1
|
Han J, Miao Y, Song L, Zhou X, Liu Y, Wang L, Zhu K, Ma H, Ma Y, Li Q, Han D. Xuefu Zhuyu Decoction improves hyperlipidemia through the MAPK/NF-κB and MAPK/PPARα/CPT-1A signaling pathway. FASEB J 2025; 39:e70363. [PMID: 39878687 DOI: 10.1096/fj.202402688r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Xuefu Zhuyu Decoction (XZD) is widely used in the treatment of cardiovascular diseases. The purpose of this study was to explore the pharmacological effects and molecular mechanisms of XZD in improving hyperlipidemia and to provide a theoretical framework for clinical application. In this study, the signaling pathways regulated by XZD in improving hyperlipidemia were predicted by network pharmacology. Molecular docking was used to verify the affinity between the components in XZD and the target. Furthermore, a hyperlipidemic model in rats was constructed through feeding a high-fat diet. The effect of XZD on hyperlipidemia was verified by histopathological staining, Elisa, and western blot. The results found that the XZD improved dyslipidemia and inflammatory factor disorders, and inhibited liver function damage, pathological damage, and oxidative stress damage in hyperlipidemic rats. The findings from molecular docking and network pharmacology suggested that the mechanism of XZD improving hyperlipidemia may be closely related to the MAPK, NF-κB, and PPAR pathways. This study demonstrated that the XZD inhibited liver lipid metabolism disorder and inflammatory response by regulating the MAPK/NF-κB and MAPK/PPARα/CPT-1A pathway, significantly improved liver histopathological damage and oxidative stress injury, and played a protective role in hyperlipidemic rats.
Collapse
Affiliation(s)
- Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Yuyang Miao
- Department of Endocrinology and Metabolism, Jilin Province People's Hospital, Jilin, China
| | - Linze Song
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Xianfeng Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Yan Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Lin Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Kai Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - He Ma
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Yan Ma
- Department of Endocrinology and Metabolism, Jilin Province People's Hospital, Jilin, China
| | - Qingjie Li
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
2
|
EFSA Scientific Committee, Bennekou SH, Allende A, Bearth A, Casacuberta J, Castle L, Coja T, Crépet A, Halldorsson T, Hoogenboom L(R, Knutsen H, Koutsoumanis K, Lambré C, Nielsen S, Turck D, Civera AV, Villa R, Zorn H, Bampidis V, Castenmiller J, Chagnon M, Cottrill B, Darney K, Gropp J, Puente SL, Rose M, Vinceti M, Bastaki M, Gergelová P, Greco L, Innocenti ML, Janossy J, Lanzoni A, Terron A, Benford D. Risks to human and animal health from the presence of bromide in food and feed. EFSA J 2025; 23:e9121. [PMID: 39877303 PMCID: PMC11773346 DOI: 10.2903/j.efsa.2025.9121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The European Commission mandated EFSA to assess the toxicity of bromide, the existing maximum residue levels (MRLs), and possible transfer from feed into food of animal origin. The critical effects of bromide in experimental animals are on the thyroid and central nervous system. Changes in thyroid hormone homeostasis could result in neurodevelopmental toxicity, among other adverse effects. Changes in thyroid hormone concentrations and neurophysiological parameters have also been observed in experimental human studies, but the evidence was limited. Dose-response modelling of decreased blood thyroxine concentrations in rats resulted in a reference point of 40 mg/kg body weight (bw) per day. The Scientific Committee established a tolerable daily intake (TDI) of 0.4 mg/kg bw per day and an acute reference dose (ARfD) of 0.4 mg/kg bw per day to protect against adverse neurodevelopmental effects. The TDI value is supported by the results of experimental human studies with a NOAEL of 4 mg/kg bw per day and 10-fold interindividual variability. The TDI and ARfD are considered as conservative with 90% certainty. Insufficient evidence related to the toxicological effects of bromide was available for animals, with the exception of dogs. Therefore, the reference point of 40 mg/kg bw per day was extrapolated to maximum safe concentrations of bromide in complete feed for other animal species. Bromide can transfer from feed to food of animal origin, but, from the limited data, it was not possible to quantify the transfer rate. Monitoring data exceeded the current MRLs for some food commodities, generally with a low frequency. A conservative safety screening of the MRLs indicated that the TDI and ARfD are exceeded for some EU diets. Dietary exposure assessment for animals was not feasible due to insufficient data. The Scientific Committee recommends data be generated to allow robust dietary exposure assessments in the future, and data that support the risk assessment.
Collapse
|
3
|
Zhang S, Xu M, Shen Z, Shang C, Zhang W, Chen S, Liu C. Green light exposure aggravates high-fat diet feeding-induced hepatic steatosis and pancreatic dysfunction in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112802. [PMID: 34555719 DOI: 10.1016/j.ecoenv.2021.112802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The increased incidence of metabolic syndrome (MetS) has been demonstrated to be closely associated with external environments, such as unhealthy ambient light exposure. Of note, spectral distribution of the light functions as a critical determinant of light's pathophysiological effects. However, the effects of the lighting spectrum on metabolic homeostasis and the specific target organs remain elusive. To address this concern, we in this study high-fat diet (HFD)-fed obese mice with different spectra of the light, and divided them into white light (WL)-treated group, green light (GL)-treated group and blue light (BL)-treated group. We found that compared with BL- or WL-treated obese mice, animals exposed to GL showed worsened metabolic status, including increased body weight gain, impaired glucose tolerance/insulin sensitivity, increased levels of serum lipids, and decreased levels of serum insulin. At the organ level, GL exposure particularly exacerbated hepatic lipid accumulation and enlarged the islet volume. Taking advantages of metabolomics and transcriptomics analyses, we screened out taurocholic acid (TCA) and adenosine (AD) as two promising metabolites mediating the deleterious effects of GL on the liver and islets, respectively. In detail, GL aggravates HFD-induced lipid synthesis and gluconeogenesis in the liver via the reduction of TCA, while triggering inflammation and cellular dysfunction in islets via the induction of AD. Collectively, our findings confirmed that GL and the HFD have a synergistic effect in the induction of metabolic disorders. DATA AVAILABILITY: All data supported the paper are present in the paper and/or the Supplementary Materials. The original datasets are also available from the corresponding author upon request.
Collapse
Affiliation(s)
- Shiyao Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengyi Xu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ziyue Shen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Changrui Shang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China; Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
4
|
Huang XT, Yang JX, Wang Z, Zhang CY, Luo ZQ, Liu W, Tang SY. Activation of N-methyl-D-aspartate receptor regulates insulin sensitivity and lipid metabolism. Theranostics 2021; 11:2247-2262. [PMID: 33500723 PMCID: PMC7797674 DOI: 10.7150/thno.51666] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Although significant progress has been made in understanding the mechanisms of steatosis and insulin resistance, the physiological functions of regulators in these processes remain largely elusive. Evidence has suggested that the glutamate/N-methyl-D-aspartic acid receptor (NMDAR) axis contributes to acute lung injury, pulmonary arterial hypertension, and diabetes, but the specific metabolic contribution of the glutamate/NMDAR axis is not clear. Here we provide data at the animal, cellular, and molecular levels to support the role of the glutamate/NMDAR axis as a therapeutic target for metabolic syndrome in obesity. Methods: We examined the glutamate level in the obese mouse induced by a high-fat diet (HFD) for 12 weeks. To assess the role of NMDAR in insulin sensitivity and lipid metabolism, we tested the effects of Memantine (an NMDAR antagonist) and NMDA (an NMDAR agonist) on mice fed with HFD or standard chow diet. The in vitros NMDAR roles were analyzed in hepatocytes and potential mechanisms involved in regulating lipid metabolism were investigated. Results: Glutamate was increased in the serum of HFD-treated mice. The NMDAR blockade by Memantine decreased the susceptibility to insulin resistance and hepatic steatosis in obese mice. NMDA treatment for 6 months induced obesity in mice, characterized by hyperglycemia, hyperlipidemia, insulin resistance, and pathological changes in the liver. We provided in vitro evidence demonstrating that NMDAR activation facilitated metabolic syndrome in obesity through promoting lipid accumulation. NMDAR inhibition attenuated lipid accumulation induced by palmitic acid. Mechanistically, NMDAR activation impaired fatty acid oxidation by reducing PPARα phosphorylation and activity. The PPARα activity reduction induced by NMDAR activation was reversibly mediated by ERK1/2 signaling. Conclusion: These findings revealed that targeting NMDAR might be a promising therapeutic strategy for metabolic syndrome in obesity.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Zi-Qiang Luo
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Jiang Y, Gu Y, Xu H, Tian X, Zhang X, Xu X, Yan W, Zhang X. Bromide impairs the circadian clock and glycolytic homeostasis via disruption of autophagy in rat H9C2 cardiomyocytes. BMC Mol Cell Biol 2020; 21:44. [PMID: 32560625 PMCID: PMC7304218 DOI: 10.1186/s12860-020-00289-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Trace elements function as essential cofactors that are involved in various biochemical processes in mammals. Autophagy is vital for nutrient supplement, which is an important Zeitegber for the circadian homeostasis in heart. Here, we considered the possibility that autophagy, as well as the cardiomyocyte clock and glycolysis are interlinked. Detrimental effects were observed when cardiac system is exposed to bromine containing drugs. This study investigated the effects and mechanisms of bromide on the circadian clock and glycolytic metabolism of H9C2 cardiomyocytes. Results In the present study, bromide does not affect cell viability and apoptosis of H9C2 cardiomyocytes. Bromide dampens the clock and glycolytic (Hk2 and Pkm2) gene expression rhythmicity in a dose-dependent manner. Additionally, bromide inhibits autophagic process in H9C2 cardiomyocytes. In contrast, rapamycin (an autophagy inducer) dramatically restores the inhibitory effect of NaBr on the mRNA expression levels of clock genes (Bmal1, Cry1 and Rorα) and glycolytic genes (Hk2 and Pkm2). Conclusions Our results reveal that bromide represses the clock and glycolytic gene expression patterns, partially through inhibition of autophagy.
Collapse
Affiliation(s)
- Yicheng Jiang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Yang Gu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Hai Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiaoyi Tian
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xuefeng Zhang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiaojin Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Wenting Yan
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiwen Zhang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
6
|
Shi Y, Zou Y, Shen Z, Xiong Y, Zhang W, Liu C, Chen S. Trace Elements, PPARs, and Metabolic Syndrome. Int J Mol Sci 2020; 21:E2612. [PMID: 32283758 PMCID: PMC7177711 DOI: 10.3390/ijms21072612] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) is a constellation of metabolic derangements, including central obesity, insulin resistance, hypertension, glucose intolerance, and dyslipidemia. The pathogenesis of MetS has been intensively studied, and now many factors are recognized to contribute to the development of MetS. Among these, trace elements influence the structure of proteins, enzymes, and complex carbohydrates, and thus an imbalance in trace elements is an independent risk factor for MetS. The molecular link between trace elements and metabolic homeostasis has been established, and peroxisome proliferator-activated receptors (PPARs) have appeared as key regulators bridging these two elements. This is because on one hand, PPARs are actively involved in various metabolic processes, such as abdominal adiposity and insulin sensitivity, and on the other hand, PPARs sensitively respond to changes in trace elements. For example, an iron overload attenuates hepatic mRNA expression of Ppar-α; zinc supplementation is considered to recover the DNA-binding activity of PPAR-α, which is impaired in steatotic mouse liver; selenium administration downregulates mRNA expression of Ppar-γ, thereby improving lipid metabolism and oxidative status in the liver of high-fat diet (HFD)-fed mice. More importantly, PPARs' expression and activity are under the control of the circadian clock and show a robust 24 h rhythmicity, which might be the reasons for the side effects and the clinical limitations of trace elements targeting PPARs. Taken together, understanding the casual relationships among trace elements, PPARs' actions, and the pathogenesis of MetS is of great importance. Further studies are required to explore the chronopharmacological effects of trace elements on the diurnal oscillation of PPARs and the consequent development of MetS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Dong Y, Lu H, Li Q, Qi X, Li Y, Zhang Z, Chen J, Ren J. (5R)-5-hydroxytriptolide ameliorates liver lipid accumulation by suppressing lipid synthesis and promoting lipid oxidation in mice. Life Sci 2019; 232:116644. [DOI: 10.1016/j.lfs.2019.116644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
|
8
|
Shi Y, Zhang W, Cheng Y, Liu C, Chen S. Bromide alleviates fatty acid-induced lipid accumulation in mouse primary hepatocytes through the activation of PPARα signals. J Cell Mol Med 2019; 23:4464-4474. [PMID: 31033195 PMCID: PMC6533524 DOI: 10.1111/jcmm.14347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022] Open
Abstract
Increased plasma free fatty acids (FFAs) and liver triglyceride (TG) accumulations have been implicated in the pathogenesis of hepatic steatosis. On the other hand, trace elements function as essential cofactors that are involved in various biochemical processes in mammals, including metabolic homeostasis. Notably, clinical and animal studies suggest that the plasma levels of bromide negatively correlate with those of TG, total cholesterol (TC) and high‐density lipoprotein‐cholesterol (HDL‐C). However, the effect of bromide on lipid accumulation and the direct molecular target responsible for its action remains unknown. Oil red O (ORO) and Nile red staining were used to detect the effect of bromide on lipid accumulation in mouse primary hepatocytes (PHs) treated with different doses of sodium bromide (NaBr) in the presence of FFAs (0.4 mM oleate/palmitic acid 1:1). Spectrophotometric and fluorometric analyses were performed to assess cellular TG concentrations and rates of fatty acid oxidation (FAO), respectively, in mouse PHs. We found that bromide decreased FFA‐induced lipid accumulation and increased FFA‐inhibited oxygen consumptions in mouse PHs in a dose‐dependent manner via activation of PPARα. Mechanical studies demonstrated that bromide decreased the phosphorylation levels of JNK. More importantly, the PPARα‐specific inhibitor GW6471 partially abolished the beneficial effects of bromide on mouse PHs. Bromide alleviates FFA‐induced excessive lipid storage and increases rates of FAO through the activation of PPARα/JNK signals in mouse PHs. Therefore, bromide may serve as a novel drug in the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Yujie Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yinlong Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|