1
|
Tuffs C, Dupovac M, Richter K, Holten S, Schaschinger T, Marg O, Poljo A, Tasdemir AN, Harnoss JM, Billeter A, Schneider M, Strowitzki MJ. Genetic Loss of HIF-Prolyl-Hydroxylase 1, but Not Pharmacological Inhibition, Mitigates Hepatic Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:480-493. [PMID: 39566823 DOI: 10.1016/j.ajpath.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Liver fibrosis is characterized by excessive deposition of extracellular matrix due to chronic inflammation of the liver. Hepatic stellate cells (HSCs) become activated and produce increased amounts of extracellular matrix. Loss of HIF-prolyl-hydroxylase 1 (PHD1) attenuates HSC activation and fibrotic tissue remodeling in a murine model of biliary liver fibrosis. Herein, the protective effect of PHD1 deficiency (PHD1-/-) in an additional (toxic) model of liver fibrosis was validated and the effect of dimethyloxalylglycine (DMOG), a pan-HIF-prolyl-hydroxylase inhibitor, on the development of liver fibrosis, was evaluated. Liver fibrosis was induced utilizing carbon tetrachloride in wild-type (WT) and PHD1-/- mice treated with either vehicle or DMOG. To assess fibrosis development, expression of profibrotic genes in the livers was analyzed by Sirius red staining. When compared with WT mice, PHD1-/- mice developed less-severe liver fibrosis. DMOG treatment did not prevent this liver fibrosis. PHD1-/- mice had fewer α-SMA+ cells and less macrophage infiltration compared with WT mice. Expression of profibrogenic and proinflammatory genes was reduced in livers from carbon tetrachloride-exposed PHD1-/- mice. In vitro analyses of PHD1-deficient human HSCs revealed attenuated mRNA levels of profibrotic genes, as well as impaired migration and invasion. Although PHD1 deficiency attenuated activation of HSCs, pharmacologic PHD inhibition did not ameliorate fibrosis development. These data indicate that selective PHD1 inhibitors could prove effective in preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Christopher Tuffs
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Mareen Dupovac
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Katrin Richter
- Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany; Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Sophia Holten
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Thomas Schaschinger
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Oliver Marg
- Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Adisa Poljo
- Clarunis University Digestive Healthcare Center Basel, Basel, Switzerland
| | - Ayse Nur Tasdemir
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Adrian Billeter
- Clarunis University Digestive Healthcare Center Basel, Basel, Switzerland
| | - Martin Schneider
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Abolfazli S, Butler AE, Jamialahmadi T, Sahebkar A. A Golden Shield: The Protective Role of Curcumin against Liver Fibrosis. Curr Med Chem 2025; 32:1987-2004. [PMID: 37605399 DOI: 10.2174/0929867331666230821095329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023]
Abstract
Several chronic liver injuries can result in liver fibrosis, a wound-healing response defined by an excessive buildup of diffuse extracellular matrix (ECM). Liver fibrosis may progress to liver cirrhosis, liver failure, or hepatocellular carcinoma. Many cellular routes are implicated in the fibrosis process; however, hepatic stellate cells appear to be the main cell type involved. Curcumin, a polyphenolic substance extracted from the Curcuma longa plant, has a diversity of pharmacologic impacts, including anti- inflammatory, antioxidant, antiproliferative and antiangiogenic actions. The anti-fibrotic property of curcumin is less clear, but curcumin's ability to influence inflammatory cytokines, inflammatory pathways, the expression of pro-apoptotic (up-regulated) and anti- apoptotic (down-regulated) proteins, and its ability to lower oxidative stress likely underlie its anti-fibrotic properties. In this review, we investigate and analyze the impact of curcumin on several disorders that lead to liver fibrosis, and discuss the therapeutic applications of curcumin for these disorders.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland-Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
George J. Zymography: A Simple and Powerful Tool for the Assessment of MMP-2 and MMP-9 in Pathological Conditions. Methods Mol Biol 2025; 2918:187-199. [PMID: 40261623 DOI: 10.1007/978-1-0716-4482-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Zymography is an electrophoretic technique to measure the proteolytic activity of native enzymes on a nonreducing sodium dodecyl sulfate polyacrylamide gel. It is a simple and powerful tool to assess the amount of various proteases present in both physiological and pathological conditions. The concerned protease degrades the protein substrate that is incorporated with the gel and resolves during the incubation period. Staining with Coomassie brilliant blue (CBB) reveals the sites of proteolysis as clear white bands. The intensity and area of the bands are linearly related to the amount of protease present in the loaded sample. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), also known as gelatinases, have the indigenous property to digest gelatin and several other protein molecules present in the extracellular matrix. Here, we describe the detailed protocols and methods of zymography, with a special emphasis on the determination of gelatinases present in conditioned culture media and tissue extracts.
Collapse
Affiliation(s)
- Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| |
Collapse
|
4
|
Yang F, Cheng MH, Pan HF, Gao J. Progranulin: A promising biomarker and therapeutic target for fibrotic diseases. Acta Pharm Sin B 2024; 14:3312-3326. [PMID: 39220875 PMCID: PMC11365408 DOI: 10.1016/j.apsb.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Progranulin (PGRN), a multifunctional growth factor-like protein expressed by a variety of cell types, serves an important function in the physiologic and pathologic processes of fibrotic diseases, including wound healing and the inflammatory response. PGRN was discovered to inhibit pro-inflammation effect by competing with tumor necrosis factor-alpha (TNF-α) binding to TNF receptors. Notably, excessive tissue repair in the development of inflammation causes tissue fibrosis. Previous investigations have indicated the significance of PGRN in regulating inflammatory responses. Recently, multiple studies have shown that PGRN was linked to fibrogenesis, and was considered to monitor the formation of fibrosis in multiple organs, including liver, cardiovascular, lung and skin. This paper is a comprehensive review summarizing our current knowledge of PGRN, from its discovery to the role in fibrosis. This is followed by an in-depth look at the characteristics of PGRN, consisting of its structure, basic function and intracellular signaling. Finally, we will discuss the potential of PGRN in the diagnosis and treatment of fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230022, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230022, China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| |
Collapse
|
5
|
Saito T, Tsuchishima M, Tsutsumi M, George J. Molecular pathogenesis of metabolic dysfunction-associated steatotic liver disease, steatohepatitis, hepatic fibrosis and liver cirrhosis. J Cell Mol Med 2024; 28:e18491. [PMID: 38894579 PMCID: PMC11187936 DOI: 10.1111/jcmm.18491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by intense deposition of fat globules in the hepatic parenchyma that could potentially progress to liver cirrhosis and hepatocellular carcinoma. Here, we evaluated a rat model to study the molecular pathogenesis of the spectrum of MASLD and to screen therapeutic agents. SHRSP5/Dmcr rats were fed a high-fat and cholesterol (HFC) diet for a period of 12 weeks and evaluated for the development of steatosis (MASLD), steatohepatitis, fibrosis and cirrhosis. A group of animals were sacrificed at the end of the 4th, 6th, 8th and 12th weeks from the beginning of the experiment, along with the control rats that received normal diet. Blood and liver samples were collected for biochemical and histopathological evaluations. Immunohistochemical staining was performed for α-SMA and Collagen Type I. Histopathological examinations demonstrated steatosis at the 4th week, steatohepatitis with progressive fibrosis at the 6th week, advanced fibrosis with bridging at the 8th week and cirrhosis at the 12th week. Biochemical markers and staining for α-SMA and Collagen Type I demonstrated the progression of steatosis to steatohepatitis, hepatic fibrosis and liver cirrhosis in a stepwise manner. Control animals fed a normal diet did not show any biochemical or histopathological alterations. The results of the present study clearly demonstrated that the HFC diet-induced model of steatosis, steatohepatitis, hepatic fibrosis and cirrhosis is a feasible, quick and appropriate animal model to study the molecular pathogenesis of the spectrum of MASLD and to screen potent therapeutic agents.
Collapse
Affiliation(s)
- Takashi Saito
- Department of HepatologyKanazawa Medical UniversityUchinadaIshikawaJapan
| | | | - Mikihiro Tsutsumi
- Department of HepatologyKanazawa Medical UniversityUchinadaIshikawaJapan
- Center for Regenerative MedicineKanazawa Medical University HospitalUchinadaIshikawaJapan
| | - Joseph George
- Department of HepatologyKanazawa Medical UniversityUchinadaIshikawaJapan
- Center for Regenerative MedicineKanazawa Medical University HospitalUchinadaIshikawaJapan
| |
Collapse
|
6
|
Fijardo M, Kwan JYY, Bissey PA, Citrin DE, Yip KW, Liu FF. The clinical manifestations and molecular pathogenesis of radiation fibrosis. EBioMedicine 2024; 103:105089. [PMID: 38579363 PMCID: PMC11002813 DOI: 10.1016/j.ebiom.2024.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Advances in radiation techniques have enabled the precise delivery of higher doses of radiotherapy to tumours, while sparing surrounding healthy tissues. Consequently, the incidence of radiation toxicities has declined, and will likely continue to improve as radiotherapy further evolves. Nonetheless, ionizing radiation elicits tissue-specific toxicities that gradually develop into radiation-induced fibrosis, a common long-term side-effect of radiotherapy. Radiation fibrosis is characterized by an aberrant wound repair process, which promotes the deposition of extensive scar tissue, clinically manifesting as a loss of elasticity, tissue thickening, and organ-specific functional consequences. In addition to improving the existing technologies and guidelines directing the administration of radiotherapy, understanding the pathogenesis underlying radiation fibrosis is essential for the success of cancer treatments. This review integrates the principles for radiotherapy dosimetry to minimize off-target effects, the tissue-specific clinical manifestations, the key cellular and molecular drivers of radiation fibrosis, and emerging therapeutic opportunities for both prevention and treatment.
Collapse
Affiliation(s)
- Mackenzie Fijardo
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Yin Yee Kwan
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States of America
| | - Kenneth W Yip
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Yamagata M, Tsuchishima M, Saito T, Tsutsumi M, George J. Therapeutic implication of human placental extract to prevent liver cirrhosis in rats with metabolic dysfunction-associated steatohepatitis. Clin Sci (Lond) 2024; 138:327-349. [PMID: 38381799 DOI: 10.1042/cs20230533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is always accompanied with hepatic fibrosis that could potentially progress to liver cirrhosis and hepatocellular carcinoma. Employing a rat model, we evaluated the role of human placental extract (HPE) to arrest the progression of hepatic fibrosis to cirrhosis in patients with MASH. SHRSP5/Dmcr rats were fed with a high-fat and high-cholesterol diet for 4 weeks and evaluated for the development of steatosis. The animals were divided into control and treated groups and received either saline or HPE (3.6 ml/kg body weight) subcutaneously thrice a week. A set of animals were killed at the end of 6th, 8th, and 12th weeks from the beginning of the experiment. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hepatic malondialdehyde (MDA), and glutathione content were measured. Immunohistochemical staining was performed for α-smooth muscle actin (α-SMA), 4-hydroxy-2-nonenal (4-HNE), collagen type I, and type III. Control rats depicted progression of liver fibrosis at 6 weeks, advanced fibrosis and bridging at 8 weeks, and cirrhosis at 12 weeks, which were significantly decreased in HPE-treated animals. Treatment with HPE maintained normal levels of MDA and glutathione in the liver. There was marked decrease in the staining intensity of α-SMA, 4-HNE, and collagen type I and type III in HPE treated rats compared with control animals. The results of the present study indicated that HPE treatment mediates immunotropic, anti-inflammatory, and antioxidant responses and attenuates hepatic fibrosis and early cirrhosis. HPE depicts therapeutic potential to arrest the progression of MASH towards cirrhosis.
Collapse
Affiliation(s)
- Mitsuyoshi Yamagata
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takashi Saito
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
8
|
Hasanzadeh A, Beiromvand M, Rafiei A, Kazemi M, Bahreini A, Khanahmad H. Expression of Matrix Metalloproteinases in Human Cystic Echinococcosis. Curr Mol Med 2024; 24:244-251. [PMID: 36617714 DOI: 10.2174/1566524023666230106163928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cystic echinococcosis (CE) is a zoonotic disease caused by the Echinococcus granulosus senso lato (E. granulosus s.l.) larval stages. Parasitederived products have been shown to regulate host matrix metalloproteinases (MMPs), contributing to CE pathogenesis and progressive liver fibrosis in intermediate hosts. The current study aimed to investigate the potential role of MMP1, 7, 8, and 13 in E. granulosus s.l-induced liver fibrosis. METHODS Thirty CE patients with active, transitional, or inactive hydatid cysts were enrolled in this study to determine the inductive effects of E. granulosus on the expression of MMP-1, MMP-7, MMP-8, and MMP-13 in healthy liver tissue and fibrotic liver tissue using qRT-PCR. RESULTS According to the WHO-IWGE classification, patients with functional cysts (CE1 and CE2) had the highest percentage (46.6%). MMP-1, MMP-7, MMP-8, and MMP-13 expression levels were significantly higher in fibrotic liver than in normal liver tissue. MMP-13 and MMP-1 had the highest and lowest expression levels among MMPs. Compared to the normal group, the fold change for MMP-13 in the fibrotic group was greater than 12 and had the highest AUC value (AUC= 0.8283). CONCLUSION Our findings suggest that E. granulosus-derived products might be involved in regulating host MMPs. Thus, MMPs may be considered potential biomarkers for predicting CE prognosis. Because of the non-normal distribution of our patients' CE types, further research, particularly on circulation MMPs, is needed to confirm the potential role of MMPs in CE pathogenesis and to follow up on CE patients.
Collapse
Affiliation(s)
- Azadeh Hasanzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Molouk Beiromvand
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdollah Rafiei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Bahreini
- Department of Surgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Seleem AA, Hussein BH. Effects of silver nanoparticles prepared by aqueous extract of Ferula communis on the developing mouse embryo after maternal exposure. Toxicol Ind Health 2023; 39:712-734. [PMID: 37871157 DOI: 10.1177/07482337231209094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Green synthesis of silver nanoparticles (AgNPs) from aqueous silver nitrate has been achieved using an extract of Ferula communis leaf as a capping, reducing, and stabilizing agent. The formation and stability of the green synthesized silver nanoparticles in the colloidal solution were monitored by absorption measurements. Silver nanoparticles were characterized by different analyses such as X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and FT-IR spectroscopy. The average particle size of silver nanoparticles was determined by high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) analyses. In this experiment, pregnant female mice were divided into four groups (G); G1 was the control and received phosphate-buffered saline, G2 received orally aqueous extract of F. communis leaf, G3 received orally AgNPs chemically prepared by NaBH4, and G4 received orally AgNPs prepared by aqueous extract of F. communis leaf. The diameter of AgNPs was 20 nm. AgNPs exhibited good catalytic reduction ability toward methyl orange in the presence of sodium borohydride with a rate constant of 2.95 x 10-4 s-1. The results revealed the occurrence of resorbed embryos in G2, G3, and G4 with different percentages. The livers of mothers and embryos at E14.5 in G2, G3, and G4 showed different levels of histopathological alteration and increase in GFAP and CTGF expressions compared with the control group. The study concluded that the oral administration of small-sized AgNPs (20 nm) prepared by Ferula extract had less toxicity than those prepared by the chemical method.
Collapse
Affiliation(s)
- Amin A Seleem
- Biology Department, Faculty of Science and Arts, Al Ula, Taibah University, Madinah, Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Belal Hm Hussein
- Chemistry Department, Faculty of Science and Arts, Al Ula, Taibah University, Madinah, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Bian Y, Xiang Z, Wang Y, Ren Q, Chen G, Xiang B, Wang J, Zhang C, Pei S, Guo S, Xiao L. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front Pharmacol 2023; 14:1285455. [PMID: 38035026 PMCID: PMC10684723 DOI: 10.3389/fphar.2023.1285455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune pathology characterized by persistent synovial inflammation and gradually advancing bone destruction. Matrix metalloproteinases (MMPs), as a family of zinc-containing enzymes, have been found to play an important role in degradation and remodeling of extracellular matrix (ECM). MMPs participate in processes of cell proliferation, migration, inflammation, and cell metabolism. A growing number of persons have paid attention to their function in inflammatory and immune diseases. In this review, the details of regulation of MMPs expression and its expression in RA are summarized. The role of MMPs in ECM remodeling, angiogenesis, oxidative and nitrosative stress, cell migration and invasion, cytokine and chemokine production, PANoptosis and bone destruction in RA disease are discussed. Additionally, the review summarizes clinical trials targeting MMPs in inflammatory disease and discusses the potential of MMP inhibition in the therapeutic context of RA. MMPs may serve as biomarkers for drug response, pathology stratification, and precision medicine to improve clinical management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xiang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaofeng Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Guoming Chen
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bei Xiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengbo Zhang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqiang Pei
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lianbo Xiao
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
13
|
Nomura M, George J, Hashizume C, Saito T, Ueda Y, Ishigaki Y, Tsuchishima M, Tsutsumi M. Surgical implantation of human adipose derived stem cells attenuates experimentally induced hepatic fibrosis in rats. Mol Med 2022; 28:143. [PMID: 36447136 PMCID: PMC9706981 DOI: 10.1186/s10020-022-00566-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stromal cells and could exert hepatoprotective effects against acute liver injury, steatohepatitis, and fibrogenesis. Here, we evaluated the effects of human adipose derived stem cells (hADSCs) to attenuate experimentally induced hepatic fibrosis and early cirrhosis in rats. METHODS Hepatic fibrosis was induced by intraperitoneal injections of CCl4 (0.1 ml/100 g body weight) twice a week for 8 weeks. hADSCs were isolated and cultured on polyethylene discs coated with hydroxyapatite and 2 cm diameter disc was surgically implanted on the right lateral lobe of the liver. Discs implanted without hADSCs served as control. The animals were injected again with CCl4 once a week for another 8 weeks. All the animals were sacrificed at the end of 16th week. RESULTS Serial administrations of CCl4 resulted in well developed fibrosis and early cirrhosis at 8th week which maintained until the 16th week. Animals treated with hADSC discs depicted over 50% decrease of collagen with significant increase in serum albumin and total protein levels. Immunohistochemical staining for TGF-β1, α-smooth muscle actin, and collagen type I and type III demonstrated marked decrease compared to the animals without hADSC treatment. CONCLUSIONS Treatment with hADSCs improved liver functions, markedly reduced hepatic fibrosis and early cirrhosis. Various pleiotropic and paracrine factors secreted from the hADSCs seem to serve as reparative functions in the attenuation of liver cirrhosis. The data demonstrated that treatment with hADSCs can be successfully used as a potent therapeutic method to prevent progression of hepatic fibrosis and related adverse events.
Collapse
Affiliation(s)
- Masateru Nomura
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Joseph George
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ,grid.510345.60000 0004 6004 9914Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293 Japan
| | - Chieko Hashizume
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Takashi Saito
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Yoshimichi Ueda
- grid.411998.c0000 0001 0265 5359Department of Pathology II, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Yasuhito Ishigaki
- grid.510345.60000 0004 6004 9914Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293 Japan ,grid.411998.c0000 0001 0265 5359Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Mutsumi Tsuchishima
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Mikihiro Tsutsumi
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ,grid.510345.60000 0004 6004 9914Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
14
|
Damayanti MM, Rachmawati M. Pre-Clinical Study: Immunohistochemical evaluation of matrix metalloproteinase-13 on rabbit (Oryctolagus cuniculus) socket healing after application of platelet-rich fibrin with and without hydroxyapatite. F1000Res 2022; 11:29. [PMID: 36101858 PMCID: PMC9440371 DOI: 10.12688/f1000research.74094.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Tissue engineering technology has been used globally and proven to accelerate wound healing. This study aimed to analyse the effect of adding hydroxyapatite (HA) as a scaffold to platelet-rich fibrin (PRF) as a growth factor in accelerating the wound healing process as seen from the expression of matrix metalloproteinase-13 (MMP-13). Methods: This research is an animal experiment conducted on 18 rabbits (Oryctolagus cuniculus). Rabbits were randomly divided into the following three groups of treatment: (G1) the application of PRF group, (G2) the application of PRF+HA group and (C) the control group without any application. Furthermore, each treatment group was split randomly into three groups of observation time. Periodontal tissue biopsy was performed to analyse the histopathological features that were examined on the basis of the level of MMP-13 immunoexpression. Results: MMP-13 immunoexpression in the PRF+HA group showed better histoscore results, indicating a substantial reduction in MMP-13 values compared with other groups. The healing process was shown to increase with increasing observation time (p<0.05), and the PRF+HA group outperformed the PRF and control groups. On day 3, MMP-13 exhibited a dark brown colour of Immunohistochemistry (IHC), which indicated an increase in the expression value of MMP-13 in the early stages of healing, namely, inflammation. On day 14, light brown IHC was seen, especially in group 2, as a reference that the remodeling process had begun. Conclusions: This study indicates that the administration of PRF and HA was capable of reducing the MMP-13 expression that significantly accelerates the socket healing process. Hydroxyapatite is an alloplastic material that has inherent bioactive properties that support osteoconduction, can bind MMPs, and showed faster healing results based on the observation time as documented by immunohistochemistry.
Collapse
Affiliation(s)
- Meta Maulida Damayanti
- Pathology Anatomy, Universitas Islam Bandung, Unisba, Bandung, West Java, 40116, Indonesia
| | - Meike Rachmawati
- Pathology Anatomy, Universitas Islam Bandung, Unisba, Bandung, West Java, 40116, Indonesia
| |
Collapse
|
15
|
Peng Y, Yin Q, Yuan M, Chen L, Shen X, Xie W, Liu J. Role of hepatic stellate cells in liver ischemia-reperfusion injury. Front Immunol 2022; 13:891868. [PMID: 35967364 PMCID: PMC9366147 DOI: 10.3389/fimmu.2022.891868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a major complication of liver trauma, resection, and transplantation. IRI may lead to liver dysfunction and failure, but effective approach to address it is still lacking. To better understand the cellular and molecular mechanisms of liver IRI, functional roles of numerous cell types, including hepatocytes, Kupffer cells, neutrophils, and sinusoidal endothelial cells, have been intensively studied. In contrast, hepatic stellate cells (HSCs), which are well recognized by their essential functions in facilitating liver protection and repair, have gained less attention in their role in IRI. This review provides a comprehensive summary of the effects of HSCs on the injury stage of liver IRI and their associated molecular mechanisms. In addition, we discuss the regulation of liver repair and regeneration after IRI by HSCs. Finally, we highlight unanswered questions and future avenues of research regarding contributions of HSCs to IRI in the liver.
Collapse
Affiliation(s)
- Yuming Peng
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
- *Correspondence: Yuming Peng, ; Qiang Yin,
| | - Qiang Yin
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
- *Correspondence: Yuming Peng, ; Qiang Yin,
| | - Miaoxian Yuan
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
| | - Lijian Chen
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
| | - Xinyi Shen
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
| | - Weixin Xie
- First Department of General Surgery, Hunan Children’s Hospital, Changsha, China
- Zhaolong Chen Academician Workstation, Changsha, China
| | - Jinqiao Liu
- Department of Ultrasound, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
16
|
George J, Tsuchishima M, Tsutsumi M. Epigallocatechin-3-gallate inhibits osteopontin expression and prevents experimentally induced hepatic fibrosis. Biomed Pharmacother 2022; 151:113111. [PMID: 35594711 DOI: 10.1016/j.biopha.2022.113111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Osteopontin (OPN) is a matricellular cytokine and a stress-induced profibrogenic molecule that promotes activation of stellate cells during the pathogenesis of hepatic fibrosis. We studied the protective effects of epigallocatechin-3-gallate (EGCG) to suppress oxidative stress, inhibit OPN expression, and prevent experimentally induced hepatic fibrosis. Liver injury was induced with intraperitoneal injections of N-nitrosodimethylamine (NDMA) in a dose of 1 mg/100 g body weight on 3 consecutive days of a week for 28 days. A group of rats received 0.2 mg EGCG/100 g body weight orally everyday during the study. The animals were sacrificed on day 28th from the beginning of exposure. Serum levels of AST, ALT, OPN, malondialdehyde, collagen type IV, and hyaluronic acid were measured. Immunohistochemistry and/or real-time PCR were performed for α-SMA, 4-HNE, OPN, collagen type I, and type III. Serial administrations of NDMA produced well developed fibrosis and early cirrhosis in rat liver. Treatment with EGCG significantly reduced serum/plasma levels of AST, ALT, OPN, malondialdehyde, collagen type IV, and hyaluronic acid and prevented deposition of collagen fibers in the hepatic tissue. Protein and/or mRNA levels demonstrated marked decrease in the expression of α-SMA, 4-HNE, OPN, collagen type I, and type III. Treatment with EGCG prevented excessive generation of reactive oxygen species, suppressed oxidative stress, significantly reduced serum and hepatic OPN levels, and markedly attenuated hepatic fibrosis. The results indicated that EGCG could be used as a potent therapeutic agent to prevent hepatic fibrogenesis and related adverse events.
Collapse
Affiliation(s)
- Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan.
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
17
|
Umehara T, Winstanley YE, Andreas E, Morimoto A, Williams EJ, Smith KM, Carroll J, Febbraio MA, Shimada M, Russell DL, Robker RL. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. SCIENCE ADVANCES 2022; 8:eabn4564. [PMID: 35714185 PMCID: PMC9205599 DOI: 10.1126/sciadv.abn4564] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The female ovary contains a finite number of oocytes, and their release at ovulation becomes sporadic and disordered with aging and with obesity, leading to loss of fertility. Understanding the molecular defects underpinning this pathology is essential as age of childbearing and obesity rates increase globally. We identify that fibrosis within the ovarian stromal compartment is an underlying mechanism responsible for impaired oocyte release, which is initiated by mitochondrial dysfunction leading to diminished bioenergetics, oxidative damage, inflammation, and collagen deposition. Furthermore, antifibrosis drugs (pirfenidone and BGP-15) eliminate fibrotic collagen and restore ovulation in reproductively old and obese mice, in association with dampened M2 macrophage polarization and up-regulated MMP13 protease. This is the first evidence that ovarian fibrosis is reversible and indicates that drugs targeting mitochondrial metabolism may be a viable therapeutic strategy for women with metabolic disorders or advancing age to maintain ovarian function and extend fertility.
Collapse
Affiliation(s)
- Takashi Umehara
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yasmyn E. Winstanley
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Eryk Andreas
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Atsushi Morimoto
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Elisha J. Williams
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kirsten M. Smith
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Rebecca L. Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Corresponding author.
| |
Collapse
|
18
|
Li Y, Fan W, Link F, Wang S, Dooley S. Transforming growth factor β latency: A mechanism of cytokine storage and signalling regulation in liver homeostasis and disease. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100397. [PMID: 35059619 PMCID: PMC8760520 DOI: 10.1016/j.jhepr.2021.100397] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) is a potent effector in the liver, which is involved in a plethora of processes initiated upon liver injury. TGF-β affects parenchymal, non-parenchymal, and inflammatory cells in a highly context-dependent manner. Its bioavailability is critical for a fast response to various insults. In the liver – and probably in other organs – this is made possible by the deposition of a large portion of TGF-β in the extracellular matrix as an inactivated precursor form termed latent TGF-β (L-TGF-β). Several matrisomal proteins participate in matrix deposition, latent complex stabilisation, and activation of L-TGF-β. Extracellular matrix protein 1 (ECM1) was recently identified as a critical factor in maintaining the latency of deposited L-TGF-β in the healthy liver. Indeed, its depletion causes spontaneous TGF-β signalling activation with deleterious effects on liver architecture and function. This review article presents the current knowledge on intracellular L-TGF-β complex formation, secretion, matrix deposition, and activation and describes the proteins and processes involved. Further, we emphasise the therapeutic potential of toning down L-TGF-β activation in liver fibrosis and liver cancer.
Collapse
Affiliation(s)
- Yujia Li
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford CA, USA
| | - Frederik Link
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sai Wang
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Tel.: 06213835595.
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Corresponding authors. Addresses: Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Tel.: 06213833768;
| |
Collapse
|
19
|
Xu Q, Xia W, Zhou L, Zou Z, Li Q, Deng L, Wu S, Wang T, Cui J, Liu Z, Sun T, Ye J, Li F. Determination of Hepatic Iron Deposition in Drug-Induced Liver Fibrosis in Rats by Confocal Micro-XRF Spectrometry. ACS OMEGA 2022; 7:3738-3745. [PMID: 35128282 PMCID: PMC8811927 DOI: 10.1021/acsomega.1c06476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Liver fibrosis is the intermediate process and inevitable stage of the development of chronic liver disease into cirrhosis. Reducing the degree of liver fibrosis plays an extremely important role in treating chronic liver disease and preventing liver cirrhosis and liver cancer. The formation of liver fibrosis is affected by iron deposition to a certain extent, and excessive iron deposition further induces liver cirrhosis and liver cancer. Herein, confocal microbeam X-ray fluorescence (μ-XRF) was used to determine the intensity and biodistribution of iron deposition at different time points in the process of liver fibrosis induced by thioacetamide (TAA) in rats. To our best knowledge, this is the first study using confocal μ-XRF to analyze hepatic iron deposition in hepatic fibrosis. The results showed that there are minor and trace elements such as iron, potassium, and zinc in the liver of rats. Continuous injection of TAA solution resulted in increasing liver iron deposition over time. The intensity of iron deposition in liver tissue was also significantly reduced after bone mesenchymal stem cells (BMSCs) were injected. These findings indicated that confocal μ-XRF can be used as a nondestructive and quantitative method of evaluating hepatic iron deposition in hepatic fibrosis, and iron deposition may play an important role in the progression of hepatic fibrosis induced by TAA.
Collapse
Affiliation(s)
- Qianqian Xu
- College
of Medical Information Engineering, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular
Diseases, Ministry of Education, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Biomaterials and Biofabrication in Tissue Engineering
of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Xia
- College
of Medical Information Engineering, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular
Diseases, Ministry of Education, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Biomaterials and Biofabrication in Tissue Engineering
of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Lazhen Zhou
- College
of Medical Information Engineering, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular
Diseases, Ministry of Education, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Biomaterials and Biofabrication in Tissue Engineering
of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Zhengwei Zou
- Key
Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular
Diseases, Ministry of Education, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Biomaterials and Biofabrication in Tissue Engineering
of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
- Sub-center
for Stem Cell Clinical Translation, First
Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Qiuxia Li
- College
of Medical Information Engineering, Gannan
Medical University, Ganzhou 341000, China
| | - Lijun Deng
- College
of Medical Information Engineering, Gannan
Medical University, Ganzhou 341000, China
| | - Sha Wu
- College
of Medical Information Engineering, Gannan
Medical University, Ganzhou 341000, China
| | - Tao Wang
- College
of Medical Information Engineering, Gannan
Medical University, Ganzhou 341000, China
| | - Jingduo Cui
- College
of Nuclear Science and Technology, Beijing
Normal University, Beijing 100875, China
| | - Zhiguo Liu
- College
of Nuclear Science and Technology, Beijing
Normal University, Beijing 100875, China
| | - Tianxi Sun
- College
of Nuclear Science and Technology, Beijing
Normal University, Beijing 100875, China
| | - Junsong Ye
- Key
Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular
Diseases, Ministry of Education, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Biomaterials and Biofabrication in Tissue Engineering
of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
- Sub-center
for Stem Cell Clinical Translation, First
Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Fangzuo Li
- College
of Medical Information Engineering, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular
Diseases, Ministry of Education, Gannan
Medical University, Ganzhou 341000, China
- Key
Laboratory of Biomaterials and Biofabrication in Tissue Engineering
of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
20
|
MOU WL, CHEN SR, WU ZT, HU LH, ZHANG JY, CHANG HJ, ZHOU H, LIU Y. LPS-TLR4/MD-2–TNF-α signaling mediates alcohol-induced liver fibrosis in rats. J Toxicol Pathol 2022; 35:193-203. [PMID: 35516842 PMCID: PMC9018403 DOI: 10.1293/tox.2021-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wen-Ling MOU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Shi-ru CHEN
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Zhen-ting WU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Li-hua HU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Ji-ye ZHANG
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Hong-jie CHANG
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Hang ZHOU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Ying LIU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| |
Collapse
|
21
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
22
|
Xu Y, Li Z, Lu S, Wang C, Ke S, Li X, Yin B, Yu H, Zhou M, Pan S, Jiang H, Ma Y. Integrative Analysis of the Roles of lncRNAs and mRNAs in Itaconate-Mediated Protection Against Liver Ischemia-Reperfusion Injury in Mice. J Inflamm Res 2021; 14:4519-4536. [PMID: 34526799 PMCID: PMC8435882 DOI: 10.2147/jir.s327467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose Itaconate is well known for its strong anti-inflammatory and antioxidant effect, but little is known about the potential role of long non-coding RNAs (lncRNAs) in the underlying mechanisms of hepatic ischemia-reperfusion (IR) injury. The aim of our study is to identify lncRNAs related to IR injury and itaconate-mediated protection and to demonstrate the mechanism by which itaconate acts in liver IR injury from the new perspective of lncRNAs. Methods 4-Octyl itaconate (OI), a membrane-permeable derivative of itaconate, was used as a substitute for itaconate in our study. By using a mouse model of hepatic IR injury, serum and liver samples were collected to measure indexes of liver injury. Then, the liver samples of the mice were subjected to RNA sequencing (RNA-seq) and subsequent bioinformatics analysis. Results Itaconate attenuated liver IR injury. A total of 138 lncRNAs and 156 messenger RNAs (mRNAs) were markedly differentially expressed in the IR-damaged liver tissues pretreated with OI compared with the matched liver tissues treated with vehicle. Functional analysis indicated that lncRNAs may indirectly participate in the effects of itaconate. Furthermore, 41 mRNAs were examined for the protein-protein interaction (PPI) network analysis, and a key gene cluster was defined. Then, combined the coexpression analysis and the cis and trans regulatory function prediction of lncRNAs, some "candidate" lncRNA-mRNA pairs which might relate to itaconate-mediated liver protection were identified, while the relationship requires future validation. Conclusion Our study revealed that itaconate could protect the liver against IR injury and that lncRNAs might play a role in this process. Our study provides a novel way to investigate the mechanism by which itaconate affects hepatic IR injury and exerts its anti-inflammatory and antioxidative stress effects.
Collapse
Affiliation(s)
- Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zihao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xinglong Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
23
|
Hernández-Aquino E, Quezada-Ramírez MA, Silva-Olivares A, Ramos-Tovar E, Flores-Beltrán RE, Segovia J, Shibayama M, Muriel P. Curcumin downregulates Smad pathways and reduces hepatic stellate cells activation in experimental fibrosis. Ann Hepatol 2021; 19:497-506. [PMID: 32673649 DOI: 10.1016/j.aohep.2020.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Curcumin, a polyphenol, is a natural compound that has been widely studied as a hepatoprotector; however, only a few studies have examined its ability to reduce fibrosis in previously established cirrhosis. The objective of this study was to investigate whether curcumin could reduce carbon tetrachloride (CCl4)-induced fibrosis and if so, to determine the action mechanisms involved in the reduction process. MATERIALS AND METHODS CCl4 was administered to male Wistar rats (400 mg/kg, three times a week, i. p.) for 12 weeks; curcumin (100 mg/kg body weight twice per day, p. o.) was administered from week 9-12 of CCl4 treatment. Biochemical markers of hepatic injury and oxidative stress were evaluated. Hematoxylin and eosin, Masson's trichrome stains, transmission electron microscopy; immunohistochemistry, and zymography assays were carried out. Moreover, Smad3 and α-SMA mRNA and protein levels were studied. Western blotting by TGF-β, CTGF, Col-I, MMP-13, NF-κB, IL-1, IL-10, Smad7, pSmad3, and pJNK proteins was developed. RESULTS AND CONCLUSIONS Curcumin reduced liver damage, oxidative stress, fibrosis, and restored normal activity of MMP-9 and MMP-2. Besides, curcumin restored NF-κB, IL-1, IL-10, TGF-β, CTGF, Col-I, MMP-13, and Smad7 protein levels. On the other hand, curcumin decreased JNK and Smad3 phosphorylation. Furthermore, curcumin treatment decreased α-SMA and Smad3 protein and mRNA levels. Curcumin normalized GSH, and NF-κB, JNK-Smad3, and TGF-β-Smad3 pathways, leading to a decrement in activated hepatic stellate cells, thereby producing its antifibrotic effects.
Collapse
Affiliation(s)
- Erika Hernández-Aquino
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | | - Rosa E Flores-Beltrán
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Segovia
- Department of Physiology, Biophysics and Neurosciences, Cinvestav-IPN, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
24
|
Metabolite profiling of mice under long-term fructose drinking and vitamin D deficiency: increased risks for metabolic syndrome and nonalcoholic fatty liver disease. J Physiol Biochem 2020; 76:587-598. [DOI: 10.1007/s13105-020-00764-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
|
25
|
Metabolism of N-nitrosodimethylamine, methylation of macromolecules, and development of hepatic fibrosis in rodent models. J Mol Med (Berl) 2020; 98:1203-1213. [PMID: 32666246 DOI: 10.1007/s00109-020-01950-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis and cirrhosis are chronic diseases affecting liver and a major health problem throughout the world. The hallmark of fibrosis and cirrhosis is inordinate synthesis and deposition of fibril forming collagens in the extracellular matrix of the liver leading to nodule formation and loss of normal architecture. Hepatic stellate cells play a crucial role in the pathogenesis and progression of liver fibrosis through secretion of several potent fibrogenic factors that trigger hepatocytes, portal fibrocytes, and bone marrow-derived fibroblasts to synthesize and deposit several connective tissue proteins, especially collagens between hepatocytes and space of Disse. Regulation of various events involved in the activation and transformation of hepatic stellate cells seems to be an appropriate strategy for the arrest of hepatic fibrosis and liver cirrhosis. In order to unravel the molecular mechanisms involved in the pathogenesis and progression of hepatic fibrosis, to determine proper and potent targets to arrest fibrosis, and to discover powerful therapeutic agents, a quick and reproducible animal model of hepatic fibrosis and liver cirrhosis that display all decompensating features of human condition is required. This review thoroughly evaluates the biochemical, histological, and pathological features of N-nitrosodimethylamine-induced model of liver injury, hepatic fibrosis, and early cirrhosis in rodents.
Collapse
|
26
|
Ramos-Tovar E, Flores-Beltrán RE, Galindo-Gómez S, Camacho J, Tsutsumi V, Muriel P. An aqueous extract of Stevia rebaudiana variety Morita II prevents liver damage in a rat model of cirrhosis that mimics the human disease. Ann Hepatol 2020; 18:472-479. [PMID: 31053541 DOI: 10.1016/j.aohep.2018.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 10/08/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Stevia has exhibited antioxidant, antihyperglycemic, antihypertensive and anti-inflammatory properties in several in vivo and in vitro models. The objective of this study was to investigate the ability of an aqueous extract of stevia (AES) to prevent experimental cirrhosis in rats and to explore its mechanism of action. MATERIALS AND METHODS Liver cirrhosis was induced by administering carbon tetrachloride (CCl4) (400mg/kg by i.p. injection 3 times a week for 12 weeks); AES was administered (100mg/kg by gavage daily) during the CCl4 treatment. Fibrosis was evaluated with histological, biochemical and molecular approaches, and liver damage was assessed with standardized procedures. The profibrotic pathways were analyzed by western blotting, qRT-PCR and immunohistochemistry. RESULTS AND CONCLUSIONS Chronic CCl4 administration increased nuclear factor kappa B (NF-κB) and proinflammatory cytokine production as well as oxidative parameters such as lipid peroxidation and 4-hydroxynonenal levels, whereas GSH and nuclear factor-E2-related factor 2 (Nrf2) levels were decreased. CCl4 induced profibrogenic mediator expression, hepatic stellate cell (HSC) activation and, consequently, extracellular matrix production. AES exhibited antioxidant, anti-inflammatory and antifibrotic properties, probably because of its capacity to induce Nrf2 expression, reduce NF-κB expression and block several profibrogenic signaling pathways, subsequently inhibiting HSC activation and preventing fibrosis induced by chronic CCl4 administration.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Rosa E Flores-Beltrán
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City, Mexico
| | - Javier Camacho
- Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
27
|
Geervliet E, Bansal R. Matrix Metalloproteinases as Potential Biomarkers and Therapeutic Targets in Liver Diseases. Cells 2020; 9:E1212. [PMID: 32414178 PMCID: PMC7290342 DOI: 10.3390/cells9051212] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic liver diseases, characterized by an excessive accumulation of extracellular matrix (ECM) resulting in scar tissue formation, are a growing health problem causing increasing morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only treatment for the end-stage liver diseases. During liver damage, injured hepatocytes release proinflammatory factors resulting in the recruitment and activation of immune cells that activate quiescent hepatic stellate cells (HSCs). Upon activation, HSCs transdifferentiate into highly proliferative, migratory, contractile and ECM-producing myofibroblasts. The disrupted balance between ECM deposition and degradation leads to the formation of scar tissue referred to as fibrosis. This balance can be restored either by reducing ECM deposition (by inhibition of HSCs activation and proliferation) or enhancing ECM degradation (by increased expression of matrix metalloproteinases (MMPs)). MMPs play an important role in ECM remodeling and represent an interesting target for therapeutic drug discovery. In this review, we present the current knowledge about ECM remodeling and role of the different MMPs in liver diseases. MMP expression patterns in different stages of liver diseases have also been reviewed to determine their role as biomarkers. Finally, we highlight MMPs as promising therapeutic targets for the resolution of liver diseases.
Collapse
Affiliation(s)
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands;
| |
Collapse
|
28
|
Novel liver fibrosis model in Macaca fascicularis induced by thioacetamide. Sci Rep 2020; 10:2450. [PMID: 32051422 PMCID: PMC7016167 DOI: 10.1038/s41598-020-58739-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Although transplantation is the only definitive treatment for liver cirrhosis, there remains a shortage of donors, necessitating that novel treatments be developed. We aimed to establish a liver fibrosis model in Macaca fascicularis that can help accelerate preclinical research. Liver fibrosis was induced by administering thioacetamide (TAA) and carbon tetrachloride (CCl4). Analysis of residual liver function and fibrosis progression was based on clinical indices, such as the Child-Pugh score or fibrotic markers, besides histology. TAA-induced marked fibrosis, whereas CCl4 did not induce fibrosis. Concerning residual liver function, both of TAA and CCl4 worsened the indices of the Child-Pugh score, but only the TAA model increased the retention ratio of indocyanine green. The TAA-induced fibrosis model in Macaca fascicularis worsens fibrosis and residual liver function, mimicking Child-Pugh grade B. Given that our model was evaluated by clinical indices, it could be applicable to preclinical research.
Collapse
|
29
|
Chuang HM, Chen YS, Harn HJ. The Versatile Role of Matrix Metalloproteinase for the Diverse Results of Fibrosis Treatment. Molecules 2019; 24:molecules24224188. [PMID: 31752262 PMCID: PMC6891433 DOI: 10.3390/molecules24224188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a type of chronic organ failure, resulting in the excessive secretion of extracellular matrix (ECM). ECM protects wound tissue from infection and additional injury, and is gradually degraded during wound healing. For some unknown reasons, myofibroblasts (the cells that secrete ECM) do not undergo apoptosis; this is associated with the continuous secretion of ECM and reduced ECM degradation even during de novo tissue formation. Thus, matrix metalloproteinases (MMPs) are considered to be a potential target of fibrosis treatment because they are the main groups of ECM-degrading enzymes. However, MMPs participate not only in ECM degradation but also in the development of various biological processes that show the potential to treat diseases such as stroke, cardiovascular diseases, and arthritis. Therefore, treatment involving the targeting of MMPs might impede typical functions. Here, we evaluated the links between these MMP functions and possible detrimental effects of fibrosis treatment, and also considered possible approaches for further applications.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Yu-Shuan Chen
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Pathology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +03-8561825 (ext. 15615)
| |
Collapse
|
30
|
Kendall TJ, Duff CM, Boulter L, Wilson DH, Freyer E, Aitken S, Forbes SJ, Iredale JP, Hastie ND. Embryonic mesothelial-derived hepatic lineage of quiescent and heterogenous scar-orchestrating cells defined but suppressed by WT1. Nat Commun 2019; 10:4688. [PMID: 31615982 PMCID: PMC6794268 DOI: 10.1038/s41467-019-12701-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Activated hepatic stellate cells (aHSCs) orchestrate scarring during liver injury, with putative quiescent precursor mesodermal derivation. Here we use lineage-tracing from development, through adult homoeostasis, to fibrosis, to define morphologically and transcriptionally discreet subpopulations of aHSCs by expression of WT1, a transcription factor controlling morphological transitions in organogenesis and adult homoeostasis. Two distinct populations of aHSCs express WT1 after injury, and both re-engage a transcriptional signature reflecting embryonic mesothelial origin of their discreet quiescent adult precursor. WT1-deletion enhances fibrogenesis after injury, through upregulated Wnt-signalling and modulation of genes central to matrix persistence in aHSCs, and augmentation of myofibroblastic transition. The mesothelial-derived lineage demonstrates punctuated phenotypic plasticity through bidirectional mesothelial-mesenchymal transitions. Our findings demonstrate functional heterogeneity of adult scar-orchestrating cells that can be whole-life traced back through specific quiescent adult precursors to differential origin in development, and define WT1 as a paradoxical regulator of aHSCs induced by injury but suppressing scarring.
Collapse
Affiliation(s)
- Timothy James Kendall
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
- University of Edinburgh Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Catherine Mary Duff
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
- University of Edinburgh Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David H Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Elisabeth Freyer
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart John Forbes
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - John Peter Iredale
- University of Edinburgh Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH4 2XU, UK
- Senate House, University of Bristol, Bristol, BS8 1TH, UK
| | - Nicholas Dixon Hastie
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
31
|
Wang Q, Liu X, Zhang J, Lu L, Feng M, Wang J. Dynamic features of liver fibrogenesis and fibrosis resolution in the absence of matrix metalloproteinase‑9. Mol Med Rep 2019; 20:5239-5248. [PMID: 31638220 DOI: 10.3892/mmr.2019.10740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/10/2019] [Indexed: 11/05/2022] Open
Abstract
The two‑edged effect of matrix metalloproteinase‑9 (MMP9) makes it difficult to understand its role in liver fibrogenesis and fibrosis resolution. The present study aimed to investigate the dynamic features of liver fibrogenesis and fibrosis resolution in the absence of MMP9. MMP9‑/‑ mice were used to induce liver fibrosis by thioacetamide. The degrees of liver fibrogenesis and fibrosis resolution were designated by the levels of collagen I, III and IV, which were determined via western blotting. Liver injury and the transcriptional levels of MMPs and tissue inhibitor of metalloproteinases (TIMPs) were also determined. It was revealed that, in the absence of MMP9, acute liver injury was attenuated and the expression of collagen was alleviated at the early stage of liver fibrosis, particularly in the first 3 weeks. However, their levels increased to levels as high as those in the control group by week 8. During liver fibrosis resolution, in the absence of MMP9, the ratio of (MMP9 + MMP13)/TIMP1 and the ratio of (MMP2+ MMP14)/TIMP2 were decreased, and the collagen levels were increased. The present study revealed the dynamic features of liver fibrogenesis and fibrosis resolution in the absence of MMP9. The information obtained here will improve current understanding of the effect that MMP9 has in liver fibrogenesis and fibrosis resolution.
Collapse
Affiliation(s)
- Quanrongzi Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xisheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jie Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ling Lu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu 210029, P.R. China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
32
|
George J, Tsutsumi M, Tsuchishima M. Alteration of Trace Elements during Pathogenesis of N-Nitrosodimethylamine Induced Hepatic Fibrosis. Sci Rep 2019; 9:708. [PMID: 30679730 PMCID: PMC6346110 DOI: 10.1038/s41598-018-37516-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 12/30/2022] Open
Abstract
The biochemical abnormalities and oxidative stress during pathogenesis of hepatic fibrosis could lead to alteration of trace elements. We studied the alteration of major trace elements during the pathogenesis of N-nitrosodimethylamine (NDMA)-induced hepatic fibrosis in rats. The biochemical and pathological indices of liver functions and hepatic fibrosis were evaluated. Serum and liver levels of copper, iron and zinc were determined using atomic absorption spectrophotometry. Cobalt, manganese, and molybdenum in the serum and liver were estimated by inductively coupled plasma mass spectrometry. Serial administrations of NDMA resulted in decreased serum albumin, biochemical abnormalities, increase of total liver collagen, and well-developed fibrosis and early cirrhosis. Serum and liver zinc content significantly decreased on all the days following NDMA administration. When copper and molybdenum markedly increased in the serum, liver molybdenum decreased dramatically. Both iron and manganese content significantly increased in the liver following NDMA-induced fibrosis. The results of the present study indicate that alteration of trace elements during pathogenesis of hepatic fibrosis is due to metabolic imbalance, biochemical abnormalities, decreased serum albumin, and ascites following NDMA-induced liver injury. The modulation of trace elements during hepatic fibrosis could play a prominent role in progression of the disease.
Collapse
Affiliation(s)
- Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
33
|
George J, Tsuchishima M, Tsutsumi M. Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Dis 2019; 10:18. [PMID: 30622238 PMCID: PMC6325159 DOI: 10.1038/s41419-018-1272-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Hepatic fibrosis is marked by excessive synthesis and deposition of connective tissue proteins, especially interstitial collagens in the extracellular matrix of the liver. It is a result of an abnormal wound healing in response to chronic liver injury from various causes such as ethanol, viruses, toxins, drugs, or cholestasis. The chronic stimuli involved in the initiation of fibrosis leads to oxidative stress and generation of reactive oxygen species that serve as mediators of molecular events involved in the pathogenesis of hepatic fibrosis. These processes lead to cellular injury and initiate inflammatory responses releasing a variety of cytokines and growth factors that trigger activation and transformation of resting hepatic stellate cells into myofibroblast like cells, which in turn start excessive synthesis of connective tissue proteins, especially collagens. Uncontrolled and extensive fibrosis results in distortion of lobular architecture of the liver leading to nodular formation and cirrhosis. The perpetual injury and regeneration process could also results in genomic aberrations and mutations that lead to the development of hepatocellular carcinoma. This review covers most aspects of the molecular mechanisms involved in the pathogenesis of hepatic fibrosis with special emphasize on N-Nitrosodimethylamine (NDMA; Dimethylnitorsmaine, DMN) as the inducing agent.
Collapse
Affiliation(s)
- Joseph George
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
34
|
|
35
|
Ramos-Tovar E, Flores-Beltrán RE, Galindo-Gómez S, Vera-Aguilar E, Diaz-Ruiz A, Montes S, Camacho J, Tsutsumi V, Muriel P. Stevia rebaudiana
tea prevents experimental cirrhosis via regulation of NF-κB, Nrf2, transforming growth factor beta, Smad7, and hepatic stellate cell activation. Phytother Res 2018; 32:2568-2576. [DOI: 10.1002/ptr.6197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology; Cinvestav-IPN; Mexico City Mexico
| | - Rosa E. Flores-Beltrán
- Laboratory of Experimental Hepatology, Department of Pharmacology; Cinvestav-IPN; Mexico City Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis; Cinvestav-IPN; Mexico City Mexico
| | | | - Araceli Diaz-Ruiz
- Department of Neurochemistry; National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”; Mexico City Mexico
| | - Sergio Montes
- Department of Neurochemistry; National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”; Mexico City Mexico
| | - Javier Camacho
- Department of Pharmacology; Cinvestav-IPN; Mexico City Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis; Cinvestav-IPN; Mexico City Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology; Cinvestav-IPN; Mexico City Mexico
| |
Collapse
|
36
|
Yeo SY, Lee KW, Shin D, An S, Cho KH, Kim SH. A positive feedback loop bi-stably activates fibroblasts. Nat Commun 2018; 9:3016. [PMID: 30069061 PMCID: PMC6070563 DOI: 10.1038/s41467-018-05274-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/18/2018] [Indexed: 01/12/2023] Open
Abstract
Although fibroblasts are dormant in normal tissue, they exhibit explosive activation during wound healing and perpetual activation in pathologic fibrosis and cancer stroma. The key regulatory network controlling these fibroblast dynamics is still unknown. Here, we report that Twist1, a key regulator of cancer-associated fibroblasts, directly upregulates Prrx1, which, in turn, increases the expression of Tenascin-C (TNC). TNC also increases Twist1 expression, consequently forming a Twist1-Prrx1-TNC positive feedback loop (PFL). Systems biology studies reveal that the Twist1-Prrx1-TNC PFL can function as a bistable ON/OFF switch and regulates fibroblast activation. This PFL can be irreversibly activated under pathologic conditions, leading to perpetual fibroblast activation. Sustained activation of the Twist1-Prrx1-TNC PFL reproduces fibrotic nodules similar to idiopathic pulmonary fibrosis in vivo and is implicated in fibrotic disease and cancer stroma. Considering that this PFL is specific to activated fibroblasts, Twist1-Prrx1-TNC PFL may be a fibroblast-specific therapeutic target to deprogram perpetually activated fibroblasts.
Collapse
Affiliation(s)
- So-Young Yeo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Keun-Woo Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sugyun An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Seok-Hyung Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea. .,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwona, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
37
|
Key Anti-Fibrosis Associated Long Noncoding RNAs Identified in Human Hepatic Stellate Cell via Transcriptome Sequencing Analysis. Int J Mol Sci 2018; 19:ijms19030675. [PMID: 29495545 PMCID: PMC5877536 DOI: 10.3390/ijms19030675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is the main pathological basis for chronic cirrhosis, and activated hepatic stellate cells (HSCs) are the primary cells involved in liver fibrosis. Our study analyzed anti-fibrosis long noncoding RNAs (lncRNAs) in activated human HSCs (hHSCs). We performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine whether lncRNA expression profile changes between hHSCs activation and quiescence. Eight differentially expressed (DE) lncRNAs and three pairs of co-expression lncRNAs-mRNAs were verified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). A total of 34146 DE lncRNAs were identified in this study. Via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found several DE lncRNAs regulated hHSC activation by participating in DNA bending/packaging complex, growth factor binding and the Hippo signaling pathway (p < 0.05). With lncRNA–mRNA co-expression analysis, three lncRNAs were identified to be associated with connective tissue growth factor (CTGF), fibroblast growth factor 2 (FGF2) and netrin-4 (NTN4). The quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results of the eight DE lncRNAs and three pairs of co-expression lncRNAs–mRNAs were consistent with the RNA-seq data and previous reports. Several lncRNAs may serve as potential targets to reverse the progression of liver fibrosis. This study provides a first insight into lncRNA expression profile changes associated with activated human HSCs.
Collapse
|
38
|
George J. Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry. Biol Chem 2018; 399:499-509. [DOI: 10.1515/hsz-2017-0260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
Abstract
Abstract
Serum and liver selenium levels were studied during the pathogenesis of N-nitrosodimethylamine (NDMA) induced hepatic fibrosis in rats. The degree of fibrosis was assessed with Masson’s trichrome staining and quantifying collagen content in the liver. Lipid peroxides were measured in blood and liver samples and total glutathione and glutathione peroxidase were assayed in the liver tissue to evaluate oxidative stress. Interleukin-6 (IL-6) and transforming growth factor-β1 (TGF-β1) were measured in the serum. Selenium levels were determined using inductively coupled plasma-mass spectrometry (ICP-MS) after acid digestion and hydride generation of selenium. Serial administrations of NDMA produced well-developed fibrosis and early cirrhosis in the liver with 4-fold increase of total collagen content and deposition of collagen fibers. Blood and hepatic lipid peroxides, serum IL-6 and TGF-β1 were significantly increased. There was significant reduction in hepatic glutathione and glutathione peroxidase levels. Serum and liver selenium were remarkably decreased on all the days studied. The results suggest that decreased selenium and glutathione peroxidase contribute to the impairment of cellular antioxidant defense, which in turn results in oxidative stress and trigger pathogenesis of hepatic fibrosis. The study further demonstrated that ICP-MS with hydride generation technique is a reliable and sensitive method for determination of selenium in biological samples.
Collapse
Affiliation(s)
- Joseph George
- Present address: Department of Hepatology , Kanazawa Medical University , 1-1 Daigaku, Uchinada , Ishikawa 920-0293 , Japan
| |
Collapse
|
39
|
Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol 2017; 68-69:463-473. [PMID: 29289644 DOI: 10.1016/j.matbio.2017.12.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Liver fibrosis, a reversible wound-healing response to chronic cellular injury, reflects a balance between liver repair and progressive substitution of the liver parenchyma by scar tissue. Complex mechanisms that underlie liver fibrogenesis are summarized to provide the basis for generating targeted therapies to reverse fibrogenesis and improve the outcomes of patients with chronic liver disease. This minireview presents some pathophysiological aspects of liver fibrosis as a dynamic process and elucidates matrix metalloproteinases (MMPs) and their role within as well as beyond matrix degradation. Open questions remain, whether inhibition of fibrogenesis or induction of fibrolysis is the key mechanism to resolve fibrosis. And a point of principle might be whether regeneration of liver cirrhosis is possible. Will we ever cure fibrosis?
Collapse
|
40
|
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2017; 68-69:452-462. [PMID: 29221811 DOI: 10.1016/j.matbio.2017.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is the most common final outcome for chronic liver diseases. The complex pathogenesis includes hepatic parenchymal damage as a result of a persistent noxe, activation and recruitment of immune cells, activation of hepatic stellate cells, and the synthesis of fibrotic extracellular matrix (ECM) components leading to scar formation. Clinical studies and animal models demonstrated that fibrosis can be reversible. In this regard matrix metalloproteinases (MMPs) have been focused as therapeutic targets due to their ability to modulate tissue turnover during fibrogenesis as well as regeneration and, of special interest, due to their influence on cellular behavior like proliferation, gene expression, and apoptosis that, in turn, impact fibrosis and regeneration. The current review aims to summarize and update the knowledge about expression pattern and the central roles of MMPs in hepatic fibrosis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University Giessen, Gaffkystr. 11c, D-35392 Giessen, Germany.
| |
Collapse
|