1
|
Kashi M, Varseh M, Hariri Y, Chegini Z, Shariati A. Natural compounds: new therapeutic approach for inhibition of Streptococcus mutans and dental caries. Front Pharmacol 2025; 16:1548117. [PMID: 40235544 PMCID: PMC11996897 DOI: 10.3389/fphar.2025.1548117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
Streptococcus mutans is recognized as one of the leading causes of dental caries, and biofilm formation by this bacterium plays a key role in dental plaque development and caries progression. Given the increasing resistance of bacteria to antibiotics and the adverse effects of some synthetic antimicrobials, the search for natural alternatives has received increasing attention. The recently published studies have demonstrated that natural compounds (NCs) such as curcumin, cinnamaldehyde, eugenol, thymol, carvacrol, epigallocatechin gallate, farnesol, catechin, inulin, menthol, apigenin, myricetin, oleanolic acid, and resveratrol, have notable antimicrobial properties and can effectively inhibit the growth of Streptococcus mutans. NCs can disrupt bacterial membrane integrity, leading to cell death, and possess the capability to inhibit acid production, which is a key factor in caries development. NCs can also interfere with bacterial adhesion to surfaces, including teeth. The attachment inhibition is achieved by decreasing the expression of adhesion factors such as gtfs, ftf, fruA, and gbpB. NCs can disrupt bacterial metabolism, inhibit biofilm formation, disperse existing biofilm, and interfere with quorum sensing and two-component signal transduction systems. Moreover, novel drug delivery platforms were used to enhance the bioavailability and stability of NCs. Studies have also indicated that NCs exhibit significant efficacy in combination therapies. Notably, curcumin has shown promising results in photodynamic therapy against S. mutans. The current review article analyzes the mechanisms of action of various NCs against S. mutans and investigates their potential as alternative or complementary therapeutic options for managing this bacterium and dental caries.
Collapse
Affiliation(s)
- Milad Kashi
- Student research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Varseh
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Yasaman Hariri
- Student research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Christian N, Burden D, Emam A, Brenk A, Sperber S, Kalu M, Cuadra G, Palazzolo D. Effects of E-Liquids and Their Aerosols on Biofilm Formation and Growth of Oral Commensal Streptococcal Communities: Effect of Cinnamon and Menthol Flavors. Dent J (Basel) 2024; 12:232. [PMID: 39195076 DOI: 10.3390/dj12080232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Background: The rise in electronic cigarette (E-cigarette) popularity, especially among adolescents, has prompted research to investigate potential effects on health. Although much research has been carried out on the effect on lung health, the first site exposed to vaping-the oral cavity-has received relatively little attention. The aims of this study were twofold: to examine the effects of E-liquids on the viability and hydrophobicity of oral commensal streptococci, and the effects of E-cigarette-generated aerosols on the biomass and viability of oral commensal streptococci. (2) Methods: Quantitative and confocal biofilm analysis, live-dead staining, and hydrophobicity assays were used to determine the effect on oral commensal streptococci after exposure to E-liquids and/or E-cigarette-generated aerosols. (3) Results: E-liquids and flavors have a bactericidal effect on multispecies oral commensal biofilms and increase the hydrophobicity of oral commensal streptococci. Flavorless and some flavored E-liquid aerosols have a bactericidal effect on oral commensal biofilms while having no effect on overall biomass. (4) Conclusions: These results indicate that E-liquids/E-cigarette-generated aerosols alter the chemical interactions and viability of oral commensal streptococci. Consequently, the use of E-cigarettes has the potential to alter the status of disease and health in the oral cavity and, by extension, affect systemic health.
Collapse
Affiliation(s)
- Nicole Christian
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Burden
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
- School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Alexander Emam
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Alvin Brenk
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Sarah Sperber
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Michael Kalu
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Giancarlo Cuadra
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Dominic Palazzolo
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| |
Collapse
|
3
|
Ngokwe ZB, Wolfoviz-Zilberman A, Sharon E, Zabrovsky A, Beyth N, Houri-Haddad Y, Kesler-Shvero D. Trans-Cinnamaldehyde-Fighting Streptococcus mutans Using Nature. Pharmaceutics 2024; 16:113. [PMID: 38258123 PMCID: PMC10818508 DOI: 10.3390/pharmaceutics16010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Streptococcus mutans (S. mutans) is the main cariogenic bacterium with acidophilic properties, in part due to its acid-producing and -resistant properties. As a result of this activity, hard tooth structures may demineralize and form caries. Trans-cinnamaldehyde (TC) is a phytochemical from the cinnamon plant that has established antibacterial properties for Gram-positive and -negative bacteria. This research sought to assess the antibacterial and antibiofilm effects of trans-cinnamaldehyde on S. mutans. TC was diluted to a concentration range of 156.25-5000 μg/mL in dimethyl sulfoxide (DMSO) 0.03-1%, an organic solvent. Antibacterial activity was monitored by testing the range of TC concentrations on 24 h planktonic growth compared with untreated S. mutans. The subminimal bactericidal concentrations (MBCs) were used to evaluate the bacterial distribution and morphology in the biofilms. Our in vitro data established a TC MBC of 2500 μg/mL against planktonic S. mutans using a microplate spectrophotometer. Furthermore, the DMSO-only controls showed no antibacterial effect against planktonic S. mutans. Next, the sub-MBC doses exhibited antibiofilm action at TC doses of ≥625 μg/mL on hydroxyapatite discs, as demonstrated through biofilm analysis using spinning-disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). Our findings show that TC possesses potent antibacterial and antibiofilm properties against S. mutans. Our data insinuate that the most effective sub-MBC of TC to bestow these activities is 625 μg/mL.
Collapse
Affiliation(s)
- Zilefac Brian Ngokwe
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Amit Wolfoviz-Zilberman
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Esi Sharon
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Asher Zabrovsky
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Nurit Beyth
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| | - Dana Kesler-Shvero
- Department of Prosthodontics, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Z.B.N.); (A.W.-Z.); (E.S.); (A.Z.); (N.B.); (Y.H.-H.)
| |
Collapse
|
4
|
Gao Z, Chen X, Wang C, Song J, Xu J, Liu X, Qian Y, Suo H. New strategies and mechanisms for targeting Streptococcus mutans biofilm formation to prevent dental caries: A review. Microbiol Res 2023; 278:127526. [PMID: 39491258 DOI: 10.1016/j.micres.2023.127526] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Dental caries, a prevalent oral infectious disease, is intricately linked to the biofilm formation on the tooth surfaces by oral microbes. Among these, Streptococcus mutans plays a central role in the initiation and progression of caries due to its ability to produce glucosyltransferases, synthesize extracellular polysaccharides, and facilitate bacterial adhesion and aggregation. This leads to the formation of biofilms where the bacteria metabolize dietary carbohydrates to produce acids. Therefore, devising effective strategies to inhibit S. mutans biofilm formation is crucial for dental caries prevention and oral health promotion. Though preventive measures like mechanical removal and antibacterial drugs (fluoride, chlorhexidine) exist, they pose challenges such as time consumption, short-term effectiveness, antibiotic resistance, and disruption of oral flora balance. This review provides a comprehensive overview of emerging strategies such as antimicrobial peptides, probiotics, nanoparticles, and non-thermal plasma therapies for targeted inhibition of S. mutans biofilm formation. Moreover, current research insights into the regulatory mechanisms governing S. mutans biofilm formation are also elucidated. The objective is to foster the development of innovative, efficient and safe techniques for caries prevention and treatment, thereby expanding treatment options in clinical dentistry and promoting oral health.
Collapse
Affiliation(s)
- Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Qian
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Akshaya BS, Premraj K, Iswarya C, Muthusamy S, Ibrahim HIM, Khalil HE, Gunasekaran V, Vickram S, Senthil Kumar V, Palanisamy S, Thirugnanasambantham K. Cinnamaldehyde inhibits Enterococcus faecalis biofilm formation and promotes clearance of its colonization by modulation of phagocytes in vitro. Microb Pathog 2023:106157. [PMID: 37268049 DOI: 10.1016/j.micpath.2023.106157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
The nosocomial pathogen, Enterococcus faecalis plays a crucial role in the pathogenesis of variety of infections including endocarditis, urinary tract, and recurrent root canal infections. Primary virulence factors of E. faecalis such as biofilm formation, gelatinase production and suppression of host innate immune response can severely harm host tissue. Thus, novel treatments are needed to prevent E. faecalis biofilm development and pathogenicity due to the worrisome rise in enterococcal resistance to antibiotics. The primary phytochemical in cinnamon essential oils, cinnamaldehyde, has shown promising efficacy against a variety of infections. Here, we looked into how cinnamaldehyde affected the growth of biofilms, the activity of the enzyme gelatinase, and gene expression in E. faecalis. In addition, we looked at the influence of cinnamaldehyde on RAW264.7 macrophages' interaction with biofilm and planktonic E. faecalis in terms of intracellular bacterial clearance, NO generation, and macrophage migration in vitro. According to our research, cinnamaldehyde attenuated the biofilm formation potential of planktonic E. faecalis and gelatinase activity of the biofilm at non-lethal concentrations. The expression of the quorum sensing fsr locus and its downstream gene gelE in biofilms were also found to be significantly downregulated by cinnamaldehyde. Results also demonstrated that cinnamaldehyde treatment increased NO production, intracellular bacterial clearance, and migration of RAW264.7 macrophages in presence of both biofilm and planktonic E. faecalis. Overall these results suggest that cinnamaldehyde has the ability to inhibit E. faecalis biofilm formation and modulate host innate immune response for better clearance of bacterial colonization.
Collapse
Affiliation(s)
- Balasubramanian Sennammal Akshaya
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, India
| | - Kumar Premraj
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India
| | - Christian Iswarya
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India
| | - Suganthi Muthusamy
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, India
| | - Hairul-Islam Mohamed Ibrahim
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Biological Science College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Vaishnavi Gunasekaran
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Venugopal Senthil Kumar
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Tamil Nadu State Council for Science and Technology, DOTE Campus, Chennai, 600025, Tamil Nadu, India
| | - Senthilkumar Palanisamy
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| |
Collapse
|
6
|
Polizzi A, Donzella M, Nicolosi G, Santonocito S, Pesce P, Isola G. Drugs for the Quorum Sensing Inhibition of Oral Biofilm: New Frontiers and Insights in the Treatment of Periodontitis. Pharmaceutics 2022; 14:2740. [PMID: 36559234 PMCID: PMC9781207 DOI: 10.3390/pharmaceutics14122740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Chemical molecules are used by microorganisms to communicate with each other. Quorum sensing is the mechanism through which microorganisms regulate their population density and activity with chemical signaling. The inhibition of quorum sensing, called quorum quenching, may disrupt oral biofilm formation, which is the main etiological factor of oral diseases, including periodontitis. Periodontitis is a chronic inflammatory disorder of infectious etiology involving the hard and soft periodontal tissues and which is related to various systemic disorders, including cardiovascular diseases, diabetes and obesity. The employment of adjuvant therapies to traditional scaling and root planing is currently being studied to further reduce the impact of periodontitis. In this sense, using antibiotics and antiseptics involves non-negligible risks, such as antibiotic resistance phenomena and hinders the re-establishment of eubiosis. Different quorum sensing signal molecules have been identified in periodontal pathogenic oral bacteria. In this regard, quorum sensing inhibitors are emerging as some interesting solutions for the management of periodontitis. Therefore, the aim of this review is to summarize the current state of knowledge on the mechanisms of quorum sensing signal molecules produced by oral biofilm and to analyze the potential of quorum sensing inhibitors for the management of periodontitis.
Collapse
Affiliation(s)
- Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| |
Collapse
|
7
|
Kamarehei F, Mehdiabadi M, Naderi F. Antibacterial effects of natural compounds on biofilm formation of Streptococcus mutans. Clin Exp Dent Res 2022; 8:1426-1433. [PMID: 36281582 PMCID: PMC9760147 DOI: 10.1002/cre2.673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Streptococcus mutans is the main cariogenic pathogen in the oral cavity, considered to contribute toward oral diseases. S. mutans is predominantly entrapped in plaque biofilms. OBJECTIVES In this study, we surveyed the antibacterial activity of natural compounds in terms of the biofilm production of S. mutans. MATERIAL AND METHODS We extracted the studies related to natural compounds affected on S. mutans biofilm from different databases. RESULTS Disruption of S. mutans viability in biofilms by a potent new pharmacological factor could inhibit and remove cavities. Various antibacterial agents are needed to destroy biofilms that remove both pathogens and commensal bacteria, and also exert inhibitory effects on many bacterial species. CONCLUSIONS An effective therapeutic agent for dental caries has to be capable of removing pathogens and their biofilms. Specific virulence attributes of S. mutans exist; hence, natural compounds that have excellent properties to combat such pathogens need to be selected.
Collapse
Affiliation(s)
- Farideh Kamarehei
- Department of Microbiology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| | - Mohsen Mehdiabadi
- Department of Pediatric Dentistry, Faculty of DentistryHamadan University of Medical SciencesHamadanIran
| | - Fariba Naderi
- Department of Pediatric Dentistry, Faculty of DentistryHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
8
|
Hu M, Kalimuthu S, Zhang C, Ali IAA, Neelakantan P. Trans-cinnamaldehyde-Biosurfactant Complex as a Potent Agent against Enterococcus faecalis Biofilms. Pharmaceutics 2022; 14:2355. [PMID: 36365173 PMCID: PMC9692797 DOI: 10.3390/pharmaceutics14112355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 01/18/2024] Open
Abstract
Enterococcus faecalis is an opportunistic microbial pathogen frequently associated with diverse infections, including those of the skin and teeth, as well as those from surgical wounds. It forms robust biofilms that are highly tolerant to most antimicrobials and first-line antibiotics. Therefore, investigating alternative strategies to eradicate its biofilms is a critical need. We recently demonstrated that trans-cinnamaldehyde (TC) potently kills E. faecalis biofilm cells and prevents biofilm recovery, and yet, the extreme hydrophobicity of TC hampers clinical translation. Here, we report that a complex of TC with an FDA-approved biosurfactant (acidic sophorolipid/ASL) significantly reduces the bacterial viability and biomass of E. faecalis biofilms, compared to TC alone. A confocal laser-scanning microscopic analysis demonstrated that the TC-ASL treatment significantly decreased the biofilm thickness and volume. In conclusion, our study highlights the anti-biofilm potential of the newly developed TC-ASL.
Collapse
Affiliation(s)
- Mingxin Hu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Islam A. A. Ali
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
9
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
10
|
Yang RQ, Zhao GP. RETRACTED ARTICLE: Inhibitory Effects of Glycyrrhiza Uralensis Fisch Extract on Cariogenic Virulence Factors of Streptococcus Mutans. Indian J Microbiol 2022; 62:473. [PMID: 35974911 PMCID: PMC9375817 DOI: 10.1007/s12088-021-00972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ruo-qi Yang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gui-ping Zhao
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
11
|
Ali US, Sukhia RH, Fida M. A comparison of three different modalities in improving oral hygiene in adult orthodontic patients – An open label randomized controlled trial. Int Orthod 2022; 20:100669. [DOI: 10.1016/j.ortho.2022.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
|
12
|
Didehdar M, Chegini Z, Tabaeian SP, Razavi S, Shariati A. Cinnamomum: The New Therapeutic Agents for Inhibition of Bacterial and Fungal Biofilm-Associated Infection. Front Cell Infect Microbiol 2022; 12:930624. [PMID: 35899044 PMCID: PMC9309250 DOI: 10.3389/fcimb.2022.930624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the potent antibacterial properties of Cinnamomum and its derivatives, particularly cinnamaldehyde, recent studies have used these compounds to inhibit the growth of the most prevalent bacterial and fungal biofilms. By inhibiting flagella protein synthesis and swarming motility, Cinnamomum could suppress bacterial attachment, colonization, and biofilm formation in an early stage. Furthermore, by downregulation of Cyclic di‐guanosine monophosphate (c‐di‐GMP), biofilm-related genes, and quorum sensing, this compound suppresses intercellular adherence and accumulation of bacterial cells in biofilm and inhibits important bacterial virulence factors. In addition, Cinnamomum could lead to preformed biofilm elimination by enhancing membrane permeability and the disruption of membrane integrity. Moreover, this substance suppresses the Candida species adherence to the oral epithelial cells, leading to the cell wall deformities, damage, and leakages of intracellular material that may contribute to the established Candida’s biofilm elimination. Therefore, by inhibiting biofilm maturation and destroying the external structure of biofilm, Cinnamomum could boost antibiotic treatment success in combination therapy. However, Cinnamomum has several disadvantages, such as poor solubility in aqueous solution, instability, and volatility; thus, the use of different drug-delivery systems may resolve these limitations and should be further considered in future investigations. Overall, Cinnamomum could be a promising agent for inhibiting microbial biofilm-associated infection and could be used as a catheter and other medical materials surface coatings to suppress biofilm formation. Nonetheless, further in vitro toxicology analysis and animal experiments are required to confirm the reported molecular antibiofilm effect of Cinnamomum and its derivative components against microbial biofilm.
Collapse
Affiliation(s)
- Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seidamir Pasha Tabaeian
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- *Correspondence: Aref Shariati,
| |
Collapse
|
13
|
Jailani A, Kalimuthu S, Rajasekar V, Ghosh S, Collart-Dutilleul PY, Fatima N, Koo H, Solomon AP, Cuisinier F, Neelakantan P. Trans-Cinnamaldehyde Eluting Porous Silicon Microparticles Mitigate Cariogenic Biofilms. Pharmaceutics 2022; 14:1428. [PMID: 35890323 PMCID: PMC9322055 DOI: 10.3390/pharmaceutics14071428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Dental caries, a preventable disease, is caused by highly-adherent, acid-producing biofilms composed of bacteria and yeasts. Current caries-preventive approaches are ineffective in controlling biofilm development. Recent studies demonstrate definite advantages in using natural compounds such as trans-cinnamaldehyde in thwarting biofilm assembly, and yet, the remarkable difficulty in delivering such hydrophobic bioactive molecules prevents further development. To address this critical challenge, we have developed an innovative platform composed of components with a proven track record of safety. We fabricated and thoroughly characterised porous silicon (pSi) microparticles to carry and deliver the natural phenyl propanoid trans-cinnamaldehyde (TC). We investigated its effects on preventing the development of cross-kingdom biofilms (Streptococcus mutans and Candida albicans), typical of dental caries found in children. The prepared pSi microparticles were roughly cubic in structure with 70-75% porosity, to which the TC (pSi-TC) was loaded with about 45% efficiency. The pSi-TC particles exhibited a controlled release of the cargo over a 14-day period. Notably, pSi-TC significantly inhibited biofilms, specifically downregulating the glucan synthesis pathways, leading to reduced adhesion to the substrate. Acid production, a vital virulent trait for caries development, was also hindered by pSi-TC. This pioneering study highlights the potential to develop the novel pSi-TC as a dental caries-preventive material.
Collapse
Affiliation(s)
- Afreen Jailani
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Shanthini Kalimuthu
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Vidhyashree Rajasekar
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Sumanta Ghosh
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
| | - Pierre-Yves Collart-Dutilleul
- Laboratory of Bioengineering and Nanosciences, University of Montpellier, CEDEX 5, 34193 Montpellier, France; (P.-Y.C.-D.); (N.F.); (F.C.)
| | - Naveen Fatima
- Laboratory of Bioengineering and Nanosciences, University of Montpellier, CEDEX 5, 34193 Montpellier, France; (P.-Y.C.-D.); (N.F.); (F.C.)
| | - Hyun Koo
- Biofilm Research Labs, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Frederic Cuisinier
- Laboratory of Bioengineering and Nanosciences, University of Montpellier, CEDEX 5, 34193 Montpellier, France; (P.-Y.C.-D.); (N.F.); (F.C.)
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
| |
Collapse
|
14
|
Hydroxyethyl Cellulose Promotes the Mucin Retention of Herbal Extracts Active against Streptococcus mutans. MATERIALS 2022; 15:ma15134652. [PMID: 35806773 PMCID: PMC9267188 DOI: 10.3390/ma15134652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022]
Abstract
Streptococcus mutans is considered a major cariogenic bacterium. Most anti-cariogenic dentifrices are limited by a short exposure time. The aim of the present study was to test the hypothesis that adding a mucoadhesive agent to the formulation may increase its bioavailability and efficacy. We tested the effect of adding hydroxyethyl cellulose (HEC) to an herbal extract solution containing lavender, echinacea, sage, and mastic gum, which have been previously shown to be effective against Streptococcus mutans. Mucin-coated wells were treated with four test solutions: saline, herbal extracts, herbal extracts with HEC, and chlorhexidine. The wells were incubated with Streptococcus mutans and studied for biofilm formation (Crystal violet assay), acid production (lactate assay), acid tolerance (ATPase assay), and exopolysaccharide (EPS) production using fluorescent microscopy. The results showed that the addition of HEC to the herbal extract solution caused a significant reduction in Streptococcus mutans biofilm formation, lactic acid production, and EPS quantity (p < 0.001). These results suggest that HEC may be a beneficial added excipient to herbal extracts in an anti-cariogenic formulation.
Collapse
|
15
|
Mechanistic Effects of E-Liquids on Biofilm Formation and Growth of Oral Commensal Streptococcal Communities: Effect of Flavoring Agents. Dent J (Basel) 2022; 10:dj10050085. [PMID: 35621538 PMCID: PMC9139693 DOI: 10.3390/dj10050085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Vaping has become a global health concern. As research continues, more studies are beginning to question the relative safety of E-liquid flavoring additives. The oral cavity is the first site of exposure to E-liquid aerosol, making it critical for investigation. Because of the importance of commensal bacterial biofilms for oral health, we sought to explore the effects of E-liquids ± flavors on the formation and growth of single- and multi-species biofilms and to investigate the mechanism of inhibition. Methods: Quantitative and confocal biofilm analysis, death curves, and colony-forming units (CFU) were evaluated with flavorless and flavored (tobacco, menthol, cinnamon, strawberry, blueberry) E-liquids using four strains of oral commensal bacteria (Streptococcus gordonii, Streptococcus intermedius, Streptococcus mitis, and Streptococcus oralis). Results: All flavoring agents show a dose-dependent inhibition in the growth of single-species and multi-species biofilms. Furthermore, CFUs, death curves, and light microscopy show that flavoring agents have a bactericidal mode of inhibition on the growth of these oral streptococci. Conclusions: These results show that flavored, rather than unflavored, E-liquids are more detrimental to biofilm formation and growth of oral commensal bacteria. Consequently, E-liquid flavorings agents could pose risks to the oral microenvironment, and by extension, to systemic health.
Collapse
|
16
|
Anti-adhesion and anti-biofilm activity of slightly acidic electrolyzed water combined with sodium benzoate against Streptococcus mutans: A novel ecofriendly oral sanitizer to prevent cariogenesis. Microb Pathog 2022; 166:105535. [DOI: 10.1016/j.micpath.2022.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022]
|
17
|
Gedam KY, Katre AN. Efficacy of Probiotic, Chlorhexidine, and Sodium Fluoride Mouthrinses on Mutans Streptococci in 8- to 12-Year-Old Children: A Crossover Randomized Trial. Lifestyle Genom 2022; 15:35-44. [PMID: 35021171 DOI: 10.1159/000519916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The oral cavity is home to a diverse and distinct microbiome. While the role of oral bacteria in cariogenic and other dental diseases is irrefutable, their beneficial effects in the form of probiotics (PB) has been less studied, especially pertaining to oral diseases in children. This study compares the efficacy of a PB mouthrinse with 0.12% chlorhexidine (CHX) and 0.05% sodium fluoride (NaF) mouthrinse on the colony counts of mutans streptococci (MS) in children. METHODS A triple-blind crossover randomized trial between interventional groups was planned. Fifty-one children between 8 to 12 years of age were divided into three groups (I, II, and III) and were exposed to all three mouthrinses (A, B, and C) by randomized allocation for a period of two weeks with an inter-phase washout period of four weeks. Pre- and post-interventional MS counts (CFU/mL) were assessed, and the mean change was analysed using the t test (intragroup) and ANOVA (intergroup and crossover). RESULTS The mean changes in the colony counts obtained with the use of PB, CHX, and NaF mouthrinses were -1.0223 (-1.2201 to -0.8246), -0.9564 (-1.1503 to -0.7626), and -0.9511 (-1.1554 to -0.7467), respectively, which were statistically significant (p < 0.0001). However, the intergroup comparison for the mean change in colony counts revealed no statistically significant differences (p > 0.05). CONCLUSION The study concluded that the PB mouthrinse was equally efficacious as compared to CHX and NaF mouthrinses against MS in 8- to 12-year-old children. However, further studies are recommended to strengthen the evidence.
Collapse
Affiliation(s)
- Krutika Y Gedam
- Department of Pediatric and Preventive Dentistry, YMT Dental College and Hospital, Navi Mumbai, India
| | - Amar N Katre
- Department of Pediatric and Preventive Dentistry, YMT Dental College and Hospital, Navi Mumbai, India
| |
Collapse
|
18
|
Yang S, Zhang J, Yang R, Xu X. Small Molecule Compounds, A Novel Strategy against Streptococcus mutans. Pathogens 2021; 10:pathogens10121540. [PMID: 34959495 PMCID: PMC8708136 DOI: 10.3390/pathogens10121540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries, as a common oral infectious disease, is a worldwide public health issue. Oral biofilms are the main cause of dental caries. Streptococcus mutans (S. mutans) is well recognized as the major causative factor of dental caries within oral biofilms. In addition to mechanical removal such as tooth brushing and flossing, the topical application of antimicrobial agents is necessarily adjuvant to the control of caries particularly for high-risk populations. The mainstay antimicrobial agents for caries such as chlorhexidine have limitations including taste confusions, mucosal soreness, tooth discoloration, and disruption of an oral microbial equilibrium. Antimicrobial small molecules are promising in the control of S. mutans due to good antimicrobial activity, good selectivity, and low toxicity. In this paper, we discussed the application of antimicrobial small molecules to the control of S. mutans, with a particular focus on the identification and development of active compounds and their modes of action against the growth and virulence of S. mutans.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (R.Y.); (X.X.)
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (R.Y.); (X.X.)
| |
Collapse
|
19
|
Tolpeznikaite E, Bartkevics V, Ruzauskas M, Pilkaityte R, Viskelis P, Urbonaviciene D, Zavistanaviciute P, Zokaityte E, Ruibys R, Bartkiene E. Characterization of Macro- and Microalgae Extracts Bioactive Compounds and Micro- and Macroelements Transition from Algae to Extract. Foods 2021; 10:2226. [PMID: 34574335 PMCID: PMC8471643 DOI: 10.3390/foods10092226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate the characteristics of macroalgae (Cladophora rupestris, Furcellaria lumbricalis, Ulva intestinalis) and microalgae (Arthrospira platensis (Sp1, Sp2), Chlorella vulgaris) extracts, including micro- and macroelement transition to extract, antioxidant, antimicrobial properties, the concentrations of chlorophyll (-a, -b), and the total carotenoid concentration (TCC). In macroalgae, the highest TCC and chlorophyll content were found in C. rupestris. In microalgae, the TCC was 10.1-times higher in C. vulgaris than in Sp1, Sp2; however, the chlorophyll contents in C. vulgaris samples were lower. A moderate negative correlation was found between the chlorophyll-a and TCC contents (r = -0.4644). In macroalgae extract samples, C. rupestris and F. lumbricalis showed the highest total phenolic compound content (TPCC). DPPH antioxidant activity and TPCC in microalgae was related to the TCC (r = 0.6191, r = 0.6439, respectively). Sp2 extracts inhibited Staphylococcus haemolyticus; C. rupestris, F. lumbricalis, U. intestinalis, and Sp2 extracts inhibited Bacillus subtilis; and U. intestinalis extracts inhibited Streptococcus mutans strains. This study showed that extraction is a suitable technology for toxic metal decontamination in algae; however, some of the desirable microelements are reduced during the extraction, and only the final products, could be applied in food, feed, and others.
Collapse
Affiliation(s)
- Ernesta Tolpeznikaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes iela 3, Zemgales priekšpilsēta, LV-1076 Riga, Latvia;
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Renata Pilkaityte
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipėda, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania; (P.V.); (D.U.)
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania; (P.V.); (D.U.)
| | - Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Egle Zokaityte
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, K. Donelaicio Str. 58, LT-44244 Kaunas, Lithuania;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
20
|
Trans-Cinnamaldehyde Attenuates Enterococcus faecalis Virulence and Inhibits Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10060702. [PMID: 34208134 PMCID: PMC8230787 DOI: 10.3390/antibiotics10060702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Enterococcus faecalis as an important nosocomial pathogen is critically implicated in the pathogenesis of endocarditis, urinary tract, and persistent root canal infections. Its major virulence attributes (biofilm formation, production of proteases, and hemolytic toxins) enable it to cause extensive host tissue damage. With the alarming increase in enterococcal resistance to antibiotics, novel therapeutics are required to inhibit E. faecalis biofilm formation and virulence. Trans-cinnamaldehyde (TC), the main phytochemical in cinnamon essential oils, has demonstrated promising activity against a wide range of pathogens. Here, we comprehensively investigated the effect of TC on planktonic growth, biofilm formation, proteolytic and hemolytic activities, as well as gene regulation in E. faecalis. Our findings revealed that sub-inhibitory concentrations of TC reduced biofilm formation, biofilm exopolysaccharides, as well as its proteolytic and hemolytic activities. Mechanistic studies revealed significant downregulation of the quorum sensing fsr locus and downstream gelE, which are major virulence regulators in E. faecalis. Taken together, our study highlights the potential of TC to inhibit E. faecalis biofilm formation and its virulence.
Collapse
|
21
|
Inhibitory effects of Lactobacillus brevis KU15153 against Streptococcus mutans KCTC 5316 causing dental caries. Microb Pathog 2021; 157:104938. [PMID: 34022360 DOI: 10.1016/j.micpath.2021.104938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/22/2023]
Abstract
This study determined the inhibitory effect of Lactobacillus brevis KU15153 against cariogenic Streptococcus mutans KCTC 5316. Antimicrobial activity, auto-aggregation, cell surface hydrophobicity, exopolysaccharides (EPS) production, biofilm formation, and morphological changes were assessed in the presence of L. brevis KU15153. L. brevis KU15153 exhibited the highest antimicrobial activity against S. mutans KCTC 5316 (28.67 ± 4.16 mm). Auto-aggregation (38.32%), cell surface hydrophobicity (27.08%), and EPS production rate (58.52%) of S. mutans KCTC 5316 slightly decreased upon treatment with L. brevis KU15153. Additionally, crystal violet stanning and scanning electron microscopy confirmed the L. brevis KU15153-mediated inhibition of biofilm formation by S. mutans KCTC 5316 in comparison to that observed in the negative control (untreated S. mutans KCTC 5316). These results indicate that the L. brevis KU15153 could be used as a potential probiotic for maintaining oral health.
Collapse
|
22
|
Elango AV, Vasudevan S, Shanmugam K, Solomon AP, Neelakantan P. Exploring the anti-caries properties of baicalin against Streptococcus mutans: an in vitro study. BIOFOULING 2021; 37:267-275. [PMID: 33719751 DOI: 10.1080/08927014.2021.1897789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant-derived molecules are excellent alternatives to antibiotics as anti-infective agents owing to their minimal cytotoxicity. Herein, the anti-infective property of the hydroxyflavone baicalin, was investigated against biofilms of the key dental caries pathogen Streptococcus mutans. Baicalin inhibited sucrose-dependent biofilm formation at a concentration of 500 µg ml-1 without affecting bacterial growth. It significantly inhibited acid production for an extended period of 8 h. Microscopic analysis revealed a 6-fold reduction in the number of adhered cells with baicalin treatment. Transcriptomic analysis of the mid-log phase and biofilm cells showed marked downregulation of the virulence genes required for biofilm formation and acid production. This study sheds significant new light on the potential for baicalin to be developed into an anti-caries agent.
Collapse
Affiliation(s)
- Arval Viji Elango
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
23
|
Vijayakumar A, Sarveswari HB, Vasudevan S, Shanmugam K, Solomon AP, Neelakantan P. Baicalein Inhibits Streptococcus mutans Biofilms and Dental Caries-Related Virulence Phenotypes. Antibiotics (Basel) 2021; 10:215. [PMID: 33670013 PMCID: PMC7926557 DOI: 10.3390/antibiotics10020215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Dental caries, the most common oral disease, is a major public healthcare burden and affects more than three billion people worldwide. The contemporary understanding of the need for a healthy microbiome and the emergence of antimicrobial resistance has resulted in an urgent need to identify compounds that curb the virulence of pathobionts without microbial killing. Through this study, we have demonstrated for the first time that 5,6,7-trihydroxyflavone (Baicalein) significantly downregulates crucial caries-related virulence phenotypes in Streptococcus mutans. Baicalein significantly inhibited biofilm formation by Streptococcus mutans UA159 (MBIC50 = 200 μM), without significant growth inhibition. Notably, these concentrations of baicalein did not affect the commensal S. gordonii. Strikingly, baicalein significantly reduced cell surface hydrophobicity, autoaggregation and acid production by S. mutans. Mechanistic studies (qRT-PCR) showed downregulation of various genes regulating biofilm formation, surface attachment, quorum sensing, acid production and competence. Finally, we demonstrate the potential translational value of baicalein by reporting synergistic interaction with fluoride against S. mutans biofilms.
Collapse
Affiliation(s)
- Aparna Vijayakumar
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India; (A.V.); (H.B.S.); (S.V.); (K.S.)
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India; (A.V.); (H.B.S.); (S.V.); (K.S.)
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India; (A.V.); (H.B.S.); (S.V.); (K.S.)
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India; (A.V.); (H.B.S.); (S.V.); (K.S.)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India; (A.V.); (H.B.S.); (S.V.); (K.S.)
| | | |
Collapse
|