1
|
Pacheco-Castillo NC, Gómez-Montalvo J, Olivares-Illana V, Recillas-Targa F, Tokar EJ, Avendaño-Vázquez SE, Escudero-Lourdes C. Inorganic Arsenic Induces Elevated p53 Levels with Altered Functionality Impacting the Expression of Toll-like Receptor 3 and Other Target Genes in Immortalized Prostate Epithelial Cells. Int J Mol Sci 2025; 26:4253. [PMID: 40362489 PMCID: PMC12072582 DOI: 10.3390/ijms26094253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Prostate cancer (PCa) is a major global health concern, particularly in advanced stages where chemotherapy resistance and androgen-independent tumor growth reduce survival rates to below 30%. Toll-like receptor 3 (TLR3), regulated by tumor suppressor p53, is a promising therapeutic target due to its role in tumor cell apoptosis. However, chronic exposure to inorganic arsenic (iAs), a known carcinogen, has been linked to PCa progression and reduced TLR3 expression and activation by polyinosinic/polycytidylic acid (Poly(I/C)), a synthetic ligand used in PCa immunotherapy. Here, we demonstrate that chronic sodium arsenite (NaAsO) exposure increases p53 transcript and protein levels in immortalized prostate epithelial cells. Despite this, key p53 target genes, including TLR3, CDKN1A, and BAX, were significantly downregulated, indicating a transcriptionally inactive p53. Chromatin immunoprecipitation (ChIP) confirmed diminished p53 binding to TLR3 and CDKN1A promoters, while sequencing ruled out TP53 mutations. A bioinformatic analysis revealed elevated TP53 but reduced TLR3 and CDKN1A in prostate adenocarcinoma, suggesting that iAs-induced oxidative stress disrupts p53 function. These findings reveal a novel mechanism by which iAs promotes PCa progression through impaired p53 activity, highlighting the need to explore post-translational and epigenetic factors affecting p53. Restoring p53 transcriptional activity may offer a therapeutic strategy for PCa patients exposed to NaAsO.
Collapse
Affiliation(s)
- Nancy C. Pacheco-Castillo
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico;
| | - Jesús Gómez-Montalvo
- Consorcio de RNA, Laboratorio de Metabolismo de RNA Largos y Medicina Molecular, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico;
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico;
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Erik J. Tokar
- Stem Cell Toxicology Group, Division of Translational Toxicology, National Institute of Environmental Health Science, Durham, NC 27709, USA;
| | - S. Eréndira Avendaño-Vázquez
- Consorcio de RNA, Laboratorio de Metabolismo de RNA Largos y Medicina Molecular, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico;
| | - Claudia Escudero-Lourdes
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico;
| |
Collapse
|
2
|
Wei G, Zhang X, Liu S, Hou W, Dai Z. Comprehensive data mining reveals RTK/RAS signaling pathway as a promoter of prostate cancer lineage plasticity through transcription factors and CNV. Sci Rep 2024; 14:11688. [PMID: 38778150 PMCID: PMC11111877 DOI: 10.1038/s41598-024-62256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer lineage plasticity is a key driver in the transition to neuroendocrine prostate cancer (NEPC), and the RTK/RAS signaling pathway is a well-established cancer pathway. Nevertheless, the comprehensive link between the RTK/RAS signaling pathway and lineage plasticity has received limited investigation. In particular, the intricate regulatory network governing the interplay between RTK/RAS and lineage plasticity remains largely unexplored. The multi-omics data were clustered with the coefficient of argument and neighbor joining algorithm. Subsequently, the clustered results were analyzed utilizing the GSEA, gene sets related to stemness, multi-lineage state datasets, and canonical cancer pathway gene sets. Finally, a comprehensive exploration of the data based on the ssGSEA, WGCNA, GSEA, VIPER, prostate cancer scRNA-seq data, and the GPSAdb database was conducted. Among the six modules in the clustering results, there are 300 overlapping genes, including 3 previously unreported prostate cancer genes that were validated to be upregulated in prostate cancer through RT-qPCR. Function Module 6 shows a positive correlation with prostate cancer cell stemness, multi-lineage states, and the RTK/RAS signaling pathway. Additionally, the 19 leading-edge genes of the RTK/RAS signaling pathway promote prostate cancer lineage plasticity through a complex network of transcriptional regulation and copy number variations. In the transcriptional regulation network, TP63 and FOXO1 act as suppressors of prostate cancer lineage plasticity, whereas RORC exerts a promoting effect. This study provides a comprehensive perspective on the role of the RTK/RAS pathway in prostate cancer lineage plasticity and offers new clues for the treatment of NEPC.
Collapse
Affiliation(s)
- Guanyun Wei
- Co-Innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Xu Zhang
- Clinical Medical Research Center, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Siyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Wanxin Hou
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China
| | - Zao Dai
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China.
| |
Collapse
|
3
|
Liu Y, Zhou Q, Ye F, Yang C, Jiang H. Gut microbiota-derived short-chain fatty acids promote prostate cancer progression via inducing cancer cell autophagy and M2 macrophage polarization. Neoplasia 2023; 43:100928. [PMID: 37579688 PMCID: PMC10429288 DOI: 10.1016/j.neo.2023.100928] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
We have previously demonstrated abnormal gut microbial composition in castration-resistant prostate cancer (CRPC) patients, here we revealed the mechanism of gut microbiota-derived short-chain fatty acids (SCFAs) as a mediator linking CRPC microbiota dysbiosis and prostate cancer (PCa) progression. By using transgenic TRAMP mouse model, PCa patient samples, in vitro PCa cell transwell and macrophage recruitment assays, we examined the effects of CRPC fecal microbiota transplantation (FMT) and SCFAs on PCa progression. Our results showed that FMT with CRPC patients' fecal suspension increased SCFAs-producing gut microbiotas such as Ruminococcus, Alistipes, Phascolarctobaterium in TRAMP mice, and correspondingly raised their gut SCFAs (acetate and butyrate) levels. CRPC FMT or SCFAs supplementation significantly accelerated mice's PCa progression. In vitro, SCFAs enhanced PCa cells migration and invasion by inducing TLR3-triggered autophagy that further activated NF-κB and MAPK signalings. Meanwhile, autophagy of PCa cells released higher level of chemokine CCL20 that could reprogramme the tumor microenvironment by recruiting more macrophage infiltration and simultaneously polarizing them into M2 type, which in turn further strengthened PCa cells invasiveness. Finally in a cohort of 362 PCa patients, we demonstrated that CCL20 expression in prostate tissue was positively correlated with Gleason grade, pre-operative PSA, neural/seminal vesical invasion, and was negatively correlated with post-operative biochemical recurrence-free survival. Collectively, CRPC gut microbiota-derived SCFAs promoted PCa progression via inducing cancer cell autophagy and M2 macrophage polarization. CCL20 could become a biomarker for prediction of prognosis in PCa patients. Intervention of SCFAs-producing microbiotas may be a useful strategy in manipulation of CRPC.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China.
| | - Quan Zhou
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Chen Yang
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
4
|
Adinew GM, Messeha S, Taka E, Ahmed SA, Soliman KFA. The Role of Apoptotic Genes and Protein-Protein Interactions in Triple-negative Breast Cancer. Cancer Genomics Proteomics 2023; 20:247-272. [PMID: 37093683 PMCID: PMC10148064 DOI: 10.21873/cgp.20379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND/AIM Compared to other breast cancer types, triple-negative breast cancer (TNBC) has historically had few treatment alternatives. Therefore, exploring and pinpointing potentially implicated genes could be used for treating and managing TNBC. By doing this, we will provide essential data to comprehend how the genes are involved in the apoptotic pathways of the cancer cells to identify potential therapeutic targets. Analysis of a single genetic alteration may not reveal the pathogenicity driving TNBC due to the high genomic complexity and heterogeneity of TNBC. Therefore, searching through a large variety of gene interactions enabled the identification of molecular therapeutic genes. MATERIALS AND METHODS This study used integrated bioinformatics methods such as UALCAN, TNM plotter, PANTHER, GO-KEEG and PPIs to assess the gene expression, protein-protein interaction (PPI), and transcription factor interaction of apoptosis-regulated genes. RESULTS Compared to normal breast tissue, gene expressions of BNIP3, TNFRSF10B, MCL1, and CASP4 were downregulated in UALCAN. At the same time, BIK, AKT1, BAD, FADD, DIABLO, and CASP9 was down-regulated in bc-GeneExMiner v4.5 mRNA expression (BCGM) databases. Based on GO term enrichment analysis, the cellular process (GO:0009987), which has about 21 apoptosis-regulated genes, is the top category in the biological processes (BP), followed by biological regulation (GO:0065007). We identified 29 differentially regulated pathways, including the p53 pathway, angiogenesis, apoptosis signaling pathway, and the Alzheimer's disease presenilin pathway. We examined the PPIs between the genes that regulate apoptosis; CASP3 and CASP9 interact with FADD, MCL1, TNF, TNFRSRF10A, and TNFRSF10; additionally, CASP3 significantly forms PPIs with CASP9, DFFA, and TP53, and CASP9 with DIABLO. In the top 10 transcription factors, the androgen receptor (AR) interacts with five apoptosis-regulated genes (p<0.0001; q<0.01), followed by retinoic acid receptor alpha (RARA) (p<0.0001; q<0.01) and ring finger protein (RNF2) (p<0.0001; q<0.01). Overall, the gene expression profile, PPIs, and the apoptosis-TF interaction findings suggest that the 27 apoptosis-regulated genes might be used as promising targets in treating and managing TNBC. Furthermore, from a total of 27 key genes, CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were significantly correlated with poor overall survival in TNBC (p-value <0.05); they could play important roles in the progression of TNBC and provide attractive therapeutic targets that may offer new candidate molecules for targeted therapy. CONCLUSION Our findings demonstrate that CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were substantially associated with the overall survival rate (OS) difference of TNBC patients out of a total of 27 specific genes used in this study, which may play crucial roles in the development of TNBC and offer promising therapeutic interventions.
Collapse
Affiliation(s)
- Getinet M Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shade A Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
5
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Muresan XM, Slabáková E, Procházková J, Drápela S, Fedr R, Pícková M, Vacek O, Víchová R, Suchánková T, Bouchal J, Kürfürstová D, Král M, Hulínová T, Sýkora RP, Študent V, Hejret V, van Weerden WM, Puhr M, Pustka V, Potěšil D, Zdráhal Z, Culig Z, Souček K. Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1321-1335. [PMID: 35750257 DOI: 10.1016/j.ajpath.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023]
Abstract
Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and described its role mainly in the proinflammatory response and induction of apoptosis. It has been found up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. We have experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to the significant induction of secretion of the cytokines IL-6, IL-8, and interferon-β, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. We conclude that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ximena M Muresan
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Eva Slabáková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Stanislav Drápela
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Markéta Pícková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ráchel Víchová
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Tereza Suchánková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | | | - Milan Král
- Department of Urology, University Hospital, Olomouc, Czech Republic
| | - Tereza Hulínová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, University Hospital, Ostrava, Czech Republic
| | - Radek P Sýkora
- Department of Urology, University Hospital, Ostrava, Czech Republic
| | - Vladimír Študent
- Department of Urology, University Hospital, Olomouc, Czech Republic
| | - Václav Hejret
- Bioinformatics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Puhr
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Václav Pustka
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - David Potěšil
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Zbyněk Zdráhal
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Zoran Culig
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Microbial-Derived Toll-like Receptor Agonism in Cancer Treatment and Progression. Cancers (Basel) 2022; 14:cancers14122923. [PMID: 35740589 PMCID: PMC9221178 DOI: 10.3390/cancers14122923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Toll like receptors (TLRs) are a group of transmembrane receptors belonging to the class of pattern recognition receptors (PRR), which are involved in recognition of pathogen associated molecular patterns (PAMPs), inducing immune response. During the past decade, a number of preclinical and clinical breakthroughs in the field of TLR agonists has immerged in cancer research and some of these agents have performed exceptionally well in clinical trials. Based on evidence from scientific studies, we draw attention to several microbial based TLR agonists and discuss their relevance in various cancer and explore various microbial based TLR agonists for developing effective immunotherapeutic strategies against cancer. Abstract Toll-like receptors (TLRs) are typical transmembrane proteins, which are essential pattern recognition receptors in mediating the effects of innate immunity. TLRs recognize structurally conserved molecules derived from microbes and damage-associated molecular pattern molecules that play an important role in inflammation. Since the first discovery of the Toll receptor by the team of J. Hoffmann in 1996, in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. TLR stimulation leads to NF-κB activation and the subsequent production of pro-inflammatory cytokines and chemokines, growth factors and anti-apoptotic proteins. The expression of TLRs has also been observed in many tumors, and their stimulation results in tumor progression or regression, depending on the TLR and tumor type. The anti-tumoral effects can result from the activation of anti-tumoral immune responses and/or the direct induction of tumor cell death. The pro-tumoral effects may be due to inducing tumor cell survival and proliferation or by acting on suppressive or inflammatory immune cells in the tumor microenvironment. The aim of this review is to draw attention to the effects of TLR stimulation in cancer, the activation of various TLRs by microbes in different types of tumors, and, finally, the role of TLRs in anti-cancer immunity and tumor rejection.
Collapse
|
8
|
Bai Z, Xu F, Feng X, Wu Y, Lv J, Shi Y, Pei H. Pyroptosis regulators exert crucial functions in prognosis, progression and immune microenvironment of pancreatic adenocarcinoma: a bioinformatic and in vitro research. Bioengineered 2022; 13:1717-1735. [PMID: 35000541 PMCID: PMC8805829 DOI: 10.1080/21655979.2021.2019873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Pyroptosis is an inflammatory programmed cell death, showing potentials to be a novel anti-cancer approach. However, the roles of pyroptosis-related (PR) genes (PRGs) in pancreatic adenocarcinoma (PAAD) remain elusive. In the present study, we constructed a novel PR risk signature through the lasso regression analysis. The risk signature was greatly conducive to PAAD prognostic assessment. PR risk score was identified as an independent prognostic factor and could distinguish the prognostic differences of most clinical subgroups. Meanwhile, it could improve the traditional prognostic models based on TNM-staging. Next, its prognostic value was also tested in five validation cohorts. Using CIBERSORT, ESTIMATE, and ssGSEA algorithms, the effects of PR risk signature on tumor immune microenvironment (TIM) were explored. High PR risk suppressed antitumor immune through decreasing the infiltrating levels of CD8 T and NK cells. The genomic information and histological expression of risk PRGs were uncovered by USCA and HPA databases. Somatic mutation, methylation alteration, and homozygous CNV of eight PRGs barely occurred in PAAD samples. As for therapeutic correlation, PR risk score may not predict the efficacy of PD-1/L1 inhibitors and was weakly associated with multiple drug susceptibilities. Finally, the biofunctions of toll like receptor 3 (TLR3) in pancreatic cancer (PC) cells were investigated through qPCR, MTT, colony formation, and Transwell assays. Overexpression of TLR3 could promote the proliferation, migration, and invasion of PC cells. In conclusion, PRGs play crucial roles in prognosis, progression, and immune microenvironment of PAAD. TLR3 is expected to be a promising therapeutic target.
Collapse
Affiliation(s)
- Zhenghai Bai
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Fangshi Xu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Department of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xiaodan Feng
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yuan Wu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Junhua Lv
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yu Shi
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Honghong Pei
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
9
|
Durślewicz J, Klimaszewska-Wiśniewska A, Jóźwicki J, Antosik P, Smolińska-Świtała M, Gagat M, Kowalewski A, Grzanka D. Prognostic Significance of TLR2, SMAD3 and Localization-dependent SATB1 in Stage I and II Non-Small-Cell Lung Cancer Patients. Cancer Control 2021; 28:10732748211056697. [PMID: 34818944 PMCID: PMC8640983 DOI: 10.1177/10732748211056697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aimed to explore the prognostic value of SATB1, SMAD3, and TLR2 expression in non-small-cell lung carcinoma patients with clinical stages I-II. To investigate, we evaluated immunohistochemical staining to each of these markers using tissue sections from 69 patients from our cohort and gene expression data for The Cancer Genome Atlas (TCGA) cohort. We found that, in our cohort, high expression levels of nuclear SATB1n and SMAD3 were independent prognostic markers for better overall survival (OS) in NSCLC patients. Interestingly, expression of cytoplasmic SATB1c exhibited a significant but inverse association with survival rate, and it was an independent predictor of unfavorable prognosis. Likewise, TLR2 was a negative outcome biomarker for NSCLC even when adjusting for covariates. Importantly, stratification of NSCLCs with respect to combined expression of the three biomarkers allowed us to identify subgroups of patients with the greatest difference in duration of survival. Specifically, expression profile of SATB1n-high/SMAD3high/TLR2low was associated with the best OS, and it was superior to each single protein alone in predicting patient prognosis. Furthermore, based on the TCGA dataset, we found that overexpression of SATB1 mRNA was significantly associated with better OS, whereas high mRNA levels of SMAD3 and TLR2 with poor OS. In conclusion, the present study identified a set of proteins that may play a significant role in predicting prognosis of NSCLC patients with clinical stages I-II.
Collapse
Affiliation(s)
- Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Marta Smolińska-Świtała
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Adam Kowalewski
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland.,Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
10
|
Wu J, Leng X, Pan Z, Xu L, Zhang H. Overexpression of IRF3 Predicts Poor Prognosis in Clear Cell Renal Cell Carcinoma. Int J Gen Med 2021; 14:5675-5692. [PMID: 34557022 PMCID: PMC8454526 DOI: 10.2147/ijgm.s328225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Background Growing findings have demonstrated that interferon regulatory transcription factor (IRF) family members are linked to the progression of various cancers. However, the roles of IRFs in clear cell renal cell carcinoma (ccRCC) remain undefined. Herein, we conducted a comprehensive analysis using the bioinformatics method to evaluate the expression patterns, clinical significance, and regulation of IRFs-related mechanisms in patients with ccRCC. Methods Data from the Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGA), and Gene Expression Omnibus (GEO) databases were used for investigation comprehensively. Specifically, we carried out a series of analyses to identify the candidate IRF and to explore its potential action mechanisms using the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. What is more, we emphatically investigate the association of candidate IRF with tumor immunity in ccRCC through the CIBERSORT algorithm, TIMER and GEPIA databases. Results Herein, IRF3 was identified as candidate IRF, which was highly expressed in ccRCC, and its overexpression was significantly associated with worse clinical outcomes and adverse overall survival. Uni- and multi-variate Cox regression analysis demonstrated that IRF3 overexpression was an independent predictor of worse prognosis. Functional enrichment analysis showed that IRF3 might participate in several cancer-related biological processes and signaling pathways, thereby promoting the progression of ccRCC. Additionally, we found that IRF3 was remarkably associated with tumor-infiltrating immune cells (TIICs) and various immune-related genes. Conclusion Herein, we identified IRF3 from the IRF gene family members, which could serve as promising prognostic marker and therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Jun Wu
- Department of Urology, Naval 971 Hospital of Chinese People's Liberation Army, Qingdao City, Shandong Province, People's Republic of China
| | - Xuefeng Leng
- Department of Urology, Naval 971 Hospital of Chinese People's Liberation Army, Qingdao City, Shandong Province, People's Republic of China
| | - Zhengbo Pan
- Department of Urology, Municipal Hospital Affiliated to Taizhou University, Taizhou City, Zhejiang Province, People's Republic of China
| | - Linfei Xu
- Department of Urology, Municipal Hospital Affiliated to Taizhou University, Taizhou City, Zhejiang Province, People's Republic of China
| | - Haitao Zhang
- Department of Urology, Municipal Hospital Affiliated to Taizhou University, Taizhou City, Zhejiang Province, People's Republic of China
| |
Collapse
|
11
|
Silva MO, Almeida BS, Sales NS, Diniz MO, Aps LRMM, Rodrigues KB, Silva JR, Moreno ACR, Porchia BFMM, Sulczewski FB, Boscardin SB, Ferreira LCS. Antigen Delivery to DEC205 + Dendritic Cells Induces Immunological Memory and Protective Therapeutic Effects against HPV-Associated Tumors at Different Anatomical Sites. Int J Biol Sci 2021; 17:2944-2956. [PMID: 34345218 PMCID: PMC8326119 DOI: 10.7150/ijbs.57038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/02/2021] [Indexed: 12/27/2022] Open
Abstract
The generation of successful anticancer vaccines relies on the ability to induce efficient and long-lasting immune responses to tumor antigens. In this scenario, dendritic cells (DCs) are essential cellular components in the generation of antitumor immune responses. Thus, delivery of tumor antigens to specific DC populations represents a promising approach to enhance the efficiency of antitumor immunotherapies. In the present study, we employed antibody-antigen conjugates targeting a specific DC C-type lectin receptor. For that purpose, we genetically fused the anti-DEC205 monoclonal antibody to the type 16 human papillomavirus (HPV-16) E7 oncoprotein to create a therapeutic vaccine to treat HPV-associated tumors in syngeneic mouse tumor models. The therapeutic efficacy of the αDEC205-E7 mAb was investigated in three distinct anatomical tumor models (subcutaneous, lingual and intravaginal). The immunization regimen comprised two doses of the αDEC205-E7 mAb coadministered with a DC maturation stimulus (Polyinosinic:polycytidylic acid, poly (I:C)) as an adjuvant. The combined immunotherapy produced robust antitumor effects on both the subcutaneous and orthotopic tumor models, stimulating rapid tumor regression and long-term survival. These outcomes were related to the activation of tumor antigen-specific CD8+ T cells in both systemic compartments and lymphoid tissues. The αDEC205-E7 antibody plus poly (I:C) administration induced long-lasting immunity and controlled tumor relapses. Our results highlight that the delivery of HPV tumor antigens to DCs, particularly via the DEC205 surface receptor, is a promising therapeutic approach, providing new opportunities for the development of alternative immunotherapies for patients with HPV-associated tumors at different anatomical sites.
Collapse
Affiliation(s)
- Mariângela O Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Bianca S Almeida
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Natiely S Sales
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariana O Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana R M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Karine B Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jamile R Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana C R Moreno
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Bruna F M M Porchia
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando B Sulczewski
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Silvia B Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Luís C S Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Parra-Izquierdo I, Sánchez-Bayuela T, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, García-Rodríguez C. Clinically used JAK inhibitor blunts dsRNA-induced inflammation and calcification in aortic valve interstitial cells. FEBS J 2021; 288:6528-6542. [PMID: 34009721 DOI: 10.1111/febs.16026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 01/25/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvulopathy worldwide. Growing evidence supports a role for viral and cell-derived double-stranded (ds)-RNA in cardiovascular pathophysiology. Poly(I:C), a dsRNA surrogate, has been shown to induce inflammation, type I interferon (IFN) responses, and osteogenesis through Toll-like receptor 3 in aortic valve interstitial cells (VIC). Here, we aimed to determine whether IFN signaling via Janus kinase (JAK)/Signal transducers and activators of transcription (STAT) mediates dsRNA-induced responses in primary human VIC. Western blot, ELISA, qPCR, calcification, flow cytometry, and enzymatic assays were performed to evaluate the mechanisms of dsRNA-induced inflammation and calcification. Poly(I:C) triggered a type I IFN response characterized by IFN-regulatory factors gene upregulation, IFN-β secretion, and STAT1 activation. Additionally, Poly(I:C) promoted VIC inflammation via NF-κB and subsequent adhesion molecule expression, and cytokine secretion. Pretreatment with ruxolitinib, a clinically used JAK inhibitor, abrogated these responses. Moreover, Poly(I:C) promoted a pro-osteogenic phenotype and increased VIC calcification to a higher extent in cells from males. Inhibition of JAK with ruxolitinib or a type I IFN receptor blocking antibody blunted Poly(I:C)-induced calcification. Mechanistically, Poly(I:C) promoted VIC apoptosis in calcification medium, which was inhibited by ruxolitinib. Moreover, Poly(I:C) co-operated with IFN-γ to increase VIC calcification by synergistically activating extracellular signal-regulated kinases and hypoxia-inducible factor-1α pathways. In conclusion, JAK/STAT signaling mediates dsRNA-triggered inflammation, apoptosis, and calcification and may contribute to a positive autocrine loop in human VIC in the presence of IFN-γ. Blockade of dsRNA responses with JAK inhibitors may be a promising therapeutic avenue for CAVD.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Tania Sánchez-Bayuela
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Irene Castaños-Mollor
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Javier López
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cristina Gómez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - J Alberto San Román
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Carmen García-Rodríguez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
13
|
Dai Z, Liu P. High copy number variations, particular transcription factors, and low immunity contribute to the stemness of prostate cancer cells. J Transl Med 2021; 19:206. [PMID: 33985534 PMCID: PMC8117623 DOI: 10.1186/s12967-021-02870-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Tumor metastasis is the main cause of death of cancer patients, and cancer stem cells (CSCs) is the basis of tumor metastasis. However, systematic analysis of the stemness of prostate cancer cells is still not abundant. In this study, we explore the effective factors related to the stemness of prostate cancer cells by comprehensively mining the multi-omics data from TCGA database. Methods Based on the prostate cancer transcriptome data in TCGA, gene expression modules that strongly relate to the stemness of prostate cancer cells are obtained with WGCNA and stemness scores. Copy number variation of stemness genes of prostate cancer is calculated and the difference of transcription factors between prostate cancer and normal tissues is evaluated by using CNV (copy number variation) data and ATAC-seq data. The protein interaction network of stemness genes in prostate cancer is constructed using the STRING database. Meanwhile, the correlation between stemness genes of prostate cancer and immune cells is analyzed. Results Prostate cancer with higher Gleason grade possesses higher cell stemness. The gene set highly related to prostate cancer stemness has higher CNV in prostate cancer samples than that in normal samples. Although the transcription factors of stemness genes have similar expressions, they have different contributions between normal and prostate cancer tissues; and particular transcription factors enhance the stemness of prostate cancer, such as PUM1, CLOCK, SP1, TCF12, and so on. In addition, the lower tumor immune microenvironment is conducive to the stemness of prostate cancer. CD8 + T cells and M1 macrophages may play more important role in the stemness of prostate cancer than other immune cells in the tumor microenvironment. Finally, EZH2 is found to play a central role in stemness genes and is negatively correlated with resting mast cells and positively correlated with activated memory CD4 + T cells. Conclusions Based on the systematic and combined analysis of multi-omics data, we find that high copy number variation, specific transcription factors, and low immune microenvironment jointly contribute to the stemness of prostate cancer cells. These findings may provide us new clues and directions for the future research on stemness of prostate cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02870-x.
Collapse
Affiliation(s)
- Zao Dai
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Zheng X, Li S, Yang H. Roles of Toll-Like Receptor 3 in Human Tumors. Front Immunol 2021; 12:667454. [PMID: 33986756 PMCID: PMC8111175 DOI: 10.3389/fimmu.2021.667454] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is an important member of the TLR family, which is an important group of pathogen-associated molecular patterns. TLR3 can recognize double-stranded RNA and induce activation of NF-κB and the production of type I interferons. In addition to its immune-associated role, TLR3 has also been detected in some tumors. However TLR3 can play protumor or antitumor roles in different tumors or cell lines. Here, we review the basic signaling associated with TLR3 and the pro- or antitumor roles of TLR3 in different types of tumors and discuss the possible reasons for the opposing roles of TLR3 in tumors.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Guney Eskiler G, Ozkan AD, Eryilmaz IE, Egeli U, Cecener G. Association between the anticancer efficacy of cabazitaxel and toll-like receptor 4 mediating signaling pathways in metastatic castration-resistant prostate cancer cells. Hum Exp Toxicol 2021; 40:1122-1129. [PMID: 33380212 DOI: 10.1177/0960327120984209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND We evaluated the effect of cabazitaxel (CAB) as a third-line taxane on Toll-like receptor 4 (TLR4)-mediated signaling pathways, especially NF-κB activity, in metastatic castration-resistant prostate cancer (mCRPC) cells. METHODS CAB cytotoxicity was determined by WST-1 assay. To assess the relationship between CAB efficacy and TLR4 signaling pathways, RT-PCR, western blot and immunofluorescence analysis were performed. Additionally, CAB-mediated apoptotic cell death was assessed by Annexin V and RT-PCR analysis. RESULTS Our results demonstrated that CAB exerted considerably cytotoxic and apoptotic effects on PC-3 mCRPC cells (p < 0.05). CAB treatment altered TLR4 expression level in a dose-dependent manner. Furthermore, 1 nM CAB treatment significantly induced NF-κB activity through p65 nuclear localization and increased the expression level of caspase-3, Bax and p53. Interestingly, total apoptotic cell death and IRF3 protein levels were increased at 5 nM concentration of CAB despite a decrease in the levels of both NF-κB and pro-apoptotic genes. CONCLUSIONS Therefore, NF-κB activity may be a potential target for the efficacy of CAB in mCRPC cells.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, 175678Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, 175678Sakarya University, Sakarya, Turkey
| | - Isil Ezgi Eryilmaz
- Department of Medical Biology, Faculty of Medicine, 64048Uludag University, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, 64048Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, 64048Uludag University, Bursa, Turkey
| |
Collapse
|
16
|
Toll-Like Receptor 3 in Solid Cancer and Therapy Resistance. Cancers (Basel) 2020; 12:cancers12113227. [PMID: 33147700 PMCID: PMC7692054 DOI: 10.3390/cancers12113227] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Toll-like receptor 3 (TLR3) is a member of the TLR family, which has been extensively studied for the antiviral function and, therefore, its role in the innate and adaptive immune responses. It is highly expressed in the endosomes of antigen-presenting immune cells and epithelial cells. Several studies have demonstrated TLR3 expression in multiple neoplasia types including breast, prostate, and ovarian cancer. In this perspective, we focus on the mechanisms through which TLR3 can either lead to tumor regression or promote carcinogenesis as well as on the potential of TLR-based therapies in resistant cancer. Abstract Toll-like receptor 3 (TLR3) is a member of the TLR family, which has been extensively studied for its antiviral function. It is highly expressed in the endosomes of antigen-presenting immune cells and epithelial cells. TLR3 binds specifically double-strand RNAs (dsRNAs), leading to the activation of mainly two downstream pathways: the phosphorylation of IRF3, with subsequent production of type I interferon, and the activation of NF-κB, which drives the production of inflammatory cytokines and chemokines. Several studies have demonstrated TLR3 expression in multiple neoplasia types including breast, prostate, and lung cancer. Most studies were focused on the beneficial role of TLR3 activation in tumor cells, which leads to the production of cytotoxic cytokines and interferons and promotes caspase-dependent apoptosis. Indeed, ligands of this receptor were proposed for the treatment of cancer, also in combination with conventional chemotherapy. In contrast to these findings, recent evidence showed a link between TLR3 and tumor progression, metastasis, and therapy resistance. In the present review, we summarize the current knowledge of the mechanisms through which TLR3 can either lead to tumor regression or promote carcinogenesis as well as the potential of TLR-based therapies in resistant cancer.
Collapse
|
17
|
Ozkan AD, Sarihan M, Kaleli S. Evaluation of the Effects of Nobiletin on Toll-Like Receptor 3 Signaling Pathways in Prostate Cancer In Vitro. Nutr Cancer 2020; 73:1138-1144. [PMID: 33121290 DOI: 10.1080/01635581.2020.1841247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nobiletin as a nontoxic dietary citrus flavonoid has anticancer effects in cancer. Toll-like receptor three has a role in prostate cancer progression. However the relationship among NOB and TLR3 signaling in PCa has not been elucidated, yet. Therefore, we aimed to evaluate the effects of NOB on the activation of TLR3 signaling pathways in PCa In Vitro. PC-3, LNCaP and HUVEC cells were used for comparison of NOB-mediated TLR3 signaling pathways. After treatment with NOB and Poly I:C alone and NOB + Poly I:C, RT-PCR, western blotting and ELISA assay were performed to evaluate changes in gene and protein expression level, as well as CASP8. NOB potentially induced TLR3/IRF3 signaling pathway and the activation of TLR3/IRF3 signaling pathway by both NOB and Poly I:C was more profound in LNCaP than PC-3 cells. However, the level of TRIF protein and CASP8 decreased after both NOB and Poly I:C incubation. NOB could mediate TLR3 signaling pathways. NOB + Poly I:C could improve the activation of TLR3/IRF3 signaling pathway. However, the activation of TRIF/RIPK1/FADD signaling pathway reduced. Therefore, the elucidation of molecular mechanisms of TLR3 signaling pathways and the combination effects of NOB + Poly I:C on apoptotic cell death are further studied.
Collapse
Affiliation(s)
- Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Mehmet Sarihan
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
18
|
Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, Unno M, Sasano H, Jitkaew S. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal 2020; 18:161. [PMID: 33036630 PMCID: PMC7545934 DOI: 10.1186/s12964-020-00661-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) ligand which activates TLR3 signaling induces both cancer cell death and activates anti-tumor immunity. However, TLR3 signaling can also harbor pro-tumorigenic consequences. Therefore, we examined the status of TLR3 in cholangiocarcinoma (CCA) cases to better understand TLR3 signaling and explore the potential therapeutic target in CCA. METHODS The expression of TLR3 and receptor-interacting protein kinase 1 (RIPK1) in primary CCA tissues was assayed by Immunohistochemical staining and their associations with clinicopathological characteristics and survival data were evaluated. The effects of TLR3 ligand, Poly(I:C) and Smac mimetic, an IAP antagonist on CCA cell death and invasion were determined by cell death detection methods and Transwell invasion assay, respectively. Both genetic and pharmacological inhibition of RIPK1, RIPK3 and MLKL and inhibitors targeting NF-κB and MAPK signaling were used to investigate the underlying mechanisms. RESULTS TLR3 was significantly higher expressed in tumor than adjacent normal tissues. We demonstrated in a panel of CCA cell lines that TLR3 was frequently expressed in CCA cell lines, but was not detected in a nontumor cholangiocyte. Subsequent in vitro study demonstrated that Poly(I:C) specifically induced CCA cell death, but only when cIAPs were removed by Smac mimetic. Cell death was also switched from apoptosis to necroptosis when caspases were inhibited in CCA cells-expressing RIPK3. In addition, RIPK1 was required for Poly(I:C) and Smac mimetic-induced apoptosis and necroptosis. Of particular interest, high TLR3 or low RIPK1 status in CCA patients was associated with more invasiveness. In vitro invasion demonstrated that Poly(I:C)-induced invasion through NF-κB and MAPK signaling. Furthermore, the loss of RIPK1 enhanced Poly(I:C)-induced invasion and ERK activation in vitro. Smac mimetic also reversed Poly(I:C)-induced invasion, partly mediated by RIPK1. Finally, a subgroup of patients with high TLR3 and high RIPK1 had a trend toward longer disease-free survival (p = 0.078, 28.0 months and 10.9 months). CONCLUSION RIPK1 plays a pivotal role in TLR3 ligand, Poly(I:C)-induced cell death when cIAPs activity was inhibited and loss of RIPK1 enhanced Poly(I:C)-induced invasion which was partially reversed by Smac mimetic. Our results suggested that TLR3 ligand in combination with Smac mimetic could provide therapeutic benefits to the patients with CCA. Video abstract.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Swati Choksi
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892 USA
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Hajime Usubuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University School of Medicine, Sendai, Miyagi 98-8075 Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Siriporn Jitkaew
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
19
|
Singh A, Devkar R, Basu A. Myeloid Differentiation Primary Response 88-Cyclin D1 Signaling in Breast Cancer Cells Regulates Toll-Like Receptor 3-Mediated Cell Proliferation. Front Oncol 2020; 10:1780. [PMID: 33072559 PMCID: PMC7531238 DOI: 10.3389/fonc.2020.01780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor 3 (TLR3)-mediated apoptotic changes in cancer cells are well-documented, and hence, several synthetic ligands of TLR3 are being used for adjuvant therapy, but there are reports showing a contradictory effect of TLR3 signaling, which include our previous report that had shown cell proliferation following surface localization of TLR 3. However, the underlying mechanism of cell surface localization of TLR3 and subsequent cell proliferation lacks clarity. This study addresses the TLR3 ligand-mediated signaling cascade that regulates a proliferative effect in breast cancer cells (MDA-MB-231 and T47D) challenged with TLR3 ligand in the presence of myeloid differentiation primary response 88 (MyD88) inhibitor. Evidences were obtained using immunoblotting, coimmunoprecipitation, confocal microscopy, immunocytochemistry, ELISA, and flow cytometry. Results had revealed that TLR3 ligand treatment significantly enhanced breast cancer cell proliferation marked by an upregulated expression of cyclinD1, but the same was suppressed by the addition of MyD88 inhibitor. Also, expression of interleukin 1 receptor-associated kinase 1 (IRAK1)-TNF receptor-associated factor 6 (TRAF6)-transforming growth factor beta-activated kinase 1 (TAK1) was altered in the given TLR3-signaling pathway. Inhibition of MyD88 disrupted the downstream adaptor complex and mediated signaling through the TLR3-MyD88-NF-κB (p65)-IL-6-cyclin D1 pathway. TLR3-mediated alternative signaling of the TLR3-MyD88-IRAK1-TRAF6-TAK1-TAB1-NF-κB axis leads to upregulation of IL6 and cyclin D1. This response is hypothesized to be via the MyD88 gateway that culminates in the proliferation of breast cancer cells. Overall, this study provides first comprehensive evidence on the involvement of canonical signaling of TLR3 using MyD88-cyclin D1-mediated breast cancer cell proliferation. The findings elucidated herein will provide valuable insights into understanding the TLR3-mediated adjuvant therapy in cancer.
Collapse
Affiliation(s)
- Aradhana Singh
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, India
| |
Collapse
|
20
|
Wang Y, Liu S, Zhang Y, Yang J. Dysregulation of TLR2 Serves as a Prognostic Biomarker in Breast Cancer and Predicts Resistance to Endocrine Therapy in the Luminal B Subtype. Front Oncol 2020; 10:547. [PMID: 32426275 PMCID: PMC7203473 DOI: 10.3389/fonc.2020.00547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/26/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Breast cancer (BCa) is a serious global health burden among females, and the development of resistance represents an important challenge to BCa treatment. Here, we examined the expression of toll-like receptor 2 (TLR2) in BCa patients and the prognostic value of TLR2 for predicting endocrine resistance. Methods: The study included 150 BCa patients, of which 82 underwent endocrine therapy. TLR2 mRNA expression was measured by quantitative Real-Time PCR, and its prognostic value was determined by Kaplan-Meier survival analysis. Changes in the expression of TLR2 in BCa patients with endocrine resistance were assessed, and the value of TLR2 for predicting endocrine resistance was evaluated using the receiver operating characteristic curve analysis. Results: TLR2 expression was higher in BCa tissue than in normal tissue and associated with tumor size, HER2 status, tumor subtype, and TNM stage. TLR2 upregulation was associated with poor prognosis in patients with BCa, as well as endocrine resistance, and TLR2 upregulation was more prevalent among HER2-positive BCa cases. The predictive performance of TLR2 for endocrine resistance was higher in HER2-positive BCa than in other hormone receptor-positive BCa cases. Conclusion: TLR2 upregulation is a promising biomarker for prognosis and predicting resistance to endocrine therapy. The relationship between TLR2 and HER2 indicates that TLR2 may be involved in endocrine resistance through the HER2 signaling pathway in BCa.
Collapse
Affiliation(s)
- Yunmei Wang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Shuguang Liu
- Department of Orthopedics, HongHui Hospital, Xi'an, China
| | - Yanjun Zhang
- Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Jin Yang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Braunstein MJ, Kucharczyk J, Adams S. Targeting Toll-Like Receptors for Cancer Therapy. Target Oncol 2019; 13:583-598. [PMID: 30229471 DOI: 10.1007/s11523-018-0589-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system encompasses a broad array of defense mechanisms against foreign threats, including invading pathogens and transformed neoplastic cells. Toll-like receptors (TLRs) are critically involved in innate immunity, serving as pattern recognition receptors whose stimulation leads to additional innate and adaptive immune responses. Malignant cells exploit the natural immunomodulatory functions of TLRs, expressed mainly by infiltrating immune cells but also aberrantly by tumor cells, to foster their survival, invasion, and evasion of anti-tumor immune responses. An extensive body of research has demonstrated context-specific roles for TLR activation in different malignancies, promoting disease progression in certain instances while limiting cancer growth in others. Despite these conflicting roles, TLR agonists have established therapeutic benefits as anti-cancer agents that activate immune cells in the tumor microenvironment and facilitate the expression of cytokines that allow for infiltration of anti-tumor lymphocytes and the suppression of oncogenic signaling pathways. This review focuses on the clinical application of TLR agonists for cancer treatment. We also highlight agents that are undergoing development in clinical trials, including investigations of TLR agonists in combination with other immunotherapies.
Collapse
Affiliation(s)
- Marc J Braunstein
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - John Kucharczyk
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - Sylvia Adams
- Department of Medicine, NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, 160 East 34th Street, 4th Floor, New York, 10016, NY, USA.
| |
Collapse
|
22
|
Toll-Like Receptors as Therapeutic Targets in Central Nervous System Tumors. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5286358. [PMID: 31240216 PMCID: PMC6556293 DOI: 10.1155/2019/5286358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022]
Abstract
In recent years, progress has been made in understanding the pathological, genetic, and molecular heterogeneity of central nervous system (CNS) tumors. However, improvements in risk classification, prognosis, and treatment have not been sufficient. Currently, great importance has been placed to the tumor microenvironment and the immune system, which are very important components that influence the establishment and development of tumors. Toll-like receptors (TLRs) are innate immunite system sensors of a wide variety of molecules, such as those associated with microorganisms and danger signals. TLRs are expressed on many cells, including immune cells and nonimmune cells such as neurons and cancer cells. In the tumor microenvironment, activation of TLRs plays dual antitumoral (dendritic cells, cytotoxic T cells, and natural killer cells activation) and protumoral effects (tumor cell proliferation, survival, and resistance to chemotherapy) and constitutes an area of opportunities and challenges in the development of new therapeutic strategies. Several clinical trials have been carried out, and others are currently in process; however, the results obtained to date have been contradictory and have not led to a definitive position about the use of TLR agonists in adjuvant therapy during the treatment of central nervous system (CNS) tumors. In this review, we focus on recent advances in TLR agonists as immunotherapies for treatment of CNS tumors.
Collapse
|
23
|
Patra MC, Shah M, Choi S. Toll-like receptor-induced cytokines as immunotherapeutic targets in cancers and autoimmune diseases. Semin Cancer Biol 2019; 64:61-82. [PMID: 31054927 DOI: 10.1016/j.semcancer.2019.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Immune cells of the myeloid and lymphoid lineages express Toll-like receptors (TLRs) to recognize pathogenic components or cellular debris and activate the immune system through the secretion of cytokines. Cytokines are signaling molecules that are structurally and functionally distinct from one another, although their secretion profiles and signaling cascades often overlap. This situation gives rise to pleiotropic cell-to-cell communication pathways essential for protection from infections as well as cancers. Nonetheless, deregulated signaling can have detrimental effects on the host, in the form of inflammatory or autoimmune diseases. Because cytokines are associated with numerous autoimmune and cancerous conditions, therapeutic strategies to modulate these molecules or their biological responses have been immensely beneficial over the years. There are still challenges in the regulation of cytokine function in patients, even in those who take approved biological therapeutics. In this review, our purpose is to discuss the differential expression patterns of TLR-regulated cytokines and their cell type specificity that is associated with cancers and immune-system-related diseases. In addition, we highlight key structural features and molecular recognition of cytokines by receptors; these data have facilitated the development and approval of several biologics for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
24
|
Kourko O, Smyth R, Cino D, Seaver K, Petes C, Eo SY, Basta S, Gee K. Poly(I:C)-Mediated Death of Human Prostate Cancer Cell Lines Is Induced by Interleukin-27 Treatment. J Interferon Cytokine Res 2019; 39:483-494. [PMID: 31009295 DOI: 10.1089/jir.2018.0166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-27 is a promising anti-cancer cytokine with therapeutic potential. Exhibiting overlapping properties with type I and II interferons (IFNs), IL-27 impacts cancer cell viability and immune cell activity. Known to modulate toll-like receptor (TLR) expression, we investigated whether IL-27 affected TLR-mediated death in cancer cells. Using DU145 and PC3 cell lines as models of prostate cancer, we investigated whether IL-27 and IFN-γ affect TLR3-mediated cell death. Our results demonstrate that when IL-27 or IFN-γ is added with polyinosinic-polycytidylic acid [poly(I:C)], type I IFN (IFN-I) expression increases concurrently with cell death. IL-27 and IFN-γ enhanced TLR3 expression, suggesting a mechanism for sensitization to cell death. Further, PC3 cells were more sensitive to IL-27/poly(I:C)-induced cell death compared with DU145 cells. This correlated with higher production of IFN-β and inducible protein-10 versus IL-6 in response to treatment of PC3 cells compared with DU145. Taken together, this study demonstrates a potential role for IL-27 in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Robin Smyth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Daniela Cino
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Carlene Petes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - So Young Eo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
25
|
Chavez-Valdez R, Mottahedin A, Stridh L, Yellowhair TR, Jantzie LL, Northington FJ, Mallard C. Evidence for Sexual Dimorphism in the Response to TLR3 Activation in the Developing Neonatal Mouse Brain: A Pilot Study. Front Physiol 2019; 10:306. [PMID: 30971945 PMCID: PMC6443881 DOI: 10.3389/fphys.2019.00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/07/2019] [Indexed: 01/23/2023] Open
Abstract
Toll-like receptor (TLR)3 activation during the neonatal period produces responses linked to the origins of neuropsychiatric disorders. Although there is sexual dimorphism in neuropsychiatric disorders, it is unknown if brain responses to TLR3 activation are sex-specific. We hypothesized that poly I:C in a post-natal day (P)8 model induces a sexually dimorphic inflammatory responses. C57BL6 mice received intraperitoneal injection of poly I:C (10 mg/kg) or vehicle [normal saline (NS)] at P8. Pups were killed at 6 or 14 h for caspase 3 and 8 activity assays, NFkB ELISA, IRF3, AP1, and GFAP western blotting and cytokines/chemokines gene expression real time qRT-PCR (4–6/group). A second group of pups were killed at 24 h (P9) or 7 days (P15) after poly I:C to assess astrocytic (GFAP) and microglia (Iba1) activation in the hippocampus, thalamus and cortex using immunohistochemistry, and gene and protein expression of cytokines/chemokines using real time RT-PCR and MSD, respectively (4–6/group). Non-parametric analysis was applied. Six hours after poly I:C, caspase-3 and -8 activities in cytosolic fractions were 1.6 and 2.8-fold higher in poly I:C-treated than in NS-treated female mice, respectively, while gene expressions of pro-inflammatory cytokines were upregulated in both sexes. After poly I:C, IRF3 nuclear translocation occurred earlier (6 h) in female mice and later (14 h) in male mice. At 14 h after poly I:C, only male mice also had increased nuclear NFκB levels (88%, p < 0.001) and GFAP expression coinciding with persistent IL-6 and FAS gene upregulation (110 and 77%, respectively; p < 0.001) and IL-10 gene downregulation (-42%, p < 0.05). At 24 h after poly I:C, IL-1β, CXCL-10, TNF-α, and MCP-1 were similarly increased in both sexes but at 7 days after exposure, CXCL-10 and INFγ were increased and IL-10 was decreased only in female mice. Accordingly, microglial activation persisted at 7 days after poly I:C in the hippocampus, thalamus and cortex of female mice. This preliminary study suggests that TLR3 activation may produce in the developing neonatal mouse brain a sexually dimorphic response with early activation of caspase-dependent pathways in female mice, activation of inflammatory cascades in both sexes, which then persists in female mice. Further well-powered studies are essential to confirm these sex-specific findings.
Collapse
Affiliation(s)
- Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Amin Mottahedin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Stridh
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tracylyn R Yellowhair
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pediatrics and Department of Neurosciences, The University of New Mexico, Albuquerque, NM, United States
| | - Lauren L Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pediatrics and Department of Neurosciences, The University of New Mexico, Albuquerque, NM, United States
| | - Frances J Northington
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Stem-like and highly invasive prostate cancer cells expressing CD44v8-10 marker originate from CD44-negative cells. Oncotarget 2018; 9:30905-30918. [PMID: 30112117 PMCID: PMC6089404 DOI: 10.18632/oncotarget.25773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
In human prostate cancer (PCa), the neuroendocrine cells, expressing the prostate cancer stem cell (CSC) marker CD44, may be resistant to androgen ablation and promote tumor recurrence. During the study of heterogeneity of the highly aggressive neuroendocrine PCa cell lines PC3 and DU-145, we isolated and expanded in vitro a minor subpopulation of very small cells lacking CD44 (CD44neg). Unexpectedly, these sorted CD44neg cells rapidly and spontaneously converted to a stable CD44high phenotype specifically expressing the CD44v8-10 isoform which the sorted CD44high subpopulation failed to express. Surprisingly and potentially interesting, in these cells expression of CD44v8-10 was found to be induced in stem cell medium. CD44 variant isoforms are known to be more expressed in CSC and metastatic cells than CD44 standard isoform. In agreement, functional analysis of the two sorted and cultured subpopulations has shown that the CD44v8-10pos PC3 cells, resulting from the conversion of the CD44neg subpopulation, were more invasive in vitro and had a higher clonogenic potential than the sorted CD44high cells, in that they produced mainly holoclones, known to be enriched in stem-like cells. Of interest, the CD44v8-10 is more expressed in human PCa biopsies than in normal gland. The discovery of CD44v8-10pos cells with stem-like and invasive features, derived from a minoritarian CD44neg cell population in PCa, alerts on the high plasticity of stem-like markers and urges for prudency on the approaches to targeting the putative CSC.
Collapse
|
27
|
Menendez D, Lowe JM, Snipe J, Resnick MA. Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells. Oncotarget 2018; 7:61630-61642. [PMID: 27533082 PMCID: PMC5308678 DOI: 10.18632/oncotarget.11210] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
Diversity within the p53 transcriptional network can arise from a matrix of changes that include target response element sequences and p53 expression level variations. We previously found that wild type p53 (WT p53) can regulate expression of most innate immune-related Toll-like-receptor genes (TLRs) in human cells, thereby affecting immune responses. Since many tumor-associated p53 mutants exhibit change-of-spectrum transactivation from various p53 targets, we examined the ability of twenty-five p53 mutants to activate endogenous expression of the TLR gene family in p53 null human cancer cell lines following transfection with p53 mutant expression vectors. While many mutants retained the ability to drive TLR expression at WT levels, others exhibited null, limited, or change-of-spectrum transactivation of TLR genes. Using TLR3 signaling as a model, we show that some cancer-associated p53 mutants amplify cytokine, chemokine and apoptotic responses after stimulation by the cognate ligand poly(I:C). Furthermore, restoration of WT p53 activity for loss-of-function p53 mutants by the p53 reactivating drug RITA restored p53 regulation of TLR3 gene expression and enhanced DNA damage-induced apoptosis via TLR3 signaling. Overall, our findings have many implications for understanding the impact of WT and mutant p53 in immunological responses and cancer therapy.
Collapse
Affiliation(s)
- Daniel Menendez
- Genome Integrity & Structural Biology Laboratory, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Julie M Lowe
- Genome Integrity & Structural Biology Laboratory, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.,Immunity, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Joyce Snipe
- Genome Integrity & Structural Biology Laboratory, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Michael A Resnick
- Genome Integrity & Structural Biology Laboratory, Inflammation Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
28
|
Yi L, Sun D, Han Q, Liu Z, Zeng Z, Wu Y, Chai X, Liu X. Interferon regulatory factor 3 mediates Poly(I:C)-induced innate immune response and apoptosis in non‑small cell lung cancer. Int J Oncol 2018; 52:1623-1632. [PMID: 29512705 DOI: 10.3892/ijo.2018.4300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/27/2018] [Indexed: 11/05/2022] Open
Abstract
Immunotherapy is considered one of the most promising treatments for lung cancer. The cell signalling molecules melanoma differentiation-associated protein 5 (MDA5) and retinoic acid-inducible gene I protein (RIG‑I) are essential receptors that recognise intracellular pathogen-associated nucleic acids, whereas interferon regulatory factor 3 (IRF3) controls the expression of innate immunity-associated genes in macrophages. However, the innate immune response to polyinosinic:polycytidylic acid [Poly(I:C)] in lung cancer remains to be elucidated. In the present study, western blot analysis, reverse transcription-quantitative polymerase chain reaction, RNA interference, IRF3 plasmid construction, ELISA and apoptosis analysis were employed to study the innate immune response and apoptosis of non‑small cell lung cancer (NSCLC) cells. Poly(I:C) transfection in NSCLC cells triggered apoptosis via the extrinsic apoptotic pathway, and activated the innate immune response by promoting interferon-β and C-X-C motif chemokine ligand 10 expression. Treatment with the IκB kinase ε/tumour necrosis factor receptor-associated factor family member-associated nuclear factor-κB activator-binding kinase 1 inhibitor BX795, which inhibits IRF3 phosphorylation, or transfection with small interfering RNA/short hairpin RNA to downregulate MDA5, RIG‑I or IRF3, prior to Poly(I:C) transfection inhibited the innate immune response and apoptotic pathway. Conversely, IRF3 overexpression promoted activation of the apoptotic pathway, thus indicating that the MDA5/RIG‑I/IRF3 axis may mediate responses to Poly(I:C) transfection. Furthermore, phosphorylation of the transcription factor signal transducer and activator of transcription 1 (STAT1) was associated with the alterations in IRF3 phosphorylation and apoptosis, thus suggesting that STAT1 may be involved in Poly(I:C)-induced apoptosis. In NSCLC surgical samples, MDA5, RIG‑I and IRF3 were highly expressed, whereas the expression levels of phosphorylated‑IRF3 were reduced. These findings indicated that the function of the MDA5/RIG‑I/IRF3 axis may be impaired in some lung cancers. In conclusion, the present findings suggested that the MDA5/RIG‑I/IRF3 axis, which is associated with innate immunity, is intact in NSCLC cells, and IRF3 is involved in regulating the apoptotic pathway in NSCLC cells.
Collapse
Affiliation(s)
- Liang Yi
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Dan Sun
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qian Han
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Zhonghui Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Zeng Zeng
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yanping Wu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiaoyu Chai
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
29
|
Bianchi F, Pretto S, Tagliabue E, Balsari A, Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol Ther 2017; 18:747-756. [PMID: 28881163 PMCID: PMC5678690 DOI: 10.1080/15384047.2017.1373220] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was developed to mimic pathogens infection and boost immune system activation to promote anti-cancer therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer cells expressing TLR3. This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells. Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis. Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be considered in combinations with TLR3 agonists in clinical trials.
Collapse
Affiliation(s)
- Francesca Bianchi
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Samantha Pretto
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Elda Tagliabue
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy
| | - Andrea Balsari
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Lucia Sfondrini
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| |
Collapse
|
30
|
Jiang J, Wang S, Fang J, Xu Y, Tong L, Ye X, Zhou W. Stable silencing of TIPE2 reduced the Poly I:C‑induced apoptosis in THP‑1 cells. Mol Med Rep 2017; 16:6313-6319. [PMID: 28849057 DOI: 10.3892/mmr.2017.7364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the underlying mechanism of toll‑like receptor (TLR) agonist polyinosinic:polycytidylic acid (Poly I:C)‑induced apoptosis in THP‑1 cells following silencing the expression of tumor necrosis factor α‑induced protein 8‑like 2 (TIPE2). THP‑1 cells were incubated with different concentrations of the TLR agonist. Following incubation, reverse transcription‑quantitative polymerase chain reaction was performed to quantify the mRNA expression of TIPE2. Lentiviral technology was used to silence the expression of TIPE2. MTT assay was performed to assess cell proliferation, Annexin V/PI double staining was used to evaluate the apoptosis and western blotting was used to determine the expression levels of caspase‑8 following TIPE2 silencing. The TLRs agonist Poly I:C increased the expression level of TIPE2. During the incubation, Poly I:C also inhibited the proliferation of THP‑1 cells and induced apoptosis. Following silencing of TIPE2 in THP‑1 cells, the Poly I:C‑induced TIPE2 expression was significantly downregulated. Additionally, the Poly I:C‑induced proliferation inhibition and apoptosis in THP‑1 cells were significantly reduced following silencing of TIPE2. The findings of the western blot analysis indicated that the active form of caspase‑8, p18, was downregulated following silencing of TIPE2. In conclusion, the expression of TIPE2 in THP‑1 cells may be upregulated by Poly I:C, which may also inhibit cell proliferation and induce apoptosis. Following the downregulation of TIPE2 the aforementioned effect of Poly I:C treatment was reversed and may be associated with the reduced activity of caspase‑8 that was observed in the TIPE2 silenced group.
Collapse
Affiliation(s)
- Jieshu Jiang
- Department of ICU, Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Shanshan Wang
- Department of ICU, Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jingjing Fang
- Department of ICU, Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yi Xu
- Department of Emergency, Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Li Tong
- Department of Pharmacology, Ningbo Institute of Medical Sciences, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaolei Ye
- Department of Pharmacology, Ningbo Institute of Medical Sciences, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
31
|
Zou H, Su R, Ruan J, Shao H, Qian K, Ye J, Yao Y, Nair V, Qin A. Double-stranded RNA induces chicken T-cell lymphoma apoptosis by TRIF and NF-κB. Sci Rep 2017; 7:7547. [PMID: 28790362 PMCID: PMC5548913 DOI: 10.1038/s41598-017-07919-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor-3 (TLR3), a member of the pathogen recognition receptor family, has been reported to activate immune response and to exhibit pro-apoptotic activity against some tumor cells. However it is unclear whether TLR3 has same function against chicken lymphoma. In this paper we investigated the effect of TLR3 activation on a Marek’s disease lymphoma-derived chicken cell line, MDCC-MSB1. The TLR3 agonist poly (I:C) activated TLR3 pathway and inhibited tumor cells proliferation through caspase-dependent apoptosis. Using pharmacological approaches, we found that an interferon-independent mechanism involving Toll-IL-1-receptor domain-containing adapter-inducing IFN-α (TRIF) and nuclear factor κB (NF-κB) causes the apoptosis of MDCC-MSB1 cells. This is the first report about the function of TLR3 in chicken T-cell lymphoma, especially in signal pathway. The mechanisms underlying TLR3-mediated apoptosis may contribute to the development of new drug to treat lymphomas and oncovirus infections.
Collapse
Affiliation(s)
- Haitao Zou
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Ruixue Su
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jing Ruan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,UK-China Centre of Excellence for Research on Avian Diseases, 169 Huanghe 2nd Road, Binzhou, Shandong, P. R. China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yongxiu Yao
- The Pirbright Institute, Ash road, Pirbright, Working, Surrey, GU24 0NF, United Kingdom.,UK-China Centre of Excellence for Research on Avian Diseases, 169 Huanghe 2nd Road, Binzhou, Shandong, P. R. China
| | - Venugopal Nair
- The Pirbright Institute, Ash road, Pirbright, Working, Surrey, GU24 0NF, United Kingdom.,UK-China Centre of Excellence for Research on Avian Diseases, 169 Huanghe 2nd Road, Binzhou, Shandong, P. R. China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China. .,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China. .,UK-China Centre of Excellence for Research on Avian Diseases, 169 Huanghe 2nd Road, Binzhou, Shandong, P. R. China.
| |
Collapse
|
32
|
Tan H, Zeng C, Xie J, Alghamdi NJ, Song Y, Zhang H, Zhou A, Jin D. Effects of interferons and double-stranded RNA on human prostate cancer cell apoptosis. Oncotarget 2016; 6:39184-95. [PMID: 26452032 PMCID: PMC4770765 DOI: 10.18632/oncotarget.5508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 09/18/2015] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer among men in the United States. Prostate cancer therapy is severely hampered by lack of response and development of resistance to conventional chemotherapeutic drugs in patients. Therefore, the development and discovery of new drugs have become an urgent clinical need. Interferons (IFNs), a family of pleiotropic cytokines, exert antitumor activities due to their anti-proliferative, immunomodulatory and proapoptotic functions. Here, we report that pretreatment of prostate cancer PC-3 cells with IFNs sensitized these cells to double-stranded RNAs (dsRNAs)-induced apoptosis. The enhancement effect of IFN treatment was dependent on IFN subtypes, in particular, IFN γ. In comparison with IFN α or β, IFN γ treatment remarkably augmented apoptosis in PC-3 cells induced with polyinosinic:polycytidylic acid (poly I:C), a synthesized form of dsRNA. We demonstrated that IFN-signaling was necessary for these effects by using mutant cell lines. Transfection of 2-5A, the activator of RNase L, or silencing of dsRNA-dependent protein kinase R (PKR) by siRNA did not have any significant impact on this event, suggesting that neither RNase L nor PKR was involved in poly I:C/IFN γ-induced apoptosis in the cells. Further investigation of the apoptotic pathway revealed that Bak, a pro-apoptotic member of the Bcl-2family, was synergistically up-regulated by IFN γ and poly I:C, whereas other members of the family were not affected. Knocking down of Bak demonstrated its contribution to poly I:C/IFN γ-induced apoptosis in the cells. We believeour findings will precipitate the design of novel therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Haiyan Tan
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Chun Zeng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Junbo Xie
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Norah J Alghamdi
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Ya Song
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongbing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, USA
| | - Di Jin
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Prendergast ÁM, Kuck A, van Essen M, Haas S, Blaszkiewicz S, Essers MAG. IFNα-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica 2016; 102:445-453. [PMID: 27742772 PMCID: PMC5394972 DOI: 10.3324/haematol.2016.151209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
In the bone marrow, endothelial cells are a major component of the hematopoietic stem cell vascular niche and are a first line of defense against inflammatory stress and infection. The primary response of an organism to infection involves the synthesis of immune-modulatory cytokines, including interferon alpha. In the bone marrow, interferon alpha induces rapid cell cycle entry of hematopoietic stem cells in vivo. However, the effect of interferon alpha on bone marrow endothelial cells has not been described. Here, we demonstrate that acute interferon alpha treatment leads to rapid stimulation of bone marrow endothelial cells in vivo, resulting in increased bone marrow vascularity and vascular leakage. We find that activation of bone marrow endothelial cells involves the expression of key inflammatory and endothelial cell-stimulatory markers. This interferon alpha-mediated activation of bone marrow endothelial cells is dependent in part on vascular endothelial growth factor signaling in bone marrow hematopoietic cell types, including hematopoietic stem cells. Thus, this implies a role for hematopoietic stem cells in remodeling of the bone marrow niche in vivo following inflammatory stress. These data increase our current understanding of the relationship between hematopoietic stem cells and the bone marrow niche under inflammatory stress and also clarify the response of bone marrow niche endothelial cells to acute interferon alpha treatment in vivo.
Collapse
Affiliation(s)
- Áine M Prendergast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Andrea Kuck
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Mieke van Essen
- Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sandra Blaszkiewicz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Deutsches Krebsforschungszentrum, Heidelberg, Germany .,Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
34
|
Edinger N, Lebendiker M, Klein S, Zigler M, Langut Y, Levitzki A. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF. PLoS One 2016; 11:e0162321. [PMID: 27598772 PMCID: PMC5012564 DOI: 10.1371/journal.pone.0162321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/19/2016] [Indexed: 11/24/2022] Open
Abstract
Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC.
Collapse
Affiliation(s)
- Nufar Edinger
- Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mario Lebendiker
- Protein Purification Unit, Wolfson Center for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shoshana Klein
- Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Zigler
- Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Langut
- Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Levitzki
- Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
35
|
Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 2016; 222:89-100. [PMID: 27349597 DOI: 10.1016/j.imbio.2016.06.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 02/09/2023]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane receptors that recognize various pathogen- and damage-associated molecular pattern molecules playing an important role in inflammation by activating NF-кB. TLRs, mainly expressed by innate immune cells, are involved in inducing and regulating adaptive immune responses. However, the expression of TLRs has also been observed in many tumors, and their stimulation results in tumor progression or regression, depending on the TLR and tumor type. Here we review the role of TLRs in conferring anti- or pro-tumoral effects. The anti-tumoral effects can result from direct induction of tumor cell death and/or activation of efficient anti-tumoral immune responses, and the pro-tumoral effects may be due to inducing tumor cell survival and proliferation or by acting on suppressive or inflammatory immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Marion Dajon
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France
| | - Kristina Iribarren
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France.
| |
Collapse
|
36
|
Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beißbarth T, Wingender E, Gültas M. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Front Genet 2016; 7:42. [PMID: 27092172 PMCID: PMC4820448 DOI: 10.3389/fgene.2016.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell lines, which can be used for development of effective cancer therapy.
Collapse
Affiliation(s)
- Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Jetcy Arackal
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Mehmet Gültas
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
37
|
Liu B, Wang X, Chen TZ, Li GL, Tan CC, Chen Y, Duan SQ. Polarization of M1 tumor associated macrophage promoted by the activation of TLR3 signal pathway. ASIAN PAC J TROP MED 2016; 9:484-8. [PMID: 27261859 DOI: 10.1016/j.apjtm.2016.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To investigate the correlation between activation of toll-like receptors 3 (TLR3) signaling pathway and tumor-associated macrophage and its effect on the tumor growth. METHODS The mice Lewis lung cancer cell lines 3LL and melanoma B16H10 were used to construct the subcutaneous transplantation tumor models and then they were treated with Poly-ICLC. The curative effect was observed and then the T cell and macrophage phenotypes infiltrated in local tumor were detected by flow cytometry. After the in vitro culture of mouse bone marrow-derived macrophage, the real-time PCR and western blot were applied to detect the expression of macrophage activation markers and the activation of intracellular signaling pathways. RESULTS The survival time of mice with brown tumor treated with Poly-ICLC significantly increased and the tumor growth was inhibited. The ratio of local tumor-infiltrated Treg decreased, while the ratio of CD8(+) T cell increased significantly. The macrophages surface CD206 expression was down-regulated while the expression of iNOS increased. The Poly-ICLC could promote the expression of M1 markers (IL-1β, TNF-α and iNOS) in bone marrow-derived macrophage and inhibited the expression of M2 molecules (Arg-1, YM-1 and CD206). The phosphorylation level of downstream p65, TBK1 and IRF3 increased significantly. CONCLUSIONS The Poly-ICLC can activate the TLR3 downstream signaling pathway to induce a M1 polarization of tumor associated macrophage, thereby inhibiting the tumor growth.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pediatric Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.
| | - Xia Wang
- Department of Pediatric Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Tai-Zhong Chen
- Department of Pediatric Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Guang-Liang Li
- Department of Pediatric Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Chang-Chun Tan
- Department of Pediatric Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Yong Chen
- Department of Pediatric Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Shao-Qiang Duan
- Department of Pediatric Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
38
|
Palchetti S, Starace D, De Cesaris P, Filippini A, Ziparo E, Riccioli A. Transfected poly(I:C) activates different dsRNA receptors, leading to apoptosis or immunoadjuvant response in androgen-independent prostate cancer cells. J Biol Chem 2015; 290:5470-83. [PMID: 25568326 PMCID: PMC4342463 DOI: 10.1074/jbc.m114.601625] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/29/2014] [Indexed: 01/03/2023] Open
Abstract
Despite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145. In this paper, we characterize the receptors and the signaling pathways involved in the remarkable apoptosis induced by poly(I:C) transfected by Lipofectamine (in-poly(I:C)) compared with the 12-fold higher free poly(I:C) concentration in PC3 and DU145 cells. By using genetic inhibition of different poly(I:C) receptors, we demonstrate the crucial role of TLR3 and Src in in-poly(I:C)-induced apoptosis. Therefore, we show that the increased in-poly(I:C) apoptotic efficacy is due to a higher binding of endosomal TLR3. On the other hand, we show that in-poly(I:C) binding to cytosolic receptors MDA5 and RIG-I triggers IRF3-mediated signaling, leading uniquely to the up-regulation of IFN-β, which likely in turn induces increased TLR3, MDA5, and RIG-I proteins. In summary, in-poly(I:C) activates two distinct antitumor pathways in PC3 and DU145 cells: one mediated by the TLR3/Src/STAT1 axis, leading to apoptosis, and the other one mediated by MDA5/RIG-I/IRF3, leading to immunoadjuvant IFN-β expression.
Collapse
Affiliation(s)
- Sara Palchetti
- From the Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Section of Histology and Medical Embryology, "Sapienza" University of Rome, Rome, Italy and
| | - Donatella Starace
- From the Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Section of Histology and Medical Embryology, "Sapienza" University of Rome, Rome, Italy and
| | - Paola De Cesaris
- the Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Filippini
- From the Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Section of Histology and Medical Embryology, "Sapienza" University of Rome, Rome, Italy and
| | - Elio Ziparo
- From the Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Section of Histology and Medical Embryology, "Sapienza" University of Rome, Rome, Italy and
| | - Anna Riccioli
- From the Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Section of Histology and Medical Embryology, "Sapienza" University of Rome, Rome, Italy and
| |
Collapse
|