1
|
Essawy AE, Bekheet GJ, Abdel Salam S, Alhasani RH, Abd Elkader HTAE. Betaine alleviates deficits in motor behavior, neurotoxic effects, and neuroinflammatory responses in a rat model of demyelination. Toxicol Rep 2025; 14:101974. [PMID: 40129881 PMCID: PMC11930798 DOI: 10.1016/j.toxrep.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Multiple sclerosis (MS) is characterized as a chronic inflammatory demyelinating neurodegenerative disorder that leads to the deterioration of the myelin sheath and the loss of axons. Betaine, a trimethylglycine compound, is recognized for its ability to penetrate the blood-brain barrier (BBB) and exhibits properties that are antioxidant, anti-inflammatory, and neuroprotective. The cuprizone (CPZ) model serves as an effective tool for investigating the processes of demyelination and remyelination associated with MS. In our research, we examined the protective and therapeutic effects of betaine in a rat model of MS induced by CPZ. The experimental protocol involved administering 600 mg/kg of CPZ orally for 7 days, followed by 2 weeks with 200 mg/kg of CPZ. The protective group received a combination of betaine (1 g/kg/day, orally) and CPZ (200 mg/kg/day), while the therapeutic group was treated with CPZ (600 mg/kg) alongside betaine for three weeks. Behavioral assessments were conducted using inverted screen and rotarod tests to measure balance, motor coordination, and grasping ability. Following these evaluations, the rats were euthanized for analysis of oxidative stress and inflammatory biomarkers, toluidine blue staining, transmission electron microscopy (TEM) imaging, and myelin basic protein (MBP) immunostaining of the corpus callosum (CC). The results indicated that betaine significantly enhanced balance, motor coordination, and grasping ability, while decreasing oxidative stress, inhibiting interleukin (IL)-4 and IL-17 levels, and reversing the demyelination caused by CPZ. Notably, betaine also mitigated the increase in homocysteine (Hcy) levels and facilitated remyelination, evidenced by the presence of normal compacted myelin and increased expression of MBP in the CC. This study substantiates the remyelinating effects of betaine in the context of CPZ-induced demyelination. It suggests that it may contribute to the repair of myelin through the modulation of behavioral deficits, oxidative stress, neuroinflammation, ultrastructural changes, and MBP expression levels, indicating its potential as a complementary therapeutic agent in the management of MS.
Collapse
Affiliation(s)
- Amina E. Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Gihad Jamal Bekheet
- Euro-Mediterranean Master in Neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sherine Abdel Salam
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | | | | |
Collapse
|
2
|
Kaka GR, Modarresi F. Conditioned medium derived from mesenchymal stem cells and spinal cord injury: A review of the current therapeutic capacities. IBRO Neurosci Rep 2025; 18:293-299. [PMID: 40026846 PMCID: PMC11869877 DOI: 10.1016/j.ibneur.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition of the nervous system that imposes considerable challenges for subjects, such as bladder and bowel incontinence and infections. The standard therapeutic strategy is methylprednisolone utilization accompanied by surgical decompression. However, achieving an effective therapy with the minimum side effects for SCI is still a puzzle. Nowadays, mesenchymal stem cell (MSC) therapy has received much consideration in scientific communities in light of its pharmacological and therapeutic properties, for instance, anti-inflammatory, regenerative, analgesic, and immunomodulatory influences. Despite the mentioned advantages for MSCs, their tumorigenic potential is a limiting agent for its wide therapeutic application. Recent documents show that the use of conditioned medium (CM) derived from MSCs can largely solve these problems. CM encompasses neuroprotective growth factors and cytokines, such as stem cell factor (SCF), vascular endothelial growth factor (VEGF), and glial cell line-derived neurotrophic factor (GDNF). The persuasive evidence from experimental studies revealed that CM originating from MSCs can have a considerable role in the amelioration of SCI. Hence, in the current papers, we will review and summarize evidence indicating the anti-SCI mechanisms of MSC-derived CM by relying the current experimental data.
Collapse
Affiliation(s)
- Gholam Reza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farrokh Modarresi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL) Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shen D, Chen J. Cardiac Macrophages Promote Polarization of Macrophages toward M2 Phenotype to Improve Myocardial Remodeling via NGAL after Myocardial Infarction. Cell Biochem Biophys 2025:10.1007/s12013-025-01726-1. [PMID: 40138155 DOI: 10.1007/s12013-025-01726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Several studies have shown that the number of circulating neutrophils or the levels of their secreted factors, including Neutrophil Gelatinase-Associated Lipocalin (NGAL), in plasma are associated with the prognosis and mortality of patients with myocardial infarction (MI). However, the underlying mechanisms remain unclear. MI was induced in mice by permanent ligation of the left anterior descending coronary artery. Mice were then intraperitoneal administered IgG control, anti-Ly6G antibody and recombinant mouse NGAL at 1 h after the surgery and once daily from day 1-14 after surgery. At days 1, 3, 7, and 14 after surgery, echocardiogram showed that neutrophils significantly attenuates LV remodeling and reserves contractile function after MI compared with isotype control group. Flow cytometry revealed that the myocardial infiltration of macrophages decreased in MI mice with Ly6G-depleted. Moreover, WB and flow cytometry showed that macrophages differentiated by exposure to CM and NGAL, especially the latter, displayed a M2-like phenotype, expressing higher MerTK level than control M0 macrophages and the cells exposed to MPO. Meanwhile, flow cytometry indicated that the ability to remove dead cells of M2c-like macrophages triggered by NGAL significantly enhanced compared to those control M0 macrophages and the cells exposed to MPO. Most importantly, we validated that the decrease of M2c macrophage polarization in MI caused by neutrophils depletion can be reversed by NGAL in vivo. NGAL successfully induced the polarization of macrophages into M2c type. Furthermore, cardiac macrophages improve myocardial remodeling and cardiac function by inducing the polarization of M2c-like macrophages via NGAL after MI.
Collapse
Affiliation(s)
- Donghui Shen
- Department of Endocrinology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiabing Chen
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
4
|
Luo D, Hou Y, Zhan J, Hou Y, Wang Z, Li X, Sui L, Chen S, Lin D. Bu Shen Huo Xue Formula Provides Neuroprotection Against Spinal Cord Injury by Inhibiting Oxidative Stress by Activating the Nrf2 Signaling Pathway. Drug Des Devel Ther 2024; 18:4779-4797. [PMID: 39494153 PMCID: PMC11530378 DOI: 10.2147/dddt.s487307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Spinal cord injury (SCI) is an irreversible neurological disease that can result in severe neurological dysfunction. The Bu Shen Huo Xue Formula (BSHXF) has been clinically shown to assist in the recovery of limb function in patients with SCI. However, the underlying mechanisms of BSHXF's therapeutic effects remain unclear. This study aimed to evaluate the effects of BSHXF in a mouse model of SCI and to identify potential therapeutic targets. Methods The composition of BSHXF was analyzed using high-performance liquid chromatography (HPLC). In vivo, SCI was induced in mice following established protocols, followed by administration of BSHXF. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB) and footprint tests. Levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were quantified with specific assay kits. Protein expression analysis was performed using Western blot and immunofluorescence. Additionally, reactive oxygen species (ROS) levels and apoptosis rates were evaluated with dedicated staining kits. In vitro, neurons were exposed to lipopolysaccharide (LPS) to investigate the effects of BSHXF on neuronal oxidative stress. The protective effects of BSHXF against LPS-induced neuronal injury were examined through RT-PCR, Western blot, and immunofluorescence. Results The eight primary bioactive constituents of BSHXF were identified using HPLC. BSHXF significantly reduced tissue damage and enhanced functional recovery following SCI. Meanwhile, BSHXF treatment led to significant reductions in oxidative stress and apoptosis rates. It also reversed neuronal loss and reduced glial scarring after SCI. LPS exposure induced neuronal apoptosis and axonal degeneration; however, after intervention with BSHXF, neuronal damage was reduced, and the protective effects of BSHXF were mediated by the activation of the Nrf2 pathway. Conclusion BSHXF decreased tissue damage and enhanced functional recovery after SCI by protecting neurons against oxidative stress and apoptosis. The effects of BSHXF on SCI may be related to the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zenglu Wang
- ICU Critical Care Medicine Department, Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, People’s Republic of China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Lili Sui
- The First College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shudong Chen
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Liang Z, Yang Z, Xie H, Rao J, Xu X, Lin Y, Wang C, Chen C. Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization. Neural Regen Res 2024; 19:2259-2269. [PMID: 38488560 PMCID: PMC11034578 DOI: 10.4103/1673-5374.391194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Accepted: 11/18/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00027/figure1/v/2024-02-06T055622Z/r/image-tiff Spinal cord injury is a disabling condition with limited treatment options. Multiple studies have provided evidence suggesting that small extracellular vesicles (SEVs) secreted by bone marrow mesenchymal stem cells (MSCs) help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury. Strikingly, hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs (HSEVs) exhibit increased therapeutic potency. We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair. SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation. HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation. HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro. MicroRNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that miR-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1. Reducing miR-146a-5p expression in HSEVs partially attenuated macrophage polarization. Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting miR-146a-5p, which alters macrophage polarization. This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
Collapse
Affiliation(s)
- Zeyan Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Zhelun Yang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Haishu Xie
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Jian Rao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Xiongjie Xu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Yike Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian Province, China
| |
Collapse
|
6
|
Lei SY, Qu Y, Yang YQ, Liu JC, Zhang YF, Zhou SY, He QY, Jin H, Yang Y, Guo ZN. Cellular senescence: A novel therapeutic target for central nervous system diseases. Biomed Pharmacother 2024; 179:117311. [PMID: 39182322 DOI: 10.1016/j.biopha.2024.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The underlying mechanisms of diseases affecting the central nervous system (CNS) remain unclear, limiting the development of effective therapeutic strategies. Remarkably, cellular senescence, a biological phenomenon observed in cultured fibroblasts in vitro, is a crucial intrinsic mechanism that influences homeostasis of the brain microenvironment and contributes to the onset and progression of CNS diseases. Cellular senescence has been observed in disease models established in vitro and in vivo and in bodily fluids or tissue components from patients with CNS diseases. These findings highlight cellular senescence as a promising target for preventing and treating CNS diseases. Consequently, emerging novel therapies targeting senescent cells have exhibited promising therapeutic effects in preclinical and clinical studies on aging-related diseases. These innovative therapies can potentially delay brain cell loss and functional changes, improve the prognosis of CNS diseases, and provide alternative treatments for patients. In this study, we examined the relevant advancements in this field, particularly focusing on the targeting of senescent cells in the brain for the treatment of chronic neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis) and acute neurotraumatic insults (e.g., ischemic stroke, spinal cord injury, and traumatic brain injury).
Collapse
Affiliation(s)
- Shuang-Yin Lei
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Qian Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia-Cheng Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi-Fei Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Hang Jin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China; Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Zeng F, Chen A, Chen W, Cheng S, Lin S, Mei R, Mei X. Knockout of TNF-α in microglia decreases ferroptosis and convert microglia phenotype after spinal cord injury. Heliyon 2024; 10:e36488. [PMID: 39281475 PMCID: PMC11395737 DOI: 10.1016/j.heliyon.2024.e36488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and difficult to treat traumatic disease of the central nervous system. Spinal cord injury causes a variety of detrimental effects, including neuroinflammation and ferroptosis, leading to chronic functional impairment and death. Recent studies have shown that microglia/macrophages (M/Ms) at the injury site remain primarily in the pro-inflammatory state, which is detrimental to recovery. However, information on the factors behind pro-inflammatory polarization skew in the injured spinal cord remains unclear. In this study, we found that Tumor Necrosis Factor-α(TNF-α) ablation protected after SCI by suppressing neuroinflammation and ferroptosis. Though using TNF-α knock out mice (TNF-/-), we induced downregulation of TNF-α in M/Ms and further investigated its effect on SCI outcome. In TNF-/- mice, significant behavioral improvements were observed as early as 7 days after injury. We showed that TNF-α inhibition promote injury-mediated M/Ms polarization from pro-inflammatory to anti-inflammatory phenotype in vivo. Furthermore, accumulated iron in M/Ms after SCI increased the expression of TNF-α and the population of M/Ms to pro-inflammatory phenotype. Moreover, zinc supplement reduced the secondary damage caused by iron overload. In conclusion, we found that knock out of TNF-α promotes recovery of motor function after spinal cord injury in mice by inhibiting ferroptosis and promoting the shift of macrophages to an anti-inflammatory phenotype, indicating that there is great potential for this therapy to SCI.
Collapse
Affiliation(s)
- Fanzhuo Zeng
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, China
- Department of Neurobiology, School of Basic Medical Sciences, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Anqi Chen
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
- Medical College of Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Wei Chen
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Shuai Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, China
| | - Sen Lin
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, China
| | - Rongcheng Mei
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
- Medical College of Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xifan Mei
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, China
| |
Collapse
|
8
|
Zhang ZH, Wu TY, Ju C, Zuo XS, Wang XK, Ma YG, Luo L, Zhu ZJ, Song ZW, Yao Z, Zhou J, Wang Z, Hu XY. Photobiomodulation Increases M2-Type Polarization of Macrophages by Inhibiting Versican Production After Spinal Cord Injury. Mol Neurobiol 2024; 61:6950-6967. [PMID: 38363534 DOI: 10.1007/s12035-024-03980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process. Using immunofluorescence technique and western blot, we found the expression level of versican is increased after injury and markedly downregulated by irradiation treatment. Using virus intrathecal injection, we found the knock-down of versican could produce the effect similar to that of PBM and might have an effect on inflammation and macrophage polarization after SCI. To further verify the deduction, we peptide the supernatant of astrocytes to induce M0, M1, and M2 macrophages. We found that the versican produced by astrocytes might have a role on the promotion of M2 macrophages to inflammatory polarization. Finally, we investigated the potential pathway in the regulation of M2 polarization with the induction of versican. This study tried to give an interpretation on the mechanism of inflammation inhibition for PBM in the perspective of matrix regulation. Our results might provide light on the inflammation regulation after SCI.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- General Hospital of Northern Theater Command, Shenyang, 110000, Liaoning Province, China
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ting-Yu Wu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiao-Shuang Zuo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xuan-Kang Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yang-Guang Ma
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Jie Zhu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Wen Song
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Xue-Yu Hu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
9
|
Gong S, Zeng R, Liu L, Wang R, Xue M, Dong H, Wu Z, Zhang Y. Extracellular vesicles from a novel Lactiplantibacillus plantarum strain suppress inflammation and promote M2 macrophage polarization. Front Immunol 2024; 15:1459213. [PMID: 39247191 PMCID: PMC11377267 DOI: 10.3389/fimmu.2024.1459213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background Lactiplantibacillus plantarum (L. plantarum) is known for its probiotic properties, including antioxidant and anti-inflammatory effects. Recent studies have highlighted the role of extracellular vesicles (EVs) from prokaryotic cells in anti-inflammatory effects. Objective This study aims to investigate the anti-inflammatory effects of extracellular vesicles derived from a newly isolated strain of L. plantarum (LP25 strain) and their role in macrophage polarization. Methods The LP25 strain and its extracellular vesicles were isolated and identified through genomic sequencing, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). RAW 264.7 cells were treated with lipopolysaccharide (LPS) and/or LP25-derived extracellular vesicles (LEV). Morphological changes in the cells were observed, and the expression levels of pro-inflammatory cytokines (TNF-α, IL-6)、iNOS and anti-inflammatory cytokines (IL-10) 、Arg-1 were measured using quantitative real-time PCR (qPCR). Flow cytometry was used to detect the expression of Arg-1 in the treated cells. Results Treatment with LP25 EVs led to significant morphological changes in RAW 264.7 cells exposed to LPS. LP25 EVs treatment resulted in increased expression of Arg-1 and anti-inflammatory cytokines IL-10, and decreased expression of iNOS and surface markers protein CD86. Flow cytometry confirmed the increased expression of the M2 macrophage marker Arg-1 in the LP25 EVs-treated group. Conclusion Extracellular vesicles from Lactiplantibacillus plantarum LP25 can suppress inflammatory responses and promote the polarization of macrophages toward the anti-inflammatory M2 phenotype. These findings provide new evidence supporting the anti-inflammatory activity of L. plantarum-derived EVs.
Collapse
Affiliation(s)
- Shuang Gong
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ruixia Zeng
- Department of Human Anatomy, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ling Liu
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Rui Wang
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Man Xue
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hao Dong
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhigang Wu
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yibo Zhang
- Department of Pathogenic Microbiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
10
|
Wang F, Zhang S, Xu Y, He W, Wang X, He Z, Shang J, Zhenyu Z. Mapping the landscape: A bibliometric perspective on autophagy in spinal cord injury. Medicine (Baltimore) 2024; 103:e38954. [PMID: 39029042 PMCID: PMC11398829 DOI: 10.1097/md.0000000000038954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe condition that often leads to persistent damage of nerve cells and motor dysfunction. Autophagy is an intracellular system that regulates the recycling and degradation of proteins and lipids, primarily through lysosomal-dependent organelle degradation. Numerous publications have highlighted the involvement of autophagy in the secondary injury of SCI. Therefore, gaining a comprehensive understanding of autophagy research is crucial for designing effective therapies for SCI. METHODS Dates were obtained from Web of Science, including articles and article reviews published from its inception to October 2023. VOSviewer, Citespace, and SCImago were used to visualized analysis. Bibliometric analysis was conducted using the Web of Science data, focusing on various categories such as publications, authors, journals, countries, organizations, and keywords. This analysis was aimed to summarize the knowledge map of autophagy and SCI. RESULTS From 2009 to 2023, the number of annual publications in this field exhibited wave-like growth, with the highest number of publications recorded in 2020 (44 publications). Our analysis identified Mei Xifan as the most prolific author, while Kanno H emerged as the most influential author based on co-citations. Neuroscience Letters was found to have published the largest number of papers in this field. China was the most productive country, contributing 232 publications, and Wenzhou Medical University was the most active organization, publishing 39 papers. CONCLUSION We demonstrated a comprehensive overview of the relationship between autophagy and SCI utilizing bibliometric tools. This article could help to enhance the understanding of the field about autophagy and SCI, foster collaboration among researchers and organizations, and identify potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedic Surgery, Shaoxing People's Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Songou Zhang
- Ningbo University, School of Medicine, Ningbo, Zhejiang Province, China
| | - Yangjun Xu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Wei He
- Department of Orthopedic Surgery, Shaoxing People's Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Xiang Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Zhongwei He
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Jinxiang Shang
- Department of Orthopedic, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zhang Zhenyu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
11
|
Tan N, Jian G, Peng J, Tian X, Chen B. Chishao - Fuzi herbal pair restore the macrophage M1/M2 balance in acute-on-chronic liver failure. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118010. [PMID: 38499260 DOI: 10.1016/j.jep.2024.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal pair Paeoniae Radix Rubra (roots of Paeonia lactiflora Pall., Chishao in Chinese) and Aconiti Lateralis Radix Praeparata (lateral roots of Aconitum carmichaelii Debeaux, Fuzi in Chinese) are widely used for the treatment of liver diseases, demonstrating clinical efficacy against acute-on-chronic liver failure (ACLF). As the core drug pair representing the "clearing method" and "warming method" in traditional Chinese medicine (TCM), they align with the TCM syndromic characteristics of ACLF, characterized by a mixture of deficiencies and realities. However, the molecular mechanisms underlying the anti-ACLF effects of Chishao - Fuzi herbal pair remain unclear. AIM OF THE STUDY To reveal the immunoinflammatory status of patients with hepatitis B virus-related ACLF (HBV-ACLF) based on macrophage polarization and to explore the mechanism of action of Chishao - Fuzi herbal pair in regulating macrophage polarization against ACLF. MATERIALS AND METHODS Peripheral blood samples were prospectively obtained from patients with HBV-ACLF, patients with chronic hepatitis B (CHB) in the immunoactive phase and healthy individuals. Flow cytometry, qRT-qPCR, and ELISA were used to reveal the activation status of monocyte-macrophages and the expression differences in related cytokines in the peripheral blood of patients with HBV-ACLF. Then, an ACLF rat model and a macrophage inflammation model in vitro were established. Hematoxylin-eosin staining, immunohistochemical staining, transmission electron microscopy, flow cytometry, western blotting, RT-qPCR, and ELISA were used to observe changes in the expression of M1/M2 macrophage markers and related inflammatory factors after Chishao - Fuzi herbal pair intervention, both in vivo and in vitro. RESULTS Patients with HBV-ACLF exhibited an imbalance in M1/M2 macrophage polarization, showing a tendency to activate M1 macrophages with high expression of CD86 and iNOS. This imbalance led to an increase in relevant pro-inflammatory factors (IL-1β, IL-6, TNF-α) and a decrease in anti-inflammatory factors (IL-10, TGF-β, VEGF), exacerbating the uncontrolled immune-inflammatory response. Chishao - Fuzi herbal pair intervention improved liver function, coagulation function, and histopathological injury in ACLF rats. It also partially ameliorated endotoxemia and inflammatory injury in ACLF. The mechanism was to restore the immune-inflammatory imbalance and prevent the exacerbation of inflammatory response to liver failure by promoting macrophage polarization toward M2 anti-inflammatory direction, inhibiting M1 macrophage activation, and increasing the levels of anti-inflammatory factors and decreasing pro-inflammatory factors. CONCLUSION Chishao - Fuzi herbal pair can reduce the systemic inflammatory burden of liver failure by modulating macrophage polarization and restoring ACLF immune-inflammatory imbalance. This study provides new perspectives and strategies for studying HBV-ACLF immune reconstitution and inflammatory response control.
Collapse
Affiliation(s)
- Nianhua Tan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China; Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China.
| | - Gonghui Jian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Jie Peng
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China; Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention &Treatment, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Bin Chen
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China.
| |
Collapse
|
12
|
Li CX, Yue L. The Multifaceted Nature of Macrophages in Cardiovascular Disease. Biomedicines 2024; 12:1317. [PMID: 38927523 PMCID: PMC11201197 DOI: 10.3390/biomedicines12061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
As the leading cause of mortality worldwide, cardiovascular disease (CVD) represents a variety of heart diseases and vascular disorders, including atherosclerosis, aneurysm, ischemic injury in the heart and brain, arrythmias, and heart failure. Macrophages, a diverse population of immune cells that can promote or suppress inflammation, have been increasingly recognized as a key regulator in various processes in both healthy and disease states. In healthy conditions, these cells promote the proper clearance of cellular debris, dead and dying cells, and provide a strong innate immune barrier to foreign pathogens. However, macrophages can play a detrimental role in the progression of disease as well, particularly those inflammatory in nature. This review will focus on the current knowledge regarding the role of macrophages in cardiovascular diseases.
Collapse
Affiliation(s)
- Cindy X. Li
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lixia Yue
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
13
|
Shen J, Gong L, Sun Y, Lin J, Hu W, Wei J, Miao X, Gao T, Suo J, Xu J, Chai Y, Bao B, Qian Y, Zheng X. Semaphorin3C identified as mediator of neuroinflammation and microglia polarization after spinal cord injury. iScience 2024; 27:109649. [PMID: 38638567 PMCID: PMC11025009 DOI: 10.1016/j.isci.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Excessive neuroinflammation after spinal cord injury (SCI) is a major hurdle during nerve repair. Although proinflammatory macrophage/microglia-mediated neuroinflammation plays important roles, the underlying mechanism that triggers neuroinflammation and aggravating factors remain unclear. The present study identified a proinflammatory role of semaphorin3C (SEMA3C) in immunoregulation after SCI. SEMA3C expression level peaked 7 days post-injury (dpi) and decreased by 14 dpi. In vivo and in vitro studies revealed that macrophages/microglia expressed SEMA3C in the local microenvironment, which induced neuroinflammation and conversion of proinflammatory macrophage/microglia. Mechanistic experiments revealed that RAGE/NF-κB was downstream target of SEMA3C. Inhibiting SEMA3C-mediated RAGE signaling considerably suppressed proinflammatory cytokine production, reversed polarization of macrophages/microglia shortly after SCI. In addition, inhibition of SEMA3C-mediated RAGE signaling suggested that the SEMA3C/RAGE axis is a feasible target to preserve axons from neuroinflammation. Taken together, our study provides the first experimental evidence of an immunoregulatory role for SEMA3C in SCI via an autocrine mechanism.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Liangzhi Gong
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Junqing Lin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Wencheng Hu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jiabao Wei
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Xin Miao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jinlong Suo
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yun Qian
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
14
|
Chen S, Zeng J, Li R, Zhang Y, Tao Y, Hou Y, Yang L, Zhang Y, Wu J, Meng X. Traditional Chinese medicine in regulating macrophage polarization in immune response of inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117838. [PMID: 38310986 DOI: 10.1016/j.jep.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.
Collapse
Affiliation(s)
- Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui Li
- The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, PR China
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
15
|
Yao J, Chen Y, Huang Y, Sun X, Shi X. The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Hum Cell 2024; 37:607-624. [PMID: 38498133 DOI: 10.1007/s13577-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuqing Huang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
16
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
17
|
Galili U, Li J, Schaer GL. Regeneration in Mice of Injured Skin, Heart, and Spinal Cord by α-Gal Nanoparticles Recapitulates Regeneration in Amphibians. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:730. [PMID: 38668224 PMCID: PMC11055133 DOI: 10.3390/nano14080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The healing of skin wounds, myocardial, and spinal cord injuries in salamander, newt, and axolotl amphibians, and in mouse neonates, results in scar-free regeneration, whereas injuries in adult mice heal by fibrosis and scar formation. Although both types of healing are mediated by macrophages, regeneration in these amphibians and in mouse neonates also involves innate activation of the complement system. These differences suggest that localized complement activation in adult mouse injuries might induce regeneration instead of the default fibrosis and scar formation. Localized complement activation is feasible by antigen/antibody interaction between biodegradable nanoparticles presenting α-gal epitopes (α-gal nanoparticles) and the natural anti-Gal antibody which is abundant in humans. Administration of α-gal nanoparticles into injuries of anti-Gal-producing adult mice results in localized complement activation which induces rapid and extensive macrophage recruitment. These macrophages bind anti-Gal-coated α-gal nanoparticles and polarize into M2 pro-regenerative macrophages that orchestrate accelerated scar-free regeneration of skin wounds and regeneration of myocardium injured by myocardial infarction (MI). Furthermore, injection of α-gal nanoparticles into spinal cord injuries of anti-Gal-producing adult mice induces recruitment of M2 macrophages, that mediate extensive angiogenesis and axonal sprouting, which reconnects between proximal and distal severed axons. Thus, α-gal nanoparticle treatment in adult mice mimics physiologic regeneration in amphibians. These studies further suggest that α-gal nanoparticles may be of significance in the treatment of human injuries.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (J.L.); (G.L.S.)
| | | | | |
Collapse
|
18
|
Kanwal H, Sangineto M, Ciarnelli M, Castaldo P, Villani R, Romano AD, Serviddio G, Cassano T. Potential Therapeutic Targets to Modulate the Endocannabinoid System in Alzheimer's Disease. Int J Mol Sci 2024; 25:4050. [PMID: 38612861 PMCID: PMC11012768 DOI: 10.3390/ijms25074050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease (NDD), is characterized by chronic neuronal cell death through progressive loss of cognitive function. Amyloid beta (Aβ) deposition, neuroinflammation, oxidative stress, and hyperphosphorylated tau proteins are considered the hallmarks of AD pathology. Different therapeutic approaches approved by the Food and Drug Administration can only target a single altered pathway instead of various mechanisms that are involved in AD pathology, resulting in limited symptomatic relief and almost no effect in slowing down the disease progression. Growing evidence on modulating the components of the endocannabinoid system (ECS) proclaimed their neuroprotective effects by reducing neurochemical alterations and preventing cellular dysfunction. Recent studies on AD mouse models have reported that the inhibitors of the fatty acid amide hydrolase (FAAH) and monoacylglycerol (MAGL), hydrolytic enzymes for N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, might be promising candidates as therapeutical intervention. The FAAH and MAGL inhibitors alone or in combination seem to produce neuroprotection by reversing cognitive deficits along with Aβ-induced neuroinflammation, oxidative responses, and neuronal death, delaying AD progression. Their exact signaling mechanisms need to be elucidated for understanding the brain intrinsic repair mechanism. The aim of this review was to shed light on physiology and pathophysiology of AD and to summarize the experimental data on neuroprotective roles of FAAH and MAGL inhibitors. In this review, we have also included CB1R and CB2R modulators with their diverse roles to modulate ECS mediated responses such as anti-nociceptive, anxiolytic, and anti-inflammatory actions in AD. Future research would provide the directions in understanding the molecular mechanisms and development of new therapeutic interventions for the treatment of AD.
Collapse
Affiliation(s)
- Hina Kanwal
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Moris Sangineto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Martina Ciarnelli
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy;
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| |
Collapse
|
19
|
Gopalakrishnan B, Galili U, Dunbar A, Solorio L, Shi R, Li J. α-Gal Nanoparticles in CNS Trauma: I. In Vitro Activation of Microglia Towards a Pro-Healing State. Tissue Eng Regen Med 2024; 21:409-419. [PMID: 38099990 PMCID: PMC10987450 DOI: 10.1007/s13770-023-00613-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Macrophages and microglia play critical roles after spinal cord injury (SCI), with the pro-healing, anti-inflammatory (M2) subtype being implicated in tissue repair. We hypothesize that promoting this phenotype within the post-injured cord microenvironment may provide beneficial effects for mitigating tissue damage. As a proof of concept, we propose the use of nanoparticles incorporating the carbohydrate antigen, galactose-α-1,3-galactose (α-gal epitope) as an immunomodulator to transition human microglia (HMC3) cells toward a pro-healing state. METHODS Quiescent HMC3 cells were acutely exposed to α-gal nanoparticles in the presence of human serum and subsequently characterized for changes in cell shape, expression of anti or pro-inflammatory markers, and secretion of phenotype-specific cytokines. RESULTS HMC3 cells treated with serum activated α-gal nanoparticles exhibited rapid enlargement and shape change in addition to expressing CD68. Moreover, these activated cells showed increased expression of anti-inflammatory markers like Arginase-1 and CD206 without increasing production of pro-inflammatory cytokines TNF-α or IL-6. CONCLUSION This study is the first to show that resting human microglia exposed to a complex of α-gal nanoparticles and anti-Gal (from human serum) can be activated and polarized toward a putative M2 state. The data suggests that α-gal nanoparticles may have therapeutic relevance to the CNS microenvironment, in both recruiting and polarizing macrophages/microglia at the application site. The immunomodulatory activity of these α-gal nanoparticles post-SCI is further described in the companion work (Part II).
Collapse
Affiliation(s)
- Bhavani Gopalakrishnan
- Center for Paralysis Research (VCPR), Purdue University, 408 S. University St, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - August Dunbar
- Center for Paralysis Research (VCPR), Purdue University, 408 S. University St, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Riyi Shi
- Center for Paralysis Research (VCPR), Purdue University, 408 S. University St, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianming Li
- Center for Paralysis Research (VCPR), Purdue University, 408 S. University St, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Gopalakrishnan B, Galili U, Saenger M, Burket NJ, Koss W, Lokender MS, Wolfe KM, Husak SJ, Stark CJ, Solorio L, Cox A, Dunbar A, Shi R, Li J. α-Gal Nanoparticles in CNS Trauma: II. Immunomodulation Following Spinal Cord Injury (SCI) Improves Functional Outcomes. Tissue Eng Regen Med 2024; 21:437-453. [PMID: 38308742 PMCID: PMC10987462 DOI: 10.1007/s13770-023-00616-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Previous investigations have shown that local application of nanoparticles presenting the carbohydrate moiety galactose-α-1,3-galactose (α-gal epitopes) enhance wound healing by activating the complement system and recruiting pro-healing macrophages to the injury site. Our companion in vitro paper suggest α-gal epitopes can similarly recruit and polarize human microglia toward a pro-healing phenotype. In this continuation study, we investigate the in vivo implications of α-gal nanoparticle administration directly to the injured spinal cord. METHODS α-Gal knock-out (KO) mice subjected to spinal cord crush were injected either with saline (control) or with α-gal nanoparticles immediately following injury. Animals were assessed longitudinally with neurobehavioral and histological endpoints. RESULTS Mice injected with α-gal nanoparticles showed increased recruitment of anti-inflammatory macrophages to the injection site in conjunction with increased production of anti-inflammatory markers and a reduction in apoptosis. Further, the treated group showed increased axonal infiltration into the lesion, a reduction in reactive astrocyte populations and increased angiogenesis. These results translated into improved sensorimotor metrics versus the control group. CONCLUSIONS Application of α-gal nanoparticles after spinal cord injury (SCI) induces a pro-healing inflammatory response resulting in neuroprotection, improved axonal ingrowth into the lesion and enhanced sensorimotor recovery. The data shows α-gal nanoparticles may be a promising avenue for further study in CNS trauma.
Collapse
Affiliation(s)
- Bhavani Gopalakrishnan
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Megan Saenger
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Noah J Burket
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manjari S Lokender
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Kaitlyn M Wolfe
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Samantha J Husak
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Collin J Stark
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - August Dunbar
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Riyi Shi
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianming Li
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Zhang Z, Zhu Z, Liu D, Wang X, Liu X, Mi Z, Fu J, Fan H. Machine learning and experiments revealed a novel pyroptosis-based classification linked to diagnosis and immune landscape in spinal cord injury. Heliyon 2024; 10:e24974. [PMID: 38314301 PMCID: PMC10837564 DOI: 10.1016/j.heliyon.2024.e24974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Background Rising evidence indicates the development of pyroptosis in the initiation and pathogenesis of spinal cord injury (SCI). However, the associated effects of pyroptosis-related genes (PRGs) in SCI are unclear. Methods We obtained the gene expression profiles of SCI and normal samples in the GEO. Database The R package limma screened for differentially expressed (DE) PRGs and performed functional enrichment analysis. Mechanical learning and PPI analysis helped filter essential PRGs to diagnose SCI. Peripheral blood was collected for validation from ten SCI patients and eight healthy individuals. The association of essential PRGs with immune infiltration was evaluated, and pyroptosis subtypes were recognized in SCI patients by unsupervised cluster analysis. Besides, a SCI model was built for in vivo validation of essential PRGs. Result We identified 25 DE-PRGs between SCI and normal controls. Functional enrichment analysis revealed the principal involvement of DE-PRGs in pyroptosis, inflammasome complex, interleukin-1 beta production, etc. Subsequently, three essential PRGs were identified and validated, showing excellent diagnostic efficacy and significant correlation with immune cell infiltration. Additionally, we developed diagnostic nomograms to predict the occurrence of SCI. Two pyroptosis subtypes exhibited distinct biological functions and immune landscapes among SCI patients. Finally, the expression of these essential PRGswas verified in vivo. Conclusion The current study described the vital effects of pyroptosis-related genes in SCI, providing a novel direction for effective assessment and management of SCI.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhijie Zhu
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Nanjing, 210002, China
| | - Dong Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xuankang Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xincheng Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenzhou Mi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Fu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongbin Fan
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
22
|
Namestnikova DD, Kovalenko DB, Pokusaeva IA, Chudakova DA, Gubskiy IL, Yarygin KN, Baklaushev VP. Mesenchymal stem cells in the treatment of ischemic stroke. КЛИНИЧЕСКАЯ ПРАКТИКА 2024; 14:49-64. [DOI: 10.17816/clinpract624157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Over the past two decades, multiple preclinical studies have shown that transplantation of mesenchymal stem cells leads to a pronounced positive effect in animals with experimental stroke. Based on the promising results of preclinical studies, several clinical trials on the transplantation of mesenchymal stem cells to stroke patients have also been conducted. In this review, we present and analyze the results of completed clinical trials dedicated to the mesenchymal stem cells transplantation in patients with ischemic stroke. According to the obtained results, it can be concluded that transplantation of mesenchymal stem cells is safe and feasible from the economic and biomedical point of view. For the further implementa-tion of this promising approach into the clinical practice, randomized, placebo-controlled, multicenter clinical trials are needed with a large sample of patients and optimized cell transplantation protocols and patient inclusion criteria. In this review we also discuss possi-ble strategies to enhance the effectiveness of cell therapy with the use of mesenchymal stem cells.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
| | | | | | | | - Ilya L. Gubskiy
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
| | | | - Vladimir P. Baklaushev
- Federal Center of Brain Research and Neurotechnologies
- Pirogov Russian National Research Medical University
- Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
| |
Collapse
|
23
|
Yu T, Yang LL, Zhou Y, Wu MF, Jiao JH. Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Res Ther 2024; 15:6. [PMID: 38167108 PMCID: PMC10763489 DOI: 10.1186/s13287-023-03614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic injury to the central nervous system (CNS) that can lead to sensory and motor dysfunction, which seriously affects patients' quality of life and imposes a major economic burden on society. The pathological process of SCI is divided into primary and secondary injury, and secondary injury is a cascade of amplified responses triggered by the primary injury. Due to the complexity of the pathological mechanisms of SCI, there is no clear and effective treatment strategy in clinical practice. Exosomes, which are extracellular vesicles of endoplasmic origin with a diameter of 30-150 nm, play a critical role in intercellular communication and have become an ideal vehicle for drug delivery. A growing body of evidence suggests that exosomes have great potential for repairing SCI. In this review, we introduce exosome preparation, functions, and administration routes. In addition, we summarize the effect and mechanism by which various exosomes repair SCI and review the efficacy of exosomes in combination with other strategies to repair SCI. Finally, the challenges and prospects of the use of exosomes to repair SCI are described.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Min-Fei Wu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Jian-Hang Jiao
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
24
|
Gadhave DG, Sugandhi VV, Kokare CR. Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. Brain Res 2024; 1822:148674. [PMID: 37952871 DOI: 10.1016/j.brainres.2023.148674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The tight junction of endothelial cells in the central nervous system (CNS) has an ideal characteristic, acting as a biological barrier that can securely regulate the movement of molecules in the brain. Tightly closed astrocyte cell junctions on blood capillaries are the blood-brain barrier (BBB). This biological barrier prohibits the entry of polar drugs, cells, and ions, which protect the brain from harmful toxins. However, delivering any therapeutic agent to the brain in neurodegenerative disorders (i.e., schizophrenia, multiple sclerosis, etc.) is extremely difficult. Active immune responses such as microglia, astrocytes, and lymphocytes cross the BBB and attack the nerve cells, which causes the demyelination of neurons. Therefore, there is a hindrance in transmitting electrical signals properly, resulting in blindness, paralysis, and neuropsychiatric problems. The main objective of this article is to shed light on the performance of biomaterials, which will help researchers to create nanocarriers that can cross the blood-brain barrier and achieve a therapeutic concentration of drugs in the CNS of patients with multiple sclerosis (MS). The present review focuses on the importance of biomaterials with diagnostic and therapeutic efficacy that can help enhance multiple sclerosis therapeutic potential. Currently, the development of MS in animal models is limited by immune responses, which prevent MS induction in healthy animals. Therefore, this article also showcases animal models currently used for treating MS. A future advance in developing a novel effective strategy for treating MS is now a potential area of research.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune 413130, Maharashtra, India.
| | - Vrashabh V Sugandhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Chandrakant R Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
25
|
Xining Z, Sai L. The Evolving Function of Vasculature and Pro-angiogenic Therapy in Fat Grafting. Cell Transplant 2024; 33:9636897241264976. [PMID: 39056562 PMCID: PMC11282510 DOI: 10.1177/09636897241264976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous fat grating is a widely-accepted method to correct soft tissue deficiency. Although fat transplantation shows excellent biocompatibility and simple applicability, the relatively low retention rate caused by fat necrosis is still a challenge. The vasculature is integral after fat grafting, serving multiple crucial functions. Rapid and effective angiogenesis within grafts is essential for supplying oxygen necessary for adipocytes' survival. It facilitates the influx of inflammatory cells to remove necrotic adipocytes and aids in the delivery of regenerative cells for adipose tissue regeneration in fat grafts. The vasculature also provides a niche for interaction between adipose progenitor cells and vascular progenitor cells, enhancing angiogenesis and adipogenesis in grafts. Various methods, such as enriching grafts with diverse pro-angiogenic cells or utilizing cell-free approaches, have been employed to enhance angiogenesis. Beige and dedifferentiated adipocytes in grafts could increase vessel density. This review aims to outline the function of vasculature in fat grafting and discuss different cell or cell-free approaches that can enhance angiogenesis following fat grafting.
Collapse
Affiliation(s)
- Zhang Xining
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luo Sai
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Fu SP, Wu XC, Yang RL, Zhao DZ, Cheng J, Qian H, Ao J, Zhang Q, Zhang T. The role and mechanisms of mesenchymal stem cells regulating macrophage plasticity in spinal cord injury. Biomed Pharmacother 2023; 168:115632. [PMID: 37806094 DOI: 10.1016/j.biopha.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response. Recently, Mesenchymal Stem Cells (MSCs) have shown significant therapeutic potential in tissue engineering and regenerative medicine due to their potential multidirectional differentiation and immunomodulatory properties. Accumulating evidence shows that MSCs can regulate the balance of M1/M2 macrophage polarization, suppress downstream inflammatory responses, facilitate tissue repair and regeneration, and improve the prognosis of SCI. This article briefly overviews the impact of macrophages and MSCs on SCI and repair. It discusses the mechanisms by which MSCs regulate macrophage plasticity, including paracrine action, release of exosomes and apoptotic bodies, and metabolic reprogramming. Additionally, the article summarizes the relevant signaling pathways of MSCs that regulate macrophage polarization.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Cheng
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
27
|
Zhu B, Gu G, Ren J, Song X, Li J, Wang C, Zhang W, Huo Y, Wang H, Jin L, Feng S, Wei Z. Schwann Cell-Derived Exosomes and Methylprednisolone Composite Patch for Spinal Cord Injury Repair. ACS NANO 2023; 17:22928-22943. [PMID: 37948097 DOI: 10.1021/acsnano.3c08046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Spinal cord injury (SCI) can cause permanent loss of sensory and motor function, and there is no effective clinical treatment, to date. Due to the complex pathological process involved after injury, synergistic treatments are very urgently needed in clinical practice. We designed a nanofiber scaffold hyaluronic acid hydrogel patch to release both exosomes and methylprednisolone to the injured spinal cord in a non-invasive manner. This composite patch showed good biocompatibility in the stabilization of exosome morphology and toxicity to nerve cells. Meanwhile, the composite patch increased the proportion of M2-type macrophages and reduced neuronal apoptosis in an in vitro study. In vivo, the functional and electrophysiological performance of rats with SCI was significantly improved when the composite patch covered the surface of the hematoma. The composite patch inhibited the inflammatory response through macrophage polarization from M1 type to M2 type and increased the survival of neurons by inhibition neuronal of apoptosis after SCI. The therapeutic effects of this composite patch can be attributed to TLR4/NF-κB, MAPK, and Akt/mTOR pathways. Thus, the composite patch provides a medicine-exosomes dual-release system and may provide a non-invasive method for clinical treatment for individuals with SCI.
Collapse
Affiliation(s)
- Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Guangjin Gu
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaomeng Song
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Junjin Li
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Chunyan Wang
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Yanqing Huo
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, The Second Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, The Second Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
28
|
Valido E, Boehl G, Krebs J, Pannek J, Stojic S, Atanasov AG, Glisic M, Stoyanov J. Immune Status of Individuals with Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:16385. [PMID: 38003575 PMCID: PMC10670917 DOI: 10.3390/ijms242216385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Individuals with spinal cord injury (SCI) have higher infection rates compared to those without SCI. In this review, the immune status difference between individuals with and without traumatic SCI is investigated by examining their peripheral immune cells and markers. PubMed, Cochrane, EMBASE, and Ovid MEDLINE were searched without language or date restrictions. Studies reporting peripheral immune markers' concentration and changes in functional capabilities of immune cells that compared individuals with and without SCI were included. Studies with participants with active infection, immune disease, and central nervous system (CNS) immune markers were excluded. The review followed the PRISMA guidelines. Effect estimates were measured by Weighted Mean Difference (WMD) using a random-effects model. Study quality was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. Fifty-four studies (1813 with SCI and 1378 without SCI) contributed to the meta-analysis. Leukocytes (n = 23, WMD 0.78, 95% CI 0.17; 1.38, I2 83%), neutrophils (n = 11, WMD 0.76, 95% CI 0.09; 1.42, I2 89%), C-reactive protein (CRP) (n = 12, WMD 2.25, 95% CI 1.14; 3.56, I2 95%), and IL6 (n = 13, WMD 2.33, 95% CI 1.20; 3.49, I2 97%) were higher in individuals with SCI vs. without SCI. Clinical factors (phase of injury, completeness of injury, sympathetic innervation impairment, age, sex) and study-related factors (sample size, study design, and serum vs. plasma) partially explained heterogeneity. Immune cells exhibited lower functional capability in individuals with SCI vs. those without SCI. Most studies (75.6%) had a moderate risk of bias. The immune status of individuals with SCI differs from those without SCI and is clinically influenced by the phase of injury, completeness of injury, sympathetic innervation impairment, age, and sex. These results provide information that is vital for monitoring and management strategies to effectively improve the immune status of individuals with SCI.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, 6003 Lucerne, Switzerland
| | | | - Jörg Krebs
- Clinical Trial Unit, Swiss Paraplegic Center, 6207 Nottwil, Switzerland
| | - Jürgen Pannek
- Neuro-Urology, Swiss Paraplegic Center, 6207 Nottwil, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Stevan Stojic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
| | - Atanas G. Atanasov
- Ludwig Boltzman Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland
| | - Marija Glisic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
29
|
Qian T, Li Z, Shang L, Huang S, Li G, Zheng W, Mao Y. pH/Temperature Responsive Curcumin-Loaded Micelle Nanoparticles Promote Functional Repair after Spinal Cord Injury in Rats via Modulation of Inflammation. Tissue Eng Regen Med 2023; 20:879-892. [PMID: 37580648 PMCID: PMC10519900 DOI: 10.1007/s13770-023-00567-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The formation of an inhibitory inflammatory microenvironment after spinal cord injury (SCI) remains a great challenge for nerve regeneration. The poor local microenvironment exacerbates nerve cell death; therefore, the reconstruction of a favorable microenvironment through small-molecule drugs is a promising strategy for promoting nerve regeneration. METHODS In the present study, we synthesized curcumin-loaded micelle nanoparticles (Cur-NPs) to increase curcumin bioavailability and analyzed the physical and chemical properties of Cur-NPs by characterization experiments. We established an in vivo SCI model in rats and examined the ability of hind limb motor recovery using Basso-Beattie-Bresnahan scoring and hind limb trajectory assays. We also analyzed neural regeneration after SCI using immunofluorescence staining. RESULTS The nanoparticles achieved the intelligent responsive release of curcumin while improving curcumin bioavailability. Most importantly, the released curcumin attenuated local inflammation by modulating the polarization of macrophages from an M1 pro-inflammatory phenotype to an M2 anti-inflammatory phenotype. M2-type macrophages can promote cell differentiation, proliferation, matrix secretion, and reorganization by secreting or expressing pro-repair cytokines to reduce the inflammatory response. The enhanced inflammatory microenvironment supported neuronal regeneration, nerve remyelination, and reduced scar formation. These effects facilitated functional repair in rats, mainly in the form of improved hindlimb movements. CONCLUSION Here, we synthesized pH/temperature dual-sensitive Cur-NPs. While improving the bioavailability of the drug, they were also able to achieve a smart responsive release in the inflammatory microenvironment that develops after SCI. The Cur-NPs promoted the regeneration and functional recovery of nerves after SCI through anti-inflammatory effects, providing a promising strategy for the repair of SCIs.
Collapse
Affiliation(s)
- Taibao Qian
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, China
| | - Zhixiang Li
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, China
| | - Lijun Shang
- Anhui Province Key Laboratory of Tissue Transplantation and School of Life Sciences, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China
| | - Sutao Huang
- Anhui Province Key Laboratory of Tissue Transplantation and School of Life Sciences, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China
| | - Guanglin Li
- Anhui Province Key Laboratory of Tissue Transplantation and School of Life Sciences, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China
| | - Weiwei Zheng
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation and School of Life Sciences, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China.
| |
Collapse
|
30
|
Shao Y, Lan Y, Chai X, Gao S, Zheng J, Huang R, Shi Y, Xiang Y, Guo H, Xi Y, Yang L, Yang T. CXCL8 induces M2 macrophage polarization and inhibits CD8 + T cell infiltration to generate an immunosuppressive microenvironment in colorectal cancer. FASEB J 2023; 37:e23173. [PMID: 37665572 DOI: 10.1096/fj.202201982rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The poor prognosis of immunotherapy in patients with colorectal cancer (CRC) necessitates a comprehensive understanding of the immunosuppressive mechanisms within tumor microenvironment (TME). Undoubtedly, the anti-tumor immune cells play an indispensable role in immune tolerance. Therefore, it is imperative to investigate novel immune-related factors that have the capacity to enhance anti-tumor immunity. Here, we employed bioinformatic analysis using R and Cytoscape to identify the hub gene chemokine (C-X-C motif) ligand 8 (CXCL8), which is overexpressed in CRC, in the malignant progression of CRC. However, its specific role of CXCL8 in CRC immunity remains to be elucidated. For this purpose, we evaluated how tumor-derived CXCL8 promotes M2 macrophage infiltration by in vivo and in vitro, which can be triggered by IL-1β within TME. Mechanistically, CXCL8-induced polarization of M2 macrophages depends on the activation of the STAT3 signaling. Finally, immunohistochemistry and multiplexed immunohistochemistry analysis identified that CXCL8 not only enhances PD-L1+ M2 macrophage infiltration but also attenuates the recruitment of PD-1+ CD8+ T cells in murine CRC models. Together, these findings emphasize the critical role for CXCL8 in promoting M2 macrophage polarization and inhibiting CD8+ T cell infiltration, thereby links CXCL8 to the emergency of immunosuppressive microenvironment facilitating tumor evasion. Overall, these findings may provide novel strategy for CRC immunotherapy.
Collapse
Affiliation(s)
- Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yan Lan
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Xinyue Chai
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Shuhua Gao
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jinxiu Zheng
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Rui Huang
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yu Shi
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yi Xiang
- Department of Orthpaedics, The Logistics Support Forces of Chinese PLA 985 Hospital, Taiyuan, China
| | - Hongmei Guo
- Department of Casualty Management, The Logistics Support Forces of Chinese PLA 985 Hospital, Taiyuan, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, China
| | - Lijun Yang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Yang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
Zeng CW. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int J Mol Sci 2023; 24:14349. [PMID: 37762654 PMCID: PMC10532158 DOI: 10.3390/ijms241814349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injuries (SCIs) can lead to significant neurological deficits and lifelong disability, with far-reaching physical, psychological, and economic consequences for affected individuals and their families. Current treatments for SCIs are limited in their ability to restore function, and there is a pressing need for innovative therapeutic approaches. Stem cell therapy has emerged as a promising strategy to promote the regeneration and repair of damaged neural tissue following SCIs. This review article comprehensively discusses the potential of different stem cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and neural stem/progenitor cells (NSPCs), in SCI treatment. We provide an in-depth analysis of the unique advantages and challenges associated with each stem cell type, as well as the latest advancements in the field. Furthermore, we address the critical challenges faced in stem cell therapy for SCIs, including safety concerns, ethical considerations, standardization of protocols, optimization of transplantation parameters, and the development of effective outcome measures. We also discuss the integration of novel technologies such as gene editing, biomaterials, and tissue engineering to enhance the therapeutic potential of stem cells. The article concludes by emphasizing the importance of collaborative efforts among various stakeholders in the scientific community, including researchers, clinicians, bioengineers, industry partners, and patients, to overcome these challenges and realize the full potential of stem cell therapy for SCI patients. By fostering such collaborations and advancing our understanding of stem cell biology and regenerative medicine, we can pave the way for the development of groundbreaking therapies that improve the lives of those affected by SCIs.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Liu Y, Liu PD, Zhang CM, Liu MR, Wang GS, Li PC, Yang ZQ. Research progress and hotspots on macrophages in osteoarthritis: A bibliometric analysis from 2009 to 2022. Medicine (Baltimore) 2023; 102:e34642. [PMID: 37653729 PMCID: PMC10470799 DOI: 10.1097/md.0000000000034642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Macrophages in the synovium, as immune cells, can be polarized into different phenotypes to play an anti-inflammatory role in the treatment of osteoarthritis. In this study, bibliometric methods were used to search the relevant literature to find valuable research directions for researchers and provide new targets for osteoarthritis prevention and early treatment. METHODS Studies about the application of macrophages in the treatment of osteoarthritis were searched through the Web of Science core database from 2009 to 2022. Microsoft Excel 2019, VOSviewer, CiteSpace, R software, and 2 online websites were used to analyze the research status and predict the future development of the trend in research on macrophages in osteoarthritis. RESULTS The number of publications identified with the search strategy was 1304. China and the United States ranked first in the number of publications. Shanghai Jiao Tong University ranked first in the world with 37 papers. Osteoarthritis and Cartilage was the journal with the most publications, and "exosomes," "stem cells," "macrophage polarization," "regeneration," and "innate immunity" may remain the research hotspots and frontiers in the future. CONCLUSION The findings from the global trend analysis indicate that research on macrophages in the treatment of osteoarthritis is gradually deepening, and the number of studies is increasing. Exosomes may become a research trend and hotspot in the future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pei-Dong Liu
- Department of Orthopedics, HongHui Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Cheng-Ming Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng-Rou Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Gui-Shan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Peng-Cui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zi-Quan Yang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
- Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
33
|
Xu P, Li TT, Wang BC, Yi YJ, Zhang WC, Sun GD, Zhang Y, Li ZZ. Supramolecular assemblies with spatio-temporal sequential drug delivery capability treat spinal cord injury via neuroprotection and immunoregulation. J Control Release 2023; 360:528-548. [PMID: 37433370 DOI: 10.1016/j.jconrel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Spinal cord injury (SCI) can result in irreversible motor and sensory deficits. However, up to data, clinical first-line drugs have ambiguous benefits and debilitating side effects, mainly due to the insufficient accumulation, poor physiological barrier penetration, and lack of spatio-temporal controlled release at lesion tissue. Herein, we proposed a supramolecular assemblies composed of hyperbranched polymer-formed core/shell structure through host-guest interactions. Such HPAA-BM@CD-HPG-C assemblies co-loaded with p38 inhibitor (SB203580) and insulin-like growth factor 1(IGF-1) are able to achieve time- and space-programmed sequential delivery benefiting from their cascaded responsiveness. The core-shell disassembly of HPAA-BM@CD-HPG-C occurs in acidic micro-environment around lesion, achieving preferentially the burst release of IGF-1 to protect survival neurons. Subsequently, the HPAA-BM cores containing SB203580 are endocytosed by the recruited macrophages and degraded by intracellular GSH, accelerating the release of SB203580 to promote the conversion from M1 to M2 macrophage. Hence, the successive synergy of neuroprotection and immunoregulation effects contribute to subsequent nerve repair and locomotor recovery as demonstrated in vitro and in vivo studies. Thus, our fabrication provides a strategy that multiple drugs co-delivery in a spatio-temporal selective manner adapting to the disease progression through self-cascaded disintegration, are expected to realize multidimensional precise treatment of SCI.
Collapse
Affiliation(s)
- Ping Xu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, 601 West Whampoa Avenue, Guangzhou 510000, China
| | - Tian-Tian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, 601 West Whampoa Avenue, Guangzhou 510632, China
| | - Bin-Chen Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, 601 West Whampoa Avenue, Guangzhou 510632, China
| | - Yong-Jun Yi
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, 601 West Whampoa Avenue, Guangzhou 510000, China
| | - Wen-Cai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, 601 West Whampoa Avenue, Guangzhou 510000, China
| | - Guo-Dong Sun
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, 601 West Whampoa Avenue, Guangzhou 510000, China; Key Laboratory of Guangdong Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University, Yingke Avenue, Heyuan City 517000, China.
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, 601 West Whampoa Avenue, Guangzhou 510632, China.
| | - Zhi-Zhong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, 601 West Whampoa Avenue, Guangzhou 510000, China; Key Laboratory of Guangdong Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University, Yingke Avenue, Heyuan City 517000, China.
| |
Collapse
|
34
|
Xu L, Yang Y, Zhong W, Li W, Liu C, Guo Z, Yu X. Comparative efficacy of five most common traditional Chinese medicine monomers for promoting recovery of motor function in rats with blunt spinal cord injury: a network meta-analysis. Front Neurol 2023; 14:1165076. [PMID: 37465765 PMCID: PMC10351986 DOI: 10.3389/fneur.2023.1165076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Objective This research employed a network meta-analysis (NMA) to examine the effectiveness of five traditional Chinese medicine (TCM) monomers for promoting motor function recovery in rats with blunt spinal cord injury (SCI). Methods Wangfang, China National Knowledge Infrastructure, Web of Science, Embase, Chinese Scientific Journal Database, PubMed, and the Chinese Biomedical Literature Databases were searched for retrieving relevant articles published from their inception to December 2022. Two reviewers performed screening of search results, data extraction, and literature quality assessment independently. Results For this meta-analysis, 59 publications were included. Based on the recovery of motor function at weeks 1, 2, 3, and 4 in NMA, almost all TCM groups had significantly increased positive effects than the negative control animals. In terms of cumulative probability, the tanshinone IIA (TIIA) group ranked first in restoring motor function in the first week after blunt SCI, and the resveratrol (RSV) group ranked first during the last 3 weeks. Conclusion The NMA revealed that TCM monomers could effectively restore motor function in the rat model of blunt SCI. In rats with blunt SCI, TIIA may be the most effective TCM monomer during the first week, whereas RSV may be the most effective TCM monomer during the last 3 weeks in promoting motor function recovery. For better evidence reliability in preclinical investigations and safer extrapolation of those findings into clinical settings, further research standardizing the implementation and reporting of animal experiments is required. Systematic Review Registration https://inplasy.com/, identifier INPLASY202310070.
Collapse
|
35
|
Jeong SY, Lee HL, Wee S, Lee H, Hwang G, Hwang S, Yoon S, Yang YI, Han I, Kim KN. Co-Administration of Resolvin D1 and Peripheral Nerve-Derived Stem Cell Spheroids as a Therapeutic Strategy in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2023; 24:10971. [PMID: 37446149 DOI: 10.3390/ijms241310971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.
Collapse
Affiliation(s)
- Seung-Young Jeong
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - GwangYong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SolLip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Il Yang
- Paik Imje Memorial Institute for Clinical Research, InJe University College of Medicine, Busan 47392, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
36
|
Feng F, Song X, Tan Z, Tu Y, Xiao L, Xie P, Ma Y, Sun X, Ma J, Rong L, He L. Cooperative assembly of a designer peptide and silk fibroin into hybrid nanofiber gels for neural regeneration after spinal cord injury. SCIENCE ADVANCES 2023; 9:eadg0234. [PMID: 37352345 PMCID: PMC10289662 DOI: 10.1126/sciadv.adg0234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Local reconstruction of a permissive environment with biomaterials is a promising strategy to treat spinal cord injury (SCI). We reported a hybrid hydrogel fabricated from a small functional self-assembling peptide (F-SAP) and large silk fibroin (SF). The diffusion of SF micelles into F-SAP solution was driven by the dynamic synergy between osmotic pressure and F-SAP/SF electrostatic interactions, resulting in the rearrangement of SF micelles and the formation of rod-like filaments with axes nearly perpendicular to F-SAP nanofibers. Spectroscopy analysis, including circular dichroism, Raman and fluorescence, indicated conformation changes of SF from random coil to β sheet, which contributed to enhanced mechanical properties of the resultant hybrid hydrogel. Furthermore, the F-SAP/SF hybrid hydrogel coupled with controlled release of NT-3 provided a permissive environment for neural regeneration by providing nanofibrous substrates for regenerating axons, inflammatory modulation and remyelination, consequently resulting in improved locomotion and electrophysiological properties. This hydrogel could be used as a long-term stent in vivo for the treatment of SCI.
Collapse
Affiliation(s)
- Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiyong Song
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Zan Tan
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yujie Tu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Longyou Xiao
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Pengfei Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yahao Ma
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiumin Sun
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Junwu Ma
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Liumin He
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
37
|
Ortega MA, Fraile-Martinez O, García-Montero C, Haro S, Álvarez-Mon MÁ, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Pérez M, Díaz D, Lopez-Dolado E, Álvarez-Mon M. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities. Mil Med Res 2023; 10:26. [PMID: 37291666 PMCID: PMC10251601 DOI: 10.1186/s40779-023-00461-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating and disabling medical condition generally caused by a traumatic event (primary injury). This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage (secondary injury). The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI, explaining the progression and detrimental consequences related to this condition. Psychoneuroimmunoendocrinology (PNIE) is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism, considering the mind and the body as a whole. The initial traumatic event and the consequent neurological disruption trigger immune, endocrine, and multisystem dysfunction, which in turn affect the patient's psyche and well-being. In the present review, we will explore the most important local and systemic consequences of SCI from a PNIE perspective, defining the changes occurring in each system and how all these mechanisms are interconnected. Finally, potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M. Gomez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Pérez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Díaz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology Service and Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcala de Henares, Spain
| |
Collapse
|
38
|
Fan W, Fu D, Zhang L, Xiao Z, Shen X, Chen J, Qi X. Enoxaparin sodium bone cement plays an anti-inflammatory immunomodulatory role by inducing the polarization of M2 macrophages. J Orthop Surg Res 2023; 18:380. [PMID: 37221568 DOI: 10.1186/s13018-023-03865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE The implantation of PMMA bone cement results in an immune response and the release of PMMA bone cement particles causes an inflammatory cascade. Our study discovered that ES-PMMA bone cement can induce M2 polarization of macrophages, which has an anti-inflammatory immunomodulatory effect. We also delved into the molecular mechanisms that underlie this process. METHODS In this study, we designed and prepared samples of bone cement. These included PMMA bone cement samples and ES-PMMA bone cement samples, which were implanted into the back muscles of rats. At 3, 7, and 14 days after the operation, we removed the bone cement and a small amount of surrounding tissue. We then performed immunohistochemistry and immunofluorescence to observe the polarization of macrophages and the expression of related inflammatory factors in the surrounding tissues. The RAW264.7 cells were exposed to lipopolysaccharide (LPS) for 24 h to establish the macrophage inflammation model. Then, each group was treated with enoxaparin sodium medium, PMMA bone cement extract medium, and ES-PMMA bone cement extract medium, respectively, and cultured for another 24 h. We collected cells from each group and used flow cytometry to detect the expressions of CD86 and CD206 in macrophages. Additionally, we performed RT-qPCR to determine the mRNA levels of three markers of M1 macrophages (TNF-α, IL-6, iNOS) and two M2 macrophage markers (Arg-1, IL-10). Furthermore, we analyzed the expression of TLR4, p-NF-κB p65, and NF-κB p65 through Western blotting. RESULTS The immunofluorescence results indicate that the ES-PMMA group exhibited an upregulation of CD206, an M2 marker, and a downregulation of CD86, an M1 marker, in comparison to the PMMA group. Additionally, the immunohistochemistry results revealed that the levels of IL-6 and TNF-α expression were lower in the ES-PMMA group than in the PMMA group, while the expression level of IL-10 was higher in the ES-PMMA group. Flow cytometry and RT-qPCR analyses revealed that the expression of M1-type macrophage marker CD86 was significantly elevated in the LPS group compared to the NC group. Additionally, M1-type macrophage-related cytokines TNF-α, IL-6, and iNOS were also found to be increased. However, in the LPS + ES group, the expression levels of CD86, TNF-α, IL-6, and iNOS were decreased, while the expression of M2-type macrophage markers CD206 and M2-type macrophage-related cytokines (IL-10, Arg-1) were increased compared to the LPS group. In comparison to the LPS + PMMA group, the LPS + ES-PMMA group demonstrated a down-regulation of CD86, TNF-α, IL-6, and iNOS expression levels, while increasing the expression levels of CD206, IL-10, and Arg-1. Western blotting results revealed a significant decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 in the LPS + ES group when compared to the LPS group. Additionally, the LPS + ES-PMMA group exhibited a decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 levels when compared to the LPS + PMMA group. CONCLUSION ES-PMMA bone cement is more effective than PMMA bone cement in down-regulating the expression of the TLR4/NF-κB signaling pathway. Additionally, it induces macrophages to polarize towards the M2 phenotype, making it a crucial player in anti-inflammatory immune regulation.
Collapse
Affiliation(s)
- Weiye Fan
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Zhihang Xiao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Jianchao Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
39
|
Yang C, Du XY, Luo W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells 2023; 15:136-149. [PMID: 37181000 PMCID: PMC10173814 DOI: 10.4252/wjsc.v15.i4.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen 518051, Guangdong Province, China
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Ya Du
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
40
|
Kayabaş M, Şahin L, Makav M, Alwazeer D, Aras L, Yiğit S, LeBaron TW. Protective Effect of Hydrogen-Rich Saline on Spinal Cord Damage in Rats. Pharmaceuticals (Basel) 2023; 16:ph16040527. [PMID: 37111284 PMCID: PMC10143771 DOI: 10.3390/ph16040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The anti-inflammatory and anti-apoptotic effects of molecular hydrogen, delivered as hydrogen-rich saline (HRS), on spinal cord injury was investigated. Four-month-old male Sprague Dawley rats (n = 24) were classified into four groups: (1) control—laminectomy only at T7-T10; (2) spinal injury—dura left intact, Tator and Rivlin clip compression model applied to the spinal cord for 1 min, no treatment given; (3) HRS group—applied intraperitoneally (i.p.) for seven days; and (4) spinal injury—HRS administered i.p. for seven days after laminectomy at T7–T10 level, leaving the dura intact and applying the Tator and Rivlin clip compression model to the spinal cord for 1 min. Levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured in blood taken at day seven from all groups, and hematoxylin–eosin (H & E) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) were used to stain the tissue samples. IL-6 and TNF-α levels were significantly lower in the group treated with HRS following the spinal cord injury compared to the group whose spinal cord was damaged. A decrease in apoptosis was also observed. The anti-inflammatory and anti-apoptotic effect of IL-6 may be a clinically useful adjuvant therapy after spinal cord injury.
Collapse
Affiliation(s)
- Murat Kayabaş
- Department of Neurosurgery, Faculty of Medicine, Kafkas University, 36100 Kars, Türkiye
| | - Levent Şahin
- Department of Emergency Medicine, Faculty of Medicine, Kafkas University, 36100 Kars, Türkiye
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary, Kafkas University, 36040 Kars, Türkiye
| | - Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, 76000 Iğdır, Türkiye
| | - Levent Aras
- Department of Neurosurgery, Faculty of Medicine, Kafkas University, 36100 Kars, Türkiye
| | - Serdar Yiğit
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, 36100 Kars, Türkiye
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
| |
Collapse
|
41
|
Lund MC, Clausen BH, Brambilla R, Lambertsen KL. The Role of Tumor Necrosis Factor Following Spinal Cord Injury: A Systematic Review. Cell Mol Neurobiol 2023; 43:925-950. [PMID: 35604578 PMCID: PMC11414445 DOI: 10.1007/s10571-022-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.
Collapse
Affiliation(s)
- Minna Christiansen Lund
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bettina Hjelm Clausen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roberta Brambilla
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kate Lykke Lambertsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 21 st., 5000, Odense, Denmark.
| |
Collapse
|
42
|
Ge X, Zhou Z, Yang S, Ye W, Wang Z, Wang J, Xiao C, Cui M, Zhou J, Zhu Y, Wang R, Gao Y, Wang H, Tang P, Zhou X, Wang C, Cai W. Exosomal USP13 derived from microvascular endothelial cells regulates immune microenvironment and improves functional recovery after spinal cord injury by stabilizing IκBα. Cell Biosci 2023; 13:55. [PMID: 36915206 PMCID: PMC10012460 DOI: 10.1186/s13578-023-01011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) can result in irreversible sensory and motor disability with no effective treatment currently. After SCI, infiltrated macrophages accumulate in epicenter through destructed blood-spinal cord barrier (BSCB). Further, great majority of macrophages are preferentially polarized to M1 phenotype, with only a few transient M2 phenotype. The purpose of this study was to explore roles of vascular endothelial cells in microglia/macrophages polarization and the underlying mechanism. Lipopolysaccharide (LPS) was used to pretreat BV2 microglia and RAW264.7 macrophages followed by administration of conditioned medium from microvascular endothelial cell line bEnd.3 cells (ECM). Analyses were then performed to determine the effects of exosomes on microglia/macrophages polarization and mitochondrial function. The findings demonstrated that administration of ECM shifted microglia/macrophages towards M2 polarization, ameliorated mitochondrial impairment, and reduced reactive oxygen species (ROS) production in vitro. Notably, administration of GW4869, an exosomal secretion inhibitor, significantly reversed these observed benefits. Further results revealed that exosomes derived from bEnd.3 cells (Exos) promote motor rehabilitation and M2 polarization of microglia/macrophages in vivo. Ubiquitin-specific protease 13 (USP13) was shown to be significantly enriched in BV2 microglia treated with Exos. USP13 binds to, deubiquitinates and stabilizes the NF-κB inhibitor alpha (IκBα), thus regulating microglia/macrophages polarization. Administration of the selective IκBα inhibitor betulinic acid (BA) inhibited the beneficial effect of Exos in vivo. These findings uncovered the potential mechanism underlying the communications between vascular endothelial cells and microglia/macrophages after SCI. In addition, this study indicates exosomes might be a promising therapeutic strategy for SCI treatment.
Collapse
Affiliation(s)
- Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Siting Yang
- Department of Anesthesiology and Nursing, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chenyu Xiao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Min Cui
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jiawen Zhou
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Rixiao Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yu Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Haofan Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
43
|
Zhang Z, Zhu Z, Wang X, Liu D, Liu X, Mi Z, Tao H, Fan H. Comprehensive landscape of immune-based classifier related to early diagnosis and macrophage M1 in spinal cord injury. Aging (Albany NY) 2023; 15:1158-1176. [PMID: 36842142 PMCID: PMC10008498 DOI: 10.18632/aging.204548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Numerous studies have documented that immune responses are crucial in the pathophysiology of spinal cord injury (SCI). Our study aimed to uncover the function of immune-related genes (IRGs) in SCI. Here, we comprehensively evaluated the transcriptome data of SCI and healthy controls (HC) obtained from the GEO Database integrating bioinformatics and experiments. First, a total of 2067 DEGs were identified between the SCI and HC groups. Functional enrichment analysis revealed substantial immune-related pathways and functions that were abnormally activated in the SCI group. Immune analysis revealed that myeloid immune cells were predominantly upregulated in SCI patients, while a large number of lymphoid immune cells were dramatically downregulated. Subsequently, 51 major IRGs were screened as key genes involved in SCI based on the intersection of the results of WGCNA analysis, DEGs, and IRGs. Based on the expression profiles of these genes, two distinct immune modulation patterns were recognized exhibiting opposite immune characteristics. Moreover, 2 core IRGs (FCER1G and NFATC2) were determined to accurately predict the occurrence of SCI via machine learning. qPCR analysis was used to validate the expression of core IRGs in an external independent cohort. Finally, the expression of these core IRGs was validated by sequencing, WB, and IF analysis in vivo. We found that these two core IRGs were closely associated with immune cells and verified the co-localization of FCER1G with macrophage M1 via IF analysis. Our study revealed the key role of immune-related genes in SCI and contributed to a fresh perspective for early diagnosis and treatment of SCI.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhijie Zhu
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Xuankang Wang
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Dong Liu
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Xincheng Liu
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhenzhou Mi
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Huiren Tao
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen 518052, China
| | - Hongbin Fan
- Department of Orthopaedics, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
44
|
Microbe-Derived Antioxidants Alleviate Liver and Adipose Tissue Lipid Disorders and Metabolic Inflammation Induced by High Fat Diet in Mice. Int J Mol Sci 2023; 24:ijms24043269. [PMID: 36834674 PMCID: PMC9965291 DOI: 10.3390/ijms24043269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Obesity induces lipodystrophy and metabolic inflammation. Microbe-derived antioxidants (MA) are novel small-molecule nutrients obtained from microbial fermentation, and have anti-oxidation, lipid-lowering and anti-inflammatory effects. Whether MA can regulate obesity-induced lipodystrophy and metabolic inflammation has not yet been investigated. The aim of this study was to investigate the effects of MA on oxidative stress, lipid disorders, and metabolic inflammation in liver and epididymal adipose tissues (EAT) of mice fed with a high-fat diet (HFD). Results showed that MA was able to reverse the HFD-induced increase in body weight, body fat rate and Lee's index in mice; reduce the fat content in serum, liver and EAT; and regulate the INS, LEP and resistin adipokines as well as free fatty acids to their normal levels. MA also reduced de novo synthesis of fat in the liver and EAT and promoted gene expression for lipolysis, fatty acid transport and β-oxidation. MA decreased TNF-α and MCP1 content in serum, elevated SOD activity in liver and EAT, induced macrophage polarization toward the M2 type, inhibited the NLRP3 pathway, increased gene expression of the anti-inflammatory factors IL-4 and IL-13 and suppressed gene expression of the pro-inflammatory factors IL-6, TNF-α and MCP1, thereby attenuating oxidative stress and inflammation induced by HFD. In conclusion, MA can effectively reduce HFD-induced weight gain and alleviate obesity-induced oxidative stress, lipid disorders and metabolic inflammation in the liver and EAT, indicating that MA shows great promise as a functional food.
Collapse
|
45
|
Pan B, Wu X, Zeng X, Chen J, Zhang W, Cheng X, Wan Y, Li X. Transplantation of Wnt4-modified neural stem cells mediate M2 polarization to improve inflammatory micro-environment of spinal cord injury. Cell Prolif 2023:e13415. [PMID: 36747440 PMCID: PMC10392051 DOI: 10.1111/cpr.13415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Neural stem cells (NSCs) transplantation has been considered as a potential strategy to reconnect the neural circuit after spinal cord injury (SCI) but the therapeutic effect was still unsatisfied because of the poor inflammatory micro-environment of SCI. Previous study reported that neuroprotection and inflammatory immunomodulation were considered to be most important mechanism of NSCs transplantation. In addition, Wnt4 has been considered to be neurogenesis and anti-inflammatory so that it would be an essential assistant agent for NSCs transplantation. Our single cells sequence indicates that macrophages are the most important contributor of inflammatory response after SCI and the interaction between macrophages and astrocytes may be the most crucial to inflammatory microenvironment of SCI. We further report the first piece of evidence to confirm the interaction between Wnt4-modified NSCs and macrophages using NSCs-macrophages co-cultured system. Wnt4-modified NSCs induce M2 polarization and inhibit M1 polarization of macrophages through suppression of TLR4/NF-κB signal pathway; furthermore, M2 cells promote neuronal differentiation of NSCs through MAPK/JNK signal pathway. In vivo, transplantation of Wnt4-modified NSCs improves inflammatory micro-environment through induce M2 polarization and inhibits M1 polarization of macrophages to promote axonal regeneration and tissue repair. The current study indicated that transplantation of Wnt4-modified NSCs mediates M2 polarization of macrophages to promote spinal cord injury repair. Our novel findings would provide more insight of SCI and help with identification of novel treatment strategy.
Collapse
Affiliation(s)
- Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xiaolin Zeng
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiewen Chen
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwu Zhang
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Cheng
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Wan
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Ju C, Ma Y, Zuo X, Wang X, Song Z, Zhang Z, Zhu Z, Li X, Liang Z, Ding T, Hu X, Wang Z. Photobiomodulation promotes spinal cord injury repair by inhibiting macrophage polarization through lncRNA TUG1-miR-1192/TLR3 axis. Cell Mol Biol Lett 2023; 28:5. [PMID: 36658478 PMCID: PMC9854040 DOI: 10.1186/s11658-023-00417-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Secondary spinal cord injury (SCI) often causes the aggravation of inflammatory reaction and nerve injury, which affects the recovery of motor function. Bone-marrow-derived macrophages (BMDMs) were recruited to the injured area after SCI, and the M1 polarization is the key process for inducing inflammatory response and neuronal apoptosis. We previously showed that photobiomodulation (PBM) can inhibit the polarization of M1 phenotype of BMDMs and reduce inflammation, but the underlying mechanisms are unclear. The purpose of this study is to explore the potential target and mechanism of PBM in treating SCI. METHODS Transcriptome sequencing and bioinformatics analysis showed that long noncoding RNA taurine upregulated gene 1 (lncRNA TUG1) was a potential target of PBM. The expression and specific mechanism of lncRNA TUG1 were detected by qPCR, immunofluorescence, flow cytometry, western blotting, fluorescence in situ hybridization, and luciferase assay. The Basso mouse scale (BMS) and gait analysis were used to evaluate the recovery of motor function in mice. RESULTS Results showed that lncRNA TUG1 may be a potential target of PBM, regulating the polarization of BMDMs, inflammatory response, and the axial growth of DRG. Mechanistically, TUG1 competed with TLR3 for binding to miR-1192 and attenuated the inhibitory effect of miR-1192 on TLR3. This effect protected TLR3 from degradation, enabling the high expression of TLR3, which promoted the activation of downstream NF-κB signal and the release of inflammatory cytokines. In vivo, PBM treatment could reduce the expression of TUG1, TLR3, and inflammatory cytokines and promoted nerve survival and motor function recovery in SCI mice. CONCLUSIONS Our study clarified that the lncRNA TUG1/miR-1192/TLR3 axis is an important pathway for PBM to inhibit M1 macrophage polarization and inflammation, which provides theoretical support for its clinical application in patients with SCI.
Collapse
Affiliation(s)
- Cheng Ju
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Yangguang Ma
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xiaoshuang Zuo
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xuankang Wang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhiwen Song
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhihao Zhang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhijie Zhu
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xin Li
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhuowen Liang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Tan Ding
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xueyu Hu
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhe Wang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| |
Collapse
|
47
|
Tang H, Gu Y, Jiang L, Zheng G, Pan Z, Jiang X. The role of immune cells and associated immunological factors in the immune response to spinal cord injury. Front Immunol 2023; 13:1070540. [PMID: 36685599 PMCID: PMC9849245 DOI: 10.3389/fimmu.2022.1070540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition prevalent worldwide. Where the pathological mechanisms underlying SCI are concerned, we can distinguish between primary injury caused by initial mechanical damage and secondary injury characterized by a series of biological responses, such as vascular dysfunction, oxidative stress, neurotransmitter toxicity, lipid peroxidation, and immune-inflammatory response. Secondary injury causes further tissue loss and dysfunction, and the immune response appears to be the key molecular mechanism affecting injured tissue regeneration and functional recovery from SCI. Immune response after SCI involves the activation of different immune cells and the production of immunity-associated chemicals. With the development of new biological technologies, such as transcriptomics, the heterogeneity of immune cells and chemicals can be classified with greater precision. In this review, we focus on the current understanding of the heterogeneity of these immune components and the roles they play in SCI, including reactive astrogliosis and glial scar formation, neutrophil migration, macrophage transformation, resident microglia activation and proliferation, and the humoral immunity mediated by T and B cells. We also summarize findings from clinical trials of immunomodulatory therapies for SCI and briefly review promising therapeutic drugs currently being researched.
Collapse
Affiliation(s)
- Huaguo Tang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yuanjie Gu
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Lei Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Gang Zheng
- Department of Neurosurgery, The Central Hospital Affiliated to Shaoxing University, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xiugui Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
48
|
Li K, Hu W, Yang Y, Wen H, Li W, Wang B. Anti-inflammation of hydrogenated isoflavones in LPS-stimulated RAW264.7 cells via inhibition of NF-κB and MAPK signaling pathways. Mol Immunol 2023; 153:126-134. [PMID: 36495817 DOI: 10.1016/j.molimm.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Isoflavones are commonly found in diets, such as soybean and clover. Their anti-inflammatory effects are due to the inhibition of the transcriptional regulation of NF-κB. Hydrogenated isoflavones are metabolites of isoflavones with higher bioavailability, however, there have been few studies on their anti-inflammatory effects. In this work, by using the LPS-stimulated RAW264.7 cell model, we investigated the anti-inflammatory effect and the underlying mechanism of hydrogenated isoflavones. Hydrogenated isoflavones reduced the production of LPS-stimulated pro-inflammatory mediators and enzymes, including TNF-α, IL-6, NO, iNOS and COX-2. The level of ROS was also diminished in LPS-stimulated RAW264.7 cells. Further mechanistic studies showcase that hydrogenated isoflavones block NF-κB and MAPK pathways via attenuation of p65 nuclear translocation and JNK, ERK, and p38 phosphorylation, respectively. In addition, we found that hydrogenated isoflavones display anti-proliferation effect in human colon cancer cells with wild-type p53. Together, hydrogenated isoflavones could be used as an adjuvant for the treatment of inflammation and cancer.
Collapse
Affiliation(s)
- Keting Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wenshu Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yaobin Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
49
|
Mahmoudvand G, Karimi Rouzbahani A, Razavi ZS, Mahjoor M, Afkhami H. Mesenchymal stem cell therapy for non-healing diabetic foot ulcer infection: New insight. Front Bioeng Biotechnol 2023; 11:1158484. [PMID: 37122856 PMCID: PMC10133463 DOI: 10.3389/fbioe.2023.1158484] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Diabetic foot ulcer (DFU) is considered the most catastrophic complication of diabetes mellitus (DM), leading to repeated hospitalizations, infection, gangrene, and finally amputation of the limb. In patients suffering from diabetes mellitus, the wound-healing process is impaired due to various factors such as endothelial dysfunction and synthesis of advanced glycation end-products, hence, conventional therapeutic interventions might not be effective. With increasing therapeutic applications of mesenchymal stem cells (MSCs) in recent years, their potential as a method for improving the wound-healing process has gained remarkable attention. In this field, mesenchymal stem cells exert their beneficial effects through immunomodulation, differentiation into the essential cells at the site of ulcers, and promoting angiogenesis, among others. In this article, we review cellular and molecular pathways through which mesenchymal stem cell therapy reinforces the healing process in non-healing Diabetic foot ulcers.
Collapse
Affiliation(s)
- Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- *Correspondence: Hamed Afkhami,
| |
Collapse
|
50
|
Li W, Zhang Y, Lv J, Zhang Y, Bai J, Zhen L, He X. MicroRNA-137-mediated lysine demethylase 4A regulates the recovery of spinal cord injury via the SFRP4-Wnt/β-Catenin axis. Int J Neurosci 2023; 133:37-50. [PMID: 33499717 DOI: 10.1080/00207454.2021.1881093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Spinal cord injury (SCI) causes great harm to the normal life of patients. Histone demethylase is involved in many biological processes, including SCI. Hence, this study explored the role and mechanism of histone lysine demethylase 4A (KDM4A) in SCI. METHODS The acute SCI (ASCI) rat model was established after spinal compression and the SCI neuronal model was induced via treating PC12 cells with lipopolysaccharide (LPS). KDM4A expression during SCI was detected. The microRNA (miRNA) targeting KDM4A was predicted and verified. The miRNA and KDM4A expression patterns were intervened in LPS-stimulated PC12 cells to evaluate their combined effects on neuronal cells in SCI. The downstream pathways of KDM4A were predicted, and SFRP4 and H3K9me3 expressions were determined. After the intervention of SFRP4 in LPS-treated cells, β-Catenin expression and the effect of SFRP4 on neuronal cells in SCI were detected. Finally, the effectiveness of the miR-137/KDM4A/SFRP4/Wnt/β-Catenin axis was verified in vivo. RESULTS KDM4A was abnormally elevated in SCI. miR-137 targeted KDM4A. miR-137 effectively inhibited the apoptosis of LPS-challenged PC12 cells, which could be reversed after overexpressing KDM4A. KDM4A promoted SFRP4 expression through demethylation of H3K9me3. Overexpression of SFRP4 blocked the Wnt/β-Catenin pathway and promoted apoptosis of LPS-stimulated cells. In vivo, miR-137 overexpression remarkably improved SCI symptoms, accompanied by obviously increased β-Catenin expression and notably decreased KDM4A and SFRP4 expressions, while overexpressed KDM4A treatment showed the opposite trend in the presence of miR-137. CONCLUSION We demonstrated that miR-137 targeted KDM4A and then downregulated SFRP4 to ameliorate SCI in a Wnt/β-Catenin-dependent manner.
Collapse
Affiliation(s)
- Wei Li
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ying Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jianrui Lv
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yong Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jie Bai
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Luming Zhen
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xijing He
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|