [PMID: 33751949 DOI: 10.1016/j.envpol.2021.116905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the biological and nutritional characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae), an arthropod pest widely distributed in agricultural regions, after exposure to nano-CeO2 via an artificial diet and to investigate the presence of cerium in the body of this insect through X-ray fluorescence mapping. Nano-CeO2, micro-CeO2, and Ce(NO3)3 were incorporated into the diet (0.1, 1, 10, and 100 mg of Ce L-1). Cerium was detected in caterpillars fed with diets containing nano-CeO2 (1, 10 and 100 mg of Ce L-1), micro-CeO2 and Ce(NO3)3, and in feces of caterpillars from the first generation fed diets with nano-CeO2 at 100 mg of Ce L-1 as well. The results indicate that nano-CeO2 caused negative effects on S. frugiperda. After it was consumed by the caterpillars, the nano-CeO2 reduced up to 4.8% of the pupal weight and 60% of egg viability. Unlike what occurred with micro-CeO2 and Ce(NO3)3, nano-CeO2 negatively affected nutritional parameters of this insect, as consumption rate two times higher, increase of up to 80.8% of relative metabolic rate, reduction of up to 42.3% efficiency of conversion of ingested and 47.2% of digested food, and increase of up to 1.7% of metabolic cost and 8.7% of apparent digestibility. Cerium caused 6.8-16.9% pupal weight reduction in second generation specimens, even without the caterpillars having contact with the cerium via artificial diet. The results show the importance of new ecotoxicological studies with nano-CeO2 for S. frugiperda in semi-field and field conditions to confirm the toxicity.
Collapse
Affiliation(s)
- Bárbara M M Castro
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Joyce R Santos-Rasera
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário Nº 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Dejane S Alves
- Universidade Tecnológica Federal do Paraná, Campus Santa Helena, Prolongamento da Rua São Luis S/n, Santa Helena, Paraná, 85892-000, Brazil
| | - Rosangela C Marucci
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil.
| | - Geraldo A Carvalho
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Hudson W P Carvalho
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário Nº 303, Piracicaba, São Paulo, 13416-000, Brazil
| |
Collapse
|
25
|
Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Wu C, Gao X, Luo J, Cui J. Gut Bacterial Diversity in Different Life Cycle Stages of Adelphocoris suturalis (Hemiptera: Miridae). Front Microbiol 2021; 12:670383. [PMID: 34149656 PMCID: PMC8208491 DOI: 10.3389/fmicb.2021.670383] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria and insects have a mutually beneficial symbiotic relationship. Bacteria participate in several physiological processes such as reproduction, metabolism, and detoxification of the host. Adelphocoris suturalis is considered a pest by the agricultural industry and is now a major pest in cotton, posing a serious threat to agricultural production. As with many insects, various microbes live inside A. suturalis. However, the microbial composition and diversity of its life cycle have not been well-studied. To identify the species and community structure of symbiotic bacteria in A. suturalis, we used the HiSeq platform to perform high-throughput sequencing of the V3-V4 region in the 16S rRNA of symbiotic bacteria found in A. suturalis throughout its life stages. Our results demonstrated that younger nymphs (1st and 2nd instar nymphs) have higher species richness. Proteobacteria (87.06%) and Firmicutes (9.43%) were the dominant phyla of A. suturalis. At the genus level, Erwinia (28.98%), Staphylococcus (5.69%), and Acinetobacter (4.54%) were the dominant bacteria. We found that the relative abundance of Erwinia was very stable during the whole developmental stage. On the contrary, the relative abundance of Staphylococcus, Acinetobacter, Pseudomonas, and Corynebacterium showed significant dynamic changes at different developmental stages. Functional prediction of symbiotic bacteria mainly focuses on metabolic pathways. Our findings document symbiotic bacteria across the life cycle of A. suturalis, as well as differences in both the composition and richness in nymph and adult symbiotic bacteria. Our analysis of the bacteria in A. suturalis provides important information for the development of novel biological control strategies.
Collapse
Affiliation(s)
- Hui Xue
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jichao Ji
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Martínez-Solís M, Collado MC, Herrero S. Influence of Diet, Sex, and Viral Infections on the Gut Microbiota Composition of Spodoptera exigua Caterpillars. Front Microbiol 2020; 11:753. [PMID: 32435237 PMCID: PMC7218101 DOI: 10.3389/fmicb.2020.00753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
The gut microbiota plays essential roles in processes related with metabolism, physiology, and immunity in all organisms, including insects. In the present work, we performed a broad analysis of the Spodoptera exigua gut microbiota, a major agricultural pest. We analyzed the influence of multiple parameters such as diet, geographic location, sex, or viral infections on S. exigua caterpillar gut microbiota composition. Our study revealed a high variability in bacterial composition among individuals, and a major influence of environmental bacteria (including those acquired through diet) on the gut microbiota composition, supporting previous studies that claim resident microbiota are lacking in caterpillars. Previous studies with laboratory-reared insects showed that changes in caterpillar gut bacterial composition affect the insecticidal properties of entomopathogenic viruses and bacteria. Our study revealed different microbiota composition in field insects carrying a natural viral infection with Spodoptera exigua nucleopolyhedrovirus (SeMNPV) and/or Spodoptera exigua iflavirus 1 (SeIV1). Few taxa can be specifically associated with the infection, suggesting microbiota influence the infective process of these natural pathogens, and providing new strategies for insect pest management.
Collapse
Affiliation(s)
- María Martínez-Solís
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Departamento de Genética, Universitat de València, Valencia, Spain
| | - María Carmen Collado
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Salvador Herrero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Departamento de Genética, Universitat de València, Valencia, Spain
| |
Collapse
|
27
|
Gichuhi J, Sevgan S, Khamis F, Van den Berg J, du Plessis H, Ekesi S, Herren JK. Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ 2020; 8:e8701. [PMID: 32185109 PMCID: PMC7060952 DOI: 10.7717/peerj.8701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) is a polyphagous pest that causes widespread damage particularly to maize and sorghum in Africa. The microbiome associated with S. frugiperda could play a role in the insects' success and adaptability. However, bacterial communities in S. frugiperda remain poorly studied. METHODS We investigated the composition, abundance and diversity of microbiomes associated with larval and adult specimens of S. frugiperda collected from four maize growing regions in Kenya through high throughput sequencing of the bacterial 16S rRNA gene. The population structure of S. frugiperda in Kenya was assessed through amplification of the mitochondrial cytochrome oxidase subunit I gene. RESULTS We identified Proteobacteria and Firmicutes as the most dominant bacterial phyla and lesser proportions of Bacteroidetes and Actinobacteria. We also observed differences in bacterial microbiome diversity between larvae and adults that are a likely indication that some prominent larval bacterial groups are lost during metamorphosis. However, several bacterial groups were found in both adults and larvae suggesting that they are transmitted across developmental stages. Reads corresponding to several known entomopathogenic bacterial clades as well as the fungal entomopathogen, Metarhizium rileyi, were observed. Mitochondrial DNA haplotyping of the S. frugiperda population in Kenya indicated the presence of both "Rice" and "Corn" strains, with a higher prevalence of the "Rice" strain.
Collapse
Affiliation(s)
- Joseph Gichuhi
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Fathiya Khamis
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Johnnie Van den Berg
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hannalene du Plessis
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- MRC-University of Glasgow Centre for Virus Research, Henry Wellcome Building, Glasgow, UK
| |
Collapse
|
28
|
Bertea CM, Casacci LP, Bonelli S, Zampollo A, Barbero F. Chemical, Physiological and Molecular Responses of Host Plants to Lepidopteran Egg-Laying. FRONTIERS IN PLANT SCIENCE 2020; 10:1768. [PMID: 32082339 PMCID: PMC7002387 DOI: 10.3389/fpls.2019.01768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Plant-lepidopteran interactions involve complex processes encompassing molecules and regulators to counteract defense responses they develop against each other. Lepidoptera identify plants for oviposition and exploit them as larval food sources to complete their development. In turn, plants adopt different strategies to overcome and limit herbivorous damages. The insect egg deposition on leaves can already induce a number of defense responses in several plant species. This minireview deals with the main features involved in the interaction between plants and lepidopteran egg-laying, focusing on responses from both insect and plant side. We discuss different aspects of direct and indirect plant responses triggered by lepidopteran oviposition. In particular, we focus our attention on the mechanisms underlying egg-induced plant defenses that can i) directly damage the eggs such as localized hypersensitive response (HR)-like necrosis, neoplasm formation, production of ovicidal compounds and ii) indirect defenses, such as production of oviposition-induced plant volatiles (OIPVs) used to attract natural enemies (parasitoids) able to kill the eggs or hatching larvae. We provide an overview of chemical, physiological, and molecular egg-mediated plant responses induced by both specialist and generalist lepidopteran species, also dealing with effectors, elicitors, and chemical signals involved in the process. Egg-associated microorganisms are also discussed, although little is known about this third partner participating in plant-lepidopteran interactions.
Collapse
Affiliation(s)
- Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Luca Pietro Casacci
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Simona Bonelli
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Arianna Zampollo
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Francesca Barbero
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| |
Collapse
|
29
|
Chouaia B, Goda N, Mazza G, Alali S, Florian F, Gionechetti F, Callegari M, Gonella E, Magoga G, Fusi M, Crotti E, Daffonchio D, Alma A, Paoli F, Roversi PF, Marianelli L, Montagna M. Developmental stages and gut microenvironments influence gut microbiota dynamics in the invasive beetle Popillia japonica Newman (Coleoptera: Scarabaeidae). Environ Microbiol 2019; 21:4343-4359. [PMID: 31502415 DOI: 10.1111/1462-2920.14797] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023]
Abstract
Popillia japonica Newman (Coleoptera: Scarabaeidae) is a highly polyphagous invasive beetle originating from Japan. This insect is highly resilient and able to rapidly adapt to new vegetation. Insect-associated microorganisms can play important roles in insect physiology, helping their hosts to adapt to changing conditions and potentially contributing to an insect's invasive potential. Such symbiotic bacteria can be part of a core microbiota that is stably transmitted throughout the host's life cycle or selectively recruited from the environment at each developmental stage. The aim of this study was to investigate the origin, stability and turnover of the bacterial communities associated with an invasive population of P. japonica from Italy. Our results demonstrate that soil microbes represent an important source of gut bacteria for P. japonica larvae, but as the insect develops, its gut microbiota richness and diversity decreased substantially, paralleled by changes in community composition. Notably, only 16.75% of the soil bacteria present in larvae are maintained until the adult stage. We further identified the micro-environments of different gut sections as an important factor shaping microbiota composition in this species, likely due to differences in pH, oxygen availability and redox potential. In addition, P. japonica also harboured a stable bacterial community across all developmental stages, consisting of taxa well known for the degradation of plant material, namely the families Ruminococcacae, Christensenellaceae and Lachnospiraceae. Interestingly, the family Christensenallaceae had so far been observed exclusively in humans. However, the Christensenellaceae operational taxonomic units found in P. japonica belong to different taxonomic clades within this family.
Collapse
Affiliation(s)
- Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Nizar Goda
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Giuseppe Mazza
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Sumer Alali
- Dipartimento di Scienze e politiche ambientali (DESP), Università degli Studi di Milano, 20133, Milan, Italy
| | - Fiorella Florian
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Fabrizia Gionechetti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Francesco Paoli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Pio Federico Roversi
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Leonardo Marianelli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|