1
|
Boros-Rausch A, Dorogin A, Nadeem L, Shynlova O, Lye SJ. A Broad-Spectrum Chemokine Inhibitor Drives M2 Macrophage Polarization Through Modulation of the Myometrial Secretome. Cells 2025; 14:514. [PMID: 40214468 PMCID: PMC11989072 DOI: 10.3390/cells14070514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The uterine smooth muscle (myometrium) is an immunomodulatory tissue capable of secreting multiple chemokines during pregnancy. We propose that before term labor, chemokines secreted as a result of mechanical stretch of the uterine walls by the growing fetus(es) induce infiltration of maternal monocytes into myometrium, drive their differentiation into macrophages, and induce pro-inflammatory (M1) polarization, leading to labor contractions. This study used high-throughput proteomic mass-spectrometry to investigate the underlying mechanisms and explored the therapeutic potential of a broad-spectrum chemokine inhibitor (BSCI, FX125L) in modulating these effects. Primary myocytes isolated from the myometrium of term pregnant women were subjected in vitro to static mechanical stretch. Proteomic analysis of stretched myocyte-conditioned media (CM) identified significant upregulation of chemokine-related pathways and ECM degradation proteins. CM induced in vitro differentiation of human monocytes to macrophages and polarization into an M1-like phenotype characterized by elevated ROS production. BSCI treatment altered the myocyte secretome, increasing tissue-remodeling and anti-inflammatory proteins, Annexin A1 and TGF-β. BSCI-treated myocyte secretions induced Annexin A1 expression in macrophages and enhanced their phagocytic activity. We conclude that factors secreted by mechanically stretched myocytes induce pro-inflammatory M1 macrophage polarization, while BSCI modulates myocyte secretome, which reprograms macrophages to a homeostatic M2-like phenotype, thus reducing inflammation. When treated with BSCI, M2-polarized macrophages reduced myocyte-driven collagen gel contraction, whereas M1 macrophages enhanced it. This study reveals novel insights into the myocyte-macrophage interaction and identifies BSCI as a promising drug to modulate myometrial activity. We suggest that uterine macrophages may represent a therapeutic target for preventing preterm labor in women.
Collapse
Affiliation(s)
- Adam Boros-Rausch
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anna Dorogin
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Stephen James Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (A.D.); (L.N.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
2
|
Deng M, Tan X, Peng X, Zheng W, Fu R, Tao S. HDAC6 promotes inflammation in lupus nephritis mice by regulating transcription factors MAFF and KLF5 in renal fibrosis. Ren Fail 2024; 46:2415517. [PMID: 39412062 PMCID: PMC11485742 DOI: 10.1080/0886022x.2024.2415517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
AIM This study explored the effect and mechanism of MAFF and HDAC6 on renal fibrosis and inflammation in lupus nephritis (LN). METHODS IL-33 treated renal epithelial cells and MRL/lpr mice were respectively used for in vitro and in vivo experiments. The expressions of HDAC6, MAFF, and KLF5 were measured in cells and renal tissues. Before and after cell transfection, the morphological changes in renal tissues were observed using Hematoxylin and eosin (H&E) and Masson staining. The proteinuria, serum creatinine (SCr), blood urea nitrogen (BUN), and double-stranded DNA (dsDNA) levels were detected by biochemical analysis. The expressions of fibrosis and inflammation related proteins (including α-SMA, Vimentin, IL-1β, IL-6, and TNF-α), p65, and iNOS were also detected. The relationship among MAFF, HDAC6, and KLF5 was determined by chromatin immunoprecipitation and dual luciferase reporter gene assay. RESULTS Renal tissues and cell models had elevated expressions of HDAC6 and KLF5, and decreased MAFF expression. HDAC6 suppression or MAFF overexpression led to suppression of proteinuria, SCr, BUN, and dsDNA levels, as well as attenuation of inflammatory infiltration and collagen deposition. HDAC6 can suppress MAFF expression via deacetylation to abolish its suppression of KLF5 expression, thus increasing KLF5 expression. In vivo and in vitro experiments showed the suppressive effect of HDAC6 suppression on renal fibrosis and inflammation can be abolished by KLF5 overexpression. CONCLUSION HDAC6 suppresses MAFF expression via deacetylation to elevate KLF5 expression, which consequently enhances fibrosis and inflammatory response in LN.
Collapse
Affiliation(s)
- Meihui Deng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Xiao Tan
- Department of Hematology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Xiaojie Peng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Weimin Zheng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Rui Fu
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Shanshan Tao
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
3
|
Li X, Lin L, Li Y, Zhang W, Lang Z, Zheng J. ATF3-mediated transactivation of CXCL14 in HSCs during liver fibrosis. Clin Transl Med 2024; 14:e70040. [PMID: 39358917 PMCID: PMC11446984 DOI: 10.1002/ctm2.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND AIMS Myofibroblasts, the primary producers of extracellular matrix, primarily originate from hepatic stellate cells (HSCs), and their activation plays a pivotal role in liver fibrosis. This study aimed to investigate the function of CXC motif ligand 14 (CXCL14) in the progression of liver fibrosis. APPROACH AND RESULTS CXCL14 knockdown significantly reduced the extent of liver fibrosis. Using Ingenuity pathway analysis and qRT-PCR, activating transcription factor 3 (ATF3) was identified as a key upstream regulator of CXCL14 expression. Mechanistically, ATF3 was shown to bind to the CXCL14 promoter, promoting its transactivation by TGF-β in HSCs. Notably, both global CXCL14 deletion (CXCL14-/-) and HSC/myofibroblast-specific CXCL14 knockdown significantly attenuated liver fibrosis in mice. RNA-seq comparisons between CXCL14-/- and WT mice highlighted Jak2 as the most significantly downregulated gene, implicating its role in the antifibrotic effects of CXCL14 suppression on HSC inactivation. Moreover, Jak2 overexpression reversed the inhibition of liver fibrosis caused by CXCL14 knockdown in vivo. CONCLUSIONS These findings unveil a novel ATF3/CXCL14/Jak2 signalling axis in liver fibrosis, presenting potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Xinmiao Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifan Lin
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifei Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weizhi Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Lang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
McDermott JG, Goodlett BL, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Mitchell BM. Inflammatory Alterations to Renal Lymphatic Endothelial Cell Gene Expression in Mouse Models of Hypertension. Kidney Blood Press Res 2024; 49:588-604. [PMID: 38972305 PMCID: PMC11345939 DOI: 10.1159/000539721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p < 0.01), 274 significantly enriched pathways (p < 0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.
Collapse
Affiliation(s)
- Justin G. McDermott
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| |
Collapse
|
5
|
Hounkpe BW, Sales LP, Ribeiro SCR, Perez MO, Caparbo VF, Domiciano DS, Figueiredo CP, Pereira RMR, Borba EF. Transcriptomic signatures of classical monocytes reveal pro-inflammatory modules and heterogeneity in polyarticular juvenile idiopathic arthritis. Front Immunol 2024; 15:1400036. [PMID: 38835762 PMCID: PMC11148224 DOI: 10.3389/fimmu.2024.1400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Polyarticular juvenile idiopathic arthritis (pJIA) is a childhood-onset autoimmune disease. Immune cells contribute to persistent inflammation observed in pJIA. Despite the crucial role of monocytes in arthritis, the precise involvement of classical monocytes in the pathogenesis of pJIA remains uncertain. Here, we aimed to uncover the transcriptomic patterns of classical monocytes in pJIA, focusing on their involvement in disease mechanism and heterogeneity. Methods A total of 17 healthy subjects and 18 premenopausal women with pJIA according to ILAR criteria were included. Classical monocytes were isolated, and RNA sequencing was performed. Differential expression analysis was used to compare pJIA patients and healthy control group. Differentially expressed genes (DEGs) were identified, and gene set enrichment analysis (GSEA) was performed. Using unsupervised learning approach, patients were clustered in two groups based on their similarities at transcriptomic level. Subsequently, these clusters underwent a comparative analysis to reveal differences at the transcriptomic level. Results We identified 440 DEGs in pJIA patients of which 360 were upregulated and 80 downregulated. GSEA highlighted TNF-α and IFN-γ response. Importantly, this analysis not only detected genes targeted by pJIA therapy but also identified new modulators of immuno-inflammation. PLAUR, IL1B, IL6, CDKN1A, PIM1, and ICAM1 were pointed as drivers of chronic hyperinflammation. Unsupervised learning approach revealed two clusters within pJIA, each exhibiting varying inflammation levels. Conclusion These findings indicate the pivotal role of immuno-inflammation driven by classical monocytes in pJIA and reveals the existence of two subclusters within pJIA, regardless the positivity of rheumatoid factor and anti-CCP, paving the way to precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eduardo F. Borba
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), Sao Paulo, Brazil
| |
Collapse
|
6
|
Wang W, Liu Y, Xiong L, Sun D, Wang H, Song Z, Li Y, Li H, Chen L. Synthesis of Lathyrol PROTACs and Evaluation of Their Anti-Inflammatory Activities. JOURNAL OF NATURAL PRODUCTS 2023; 86:767-781. [PMID: 37002536 DOI: 10.1021/acs.jnatprod.2c00912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lathyrol is a core scaffold structure of many lathyrane diterpenoids with potent anti-inflammatory activity isolated from Euphorbia lathyrism. It was chosen as a framework to design and synthesize a series of proteolysis targeting chimeras. A total of 15 derivatives were obtained. Compound 13 exhibited inhibitory activity on LPS-induced NO production in RAW264.7 cells (IC50 = 5.30 ± 1.23 μM) with low cytotoxicity. Furthermore, compound 13 significantly degraded v-maf musculoaponeurotic fibrosarcoma oncogene homologue F (MAFF) protein, a target of lathyrane diterpenoid, concentration- and time-dependently. The mechanism of action of 13 is related to activating the Keap1/Nrf2 pathway. It also inhibited the expression of NF-κB, blocked the nuclear translocation of NF-κB, and activated autophagy in LPS-induced RAW264.7 cells. Based on the results obtained, compound 13 might be a promising anti-inflammatory agent.
Collapse
Affiliation(s)
- Wang Wang
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liangliang Xiong
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuorui Song
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yutong Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lixia Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Ismailova A, Salehi-Tabar R, Dimitrov V, Memari B, Barbier C, White JH. Identification of a forkhead box protein transcriptional network induced in human neutrophils in response to inflammatory stimuli. Front Immunol 2023; 14:1123344. [PMID: 36756115 PMCID: PMC9900176 DOI: 10.3389/fimmu.2023.1123344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Introduction Neutrophils represent the largest proportion of circulating leukocytes and, in response to inflammatory stimuli, are rapidly recruited to sites of infection where they neutralize pathogens. Methods and results We have identified a novel neutrophil transcription network induced in response to inflammatory stimuli. We performed the first RNAseq analysis of human neutrophils exposed to lipopolysaccharide (LPS), followed by a meta-analysis of our dataset and previously published studies of LPS-challenged neutrophils. This revealed a robustly enhanced transcriptional network driven by forkhead box (FOX) transcription factors. The network is enriched in genes encoding proinflammatory cytokines and transcription factors, including MAFF and ATF3, which are implicated in responses to stress, survival and inflammation. Expression of transcription factors FOXP1 and FOXP4 is induced in neutrophils exposed to inflammatory stimuli, and potential FOXP1/FOXP4 binding sites were identified in several genes in the network, all located in chromatin regions consistent with neutrophil enhancer function. Chromatin immunoprecipitation (ChIP) assays in neutrophils confirmed enhanced binding of FOXP4, but not FOXP1, to multiple sites in response to LPS. Binding to numerous motifs and transactivation of network genes were also observed when FOXP proteins were transiently expressed in HEK293 cells. In addition to LPS, the transcriptional network is induced by other inflammatory stimuli, indicating it represents a general neutrophil response to inflammation. Discussion Collectively, these findings reveal a role for the FOXP4 transcription network as a regulator of responses to inflammatory stimuli in neutrophils.
Collapse
Affiliation(s)
- Aiten Ismailova
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Babak Memari
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Camille Barbier
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - John H. White
- Department of Physiology, McGill University, Montreal, QC, Canada,Department of Medicine, McGill University, Montreal, QC, Canada,*Correspondence: John H. White,
| |
Collapse
|
8
|
The Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Oral Cavity and Abdominal Organs. Int J Mol Sci 2022; 23:ijms23137151. [PMID: 35806156 PMCID: PMC9266754 DOI: 10.3390/ijms23137151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn’s disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).
Collapse
|
9
|
Pujol-Gualdo N, Läll K, Lepamets M, Rossi HR, Arffman RK, Piltonen TT, Mägi R, Laisk T. Advancing our understanding of genetic risk factors and potential personalized strategies for pelvic organ prolapse. Nat Commun 2022; 13:3584. [PMID: 35739095 PMCID: PMC9226158 DOI: 10.1038/s41467-022-31188-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Pelvic organ prolapse is a common gynecological condition with limited understanding of its genetic background. In this work, we perform a genome-wide association meta-analysis comprising 28,086 cases and 546,291 controls from European ancestry. We identify 19 novel genome-wide significant loci, highlighting connective tissue, urogenital and cardiometabolic as likely affected systems. Here, we prioritize many genes of potential interest and assess shared genetic and phenotypic links. Additionally, we present the first polygenic risk score, which shows similar predictive ability (Harrell C-statistic (C-stat) 0.583, standard deviation (sd) = 0.007) as five established clinical risk factors combined (number of children, body mass index, ever smoked, constipation and asthma) (C-stat = 0.588, sd = 0.007) and demonstrates a substantial incremental value in combination with these (C-stat = 0.630, sd = 0.007). These findings improve our understanding of genetic factors underlying pelvic organ prolapse and provide a solid start evaluating polygenic risk scores as a potential tool to enhance individual risk prediction. Although pelvic organ prolapse is a common gynecological condition, the genetic component of disease risk is not well known. Here the authors find common genetic variants associated with the disease and present a polygenic risk score to enhance individual risk prediction.
Collapse
Affiliation(s)
- Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia. .,Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu, University Hospital, University of Oulu, Oulu, Finland.
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maarja Lepamets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Henna-Riikka Rossi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu, University Hospital, University of Oulu, Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu, University Hospital, University of Oulu, Oulu, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Centre, Oulu, University Hospital, University of Oulu, Oulu, Finland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space. Int J Mol Sci 2022; 23:ijms23020792. [PMID: 35054978 PMCID: PMC8776070 DOI: 10.3390/ijms23020792] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Collapse
|
11
|
Xu X, Deng W, Zhang W, Zhang J, Wang M, Shan S, Liu H. Transcriptome Analysis of Rat Lungs Exposed to Moxa Smoke after Acute Toxicity Testing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5107441. [PMID: 34961819 PMCID: PMC8710166 DOI: 10.1155/2021/5107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022]
Abstract
The increasing use of moxibustion has led to a debate concerning the safety of this treatment in human patients. Inhalation of cigarette smoke induces lung inflammation and granulomas, the proliferation of alveolar epithelial cells, and other toxic effects; therefore, it is important to assess the influence of inhaled moxa smoke on the lungs. In the present study, a novel poisoning cabinet was designed and used to assess the acute toxicity of moxa smoke in rats. We evaluated pathological changes in rat lung tissue and analyzed differentially expressed genes (DEGs) using RNA-seq and transcriptomic analyses. Our results show that the maximum tolerable dose of moxa smoke was 290.036 g/m³ and LC50 was 537.65 g/m³. Compared with that of the control group, the degree of inflammatory cell infiltration in the lung tissues of group A rats (all dead group) was increased, while that in group E rats (all live group) remained unchanged. GO and KEGG enrichment analyses showed that the DEGs implicated in cell components, binding, and cancer were significantly enriched in the experimental groups compared with the profile of the control group. The expressions of MAFF, HSPA1B, HSPA1A, AOC1, and MX2 determined using quantitative real-time PCR were similar to those determined using RNA-seq, confirming the reliability of RNA-seq data. Overall, our results provide a basis for future evaluations of moxibustion safety and the development of moxibustion-based technology.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wen Deng
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wanqing Zhang
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Junhua Zhang
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Muchen Wang
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Si Shan
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Hongning Liu
- Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| |
Collapse
|
12
|
Wei C, Li Y, Feng X, Hu Z, Paquet-Durand F, Jiao K. RNA Biological Characteristics at the Peak of Cell Death in Different Hereditary Retinal Degeneration Mutants. Front Genet 2021; 12:728791. [PMID: 34777465 PMCID: PMC8586524 DOI: 10.3389/fgene.2021.728791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The present work investigated changes in the gene expression, molecular mechanisms, and pathogenesis of inherited retinal degeneration (RD) in three different disease models, to identify predictive biomarkers for their varied phenotypes and to provide a better scientific basis for their diagnosis, treatment, and prevention. Methods: Differentially expressed genes (DEGs) between retinal tissue from RD mouse models obtained during the photoreceptor cell death peak period (Pde6b rd1 at post-natal (PN) day 13, Pde6b rd10 at PN23, Prph rd2 at PN29) and retinal tissue from C3H wild-type mice were identified using Illumina high-throughput RNA-sequencing. Co-expression gene modules were identified using a combination of GO and KEGG enrichment analyses and gene co-expression network analysis. CircRNA-miRNA-mRNA network interactions were studied by genome-wide circRNA screening. Results: Pde6b rd1 , Pde6b rd10 , and Prph rd2 mice had 1,926, 3,096, and 375 DEGs, respectively. Genes related to ion channels, stress, inflammatory processes, tumor necrosis factor (TNF) production, and microglial cell activation were up-regulated, while genes related to endoplasmic reticulum regulation, metabolism, and homeostasis were down-regulated. Differential expression of transcription factors and non-coding RNAs generally implicated in other human diseases was detected (e.g., glaucoma, diabetic retinopathy, and inherited retinal degeneration). CircRNA-miRNA-mRNA network analysis indicated that these factors may be involved in photoreceptor cell death. Moreover, excessive cGMP accumulation causes photoreceptor cell death, and cGMP-related genes were generally affected by different pathogenic gene mutations. Conclusion: We screened genes and pathways related to photoreceptor cell death. Additionally, up-stream regulatory factors, such as transcription factors and non-coding RNA and their interaction networks were analyzed. Furthermore, RNAs involved in RD were functionally annotated. Overall, this study lays a foundation for future studies on photoreceptor cell death mechanisms.
Collapse
Affiliation(s)
- Chunling Wei
- Kunming Medical University, Kunming, China.,Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yan Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - Xiaoxiao Feng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - Zhulin Hu
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Kangwei Jiao
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| |
Collapse
|
13
|
Alpuche-Lazcano SP, Saliba J, Costa VV, Campolina-Silva GH, Marim FM, Ribeiro LS, Blank V, Mouland AJ, Teixeira MM, Gatignol A. Profound downregulation of neural transcription factor Npas4 and Nr4a family in fetal mice neurons infected with Zika virus. PLoS Negl Trop Dis 2021; 15:e0009425. [PMID: 34048439 PMCID: PMC8191876 DOI: 10.1371/journal.pntd.0009425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/10/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) infection of neurons leads to neurological complications and congenital malformations of the brain of neonates. To date, ZIKV mechanism of infection and pathogenesis is not entirely understood and different studies on gene regulation of ZIKV-infected cells have identified a dysregulation of inflammatory and stem cell maintenance pathways. MicroRNAs (miRNAs) are post-transcriptional regulators of cellular genes and they contribute to cell development in normal function and disease. Previous reports with integrative analyses of messenger RNAs (mRNAs) and miRNAs during ZIKV infection have not identified neurological pathway defects. We hypothesized that dysregulation of pathways involved in neurological functions will be identified by RNA profiling of ZIKV-infected fetal neurons. We therefore used microarrays to analyze gene expression levels following ZIKV infection of fetal murine neurons. We observed that the expression levels of transcription factors such as neural PAS domain protein 4 (Npas4) and of three members of the orphan nuclear receptor 4 (Nr4a) were severely decreased after viral infection. We confirmed that their downregulation was at both the mRNA level and at the protein level. The dysregulation of these transcription factors has been previously linked to aberrant neural functions and development. We next examined the miRNA expression profile in infected primary murine neurons by microarray and found that various miRNAs were dysregulated upon ZIKV infection. An integrative analysis of the differentially expressed miRNAs and mRNAs indicated that miR-7013-5p targets Nr4a3 gene. Using miRmimics, we corroborated that miR-7013-5p downregulates Nr4a3 mRNA and protein levels. Our data identify a profound dysregulation of neural transcription factors with an overexpression of miR-7013-5p that results in decreased Nr4a3 expression, likely a main contributor to ZIKV-induced neuronal dysfunction. Zika virus (ZIKV) is an emerging virus transmitted horizontally between humans through mosquito bites, and sexual intercourse generally inducing a mild disease. ZIKV is also transmitted vertically from mother-to-child producing congenital ZIKV syndrome (CZVS) in neonates. CZVS leads to severe microcephaly associated with neurological, ocular, musculoskeletal, genitourinary disorders and other disabilities. Although numerous studies have been performed on ZIKV infection of brain cells, we are still far from understanding how ZIKV infection leads to dysregulation of host genes, virus-induced cytopathicity and consequent pathology. Micro (mi)RNAs are small noncoding RNAs encoded and processed by the host cell. They regulate gene expression at the post-transcriptional level in a process called RNA interference (RNAi). Here, we evaluated the relationship between ZIKV infection and the level of mRNAs and miRNAs expressed in the cell. ZIKV infection of mouse embryo neurons downregulated several neural immediate-early genes (IEG). Moreover, we revealed that ZIKV infection led to aberrant regulation of several miRNAs, and identified one whose cognate target was a neural IEG. Our work identifies novel genes and miRNAs that are modulated upon ZIKV infection of fetal murine neurons, therefore linking neuronal dysfunction to transcription and the RNA interference pathway.
Collapse
Affiliation(s)
- Sergio P. Alpuche-Lazcano
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada
| | - James Saliba
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada
- Lady Davis Institute for Medical Research, Montréal, Canada
| | - Vivian V. Costa
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Morfologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel H. Campolina-Silva
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda M. Marim
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas S. Ribeiro
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Physiology, McGill University, Montréal, Canada
| | - Andrew J. Mouland
- RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
| | - Mauro M. Teixeira
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- * E-mail:
| |
Collapse
|
14
|
Maeda Y, Kariya S, Uraguchi K, Takahara J, Fujimoto S, Sugaya A, Nishizaki K. Immediate changes in transcription factors and synaptic transmission in the cochlea following acoustic trauma: A gene transcriptome study. Neurosci Res 2020; 165:6-13. [PMID: 32417196 DOI: 10.1016/j.neures.2020.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/18/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
Pathologic mechanisms in cochleae immediately following the onset of noise-induced hearing loss (NIHL) remain unclear. In this study, mice were exposed to 120 dB of octave band noise for 2 h to induce NIHL. Three hours after noise exposure, expression levels of the whole mouse genome in cochleae were analyzed by RNA-seq and DNA microarray. Differentially expressed genes (DEGs) exhibiting >2-fold upregulation or downregulation in noise-exposed cochleae compared to controls without noise exposure were identified. RNA-seq and microarray analyses identified 273 DEGs regulated at 3 h post-noise (51 upregulated and 222 downregulated). Bioinformatic analysis revealed that these DEGs were associated with the functional gene pathway "neuroactive ligand-receptor interaction" and included 28 genes encoding receptors for neurotransmitters such as gamma-aminobutyric acid and glutamate. Other DEGs included 25 genes encoding transcription factors. Downregulation of 4 neurotransmitter receptors (Gabra3, Gabra5, Gabrb1, Grm1) and upregulations of 5 transcription factors (Atf3, Dbp, Helt, Maff, Nr1d1) were validated by RT-PCR. The differentially regulated transcription factor Atf3 immunolocalized to supporting cells and hair cells in the organ of Corti at 12-h post-noise. The present data serve as a basis for further studies aimed at developing medical treatments for acute sensorineural hearing loss.
Collapse
Affiliation(s)
- Yukihide Maeda
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan.
| | - Shin Kariya
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Kensuke Uraguchi
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Junko Takahara
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Shohei Fujimoto
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Akiko Sugaya
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
15
|
Wu M, Deng X, Zhong Y, Hu L, Zhang X, Liang Y, Li X, Ye X. MafF Is Regulated via the circ-ITCH/miR-224-5p Axis and Acts as a Tumor Suppressor in Hepatocellular Carcinoma. Oncol Res 2020; 28:299-309. [PMID: 31969212 PMCID: PMC7851502 DOI: 10.3727/096504020x15796890809840] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MafF is a member of the basic leucine zipper (bZIP) transcription factor Maf family and is commonly downregulated in multiple cancers. But the expression and function of MafF in hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the relationship between endogenous MafF expression and HCC progression and explored the regulatory mechanism of MafF expression in HCC. We found that MafF decreased in HCC tissues and cells. Lentivirus-mediated MafF overexpression inhibited HCC cell proliferation and induced cell apoptosis. Bioinformatics analysis and luciferase assay identified MafF as a direct target of miR-224-5p. RNA pull-down assay demonstrated that circular RNA circ-ITCH could sponge miR-224-5p specifically in HCC. The rescue experiments further elucidated that the expression and antitumor effects of MafF could be regulated via the circ-ITCH/miR-224-5p axis. This study verified that MafF acted as a tumor suppressor in HCC and revealed the upstream regulation mechanism of MafF, which provided a new perspective for potential therapeutic targets of HCC.
Collapse
Affiliation(s)
- Minhua Wu
- Department of Histology and Embryology, Guangdong Medical UniversityZhanjiangP.R. China
| | - Xubin Deng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouP.R. China
| | - Yu Zhong
- Analysis Center, Guangdong Medical UniversityZhanjiangP.R. China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical UniversityZhanjiangP.R. China
| | - Xiujuan Zhang
- Department of Physiology, Guangdong Medical UniversityZhanjiangP.R. China
| | - Yanqin Liang
- Department of Histology and Embryology, Guangdong Medical UniversityZhanjiangP.R. China
| | - Xiaofang Li
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical UniversityZhanjiangP.R. China
| | - Xiaoxia Ye
- Department of Histology and Embryology, Guangdong Medical UniversityZhanjiangP.R. China
| |
Collapse
|
16
|
Saliba J, Coutaud B, Solovieva V, Lu F, Blank V. Regulation of CXCL1 chemokine and CSF3 cytokine levels in myometrial cells by the MAFF transcription factor. J Cell Mol Med 2019; 23:2517-2525. [PMID: 30669188 PMCID: PMC6433675 DOI: 10.1111/jcmm.14136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Cytokines play key roles in a variety of reproductive processes including normal parturition as well as preterm birth. Our previous data have shown that MAFF, a member of the MAF family of bZIP transcription factors, is rapidly induced by pro‐inflammatory cytokines in PHM1‐31 myometrial cells. We performed loss‐of‐function studies in PHM1‐31 cells to identify MAFF dependent genes. We showed that knockdown of MAFF significantly decreased CXCL1 chemokine and CSF3 cytokine transcript and protein levels. Using chromatin immunoprecipitation analyzes, we confirmed CXCL1 and CSF3 genes as direct MAFF targets. We also demonstrated that MAFF function in PHM1‐31 myometrial cells is able to control cytokine and matrix metalloproteinase gene expression in THP‐1 monocytic cells in a paracrine fashion. Our studies provide valuable insights into the MAFF dependent transcriptional network governing myometrial cell function. The data suggest a role of MAFF in parturition and/or infection‐induced preterm labour through modulation of inflammatory processes in the microenvironment.
Collapse
Affiliation(s)
- James Saliba
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Baptiste Coutaud
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Vera Solovieva
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Fangshi Lu
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|