1
|
Gallais Sérézal I, Kirma J, Sarkar MK, Cole C, Xing X, Bogle R, Fox J, Coon A, vanStraalen KR, Dobry C, Xu LH, Kahlenberg JM, Harms PW, Billi AC, Tsoi LC, Giacani L, Gudjonsson JE. Characterizing the immune infiltrate in secondary syphilis: implications for transmission and pathology. Front Immunol 2025; 16:1549206. [PMID: 40201184 PMCID: PMC11975926 DOI: 10.3389/fimmu.2025.1549206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Syphilis is a complex disease with variable clinical presentation where symptomatic and potentially infectious stages alternate with periods of latency, representing a fascinating model to study immune evasion and host immune responses. Methods Immunohistochemistry (IHC), bulk, and single-cell RNA sequencing were performed on formalin-fixed paraffin-embedded skin biopsies collected from subjects with secondary syphilis. Additionally, PBMCs from healthy individuals and either primary or MyD88 knock-out keratinocytes were exposed to live Treponema pallidum cells to define initial skin responses to the bacteria. Results Immunohistochemistry of secondary syphilis skin lesions showed a polymorphous immune infiltrate with colocalization of T cells, B cells and antigen-presenting cells. Single-cell analysis revealed distinct cellular contributions to the immune response, with prominent immune-stromal crosstalk accompanied by altered keratinocyte differentiation and decreased intraepidermal communication. Notably, prominent inflammatory signals were countered by concomitant regulatory responses, particularly in infiltrating myeloid cells. Exposure of PBMCs to live T. pallidum inhibited immune responses, while exposure to sonicated cells triggered CXCL1 and CXCL3 upregulation. Keratinocytes responded to both intact and sonicated T. pallidum with upregulation of type-I interferon responses that, however, were abolished in MYD88-deficient but not in STING-deficient keratinocytes. Discussion Our data provide novel insights into the contribution of epidermal TLR sensing through MYD88 to the host response to syphilis infection, highlighting mechanisms by which T. pallidum evades immune responses in skin that may facilitate transmission of this pathogen through the skin.
Collapse
Affiliation(s)
- Irène Gallais Sérézal
- Department of Dermatology, Institut National de la Santé et de la Recherche Médicale (INSERM) 1098, Franche Comté University, Besançon University Hospital, Besançon, France
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Joseph Kirma
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher Cole
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Rachael Bogle
- Laboratory for Experimental Immunodermatology, Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jennifer Fox
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Anthony Coon
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelsey R. vanStraalen
- Laboratory for Experimental Immunodermatology, Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Linda H. Xu
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - J. Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Allison C. Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Chen L, Zhang L, Hua H, Liu L, Mao Y, Wang R. Interactions between toll-like receptors signaling pathway and gut microbiota in host homeostasis. Immun Inflamm Dis 2024; 12:e1356. [PMID: 39073297 PMCID: PMC11284964 DOI: 10.1002/iid3.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are a family of fundamental pattern recognition receptors in the innate immune system, constituting the first line of defense against endogenous and exogenous antigens. The gut microbiota, a collection of commensal microorganisms in the intestine, is a major source of exogenous antigens. The components and metabolites of the gut microbiota interact with specific TLRs to contribute to whole-body immune and metabolic homeostasis. OBJECTIVE This review aims to summarize the interaction between the gut microbiota and TLR signaling pathways and to enumerate the role of microbiota dysbiosis-induced TLR signaling pathways in obesity, inflammatory bowel disease (IBD), and colorectal cancer (CRC). RESULTS Through the recognition of TLRs, the microbiota facilitates the development of both the innate and adaptive immune systems, while the immune system monitors dynamic changes in the commensal bacteria to maintain the balance of the host-microorganism symbiosis. Dysbiosis of the gut microbiota can induce a cascade of inflammatory and metabolic responses mediated by TLR signaling pathways, potentially resulting in various metabolic and inflammatory diseases. CONCLUSION Understanding the crosstalk between TLRs and the gut microbiota contributes to potential therapeutic applications in related diseases, offering new avenues for treatment strategies in conditions like obesity, IBD, and CRC.
Collapse
Affiliation(s)
- Luping Chen
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Linfang Zhang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
| | - Hua Hua
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Li Liu
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Yuejian Mao
- Global R&D Innovation CenterInner Mongolia Mengniu Dairy (Group) Co. Ltd.HohhotInner MongoliaChina
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
3
|
He L, Liang Y, Yu X, Zhao Y, Zou Z, Dai Q, Wu J, Gan S, Lin H, Zhang Y, Lu D. UNC93B1 facilitates the localization and signaling of TLR5M in Epinephelus coioides. Int J Biol Macromol 2024; 258:128729. [PMID: 38086430 DOI: 10.1016/j.ijbiomac.2023.128729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Toll-like receptor 5 (TLR5), serving as a sensor of bacterial flagellin, mediates the innate immune response to actively engage in the host's immune processes against pathogen invasion. However, the mechanism underlying TLR5-mediated immune response in fish remains unclear. Despite the presumed cell surface expression of TLR5 member form (TLR5M), its trafficking dynamics remain elusive. Here, we have identified Epinephelus coioides TLR5M as a crucial mediator of Vibrio flagellin-induced cytokine expression in grouper cells. EcTLR5M facilitated the activation of NF-κB signaling pathway in response to flagellin stimulation and exerted a modest influence on the mitogen-activated protein kinase (MAPK)-extracellular regulated kinase (ERK) signaling. The trafficking chaperone Unc-93 homolog B1 (EcUNC93B1) participated in EcTLR5M-mediated NF-κB signaling activation and downstream cytokine expression. In addition, EcUNC93B1 combined with EcTLR5M to mediate its exit from the endoplasmic reticulum, and also affected its post-translational maturation. Collectively, these findings first discovered that EcTLR5M mediated the flagellin-induced cytokine expression primarily by regulating the NF-κB signaling pathway, and EcUNC93B1 mediated EcTLR5M function through regulating its trafficking and post-translational maturation. This research expanded the understanding of fish innate immunity and provided a novel concept for the advancement of anti-vibrio immunity technology.
Collapse
Affiliation(s)
- Liangge He
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yaosi Liang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhenjiang Zou
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qinxi Dai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510145, PR China
| | - Songyong Gan
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510145, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; College of Ocean, Hainan University, Haikou 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
4
|
Li W, Li S, Wang J, Yu M, Yang H, He Z, Tang Y, Liu J, Guo N, Xie D, Liu Z, Zheng K, Xu M, Wu Y. The outer membrane protein Tp92 of Treponema pallidum delays human neutrophil apoptosis via the ERK, PI3K/Akt, and NF-κB pathways. Mol Microbiol 2023; 120:684-701. [PMID: 37718557 DOI: 10.1111/mmi.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Syphilis is a persistent sexually transmitted disease caused by infiltration of the elusive pathogen Treponema pallidum. Despite the prevalence of human polymorphonuclear neutrophils (hPMNs) within cutaneous lesions, which are characteristic of incipient syphilis, their role in T. pallidum infection remains unclear. Tp92 is the only T. pallidum helical outer membrane protein that exhibits structural features similar to those of outer membrane proteins in other gram-negative bacteria. However, the functional mechanism of this protein in immune cells remains unclear. Neutrophils are short-lived cells that undergo innate apoptosis in response to external stimuli that typically influence this process. In this study, we determined that Tp92 impedes the activation of procaspase-3 via the ERK MAPK, PI3K/Akt, and NF-κB signaling pathways, consequently suppressing caspase-3 activity within hPMNs, and thereby preventing hPMNs apoptosis. Furthermore, Tp92 could also modulate hPMNs apoptosis by enhancing the expression of the anti-apoptotic protein Mcl-1, stimulating IL-8 secretion, and preserving the mitochondrial membrane potential. These findings provide valuable insights into the molecular mechanisms underlying T. pallidum infection and suggest potential therapeutic targets for syphilis treatment.
Collapse
Affiliation(s)
- Weiwei Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, Foshan, China
| | - Sijia Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Jianye Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Maoying Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Hongyu Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Zhangping He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Yuanyuan Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Jie Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Ningyuan Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Dongde Xie
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, Foshan, China
| | - Zhaoping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China
| | - Man Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Yimou Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| |
Collapse
|
5
|
He L, Yu X, Zhao Y, Lin H, Zhang Y, Lu D. TLR5S negatively regulates the TLR5M-mediated NF-κB signaling pathway in Epinephelus coioides. Int J Biol Macromol 2023; 249:126048. [PMID: 37517756 DOI: 10.1016/j.ijbiomac.2023.126048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Nuclear factor kappa-B (NF-κB) pathway is a key mediator of inflammation response that plays a role in host defense for pathogen elimination, but excessive activation may lead to tissue damage or pathogen transmission. The negative regulation of NF-κB in lower vertebrates is largely unknown, hindering further understanding of immune signaling evolution. Here, we provided evidence that Epinephelus coioides soluble toll-like receptor 5 (TLR5S), a member of the TLR5 subfamily, has been newly identified as a negative regulator of NF-κB signaling. EcTLR5S was a cytoplasmic protein consisting of 17 leucine-rich repeat domains, which specifically responded to Vibrio flagellin and suppressed flagellin-induced NF-κB signaling activation and cytokine expression. The amino-terminal LRR 1-5 region was necessary for its negative regulatory function. Dual-luciferase reporter assay showed that EcTLR5S significantly inhibited the NF-κB-luc activity induced by inhibitor of NF-κB kinase α (IKKα) and IKKβ. Subsequently, the functional relationship between EcTLR5M and EcTLR5S was analyzed, revealing that the negative regulatory function of EcTLR5S targeted the activation of the NF-κB pathway mediated by EcTLR5M. The above results reveal that EcTLR5S negatively regulates the flagellin-induced EcTLR5M-NF-κB pathway activation, which may prevent over-activation of immune signaling and restore homeostasis.
Collapse
Affiliation(s)
- Liangge He
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China; College of Ocean, Hainan University, Haikou 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
6
|
Li Y, Yao H, Liu S, Song D, Wu C, Zhang S, Gao Q, Zhang L. The role of flagellin F in Vibrio Parahaemolyticus-induced intestinal immunity and functional domain identification. Int J Biol Macromol 2023; 244:125404. [PMID: 37327919 DOI: 10.1016/j.ijbiomac.2023.125404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The marine pathogen Vibrio parahaemolyticus has caused huge economic losses to aquaculture. Flagellin is a key bacterial virulence factor that induces an inflammatory response via activation of Toll-like receptor 5 (TLR5) signaling. Herein, to explore the inflammatory activity of V. parahaemolyticus flagellins (flaA, flaB, flaC, flaD, flaE, and flaF), we investigated their ability to induce apoptosis in a fish cell line. All six flagellins induced severe apoptosis. Moreover, treatment with V. parahaemolyticus flagellins increased TLR5 and myeloid differentiation factor 88 (MyD88) expression and the production of TNF-α and IL-8 significantly. This indicated that flagellins might induce a TLR5-meditated immune response via an MyD88-dependent pathway. FlaF exhibited the strongest immunostimulatory effect; therefore, the interaction between TLR5 and flaF was screened using the yeast two-hybrid system. A significant interaction between the two proteins was observed, indicating that flaF binds directly to TLR5. Finally, the amino acids that participate in the TLR5-flaF interaction were identified using molecular simulation, which indicated three binding sites. These results deepen our understanding of the immunogenic properties of flagellins from V. parahaemolyticus, which could be used for vaccine development in the future.
Collapse
Affiliation(s)
- Yang Li
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Hongqing Yao
- Songjiang Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 201699, PR China
| | - Sushuang Liu
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, PR China
| | - Dawei Song
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Choufei Wu
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Shaoyong Zhang
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Quanxin Gao
- College of Life Science, Huzhou University, Huzhou 313000, PR China.
| | - Liqin Zhang
- College of Life Science, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
7
|
Recombinant Domain of Flagellin Promotes In Vitro a Chemotactic Inflammatory Profile in Human Immune Cells Independently of a Dendritic Cell Phenotype. Molecules 2023; 28:molecules28052394. [PMID: 36903639 PMCID: PMC10005431 DOI: 10.3390/molecules28052394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Flagellin is the major component of the flagellum in gram-positive and -negative bacteria and is also the ligand for the Toll-like receptor 5 (TLR5). The activation of TLR5 promotes the expression of proinflammatory cytokines and chemokines and the subsequent activation of T cells. This study evaluated a recombinant domain from the amino-terminus D1 domain (rND1) of flagellin from Vibrio anguillarum, a fish pathogen, as an immunomodulator in human peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MoDCs). We demonstrated that rND1 induced an upregulation of proinflammatory cytokines in PBMCs, characterized at the transcriptional level by an expression peak of 220-fold for IL-1β, 20-fold for IL-8, and 65-fold for TNF-α. In addition, at the protein level, 29 cytokines and chemokines were evaluated in the supernatant and were correlated with a chemotactic signature. MoDCs treated with rND1 showed low levels of co-stimulatory and HLA-DR molecules and kept an immature phenotype with a decreased phagocytosis of dextran. We probed that rND1 from a non-human pathogen promotes modulation in human cells, and it may be considered for further studies in adjuvant therapies based on pathogen-associated patterns (PAMPs).
Collapse
|
8
|
Gao Q, Yi S, Li Y, Luo J, Xing Q, Yang X, Zhao M, Min M, Wang Q, Wang Y, Ma L, Peng S. The Role of Flagellin B in Vibrio anguillarum-Induced Intestinal Immunity and Functional Domain Identification. Front Immunol 2021; 12:774233. [PMID: 34912344 PMCID: PMC8667730 DOI: 10.3389/fimmu.2021.774233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum, an opportunistic pathogen of aquatic animals, moves using a filament comprised of polymerised flagellin proteins. Flagellins are essential virulence factors for V. anguillarum infection. Herein, we investigated the effects of flagellins (flaA, flaB, flaC, flaD and flaE) on cell apoptosis, TLR5 expression, and production of IL-8 and TNF-α. FlaB exhibited the strongest immunostimulation effects. To explore the functions of flaB in infection, we constructed a flaB deletion mutant using a two-step recombination method, and in vitro experiments showed a significant decrease in the expression of TLR5 and inflammatory cytokines compared with wild-type cells. However in the in vivo study, expression of inflammatory cytokines and intestinal mucosal structure showed no significant differences between groups. Additionally, flaB induced a significant increase in TLR5 expression based on microscopy analysis of fluorescently labelled TLR5, indicating interactions between the two proteins, which was confirmed by native PAGE and yeast two-hybrid assay. Molecular simulation of interactions between flaB and TLR5 was performed to identify the residues involved in binding, revealing two binding sites. Then, based on molecular dynamics simulations, we carried out thirteen site-directed mutations occurring at the amino acid sites of Q57, N83, N87, R91, D94, E122, D152, N312, R313, N320, L97, H316, I324 in binding regions of flaB protein by TLR5, respectively. Surface plasmon resonance (SPR) was employed to compare the affinities of flaB mutants for TLR5, and D152, D94, I324, N87, R313, N320 and H316 were found to mediate interactions between flaB and TLR5. Our comprehensive and systematic analysis of V. anguillarum flagellins establishes the groundwork for future design of flagellin-based vaccines.
Collapse
Affiliation(s)
- Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Yang Li
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Jinping Luo
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Qianqian Xing
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Xia Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Ming Zhao
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Minghua Min
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Qian Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yabing Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Lingbo Ma
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Shiming Peng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
9
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|
10
|
Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021; 105:5341-5355. [PMID: 34180006 PMCID: PMC8236385 DOI: 10.1007/s00253-021-11406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
When microorganisms invade a host, the innate immune system first recognizes the pathogen-associated molecular patterns of these microorganisms through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are known transmembrane PRRs existing in both invertebrates and vertebrates. Upon ligand recognition, TLRs initiate a cascade of signaling events; promote the pro-inflammatory cytokine, type I interferon, and chemokine expression; and play an essential role in the modulation of the host's innate and adaptive immunity. Therefore, it is of great significance to improve our understanding of antimicrobial immune responses by studying the role of TLRs and their signal molecules in the host's defense against invading microbes. This paper aims to summarize the specificity of TLRs in recognition of conserved microbial components, such as lipoprotein, lipopolysaccharide, flagella, endosomal nucleic acids, and other bioactive metabolites derived from microbes. This set of interactions helps to elucidate the immunomodulatory effect of TLRs and the signal transduction changes involved in the infectious process and provide a novel therapeutic strategy to combat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
11
|
Holzapfel M, Bonhomme D, Cagliero J, Vernel-Pauillac F, Fanton d’Andon M, Bortolussi S, Fiette L, Goarant C, Wunder EA, Picardeau M, Ko AI, Werling D, Matsui M, Boneca IG, Werts C. Escape of TLR5 Recognition by Leptospira spp.: A Rationale for Atypical Endoflagella. Front Immunol 2020; 11:2007. [PMID: 32849665 PMCID: PMC7431986 DOI: 10.3389/fimmu.2020.02007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Leptospira (L.) interrogans are invasive bacteria responsible for leptospirosis, a worldwide zoonosis. They possess two periplasmic endoflagellae that allow their motility. L. interrogans are stealth pathogens that escape the innate immune recognition of the NOD-like receptors NOD1/2, and the human Toll-like receptor (TLR)4, which senses peptidoglycan and lipopolysaccharide (LPS), respectively. TLR5 is another receptor of bacterial cell wall components, recognizing flagellin subunits. To study the contribution of TLR5 in the host defense against leptospires, we infected WT and TLR5 deficient mice with pathogenic L. interrogans and tracked the infection by in vivo live imaging of bioluminescent bacteria or by qPCR. We did not identify any protective or inflammatory role of murine TLR5 for controlling pathogenic Leptospira. Likewise, subsequent in vitro experiments showed that infections with different live strains of L. interrogans and L. biflexa did not trigger TLR5 signaling. However, unexpectedly, heat-killed bacteria stimulated human and bovine TLR5, but did not, or barely induced stimulation via murine TLR5. Abolition of TLR5 recognition required extensive boiling time of the bacteria or proteinase K treatment, showing an unusual high stability of the leptospiral flagellins. Interestingly, after using antimicrobial peptides to destabilize live leptospires, we detected TLR5 activity, suggesting that TLR5 could participate in the fight against leptospires in humans or cattle. Using different Leptospira strains with mutations in the flagellin proteins, we further showed that neither FlaA nor Fcp participated in the recognition by TLR5, suggesting a role for the FlaB. FlaB have structural homology to Salmonella FliC, and possess conserved residues important for TLR5 activation, as shown by in silico analyses. Accordingly, we found that leptospires regulate the expression of FlaB mRNA according to the growth phase in vitro, and that infection with L. interrogans in hamsters and in mice downregulated the expression of the FlaB, but not the FlaA subunits. Altogether, in contrast to different bacteria that modify their flagellin sequences to escape TLR5 recognition, our study suggests that the peculiar central localization and stability of the FlaB monomers in the periplasmic endoflagellae, associated with the downregulation of FlaB subunits in hosts, constitute an efficient strategy of leptospires to escape the TLR5 recognition and the induced immune response.
Collapse
Affiliation(s)
- Marion Holzapfel
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Delphine Bonhomme
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Julie Cagliero
- Institut Pasteur de Nouvelle Calédonie, Immunity and Inflammation Group, Institut Pasteur International Network, Noumea, France
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Martine Fanton d’Andon
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Sophia Bortolussi
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Laurence Fiette
- Unité Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris, France
| | - Cyrille Goarant
- Leptospirosis Research and Expertise Unit, Institut Pasteur International Network, Institut Pasteur de Nouvelle Calédonie, Noumea, France
| | - Elsio A. Wunder
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | | | - Albert I. Ko
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Mariko Matsui
- Institut Pasteur de Nouvelle Calédonie, Immunity and Inflammation Group, Institut Pasteur International Network, Noumea, France
| | - Ivo G. Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Catherine Werts
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| |
Collapse
|
12
|
Xu M, Xie Y, Tan M, Zheng K, Xiao Y, Jiang C, Zhao F, Zeng T, Wu Y. The N-terminal D1 domain of Treponema pallidum flagellin binding to TLR5 is required but not sufficient in activation of TLR5. J Cell Mol Med 2019; 23:7490-7504. [PMID: 31493340 PMCID: PMC6815820 DOI: 10.1111/jcmm.14617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Syphilis is a chronic bacterial infection caused by Treponema pallidum (T pallidum) and the pathogenesis that T pallidum infection induces immunopathological damages in skin and other tissues remains unclear. We have previously reported that recombinant flagellins of T pallidum can elicit IL‐6 and IL‐8 transcriptions via TLR5 pathway. To identify the domains which induced the pro‐inflammatory activity and the importance of the interactions between TLR5 and domains, homology‐based modelling and comparative structural analyses revealed that Tpflagellins can combine with TLR5 directly. Deletion mutations showed that the ND1 domain binding to TLR5 is required but not sufficient in TLR5 activation. Moreover, site‐directed mutagenesis analysis indicated that the arginine residue (Tpflagellins R89) of the ND1 domain and its adjacent residues (Tpflagellins L93 and E113) constitute a hot spot that elicits IL‐6, IL‐8 transcriptions and TLR5 activation, and affects the binding of Tpflagellins to TLR5. Taken together, these results give insight into the pathogenesis of T pallidum and may contribute to the future design of Tpflagellins‐based therapeutics and syphilis vaccine.
Collapse
Affiliation(s)
- Man Xu
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yafeng Xie
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Manyi Tan
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Kang Zheng
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feijun Zhao
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Tiebing Zeng
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|