1
|
Lavin KM, O'Bryan SM, Pathak KV, Garcia-Mansfield K, Graham ZA, McAdam JS, Drummer DJ, Bell MB, Kelley CJ, Lixandrão ME, Peoples B, Seay RS, Torres AR, Reiman R, Alsop E, Hutchins E, Bonfitto A, Antone J, Palade J, Van Keuren-Jensen K, Huentelman MJ, Pirrotte P, Broderick T, Bamman MM. Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable. Physiol Genomics 2025; 57:321-342. [PMID: 40014011 DOI: 10.1152/physiolgenomics.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (n = 23) and females (n = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.NEW & NOTEWORTHY This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Samia M O'Bryan
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Khyatiben V Pathak
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Krystine Garcia-Mansfield
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Zachary A Graham
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
- Birmingham VA Health Care System, Birmingham, Alabama, United States
| | - Jeremy S McAdam
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Devin J Drummer
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Margaret B Bell
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Christian J Kelley
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Manoel E Lixandrão
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Brandon Peoples
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
| | - Regina S Seay
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Anakaren R Torres
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Rebecca Reiman
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Eric Alsop
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Elizabeth Hutchins
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Anna Bonfitto
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Jerry Antone
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Joanna Palade
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | | | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Patrick Pirrotte
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Timothy Broderick
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Marcas M Bamman
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| |
Collapse
|
2
|
Jian Z, Wu H, Yan S, Li T, Zhao R, Zhao J, Zi X, Wang K, Huang Y, Gu D, Zhao S, Ge C, Jia J, Liu L, Xu Z, Dou T. Species and functional composition of cecal microbiota and resistance gene diversity in different Yunnan native chicken breeds: A metagenomic analysis. Poult Sci 2025; 104:105138. [PMID: 40267563 DOI: 10.1016/j.psj.2025.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
The gut microbiota of chickens not only modulates host immune function and production performance through nutrient metabolism but also serves as a reservoir for antibiotic resistance genes (ARGs), whose accumulation exacerbates bacterial resistance. This study integrated 108 cecal microbiome samples from six Yunnan native chicken breeds under free-range and caged farming systems, constructing a comprehensive catalog comprising 12,715 microbial genomes. We systematically revealed the dual mechanisms by which the gut microbiota regulates host phenotypes and ARG dissemination. Metagenomic analysis demonstrated that Alistipes, Prevotella, and Spirochaeta synergistically regulate body weight and immune indices through metabolic networks, which are linked to the significant enrichment of carbohydrate-active enzymes. GH23 and GT2 presented the greatest abundance, highlighting their pivotal role in dietary fiber metabolism. A total of 1327 ARGs were identified, spanning seven resistance mechanisms dominated by antibiotic efflux and target alteration. Alistipes_sp._CAG:831 presented the highest ARG abundance and diversity, with ARG levels strongly correlated with host bacterial abundance. Metagenomic-phenotype association networks further revealed that environmental stress drives disparities in ARG enrichment by altering the microbial community structure. This study elucidates the gut microbiota-host interaction network in Yunnan native chickens and provides critical insights into ARG transmission dynamics, offering a theoretical foundation for antibiotic resistance risk assessment and sustainable poultry farming strategies.
Collapse
Affiliation(s)
- Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China; Faculty of Animal Husbandry and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, 650031, Yunnan Province, People's Republic of China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Tengchuan Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ruohan Zhao
- Faculty of Animal Husbandry and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, 650031, Yunnan Province, People's Republic of China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China; Insititute of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, Yunnan Province, People's Republic of China
| | - Xiannian Zi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Ying Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Lixian Liu
- Insititute of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, Yunnan Province, People's Republic of China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, People's Republic of China.
| |
Collapse
|
3
|
Xiong S. Gut-Microbiota-Driven Lipid Metabolism: Mechanisms and Applications in Swine Production. Metabolites 2025; 15:248. [PMID: 40278377 PMCID: PMC12029090 DOI: 10.3390/metabo15040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: The gut microbiota plays a pivotal role in host physiology through metabolite production, with lipids serving as essential biomolecules for cellular structure, metabolism, and signaling. This review aims to elucidate the interactions between gut microbiota and lipid metabolism and their implications for enhancing swine production. Methods: We systematically analyzed current literature on microbial lipid metabolism, focusing on mechanistic studies on microbiota-lipid interactions, key regulatory pathways in microbial lipid metabolism, and multi-omics evidence (metagenomic/metabolomic) from swine models. Results: This review outlines the structural and functional roles of lipids in bacterial membranes and examines the influence of gut microbiota on the metabolism of key lipid classes, including cholesterol, bile acids, choline, sphingolipids, and fatty acids. Additionally, we explore the potential applications of microbial lipid metabolism in enhancing swine production performance. Conclusions: Our analysis establishes a scientific framework for microbiota-based strategies to optimize lipid metabolism. The findings highlight potential interventions to improve livestock productivity through targeted manipulation of gut microbial communities.
Collapse
Affiliation(s)
- Shuqi Xiong
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Dakal TC, Xiao F, Bhusal CK, Sabapathy PC, Segal R, Chen J, Bai X. Lipids dysregulation in diseases: core concepts, targets and treatment strategies. Lipids Health Dis 2025; 24:61. [PMID: 39984909 PMCID: PMC11843775 DOI: 10.1186/s12944-024-02425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/30/2024] [Indexed: 02/23/2025] Open
Abstract
Lipid metabolism is a well-regulated process essential for maintaining cellular functions and energy homeostasis. Dysregulation of lipid metabolism is associated with various conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. This review explores the mechanisms underlying lipid metabolism, emphasizing the roles of key lipid species such as triglycerides, phospholipids, sphingolipids, and sterols in cellular physiology and pathophysiology. It also examines the genetic and environmental factors contributing to lipid dysregulation and the challenges of diagnosing and managing lipid-related disorders. Recent advancements in lipid-lowering therapies, including PCSK9 inhibitors, ezetimibe, bempedoic acid, and olpasiran, provide promising treatment options. However, these advancements are accompanied by challenges related to cost, accessibility, and patient adherence. The review highlights the need for personalized medicine approaches to address the interplay between genetics and environmental factors in lipid metabolism. As lipidomics and advanced diagnostic tools continue to progress, a deeper understanding of lipid-related disorders could pave the way for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, 313001, India
| | - Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Chandra Kanta Bhusal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Rakesh Segal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Xiaodong Bai
- Department of Plastic Surgery, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Arshad R, Wan J, Ai T, Yin C, Qin Y, Qin R, Liu J, Liu H. A targeted reformulation of safflower oil: Enhancing anti-inflammatory potential and market competitiveness through ω3 enrichment. Food Res Int 2025; 203:115793. [PMID: 40022324 DOI: 10.1016/j.foodres.2025.115793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
Safflower seed oil, rich in linoleic acid, has a high ω6/ω3 ratio due to its negligible ω3 content, which is potentially linked to inflammation and metabolic disorders. Despite its recognized health potential, excessive consumption of pure safflower oil can lead to adverse outcomes. To address a possible solution to solve this problem, this study optimized the ω6/ω3 ratio by blending safflower oil with ω3-rich flaxseed oil, and investigated whether the nutritional profile and health benefits of the ω3-supplemented safflower oil could be improved. Results have shown that in high-fat diet-fed mice, the optimized safflower oil significantly reduced body weight gain, fat mass, and improved glucose tolerance. The optimized safflower oil also improved the serum lipid profiles by lowering triglyceride, total cholesterol, and LDL-C levels, while reducing pro-inflammatory markers. Moreover, the adjusted ω6/ω3 ratios led to increased microbial diversity, a favorable Firmicutes/Bacteroidetes ratio, and enrichment of beneficial bacteria like Helicobacteraceae, while reducing pro-inflammatory bacteria such as Deferribacteraceae. These changes correlated with improved lipid metabolism and reduced fat accumulation. This study not only highlights a practical approach to improving safflower oil's health benefits but also provides a strategic direction for breeding programs to enhance its ω3 synthesis pathways, positioning safflower oil as a competitive and innovative alternative in the health food market.
Collapse
Affiliation(s)
- Rubab Arshad
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Jiawei Wan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Tingyang Ai
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Yonghua Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China.
| |
Collapse
|
6
|
Linder L. Naturopathic Management to Taper Off Glucagon-Like Peptide-1 Receptor Agonist Therapy in Type 2 Diabetes: A Case Report. Integr Med (Encinitas) 2025; 24:26-30. [PMID: 39896831 PMCID: PMC11778319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This case report presents a 46-year-old woman with type 2 diabetes mellitus (T2DM) who sought to discontinue glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) therapy while maintaining her weight and metabolic health. Her desire to reduce medication dependency, combined with her apprehension about potential metabolic regression following discontinuation of the drug, highlights a challenge often faced by patients managing chronic conditions, and the value of naturopathic adjunctive therapies to support these individuals in their wellness goals. This report details a comprehensive intervention strategy combining probiotics, nutrient supplementation, and lifestyle modifications to address her concerns. Over an 8-week period post-GLP-1 RAs therapy discontinuation, she maintained weight loss, improved glycemic control and lipid profile, demonstrated improvements in micronutrient levels, and experienced improvements in her quality of life. This case contributes to the growing body of evidence suggesting that targeted naturopathic interventions can play a supportive role in managing T2DM and mitigating the reliance on pharmacotherapy without compromising health outcomes.
Collapse
Affiliation(s)
- Leah Linder
- Corresponding author: Leah Linder, ND E-mail:
| |
Collapse
|
7
|
Alexandrescu L, Suceveanu AP, Stanigut AM, Tofolean DE, Axelerad AD, Iordache IE, Herlo A, Nelson Twakor A, Nicoara AD, Tocia C, Dumitru A, Dumitru E, Condur LM, Aftenie CF, Tofolean IT. Intestinal Insights: The Gut Microbiome's Role in Atherosclerotic Disease: A Narrative Review. Microorganisms 2024; 12:2341. [PMID: 39597729 PMCID: PMC11596410 DOI: 10.3390/microorganisms12112341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances have highlighted the gut microbiota as a significant contributor to the development and progression of atherosclerosis, which is an inflammatory cardiovascular disease (CVD) characterized by plaque buildup within arterial walls. The gut microbiota, consisting of a diverse collection of microorganisms, impacts the host's metabolism, immune responses, and lipid processing, all of which contribute to atherosclerosis. This review explores the complex mechanisms through which gut dysbiosis promotes atherogenesis. We emphasize the potential of integrating microbiota modulation with traditional cardiovascular care, offering a holistic approach to managing atherosclerosis. Important pathways involve the translocation of inflammatory microbial components, modulation of lipid metabolism through metabolites such as trimethylamine-N-oxide (TMAO), and the production of short-chain fatty acids (SCFAs) that influence vascular health. Studies reveal distinct microbial profiles in atherosclerosis patients, with increased pathogenic bacteria (Megamonas, Veillonella, Streptococcus) and reduced anti-inflammatory genera (Bifidobacterium, Roseburia), highlighting the potential of these profiles as biomarkers and therapeutic targets. Probiotics are live microorganisms that have health benefits on the host. Prebiotics are non-digestible dietary fibers that stimulate the growth and activity of beneficial gut bacteria. Interventions targeting microbiota, such as probiotics, prebiotics, dietary modifications, and faecal microbiota transplantation (FMT), present effective approaches for restoring microbial equilibrium and justifying cardiovascular risk. Future research should focus on longitudinal, multi-omics studies to clarify causal links and refine therapeutic applications.
Collapse
Affiliation(s)
- Luana Alexandrescu
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Adrian Paul Suceveanu
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Alina Mihaela Stanigut
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
- Nephrology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Doina Ecaterina Tofolean
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
- Pneumology Department, Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Ani Docu Axelerad
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Ionut Eduard Iordache
- Department of General Surgery, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Alexandra Herlo
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Andreea Nelson Twakor
- Internal Medicine Department, Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Alina Doina Nicoara
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
- Internal Medicine Department, Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Cristina Tocia
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Andrei Dumitru
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
| | - Eugen Dumitru
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
- Academy of Romanian Scientist, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Laura Maria Condur
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Cristian Florentin Aftenie
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Ioan Tiberiu Tofolean
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| |
Collapse
|
8
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Piccioni A, Spagnuolo F, Candelli M, Voza A, Covino M, Gasbarrini A, Franceschi F. The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy. J Clin Med 2024; 13:6082. [PMID: 39458032 PMCID: PMC11508704 DOI: 10.3390/jcm13206082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Sepsis is a complex clinical syndrome characterized by an uncontrolled inflammatory response to an infection that may result in septic shock and death. Recent research has revealed a crucial link between sepsis and alterations in the gut microbiota, showing that the microbiome could serve an essential function in its pathogenesis and prognosis. In sepsis, the gut microbiota undergoes significant dysbiosis, transitioning from a beneficial commensal flora to a predominance of pathobionts. This transformation can lead to a dysfunction of the intestinal barrier, compromising the host's immune response, which contributes to the severity of the disease. The gut microbiota is an intricate system of protozoa, fungi, bacteria, and viruses that are essential for maintaining immunity and metabolic balance. In sepsis, there is a reduction in microbial heterogeneity and a predominance of pathogenic bacteria, such as proteobacteria, which can exacerbate inflammation and negatively influence clinical outcomes. Microbial compounds, such as short-chain fatty acids (SCFAs), perform a crucial task in modulating the inflammatory response and maintaining intestinal barrier function. However, the role of other microbiota components, such as viruses and fungi, in sepsis remains unclear. Innovative therapeutic strategies aim to modulate the gut microbiota to improve the management of sepsis. These include selective digestive decontamination (SDD), probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT), all of which have shown potential, although variable, results. The future of sepsis management could benefit greatly from personalized treatment based on the microbiota. Rapid and easy-to-implement tests to assess microbiome profiles and metabolites associated with sepsis could revolutionize the disease's diagnosis and management. These approaches could not only improve patient prognosis but also reduce dependence on antibiotic therapies and promote more targeted and sustainable treatment strategies. Nevertheless, there is still limited clarity regarding the ideal composition of the microbiota, which should be further characterized in the near future. Similarly, the benefits of therapeutic approaches should be validated through additional studies.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Fabio Spagnuolo
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Antonio Voza
- Department of Emergency Medicine, IRCCS-Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Medical and Surgical Science Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
10
|
Losa M, Morsy Y, Emmenegger M, Manz SM, Schwarz P, Aguzzi A, Scharl M. Longitudinal microbiome investigation throughout prion disease course reveals pre- and symptomatic compositional perturbations linked to short-chain fatty acid metabolism and cognitive impairment in mice. Front Microbiol 2024; 15:1412765. [PMID: 38919500 PMCID: PMC11196846 DOI: 10.3389/fmicb.2024.1412765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Commensal intestinal bacteria shape our microbiome and have decisive roles in preserving host metabolic and immune homeostasis. They conspicuously impact disease development and progression, including amyloid-beta (Aβ) and alpha (α)-synuclein pathology in neurodegenerative diseases, conveying the importance of the brain-gut-microbiome axis in such conditions. However, little is known about the longitudinal microbiome landscape and its potential clinical implications in other protein misfolding disorders, such as prion disease. We investigated the microbiome architecture throughout prion disease course in mice. Fecal specimens were assessed by 16S ribosomal RNA sequencing. We report a temporal microbiome signature in prion disease and uncovered alterations in Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, and Muribaculaceae family members in this disease. Moreover, we determined the enrichment of Bilophila, a microorganism connected to cognitive impairment, long before the clinical manifestation of disease symptoms. Based on temporal microbial abundances, several associated metabolic pathways and resulting metabolites, including short-chain fatty acids, were linked to the disease. We propose that neuroinflammatory processes relate to perturbations of the intestinal microbiome and metabolic state by an interorgan brain-gut crosstalk. Furthermore, we describe biomarkers possibly suitable for early disease diagnostics and anti-prion therapy monitoring. While our study is confined to prion disease, our discoveries might be of equivalent relevance in other proteinopathies and central nervous system pathologies.
Collapse
Affiliation(s)
- Marco Losa
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
- Institute of Clinical Immunology, University Hospital Basel, Basel, Switzerland
| | - Salomon M. Manz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| |
Collapse
|
11
|
Kandalgaonkar MR, Kumar V, Vijay‐Kumar M. Digestive dynamics: Unveiling interplay between the gut microbiota and the liver in macronutrient metabolism and hepatic metabolic health. Physiol Rep 2024; 12:e16114. [PMID: 38886098 PMCID: PMC11182692 DOI: 10.14814/phy2.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Although the liver is the largest metabolic organ in the body, it is not alone in functionality and is assisted by "an organ inside an organ," the gut microbiota. This review attempts to shed light on the partnership between the liver and the gut microbiota in the metabolism of macronutrients (i.e., proteins, carbohydrates, and lipids). All nutrients absorbed by the small intestines are delivered to the liver for further metabolism. Undigested food that enters the colon is metabolized further by the gut microbiota that produces secondary metabolites, which are absorbed into portal circulation and reach the liver. These microbiota-derived metabolites and co-metabolites include ammonia, hydrogen sulfide, short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. Further, the liver produces several compounds, such as bile acids that can alter the gut microbial composition, which can in turn influence liver health. This review focuses on the metabolism of these microbiota metabolites and their influence on host physiology. Furthermore, the review briefly delineates the effect of the portosystemic shunt on the gut microbiota-liver axis, and current understanding of the treatments to target the gut microbiota-liver axis.
Collapse
Affiliation(s)
- Mrunmayee R. Kandalgaonkar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Virender Kumar
- College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - Matam Vijay‐Kumar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
12
|
Feng X, Guo M, Li J, Shen Z, Mo F, Tian Y, Wang B, Wang C. The structural characterization of a novel Chinese yam polysaccharide and its hypolipidemic activity in HFD-induced obese C57BL/6J mice. Int J Biol Macromol 2024; 265:130521. [PMID: 38553396 DOI: 10.1016/j.ijbiomac.2024.130521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Obesity was considered as a rapidly growing chronic disease that influences human health worldwide. In this study, we investigated the primary structure characteristics of Chinese yam polysaccharide (CYP) and its role in regulating lipid metabolism in a high-fat diet (HFD)-fed obese mice. The molecular weight of CYP was determined to be 3.16 × 103 kDa. Periodic acid oxidation & smith degradation and nuclear magnetic resonance results suggested that CYP consists of 1 → 2, 1 → 2, 6, 1 → 4, 1 → 4, 6, 1→, or 1 → 6 glycoside bonds. The in vivo experiment results suggested that the biochemical indices, tissue sections, and protein regulation associated with lipid metabolism were changed after administering CYP in obese mice. In addition, the abundances of short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014 were increased, and the abundances of bacteria Desulfovibrionaceae and Ruminococcus and metabolites of arginine, propionylcarnitine, and alloisoleucine were decreased after CYP intervention in obese mice. Spearman's correlation analysis of intestinal flora, metabolites, and lipid metabolism parameters showed that CYP may affect lipid metabolism in obese mice by regulating the intestinal environment. Therefore, CYP may be used as a promising nutritional intervention agent for lipid metabolism.
Collapse
Affiliation(s)
- Xiaojuan Feng
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Mingzhu Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jingyao Li
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Zhanyu Shen
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Fanghua Mo
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yutong Tian
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Binghui Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Chunling Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
13
|
Cooper K, Clarke M, Clayton JB. Informatics for your Gut: at the Interface of Nutrition, the Microbiome, and Technology. Yearb Med Inform 2023; 32:89-98. [PMID: 37414029 PMCID: PMC10751132 DOI: 10.1055/s-0043-1768723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND A significant portion of individuals in the United States and worldwide experience diseases related to or driven by diet. As research surrounding user-centered design and the microbiome grows, movement of the spectrum of translational science from bench to bedside for improvement of human health through nutrition becomes more accessible. In this literature survey, we examined recent literature examining informatics research at the interface of nutrition and the microbiome. OBJECTIVES The objective of this survey was to synthesize recent literature describing how technology is being applied to understand health at the interface of nutrition and the microbiome focusing on the perspective of the consumer. METHODS A survey of the literature published between January 1, 2021 and October 10, 2022 was performed using the PubMed database and resulting literature was evaluated against inclusion and exclusion criteria. RESULTS A total of 139 papers were retrieved and evaluated against inclusion and exclusion criteria. After evaluation, 45 papers were reviewed in depth revealing four major themes: (1) microbiome and diet, (2) usability,(3) reproducibility and rigor, and (4) precision medicine and precision nutrition. CONCLUSIONS A review of the relationships between current literature on technology, nutrition and the microbiome, and self-management of dietary patterns was performed. Major themes that emerged from this survey revealed exciting new horizons for consumer management of diet and disease, as well as progress towards elucidating the relationship between diet, the microbiome, and health outcomes. The survey revealed continuing interest in the study of diet-related disease and the microbiome and acknowledgement of needs for data re-use, sharing, and unbiased and rigorous measurement of the microbiome. The literature also showed trends toward enhancing the usability of digital interventions to support consumer health and home management, and consensus building around how precision medicine and precision nutrition may be applied in the future to improve human health outcomes and prevent diet-related disease.
Collapse
Affiliation(s)
- Kate Cooper
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Martina Clarke
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, NE, USA
| |
Collapse
|
14
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Marascio N, Scarlata GGM, Romeo F, Cicino C, Trecarichi EM, Quirino A, Torti C, Matera G, Russo A. The Role of Gut Microbiota in the Clinical Outcome of Septic Patients: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:ijms24119307. [PMID: 37298258 DOI: 10.3390/ijms24119307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sepsis is a life-threatening multiple-organ dysfunction caused by a dysregulated host response to infection, with high mortality worldwide; 11 million deaths per year are attributable to sepsis in high-income countries. Several research groups have reported that septic patients display a dysbiotic gut microbiota, often related to high mortality. Based on current knowledge, in this narrative review, we revised original articles, clinical trials, and pilot studies to evaluate the beneficial effect of gut microbiota manipulation in clinical practice, starting from an early diagnosis of sepsis and an in-depth analysis of gut microbiota.
Collapse
Affiliation(s)
- Nadia Marascio
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giuseppe Guido Maria Scarlata
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Francesco Romeo
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Claudia Cicino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Alessandro Russo
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| |
Collapse
|