1
|
Chen JY, Qin LJ, Long T, Wu RT, Niu SH, Liu S, Deng WK, Liao XD, Xing SC. Effortless rule: Effects of oversized microplastic management on lettuce growth and the dynamics of antibiotic resistance genes from fertilization to harvest. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138046. [PMID: 40157188 DOI: 10.1016/j.jhazmat.2025.138046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The complexity of soil microplastic pollution has driven deeper exploration of waste management strategies to evaluate environmental impact. This study introduced oversized microplastics (OMPs, 1-5 mm) during membrane composting to produce organic fertilizers, and conducted a 2 × 2 pot experiment: exogenous OMPs were added when normal fertilizer (no OMPs intervention) was applied, while artificial removal of OMPs was implemented when contaminated fertilizer (with OMPs) was used. The study assessed the effects of these management strategies on lettuce growth, soil environments, and potential biological safety risks related to the spread and expression of high-risk antibiotic resistance genes (ARGs) in humans. Results showed that both exogenous OMPs addition and removal negatively affected plant height and harvest index, with shifts in the rhizosphere microbial community identified as a key factor rather than soil nutrients. Exogenous OMPs altered rhizosphere and endophytic microbial communities, and plant growth-promoting bacteria were transferred to the surface of OMPs from rhizosphere soil. In contrast, bacteria such as Truepera, Pseudomonas, and Streptomyces in compost-derived OMPs supported lettuce growth, and their removal negated these effects. Some endophytic bacteria may promote growth but pose public health risks when transmitted through the food chain. OMPs in composting or planting significantly enhanced the expression of target ARGs in lettuce, particularly blaTEM. However, simulated digestion results indicated that OMPs reduced the expression of six key ARGs, including blaTEM, among the ten critical target ARGs identified in this context. Notably, the removal management strategies raised five of them posing potential risks from lettuce consumption. This study highlights that both introducing and removing OMPs may pose ecological and food safety risks, emphasizing the need for optimized organic waste management strategies to mitigate potential health hazards.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lin-Jie Qin
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tiao Long
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rui-Ting Wu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Ramudingana P, Makhado N, Kamutando CN, Thantsha MS, Mamphogoro TP. Fungal Biocontrol Agents in the Management of Postharvest Losses of Fresh Produce-A Comprehensive Review. J Fungi (Basel) 2025; 11:82. [PMID: 39852501 PMCID: PMC11766600 DOI: 10.3390/jof11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Postharvest decay of vegetables and fruits presents a significant threat confronting sustainable food production worldwide, and in the recent times, applying synthetic fungicides has become the most popular technique of managing postharvest losses. However, there are concerns and reported proofs of hazardous impacts on consumers' health and the environment, traceable to the application of chemical treatments as preservatives on fresh produce. Physical methods, on the other hand, cause damage to fresh produce, exposing it to even more infections. Therefore, healthier and more environmentally friendly alternatives to existing methods for managing postharvest decays of fresh produce should be advocated. There is increasing consensus that utilization of biological control agents (BCAs), mainly fungi, represents a more sustainable and effective strategy for controlling postharvest losses compared to physical and chemical treatments. Secretion of antifungal compounds, parasitism, as well as competition for nutrients and space are the most common antagonistic mechanisms employed by these BCAs. This article provides an overview of (i) the methods currently used for management of postharvest diseases of fresh produce, highlighting their limitations, and (ii) the use of biocontrol agents as an alternative strategy for control of such diseases, with emphasis on fungal antagonists, their mode of action, and, more importantly, their advantages when compared to other methods commonly used. We therefore hypothesize that the use of fungal antagonists for prevention of postharvest loss of fresh produce is more effective compared to physical and chemical methods. Finally, particular attention is given to the gaps observed in establishing beneficial microbes as BCAs and factors that hamper their development, particularly in terms of shelf life, efficacy, commercialization, and legislation procedures.
Collapse
Affiliation(s)
- Phathutshedzo Ramudingana
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
- Department of Microbiological Pathology, Tuberculosis Research Unit, Sefako Makgatho Health Sciences University, Molotlegi Road, Ga-Rankuwa, Pretoria 0204, South Africa;
| | - Ndivhuho Makhado
- Department of Microbiological Pathology, Tuberculosis Research Unit, Sefako Makgatho Health Sciences University, Molotlegi Road, Ga-Rankuwa, Pretoria 0204, South Africa;
- National Health Laboratory Services, Dr George Mukhari Tertiary Laboratory, Pretoria 0204, South Africa
| | - Casper Nyaradzai Kamutando
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare 0263, Zimbabwe;
| | - Mapitsi Silvester Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
| | - Tshifhiwa Paris Mamphogoro
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
| |
Collapse
|
3
|
Tiwari I, Bhojiya AA, Jain D, Kothari SL, El-Sheikh MA, Porwal S. Managing tomato bacterial wilt through pathogen suppression and host resistance augmentation using microbial peptide. Front Microbiol 2024; 15:1494054. [PMID: 39726970 PMCID: PMC11670319 DOI: 10.3389/fmicb.2024.1494054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing health and environmental risks associated with synthetic chemical pesticides necessitate the exploration of safer, sustainable alternatives for plant protection. This study investigates a novel biosynthesized antimicrobial peptide (AMP) from Lactiplantibacillus argentoratensis strain IT, identified as the amino acid chain PRKGSVAKDVLPDPVYNSKLVTRLINHLMIDGKRG, for its efficacy in controlling bacterial wilt (BW) disease in tomato (Solanum lycopersicum) caused by Ralstonia solanacearum. Our research demonstrates that foliar application of this AMP at a concentration of 200 ppm significantly reduces disease incidence by 49.3% and disease severity by 45.8%. Scanning electron microscopy revealed severe morphological disruptions in the bacterial cells upon exposure to the AMP. Additionally, the AMP enhanced host resistance by elevating defense enzyme activities, leading to notable improvements in plant morphology, including a 95.5% increase in plant length, a 20.1% increase in biomass, and a 96.69% increase in root length. This bifunctional AMP provides dual protection by exerting direct antimicrobial activity against the pathogen and eliciting plant defense mechanisms. These findings underscore the potential of this biologically sourced AMP as a natural agent for combating plant diseases and promoting growth in tomato crops. To the best of our knowledge, this is the first study to demonstrate the use of a foliar spray application of a biosynthesized microbial peptide as biocontrol agent against R. solanacearum. This interaction not only highlights its biocontrol efficacy but also its role in promoting the growth of Solanum lycopersicum thereby increasing overall agricultural yield.
Collapse
Affiliation(s)
- Ishan Tiwari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India
| | - Ali Asger Bhojiya
- U. S. Ostwal P. G. College, Mohanlal Sukhadia University, Chittorgarh, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - S. L. Kothari
- Amity Institute of Biotechnology, Amity University Jaipur, Jaipur, India
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shalini Porwal
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
4
|
Yan B, Deng T, Shi L. Towards Sustainable Productivity of Greenhouse Vegetable Soils: Limiting Factors and Mitigation Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2885. [PMID: 39458833 PMCID: PMC11511448 DOI: 10.3390/plants13202885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Greenhouse vegetable production has become increasingly important in meeting the increasing global food demand. Yet, it faces severe challenges in terms of how to maintain soil productivity from a long-term perspective. This review discusses the main soil productivity limiting factors for vegetables grown in greenhouses and identifies strategies that attempt to overcome these limitations. The main processes leading to soil degradation include physical (e.g., compaction), chemical (e.g., salinization, acidification, and nutrient imbalances), and biological factors (e.g., biodiversity reduction and pathogen buildup). These processes are often favored by intensive greenhouse cultivation. Mitigation strategies involve managing soil organic matter and mineral nutrients and adopting crop rotation. Future research should focus on precisely balancing soil nutrient supply with vegetable crop demands throughout their life cycle and using targeted organic amendments to manage specific soil properties. To ensure the successful adoption of recommended strategies, socioeconomic considerations are also necessary. Future empirical research is required to adapt socioeconomic frameworks, such as Science and Technology Backyard 2.0, from cereal production systems to greenhouse vegetable production systems. Addressing these issues will enable the productivity of greenhouse vegetable soils that meet growing vegetable demand to be sustained using limited soil resources.
Collapse
Affiliation(s)
- Bofang Yan
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Liangliang Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
5
|
Qin LL, Yang L, Zhang ZJ, Zhang LJ, Zhang W, Jin YR, Luo XF, Li FP, Zhang SY, Bian Q, Mou GL, Dai TL, Ma L, Liu YQ. Design, Synthesis, and Biological Evaluation of Novel Quinoline Derivatives against Phytopathogenic Bacteria Inspired from Natural Quinine Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39363616 DOI: 10.1021/acs.jafc.4c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A series of 2-(trifluoromethyl)-4-hydroxyquinoline derivatives were designed and synthesized with introduction of the antibacterial fragment amino alcohols, and their antibacterial activity against plant phytopathogenic bacteria was evaluated for the development of quinoline bactericides. It is worth noting that compound Qa5 exhibited excellent antibacterial activity in vitro with a minimum inhibitory concentration (MIC) value of 3.12 μg/mL against Xanthomonas oryzae (Xoo). Furthermore, in vivo assays demonstrated that the protective efficacy of Qa5 against rice bacterial blight at 200 μg/mL (33.0%) was superior to that of the commercial agent bismerthiazol (18.3%), while the curative efficacy (35.0%) was comparable to that of bismerthiazol (35.7%). The antibacterial mechanisms of Qa5 indicated that it affected the activity of bacteria by inducing intracellular oxidative damage in Xoo and disrupting the integrity of the bacterial cell membrane. The above results demonstrated that the novel quinoline derivative Qa5 possessed excellent in vitro and in vivo antibacterial activity, indicating its potential as a novel green agricultural antibacterial agent.
Collapse
Affiliation(s)
- Lu-Lu Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Liu Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li-Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wen Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fu-Ping Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Liang Mou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tian-Li Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
6
|
Bashir S, Behiry S, Al-Askar AA, Kowalczewski PŁ, Emaish HH, Abdelkhalek A. Antibacterial, antifungal, and phytochemical properties of Salsola kali ethanolic extract. Open Life Sci 2024; 19:20220962. [PMID: 39247796 PMCID: PMC11377937 DOI: 10.1515/biol-2022-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The research into the use of plants as plentiful reservoirs of bioactive chemicals shows significant potential for agricultural uses. This study focused on analyzing the chemical composition and potency of an ethanolic extract obtained from the aerial parts (leaves and stems) of Salsola kali against potato pathogenic fungal and bacterial pathogens. The isolated fungal isolates were unequivocally identified as Fusarium oxysporum and Rhizoctonia solani based on morphological characteristics and internal transcribed spacer genetic sequencing data. The antifungal activity of the extract revealed good inhibition efficacy against R. solani (60.4%) and weak activity against F. oxysporum (11.1%) at a concentration of 5,000 µg/mL. The S. kali extract exhibited strong antibacterial activity, as evidenced by the significant inhibition zone diameter (mm) observed in all three strains of bacteria that were tested: Pectobacterium carotovorum (13.33), Pectobacterium atrosepticum (9.00), and Ralstonia solanacearum (9.33), at a concentration of 10,000 µg/mL. High-performance liquid chromatography analysis revealed the presence of several polyphenolic compounds (μg/g), with gallic acid (2942.8), caffeic acid (2110.2), cinnamic acid (1943.1), and chlorogenic acid (858.4) being the predominant ones. Quercetin and hesperetin were the predominant flavonoid components, with concentrations of 1110.3 and 1059.3 μg/g, respectively. Gas chromatography-mass spectrometry analysis revealed the presence of many bioactive compounds, such as saturated and unsaturated fatty acids, diterpenes, and phytosterols. The most abundant compound detected was n-hexadecanoic acid, which accounted for 28.1%. The results emphasize the potential of S. kali extract as a valuable source of bioactive substances that possess good antifungal and antibacterial effects, which highlights its potential for many agricultural uses.
Collapse
Affiliation(s)
- Shimaa Bashir
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Said Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Haitham H Emaish
- Department of Soils and Agricultural Chemistry, Biosystem Engineering, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| |
Collapse
|
7
|
Huang B, Ge L, Xiang D, Tan G, Liu L, Yang L, Jing Y, Liu Q, Chen W, Li Y, He H, Sun H, Pan Q, Yi K. Isolation, characterization, and genomic analysis of a lytic bacteriophage, PQ43W, with the potential of controlling bacterial wilt. Front Microbiol 2024; 15:1396213. [PMID: 39149212 PMCID: PMC11324598 DOI: 10.3389/fmicb.2024.1396213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.
Collapse
Affiliation(s)
- Binbin Huang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Long Ge
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Dong Xiang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Ge Tan
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lijia Liu
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lei Yang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Jing
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ye Li
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Haoxin He
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Huzhi Sun
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Qiang Pan
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
- Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Ke Yi
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
8
|
Liang J, Wei C, Song X, Wang R, Shi H, Tan J, Cheng D, Wang W, Wang X. Bacterial wilt affects the structure and assembly of microbial communities along the soil-root continuum. ENVIRONMENTAL MICROBIOME 2024; 19:6. [PMID: 38229154 PMCID: PMC10792853 DOI: 10.1186/s40793-024-00548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Beneficial root-associated microbiomes play crucial roles in enhancing plant growth and suppressing pathogenic threats, and their application for defending against pathogens has garnered increasing attention. Nonetheless, the dynamics of microbiome assembly and defense mechanisms during pathogen invasion remain largely unknown. In this study, we aimed to investigate the diversity and assembly of microbial communities within four niches (bulk soils, rhizosphere, rhizoplane, and endosphere) under the influence of the bacterial plant pathogen Ralstonia solanacearum. RESULTS Our results revealed that healthy tobacco plants exhibited more diverse community compositions and more robust co-occurrence networks in root-associated niches compared to diseased tobacco plants. Stochastic processes (dispersal limitation and drift), rather than determinism, dominated the assembly processes, with a higher impact of drift observed in diseased plants than in healthy ones. Furthermore, during the invasion of R. solanacearum, the abundance of Fusarium genera, a known potential pathogen of Fusarium wilt, significantly increased in diseased plants. Moreover, the response strategies of the microbiomes to pathogens in diseased and healthy plants diverged. Diseased microbiomes recruited beneficial microbial taxa, such as Streptomyces and Bacilli, to mount defenses against pathogens, with an increased presence of microbial taxa negatively correlated with the pathogen. Conversely, the potential defense strategies varied across niches in healthy plants, with significant enrichments of functional genes related to biofilm formation in the rhizoplane and antibiotic biosynthesis in the endosphere. CONCLUSION Our study revealed the varied community composition and assembly mechanism of microbial communities between healthy and diseased tobacco plants along the soil-root continuum, providing new insights into niche-specific defense mechanisms against pathogen invasions. These findings may underscore the potential utilization of different functional prebiotics to enhance plants' ability to fend off pathogens.
Collapse
Affiliation(s)
- Jinchang Liang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Chengjian Wei
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
- College of Agriculture, Guangxi University, 530004, Nanning, China
| | - Xueru Song
- Engineering Center for Biological Control of Diseases and Pests in Tobacco Industry, 653100, Yuxi, China
| | - Rui Wang
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Heli Shi
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Jun Tan
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Dejie Cheng
- College of Agriculture, Guangxi University, 530004, Nanning, China
| | - Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Xiaoqiang Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China.
| |
Collapse
|
9
|
Oyedoh OP, Yang W, Dhanasekaran D, Santoyo G, Glick BR, Babalola OO. Rare rhizo-Actinomycetes: A new source of agroactive metabolites. Biotechnol Adv 2023; 67:108205. [PMID: 37356598 DOI: 10.1016/j.biotechadv.2023.108205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Numerous biotic and abiotic stress in some geographical regions predisposed their agricultural matrix to challenges threatening plant productivity, health, and quality. In curbing these threats, different customary agrarian principles have been created through research and development, ranging from chemical inputs and genetic modification of crops to the recently trending smart agricultural technology. But the peculiarities associated with these methods have made agriculturists rely on plant rhizospheric microbiome services, particularly bacteria. Several bacterial resources like Proteobacteria, Firmicutes, Acidobacteria, and Actinomycetes (Streptomycetes) are prominent as bioinoculants or the application of their by-products in alleviating biotic/abiotic stress have been extensively studied, with a dearth in the application of rare Actinomycetes metabolites. Rare Actinomycetes are known for their colossal genome, containing well-preserved genes coding for prolific secondary metabolites with many agroactive functionalities that can revolutionize the agricultural industry. Therefore, the imperativeness of this review to express the occurrence and distributions of rare Actinomycetes diversity, plant and soil-associated habitats, successional track in the rhizosphere under diverse stress, and their agroactive metabolite characteristics and functionalities that can remediate the challenges associated with agricultural productivity.
Collapse
Affiliation(s)
- Oghoye Priscilla Oyedoh
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dharumadurai Dhanasekaran
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biolόgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
10
|
Khan RAA, Alam SS, Najeeb S, Ali A, Ahmad A, Shakoor A, Tong L. Mitigating Cd and bacterial wilt stress in tomato plants through trico-synthesized silicon nanoparticles and Trichoderma metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122041. [PMID: 37343915 DOI: 10.1016/j.envpol.2023.122041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
There has been a growing apprehension in recent years about the harmful effects of environmental pollutants on agricultural output, encompassing both living organisms and non-living factors that cause stress. In this study, the soil application of bulk silicon (Si), silicon nanoparticles (SiNPs) and Trichoderma metabolites (TM) were investigated alone or in combination for the management of an important abiotic stress i.e. Cd toxicity and biotic stress i.e. bacterial wilt (BW) in tomato plants. SiNPs were synthesized by Trichoderma and confirmed through XRD, FTIR, and Ranman spectrum analysis. Results showed that Si, SiNPs and TM were all effective treatments. The combine treatment of SiNPs and TM followed by SiNPs alone were superior over other treatments in mitigating Cd toxicity and reducing BW disease on tomato plants. The soil application of these treatments reduced the Cd toxicity by enhancing Cd-tolerance index, decreasing bioavailability of soil Cd, reducing Cd contents and translocation in plants, improving gaseous exchange, photosynthesis, and increasing the antioxidant enzyme activities and their transcriptions. These treatments significantly suppressed BW pathogen leading to the significant decrease in disease index and severity on plants. In vitro evaluation and scanning electron microscopic (SEM) analysis revealed that SiNPs and TM significantly disrupted the cellular morphology of BW pathogen Ralstonia solanacearum. Findings of this study proposes the possible use of SiNPs and TM in mitigating the Cd and BW stress in tomato plants and possibly in other crops.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, China
| | - Syed Sartaj Alam
- Department of Plant Pathology, The University of Agriculture, Peshawar, Pakistan
| | - Saba Najeeb
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Asad Ali
- Department of Plant Pathology, The University of Agriculture, Peshawar, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Liu Tong
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, China.
| |
Collapse
|
11
|
Ding J, Wang N, Liu P, Liu B, Zhu Y, Mao J, Wang Y, Ding X, Yang H, Wei Y, Li J, Ding GC. Bacterial wilt suppressive composts: Significance of rhizosphere microbiome. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:179-185. [PMID: 37453305 DOI: 10.1016/j.wasman.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Composts are often suppressive to several plant diseases, including the devastating bacterial wilt caused by Ralstonia solanacearum. However, the underlying mechanisms are still unclear. Herein, we carried out an experiment with 38 composts collected from different factories in China to study the interlinking among bacterial wilt suppression, the physicochemical properties and bacterial community of the compost, and bacterial community in the rhizosphere of tomato fertilized by compost. Totally 26 composts were suppressive to bacterial wilt, while six composts stimulated the disease. The control efficiency was neither correlated with physicochemical properties (TC, TN, P and K, pH or GI) nor bacterial community of compost, but with rhizosphere bacterial community (r = 0.17, p = 0.016). The control efficiency was also positive correlated with taxa (Rhizobium, Aeromicrobium) known suppressive to R. solanacearum. The mushroom spent or cow manure, from which the two composts were 100% and 77% in control efficiencies against bacterial wilt respectively were subject to a pilot-scale composting reaction. The reproduced composts from mushroom spent or cow manure were only 57% and 23% effective on the control of bacterial wilt, respectively. The analysis of bacterial communities revealed that the relative abundances of R. solanacearum were 28.4% for the control, but only 7.8%-7.9% for compost fertilized tomatoes. The compost from mushroom spent also exerted a strong effect on rhizosphere bacterial community. Taken together, most composts were suppressive to bacterial wilt possibly also by modifying rhizosphere bacterial community towards inhibiting the colonization of R. solanacearum and selecting for beneficial genera of Proteobacteria, Bacteroidetes and Actinobacteria.
Collapse
Affiliation(s)
- Jia Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Ning Wang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Pingping Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Baoju Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Yuelin Zhu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jing Mao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Hefa Yang
- Quzhou Experimental Station, China Agricultural University, 057250 Hebei Province, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China.
| |
Collapse
|
12
|
Yang S, Cai W, Wu R, Huang Y, Lu Q, Hui Wang, Huang X, Zhang Y, Wu Q, Cheng X, Wan M, Lv J, Liu Q, Zheng X, Mou S, Guan D, He S. Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions. Nat Commun 2023; 14:4477. [PMID: 37491353 PMCID: PMC10368638 DOI: 10.1038/s41467-023-40251-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
High temperature and high humidity (HTHH) conditions increase plant susceptibility to a variety of diseases, including bacterial wilt in solanaceous plants. Some solanaceous plant cultivars have evolved mechanisms to activate HTHH-specific immunity to cope with bacterial wilt disease. However, the underlying mechanisms remain poorly understood. Here we find that CaKAN3 and CaHSF8 upregulate and physically interact with each other in nuclei under HTHH conditions without inoculation or early after inoculation with R. solanacearum in pepper. Consequently, CaKAN3 and CaHSF8 synergistically confer immunity against R. solanacearum via activating a subset of NLRs which initiates immune signaling upon perception of unidentified pathogen effectors. Intriguingly, when HTHH conditions are prolonged without pathogen attack or the temperature goes higher, CaHSF8 no longer interacts with CaKAN3. Instead, it directly upregulates a subset of HSP genes thus activating thermotolerance. Our findings highlight mechanisms controlling context-specific activation of high-temperature-specific pepper immunity and thermotolerance mediated by differential CaKAN3-CaHSF8 associations.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- College of Horticultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, PR China
| | - Ruijie Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hui Wang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xueying Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yapeng Zhang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qing Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xingge Cheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Meiyun Wan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jingang Lv
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qian Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xiang Zheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shaoliang Mou
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
| |
Collapse
|
13
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
14
|
Yang B, Zheng M, Dong W, Xu P, Zheng Y, Yang W, Luo Y, Guo J, Niu D, Yu Y, Jiang C. Plant Disease Resistance-Related Pathways Recruit Beneficial Bacteria by Remodeling Root Exudates upon Bacillus cereus AR156 Treatment. Microbiol Spectr 2023; 11:e0361122. [PMID: 36786562 PMCID: PMC10100852 DOI: 10.1128/spectrum.03611-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
The environmentally friendly biological control strategy that relies on beneficial bacterial inoculants to improve plant disease resistance is a promising strategy. Previously, it has been demonstrated that biocontrol bacteria treatments can change the plant rhizosphere microbiota but whether plant signaling pathways, especially those related to disease resistance, mediate the changes in rhizosphere microbiota has not been explored. Here, we investigated the complex interplay among biocontrol strains, plant disease resistance-related pathways, root exudates, rhizosphere microorganisms, and pathogens to further clarify the biocontrol mechanism of biocontrol bacteria by using plant signaling pathway mutants. Bacillus cereus AR156, which was previously isolated from forest soil by our laboratory, can significantly control tomato bacterial wilt disease in greenhouse and field experiments. Moreover, compared with the control treatment, the B. cereus AR156 treatment had a significant effect on the soil microbiome and recruited 35 genera of bacteria to enrich the rhizosphere of tomato. Among them, the relative rhizosphere abundance of nine genera, including Ammoniphilus, Bacillus, Bosea, Candidimonas, Flexivirga, Brevundimonas, Bordetella, Dyella, and Candidatus_Berkiella, was regulated by plant disease resistance-related signaling pathways and B. cereus AR156. Linear correlation analysis showed that the relative abundances of six genera in the rhizosphere were significantly negatively correlated with pathogen colonization in roots. These rhizosphere bacteria were affected by plant root exudates that are regulated by signaling pathways. IMPORTANCE Our data suggest that B. cereus AR156 can promote the enrichment of beneficial microorganisms in the plant rhizosphere by regulating salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling pathways in plants, thereby playing a role in controlling bacterial wilt disease. Meanwhile, Spearman correlation analysis showed that the relative abundances of these beneficial bacteria were correlated with the secretion of root exudates. Our study reveals a new mechanism for SA and JA/ET signals to participate in the adjustment of plant resistance whereby the signaling pathways adjust the rhizosphere microecology by changing the root exudates and thus change plant resistance. On the other hand, biocontrol strains can utilize this mechanism to recruit beneficial bacteria by activating disease resistance-related signaling pathways to confine the infection and spread of pathogens. Finally, our data also provide a new idea for the in-depth study of biocontrol mechanisms.
Collapse
Affiliation(s)
- Bingye Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Mingzi Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Wenpan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Peiling Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Yiyang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Chunhao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| |
Collapse
|
15
|
Najeeb S, Li Y. Parthenium hysterophorus alleviates wilt stress in tomato plants caused by Ralstonia solanacearum through direct antibacterial effect and indirect upregulation of host resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1126228. [PMID: 36844060 PMCID: PMC9947561 DOI: 10.3389/fpls.2023.1126228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Heavy damage to tomato crops due to wilt stress caused by the pathogenic bacterium Ralstonia solanacearum and the insufficient availability of management strategies with desired control levels urged the researchers to investigate more reliable control methods to manage this issue in tomato and other horticultural crops. In this study, Parthenium hysterophorus, a locally and freely available herbaceous plant, was successfully used to manage bacterial wilt of tomatoes. The significant growth reduction ability of P. hysterophorus leaf extract was recorded in an agar well diffusion test and its ability to severally damage the bacterial cells was confirmed in SEM analysis. In both greenhouse and field trials, soil amended with P. hysterophorus leaf powder at 25 g/kg soil was found to effectively suppress the pathogen population in soil and significantly reduce the wilt severity on tomato plants, resulting in increased growth and yield of tomato plants. P. hysterophorus leaf powder at concentrations greater than 25 g/kg soil caused phytotoxicity in tomato plants. The results showed that P. hysterophorus powder applied through the mixing of soil for a longer period of time before transplanting tomato plants was more effective than mulching application and a shorter period of transplantation. Finally, the indirect effect of P. hysterophorus powder in managing bacterial wilt stress was evaluated using expression analysis of two resistance-related genes, PR2 and TPX. The upregulation of these two resistance-related genes was recorded by the soil application of P. hysterophorus powder. The findings of this study revealed the direct and indirect action mechanisms of P. hysterophorus powder applied to the soil for the management of bacterial wilting stress in tomato plants and provided the basis for including this technique as a safe and effective management strategy in an integrated disease management package.
Collapse
|
16
|
Chuang CY, Lin ST, Li AT, Li SH, Hsiao CY, Lin YH. Bacillus amyloliquefaciens PMB05 Increases Resistance to Bacterial Wilt by Activating Mitogen-Activated Protein Kinase and Reactive Oxygen Species Pathway Crosstalk in Arabidopsis thaliana. PHYTOPATHOLOGY 2022; 112:2495-2502. [PMID: 35793151 DOI: 10.1094/phyto-04-22-0134-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum can infect many crops, causing significant losses worldwide. The use of beneficial microorganisms is considered a feasible method for controlling this disease. Our previous study showed that Bacillus amyloliquefaciens PMB05 can control bacterial wilt through intensifying immune signals triggered by a pathogen-associated molecular pattern (PAMP) from R. solanacearum. It is still uncertain whether induction of the mitogen-activated protein kinase (MAPK) pathway during PAMP-triggered immunity (PTI) is responsible for enhancing disease resistance. To gain more insights on how the presence of PMB05 regulates PTI signaling, its association with the MAPK pathway was assayed. Our results showed that the activation of MPK3/6 and expression of wrky22 upon treatment with the PAMP, PopW, was increased during co-treatment with PMB05. Moreover, the disease resistance conferred by PMB05 to bacterial wilt was abolished in mekk1, mkk5, and mpk6 mutants. To determine the relationship between the MAPK pathway and plant immune signals, the assay on reactive oxygen species (ROS) generation and callose deposition showed that only the ROS generation was strongly reduced in these mutants. Because ROS generation is highly correlated with RbohD, the results revealed that the effects of PMB05 on both PopW-induced ROS generation and disease resistance to bacterial wilt were eliminated in the rbohD mutant, suggesting that the generation of ROS is also required for PMB05-enhanced disease resistance. Taken together, we concluded that the crosstalk between the initiation of ROS generation and further activation of the MAPK pathway is necessary when PMB05 is used to improve disease resistance to bacterial wilt. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chiao-Yu Chuang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Si-Ting Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ai-Ting Li
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sin-Hua Li
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chia-Yu Hsiao
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Hsien Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
17
|
Plant-Microbe Interaction: Mining the Impact of Native Bacillus amyloliquefaciens WS-10 on Tobacco Bacterial Wilt Disease and Rhizosphere Microbial Communities. Microbiol Spectr 2022; 10:e0147122. [PMID: 35913211 PMCID: PMC9430121 DOI: 10.1128/spectrum.01471-22] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia solanacearum, the causative agent of bacterial wilt disease, has been a major threat to tobacco production globally. Several control methods have failed. Thus, it is imperative to find effective management for this disease. The biocontrol agent Bacillus amyloliquefaciens WS-10 displayed a significant control effect due to biofilm formation, and secretion of hydrolytic enzymes and exopolysaccharides. In addition, strain WS-10 can produce antimicrobial compounds, which was confirmed by the presence of genes encoding antimicrobial lipopeptides (fengycin, iturin, surfactin, and bacillomycinD) and polyketides (difficidin, bacilysin, bacillibactin, and bacillaene). Strain WS-10 successfully colonized tobacco plant roots and rhizosphere soil and suppressed the incidence of bacterial wilt disease up to 72.02% by reducing the R. solanacearum population dynamic in rhizosphere soil. Plant-microbe interaction was considered a key driver of disease outcome. To further explore the impact of strain WS-10 on rhizosphere microbial communities, V3-V4 and ITS1 variable regions of 16S and ITS rRNA were amplified, respectively. Results revealed that strain WS-10 influences the rhizosphere microbial communities and dramatically changed the diversity and composition of rhizosphere microbial communities. Interestingly, the relative abundance of genus Ralstonia significantly decreased when treated with strain WS-10. A complex microbial co-occurrence network was present in a diseased state, and the introduction of strain WS-10 significantly changed the structure of rhizosphere microbiota. This study suggests that strain WS-10 can be used as a novel biocontrol agent to attain sustainability in disease management due to its intense antibacterial activity, efficient colonization in the host plant, and ability to transform the microbial community structure toward a healthy state. IMPORTANCE The plant rhizosphere acts as the first line of defense against the invasion of pathogens. The perturbation in the rhizosphere microbiome is directly related to plant health and disease development. The introduction of beneficial microorganisms in the soil shifted the rhizosphere microbiome, induced resistance in plants, and suppressed the incidence of soilborne disease. Bacillus sp. is widely used as a biocontrol agent against soilborne diseases due to its ability to produce broad-spectrum antimicrobial compounds and colonization with the host plant. In our study, we found that the application of native Bacillus amyloliquefaciens WS-10 significantly suppressed the incidence of tobacco bacterial wilt disease by shifting the rhizosphere microbiome and reducing the interaction between rhizosphere microorganisms and bacterial wilt pathogen.
Collapse
|
18
|
Sae-Ueng U, Bhunchoth A, Phironrit N, Treetong A, Sapcharoenkun C, Chatchawankanphanich O, Leartsakulpanich U, Chitnumsub P. Thermoresponsive C22 phage stiffness modulates the phage infectivity. Sci Rep 2022; 12:13001. [PMID: 35906255 PMCID: PMC9338302 DOI: 10.1038/s41598-022-16795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages offer a sustainable alternative for controlling crop disease. However, the lack of knowledge on phage infection mechanisms makes phage-based biological control varying and ineffective. In this work, we interrogated the temperature dependence of the infection and thermo-responsive behavior of the C22 phage. This soilborne podovirus is capable of lysing Ralstonia solanacearum, causing bacterial wilt disease. We revealed that the C22 phage could better infect the pathogenic host cell when incubated at low temperatures (25, 30 °C) than at high temperatures (35, 40 °C). Measurement of the C22 phage stiffness revealed that the phage stiffness at low temperatures was 2–3 times larger than at high temperatures. In addition, the imaging results showed that more C22 phage particles were attached to the cell surface at low temperatures than at high temperatures, associating the phage stiffness and the phage attachment. The result suggests that the structure and stiffness modulation in response to temperature change improve infection, providing mechanistic insight into the C22 phage lytic cycle. Our study signifies the need to understand phage responses to the fluctuating environment for effective phage-based biocontrol implementation.
Collapse
Affiliation(s)
- Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Namthip Phironrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chaweewan Sapcharoenkun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
19
|
Wang K, Chen D, Liu Q, Zhu P, Sun M, Peng D. Isolation and Characterization of Novel Lytic Bacteriophage vB_RsoP_BMB50 infecting Ralstonia solanacearum. Curr Microbiol 2022; 79:245. [PMID: 35834130 DOI: 10.1007/s00284-022-02940-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Ralstonia solanacearum is a soil-borne phytopathogen, and it can cause bacterial wilt disease in a variety of key crops around the world, thus resulting in enormous financial losses. However, there is a lack of effective, green, and safe prevention and control measures against increasingly devastating bacterial wilt disease. Bacteriophages (phages) are considered as potential biocontrol agents against bacterial wilt disease. Although many phages infecting R. solanacearum have been isolated, so far, these Ralstonia phages are still insufficient to deal with the diversity of the bacteria of R. solanacearum. In this study, a novel lytic bacteriophage vB_RsoP_BMB50 infecting multiple R. solanacearum was isolated from tomato fields in Dalian, China. Transmission electron microscopy and genomics analysis indicated that vB_RsoP_BMB50 belonged to the subfamily Okabevirinae, Autographiviridae family, and order Caudovirales, and it comprised a double-stranded DNA with a full length of 43,665 bp and a mean G+C content of 61.79%, containing 53 open reading frames (ORFs). This novel phage exhibited a large burst size, high temperature stability (4-50 °C), and strong pH tolerance (pH 5-10). Comparative analyses and phylogenetic analyses revealed that vB_RsoP_BMB50 represented a novel Ralstonia phage genus since it exhibited a low sequence similarity to other phages in the GenBank database. Due to its broad lytic spectrum, high thermal stability, and strong pH tolerance, vB_RsoP_BMB50 is considered as an effective candidate biocontrol agent against bacterial wilt disease caused by R. solanacearum.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dawei Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Quanrong Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
20
|
Ding X, Zhang H, Qian T, He L, Jin H, Zhou Q, Yu J. Nutrient Concentrations Induced Abiotic Stresses to Sweet Pepper Seedlings in Hydroponic Culture. PLANTS (BASEL, SWITZERLAND) 2022; 11:1098. [PMID: 35448826 PMCID: PMC9027179 DOI: 10.3390/plants11081098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 05/16/2023]
Abstract
The primary goal of this experiment was to investigate the effects of nutrient electrical conductivity (EC) on the growth and physiological responses of sweet pepper (Capsicum annuum L.) in hydroponic culture in a greenhouse. The plant growth parameters, leaf photosynthesis, root activity, soluble protein, malondialdehyde (MDA), proline, activities of antioxidant enzymes (AE), and the contents of plant mineral elements (PME) were measured in six different EC treatments. The results showed that very high or low EC treatments clearly decreased the plant height, stem diameter, shoot dry weight, and leaf net photosynthetic rate, while increasing the content of MDA and the activities of ascorbate peroxidase and guaiacol peroxidase. The contents of proline and soluble protein increased gradually from the low to high EC treatments. The root activities decreased significantly, and the main PME clearly did not increase or even decreased at high EC levels. Very high EC treatments suppressed growth even more than those of very low EC. Treatments that were too low or high EC suppressed plant growth, owing to abiotic stress (either nutrient deficiency or salinity), since the plants had to regulate the activities of AE and increase the accumulation of osmolytes to adjust to the abiotic stresses.
Collapse
Affiliation(s)
- Xiaotao Ding
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai 201106, China
| | - Hongmei Zhang
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Tingting Qian
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Lizhong He
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Haijun Jin
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Qiang Zhou
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai 201106, China
| | - Jizhu Yu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| |
Collapse
|
21
|
Yang S, Cai W, Shen L, Wu R, Cao J, Tang W, Lu Q, Huang Y, Guan D, He S. Solanaceous plants switch to cytokinin-mediated immunity against Ralstonia solanacearum under high temperature and high humidity. PLANT, CELL & ENVIRONMENT 2022; 45:459-478. [PMID: 34778967 DOI: 10.1111/pce.14222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Plant diseases generally tend to be more serious under conditions of high temperature and high humidity (HTHH) than under ambient temperature, but plant immunity against pathogen attacks under HTHH remains elusive. Herein, we used pepper as an example to study how Solanaceae cope with Ralstonia solanacearum infection (RSI) under HTHH by performing RNA-seq combined with the reverse genetic method. The result showed that immunities mediated by salicylic acid (SA) and jasmonic acid (JA) in pepper roots were activated by RSI under ambient temperature. However, upon RSI under HTHH, JA signalling was blocked and SA signalling was activated early but its duration was greatly shortened in pepper roots, instead, expression of CaIPT5 and Glutathione S-transferase encoding genes, as well as endogenous content of trans-Zeatin, were enhanced. In addition, by silencing in pepper plants and overexpression in Nicotiana benthamiana, CaIPT5 was found to act positively in the immune response to RSI under HTHH in a way related to CaPRP1 and CaMgst3. Furthermore, the susceptibility of pepper, tomato and tobacco to RSI under HTHH was significantly reduced by exogenously applied tZ, but not by either SA or MeJA. All these data collectively suggest that pepper employs cytokinin-mediated immunity to cope with RSI under HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Ruijie Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jianshen Cao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiqi Tang
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
22
|
QTL Mapping of Resistance to Bacterial Wilt in Pepper Plants (Capsicum annuum) Using Genotyping-by-Sequencing (GBS). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial wilt (BW) disease, which is caused by Ralstonia solanacearum, is one globally prevalent plant disease leading to significant losses of crop production and yield with the involvement of a diverse variety of monocot and dicot host plants. In particular, the BW of the soil-borne disease seriously influences solanaceous crops, including peppers (sweet and chili peppers), paprika, tomatoes, potatoes, and eggplants. Recent studies have explored genetic regions that are associated with BW resistance for pepper crops. However, owing to the complexity of BW resistance, the identification of the genomic regions controlling BW resistance is poorly understood and still remains to be unraveled in the pepper cultivars. In this study, we performed the quantitative trait loci (QTL) analysis to identify genomic loci and alleles, which play a critical role in the resistance to BW in pepper plants. The disease symptoms and resistance levels for BW were assessed by inoculation with R. solanacearum. Genotyping-by-sequencing (GBS) was utilized in 94 F2 segregating populations originated from a cross between a resistant line, KC352, and a susceptible line, 14F6002-14. A total of 628,437 single-nucleotide polymorphism (SNP) was obtained, and a pepper genetic linkage map was constructed with putative 1550 SNP markers via the filtering criteria. The linkage map exhibited 16 linkage groups (LG) with a total linkage distance of 828.449 cM. Notably, QTL analysis with CIM (composite interval mapping) method uncovered pBWR-1 QTL underlying on chromosome 01 and explained 20.13 to 25.16% by R2 (proportion of explained phenotyphic variance by the QTL) values. These results will be valuable for developing SNP markers associated with BW-resistant QTLs as well as for developing elite BW-resistant cultivars in pepper breeding programs.
Collapse
|
23
|
Mandal A, Kundu A, Shanmugam V, Kumar R, Siddiqui A, Chaudhary A, Dutta A, Patanjali N, Saha S, Kumar A, Dash S, Singh A. Brassica nigra essential oil: In-vitro and in-silico antibacterial efficacy against plant pathogenic and nitrifying bacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:1007-1022. [PMID: 34779690 DOI: 10.1080/03601234.2021.1999165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study was aimed to examine the antibacterial potential of Brassica nigra essential oil (BNEO) against Ralstonia solanacearum, causal agent of bacterial wilt and Nitrosomonas sp., the nitrifying bacteria. In poisoned food assay, BNEO showed 100% growth inhibition of R. solancearum at ≥ 125 µg mL-1. Revalidation of findings by volatile assay employing inverted Petri plate technique exhibited 100% bacterial growth inhibition caused by vapors of BNEO, even at 50 µg mL-1 concentration. In the broth microdilution assay, the BNEO exhibited significant antibacterial activity only at higher concentrations (>500 µg mL-1). At 500 µg mL-1, BNEO showed 80% bacterial growth inhibition over control, which was at par with that of streptomycin (5 µg mL-1). In resazurin microtitre-plate assay, the maximum concentration of BNEO, at which color change occurred was 512 µg mL-1 (T9), and thus 512 µg mL-1 was concluded as the minimum inhibitory concentration (MIC). BNEO effectively inhibited the activity of Nitrosomonas spp. with 30-65% nitrification inhibition at the dose of 400 mkg-1 of Urea-N. Homology modeled protein targets assisted computational tool-based novel analysis helped to understand that the antibacterial potency of BNEO is due to preferable binding efficiency of allyl isothiocyanate (AITC), the major active ingredient of BNEO.
Collapse
Affiliation(s)
- Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Veerubommu Shanmugam
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Adil Siddiqui
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amrendra Chaudhary
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar
- Division of Design of Experiments, ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Sukanta Dash
- Division of Design of Experiments, ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Anupama Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
24
|
Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease. PLANTS 2021; 10:plants10102125. [PMID: 34685934 PMCID: PMC8541367 DOI: 10.3390/plants10102125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) is a microbial population found in the rhizosphere of plants that can stimulate plant development and restrict the growth of plant diseases directly or indirectly. In this study, 90 rhizospheric soil samples from five agro climatic zones of chilli (Capsicum annuum L.) were collected and rhizobacteria were isolated, screened and characterized at morphological, biochemical and molecular levels. In total, 38% of rhizobacteria exhibited the antagonistic capacity to suppress Ralstonia solanacearum growth and showed PGPR activities such as indole acetic acid production by 67.64% from total screened rhizobacteria isolates, phosphorus solubilization by 79.41%, ammonia by 67.75%, HCN by 58.82% and siderophore by 55.88%. We performed a principal component analysis depicting correlation and significance among plant growth-promoting activities, growth parameters of chilli and rhizobacterial strains. Plant inoculation studies indicated a significant increase in growth parameters and PDS1 strain showed maximum 71.11% biocontrol efficiency against wilt disease. The best five rhizobacterial isolates demonstrating both plant growth-promotion traits and biocontrol potential were characterized and identified as PDS1—Pseudomonas fluorescens (MN368159), BDS1—Bacillus subtilis (MN395039), UK4—Bacillus cereus (MT491099), UK2—Bacillus amyloliquefaciens (MT491100) and KA9—Bacillus subtilis (MT491101). These rhizobacteria have the potential natural elicitors to be used as biopesticides and biofertilizers to improve crop health while warding off soil-borne pathogens. The chilli cv. Pusa Jwala treated with Bacillus subtilis KA9 and Pseudomonas fluorescens PDS1 showed enhancement in the defensive enzymes PO, PPO, SOD and PAL activities in chilli leaf and root tissues, which collectively contributed to induced resistance in chilli plants against Ralstonia solanacearum. The induction of these defense enzymes was found higher in leave tissues (PO—4.87-fold, PP0—9.30-fold, SOD—9.49-fold and PAL—1.04-fold, respectively) in comparison to roots tissue at 48 h after pathogen inoculation. The findings support the view that plant growth-promoting rhizobacteria boost defense-related enzymes and limit pathogen growth in chilli plants, respectively, hence managing the chilli bacterial wilt.
Collapse
|
25
|
Mamphogoro TP, Kamutando CN, Maboko MM, Aiyegoro OA, Babalola OO. Epiphytic Bacteria from Sweet Pepper Antagonistic In Vitro to Ralstonia solanacearum BD 261, a Causative Agent of Bacterial Wilt. Microorganisms 2021; 9:microorganisms9091947. [PMID: 34576842 PMCID: PMC8469110 DOI: 10.3390/microorganisms9091947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Biological control of plant pathogens, particularly using microbial antagonists, is posited as the most effective, environmentally-safe, and sustainable strategy to manage plant diseases. However, the roles of antagonists in controlling bacterial wilt, a disease caused by the most devastating and widely distributed pathogen of sweet peppers (i.e., R. solanacearum), are poorly understood. Here, amplicon sequencing and several microbial function assays were used to depict the identities and the potential antagonistic functions of bacteria isolated from 80 red and green sweet pepper fruit samples, grown under hydroponic and open soil conditions, with some plants, fungicide-treated while others were untreated. Amplicon sequencing revealed the following bacterial strains: Bacillus cereus strain HRT7.7, Enterobacter hormaechei strain SRU4.4, Paenibacillus polymyxa strain SRT9.1, and Serratia marcescens strain SGT5.3, as potential antagonists of R. solanacearum. Optimization studies with different carbon and nitrogen sources revealed that maximum inhibition of the pathogen was produced at 3% (w/v) starch and 2,5% (w/v) tryptone at pH 7 and 30 °C. The mode of action exhibited by the antagonistic isolates includes the production of lytic enzymes (i.e., cellulase and protease enzymes) and siderophores, as well as solubilization of phosphate. Overall, the results demonstrated that the maximum antimicrobial activity of bacterial antagonists could only be achieved under specific environmental conditions (e.g., available carbon and nitrogen sources, pH, and temperature levels), and that bacterial antagonists can also indirectly promote crop growth and development through nutrient cycling and siderophore production.
Collapse
Affiliation(s)
- Tshifhiwa Paris Mamphogoro
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agriculture Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| | - Casper Nyaradzai Kamutando
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare 0263, Zimbabwe;
| | - Martin Makgose Maboko
- Crop Science Unit, Agriculture Research Council—Vegetable and Ornamental Plants, Private Bag X293, Roodeplaat, Pretoria 0001, South Africa;
| | - Olayinka Ayobami Aiyegoro
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agriculture Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
- Research Unit for Environmental Sciences and Management, North-West University, Private Bag X1290, Potchefstroom 2520, South Africa
- Correspondence:
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
26
|
Yang S, Zhang Y, Cai W, Liu C, Hu J, Shen L, Huang X, Guan D, He S. CaWRKY28 Cys249 is Required for Interaction with CaWRKY40 in the Regulation of Pepper Immunity to Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:733-745. [PMID: 33555219 DOI: 10.1094/mpmi-12-20-0361-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
WRKY transcription factors have been implicated in plant response to pathogens but how WRKY-mediated networks are organized and operate to produce appropriate transcriptional outputs remains largely unclear. Here, we identify a member of the WRKY family from pepper (Capsicum annuum), CaWRKY28, that physically interacts with CaWRKY40, a positive regulator of pepper immunity and thermotolerance. We confirmed CaWRKY28-CaWRKY40 interaction by coimmunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. Our findings supported the idea that CaWRKY28 is a nuclear protein that acts as positive regulator in pepper responses to infection by the pathogenic bacterium Ralstonia solanacearum. It performs its function not by directly modulating the W-box containing immunity-related genes but by promoting CaWRKY40 via physical interaction to bind and activate its immunity-related target genes, including CaPR1, CaNPR1, CaDEF1, and CaABR1, but not its thermotolerance-related target gene, CaHSP24. All of these data indicate that CaWRKY28 interacts with and potentiates CaWRKY40 in regulating immunity against R. solanacearum infection but not thermotolerance. Importantly, we discovered that CaWRKY28 Cys249, shared by CaWRKY28 and its orthologs probably only in the family Solanaceae, is crucial for the CaWRKY28-CaWRKY40 interaction. These results highlight how CaWRKY28 associates with CaWRKY40 during the establishment of WRKY networks, and how CaWRKY40 achieves its functional specificity during pepper responses to R. solanacearum infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Xueying Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
27
|
Fu HZ, Marian M, Enomoto T, Hieno A, Ina H, Suga H, Shimizu M. Biocontrol of Tomato Bacterial Wilt by Foliar Spray Application of a Novel Strain of Endophytic Bacillus sp. Microbes Environ 2021; 35. [PMID: 33012743 PMCID: PMC7734409 DOI: 10.1264/jsme2.me20078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to identify a strain of endophytic Bacillus species that control tomato bacterial wilt by foliar spray application. Fifty heat-tolerant endophytic bacteria were isolated from the surface-sterilized foliar tissues of symptomless tomato plants that had been pre-inoculated with the pathogen Ralstonia pseudosolanacearum. In the primary screening, we assessed the suppressive effects of a shoot-dipping treatment with bacterial strains against bacterial wilt on tomato seedlings grown on peat pellets. Bacillus sp. strains G1S3 and G4L1 significantly suppressed the incidence of tomato bacterial wilt. In subsequent pot experiments, the biocontrol efficacy of foliar spray application was examined under glasshouse conditions. G4L1 displayed consistent and significant disease suppression, and, thus, was selected as a biocontrol candidate. Moreover, the pathogen population in the stem of G4L1-treated plants was markedly smaller than that in control plants. A quantitative real-time PCR analysis revealed that the foliar spraying of tomato plants with G4L1 up-regulated the expression of PR-1a and LoxD in stem and GluB in roots upon the pathogen inoculation, implying that the induction of salicylic acid-, jasmonic acid-, and ethylene-dependent defenses was involved in the protective effects of this strain. In the re-isolation experiment, G4L1 efficiently colonized foliar tissues for at least 4 weeks after spray application. Collectively, the present results indicate that G4L1 is a promising biocontrol agent for tomato bacterial wilt. Furthermore, to the best of our knowledge, this is the first study to report the biocontrol of bacterial wilt by the foliar spraying with an endophytic Bacillus species.
Collapse
Affiliation(s)
- Hui-Zhen Fu
- The United Graduate School of Agricultural Science, Gifu University
| | - Malek Marian
- Faculty of Applied Biological Sciences, Gifu University.,College of Agriculture, Ibaraki University
| | - Takuo Enomoto
- Faculty of Applied Biological Sciences, Gifu University
| | - Ayaka Hieno
- Faculty of Applied Biological Sciences, Gifu University
| | - Hidemasa Ina
- Faculty of Applied Biological Sciences, Gifu University
| | | | - Masafumi Shimizu
- The United Graduate School of Agricultural Science, Gifu University
| |
Collapse
|
28
|
Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol. Sci Rep 2020; 10:8560. [PMID: 32444860 PMCID: PMC7244708 DOI: 10.1038/s41598-020-65587-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Fresh produce vegetables are colonized by different bacterial species, some of which are antagonistic to microbes that cause postharvest losses. However, no comprehensive assessment of the diversity and composition of bacteria inhabiting surfaces of fresh pepper plants grown under different conditions has been conducted. In this study, 16S RNA amplicon sequencing was used to reveal bacterial communities inhabiting the surfaces of red and green pepper (fungicides-treated and non-fungicides-treated) grown under hydroponic and open field conditions. Results revealed that pepper fruit surfaces were dominated by bacterial phylum Proteobacteria, Firmicutes, Actinobacteria, and, Bacteroidetes. The majority of the bacterial operation taxonomic units (97% similarity cut-off) were shared between the two habitats, two treatments, and the two pepper types. Phenotypic predictions (at phylum level) detected a high abundance of potentially pathogenic, biofilm-forming, and stress-tolerant bacteria on samples grown on open soils than those from hydroponic systems. Furthermore, bacterial species of genera mostly classified as fungal antagonists including; Acinetobacter, Agrobacterium, and Burkholderia were the most abundant on the surfaces. These results suggest that peppers accommodate substantially different bacterial communities with antagonistic activities on their surfaces, independent of employed agronomic strategies and that the beneficial bacterial strains maybe more important for peppers established on open fields, which seems to be more vulnerable to abiotic and biotic stresses.
Collapse
|
29
|
Pavlyushin V. Pathogenic post-effect of entomopathogenic fungi on phytophagous pests and entomophagous biocontrol agents. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phytosanitary optimization of agricultural ecosystems under conditions of glasshouses and organic farming urgently demands guaranteed effect of plant protection. This can be achieved only through effective exploitation of a complex of biological agents, including arthropod predators and parasites, entomopathogenic fungi, nematodes and other microbes. Entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium are characterized by facultative parasitism and possess high potential to control phytophagous insects, including pests of vegetable crops in glasshouses. In aphids, fungal pathogenesis was found to be comprised of primary mycosis and toxigenic post-effect in a row of consequent generations. For example, L. muscarium and B. bassiana had an adverse effect on fertility and survival rates of females of aphids Aphis gossypii up to the fifth generation. The longevity, reproductive period and amount of progeny were decreased in aphids treated with water suspension of fungal conidia. It can be deduced that the post-effect is caused by toxic action of metabolites as no evident mycosis was observed in the experiments. Similar type of after-effect is observed in the lacewing Chrysopa carnea contaminated with fungal conidia. The effect is also toxigenic being most prominent in the first generation of the survivors’ progeny and traceable up to the fifth generation. The consequences of the infection are best seen in the rate adult emergence which is twice as low as compared to control. This knowledge is essential to avoid antagonism between different groups of natural enemies exploited in biological control and to design adequate technology for their application.
Collapse
|