1
|
Zhang R, Wu S, Ye C, Li P, Xu B, Wang Y, Yang Z, Chen X, Chen J. In vivo metabolic effects of naringin in reducing oxidative stress and protecting the vascular endothelium in dyslipidemic mice. J Nutr Biochem 2025; 139:109866. [PMID: 39955014 DOI: 10.1016/j.jnutbio.2025.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Naringin, a flavonoid, has high antioxidant activity and hypolipidemic pharmacological effects. In this study, an animal model of dyslipidemia was established by feeding Apoe-/- mice a high-fat diet for 4 weeks. Subsequently, the mice were administered Naringin via gavage at doses of 50 mg/(kg·d), 100 mg/(kg·d), or 200 mg/(kg·d) for an additional 4 weeks. The research utilized liquid chromatography-mass spectrometry (LC-MS) metabolomics in conjunction with analyses of serum oxidative stress markers, Hematoxylin-eosin staining, Masson's trichome staining, and immunohistochemical staining. Naringin treatment reduced serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol concentrations (P<.05), reversed disorders of vascular structure and morphology, increased serum nicotinamide adenine dinucleotide phosphate hydride and glutathione concentrations (P<.05), reduced serum peroxynitrite concentrations (P<.05), promoted aortic endothelial nitric oxide synthase protein expression and inhibited aortic prolyl isomerase-1 protein expression. Twenty differentiated metabolites were obtained from the serum by LC-MS assay, followed by 16 differential metabolic pathways after enrichment. Among the metabolic pathways, glycolysis/gluconeogenesis, the pentose phosphate pathway, purine metabolism, ascorbate metabolism, and aldarate metabolism are the most relevant metabolic pathways by which naringin reduces oxidative stress. Our findings suggest that naringin can reduce oxidative stress levels associated with dyslipidemia through multiple metabolic pathways, protect vascular endothelial function, and thus providing a novel and promising natural medicine for treating dyslipidemia.
Collapse
Affiliation(s)
- Runlei Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shengxian Wu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Xu
- Traditional Chinese Medicine Department, Tibetology Research Center of Beijing Tibetan Medicine Hospital, Beijing China
| | - Yue Wang
- Department of general surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Preventive Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Ding H, Liu D, He J, Zhou D, Wang C, Yang C, Xia Z. The Role of the Sirt1/Foxo3a Pathway in Mitigating Myocardial Ischemia-Reperfusion Injury by Dexmedetomidine. Chem Biol Drug Des 2025; 105:e70100. [PMID: 40230274 PMCID: PMC11997638 DOI: 10.1111/cbdd.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) significantly affects the prognosis of cardiac surgery patients. The anesthetic dexmedetomidine (Dex) has shown protective effects against ischemia-reperfusion injury in cardiomyocytes; however, its exact mechanism remains unclear. In this study, hypoxia/reoxygenation (H/R) and ischemia/reperfusion (I/R) models were used to investigate the effects of Dex on H9c2 cells and MIRI in mice. The roles of the Sirtuin 1/Forkhead box O3a (Sirt1/FoxO3a) pathway in the protective effects of Dex were explored using the Sirt1 inhibitor EX527 and FoxO3a gene silencing. Results showed that H/R significantly reduced H9c2 cell viability, increased Lactate Dehydrogenase (LDH) leakage, and elevated reactive oxygen species (ROS) production. Dex pretreatment reversed these effects. Additionally, Dex significantly reduced the expression of Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2), cleaved caspase-3, Beclin-1, and microtubule-associated protein 1A/1B-light chain 3B (LC3B), inhibiting apoptosis and autophagy while increasing the expression of p62, Sirt1, and FoxO3a. The protective effects of Dex against H/R injury were abolished by EX527 or FoxO3a silencing. In the mouse MIRI model, Dex pretreatment decreased serum LDH and Creatine Kinase-MB (CK-MB) levels, reduced myocardial infarct size and cardiac injury, and significantly improved left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS). These protective effects were markedly reversed by EX527. These findings indicate that Dex alleviates MIRI by restoring Sirt1 expression and activating FoxO3a.
Collapse
Affiliation(s)
- Hanlin Ding
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Danyong Liu
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- Shenzhen Institute of Research and Innovation, the University of Hong KongShenzhenChina
| | - Jianfeng He
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- Shenzhen Institute of Research and Innovation, the University of Hong KongShenzhenChina
| | - Dongcheng Zhou
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Chan Wang
- Department of AnesthesiologyThe First People's Hospital of Jingmen CityJingmenHubeiChina
| | - Changming Yang
- Department of AnesthesiologyThe First People's Hospital of Jingmen CityJingmenHubeiChina
| | - Zhongyuan Xia
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
3
|
Zeng JQ, Zhou HF, Du HX, Wu YJ, Mao QP, Yin JJ, Wan HT, Yang JH. Tongmai Hypoglycemic Capsule Attenuates Myocardial Oxidative Stress and Fibrosis in the Development of Diabetic Cardiomyopathy in Rats. Chin J Integr Med 2025; 31:251-260. [PMID: 39644459 DOI: 10.1007/s11655-024-4002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To investigate the effect of Tongmai Hypoglycemic Capsule (THC) on myocardium injury in diabetic cardiomyopathy (DCM) rats. METHODS A total of 24 Sprague Dawley rats were fed for 4 weeks with high-fat and high-sugar food and then injected with streptozotocin intraperitoneally for the establishment of the DCM model. In addition, 6 rats with normal diets were used as the control group. After modeling, 24 DCM rats were randomly divided into the model, L-THC, M-THC, and H-THC groups by computer generated random numbers, and 0, 0.16, 0.32, 0.64 g/kg of THC were adopted respectively by gavage, with 6 rats in each group. After 12 weeks of THC administration, echocardiography, histopathological staining, biochemical analysis, and Western blot were used to detect the changes in myocardial structure, oxidative stress (OS), biochemical indexes, protein expressions of myocardial fibrosis, and nuclear factor erythroid 2-related faactor 2 (Nrf2) element, respectively. RESULTS Treatment with THC significantly decreased cardiac markers such as creatine kinase, lactate dehydrogenase, and creatine kinase-MB, etc., (P<0.01); enhanced cardiac function indicators including heart rate, ejection fraction, cardiac output, interventricular septal thickness at diastole, and others (P<0.05 or P<0.01); decreased levels of biochemical indicators such as fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate transaminase, (P<0.05 or P<0.01); and decreased the levels of myocardial fibrosis markers α-smooth muscle actin (α-SMA), and collagen I (Col-1) protein (P<0.01), improved myocardial morphology and the status of myocardial interstitial fibrosis. THC significantly reduced malondialdehyde levels in model rats (P<0.01), increased levels of catalase, superoxide dismutase, and glutathione (P<0.01), and significantly increased the expression of Nrf2, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and superoxide dismutase 2 proteins in the left ventricle of rats (P<0.01). CONCLUSION THC activates the Nrf2 signaling pathway and plays a protective role in reducing OS injury and cardiac fibrosis in DCM rats.
Collapse
Affiliation(s)
- Jie-Qiong Zeng
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hui-Fen Zhou
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hai-Xia Du
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Yu-Jia Wu
- College of Life Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Qian-Ping Mao
- College of Life Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Jun-Jun Yin
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hai-Tong Wan
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Jie-Hong Yang
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China.
| |
Collapse
|
4
|
Han Q, Gu Y, Qian Y. Study on the mechanism of activating SIRT1/Nrf2/p62 pathway to mediate autophagy-dependent ferroptosis to promote healing of diabetic foot ulcers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3015-3025. [PMID: 39320410 DOI: 10.1007/s00210-024-03400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Diabetic foot (DF), a prevalent and grave diabetes sequela, is considered as a notable clinical concern, with SIRT1 downregulation observed in DF patients' blood specimens. Nonetheless, the regulatory mechanisms of SIRT1 in diabetic foot ulcer (DFU) remain unclear. Thus, in the current study, we investigated the role and mechanisms of SIRT1 in alleviating DFU. Western blotting was used to detect the expression of autophagy and ferroptosis-related proteins, CCK8 assay was used to measure cell proliferation. Plate colony method was used to measure bacterial growth, and the inhibitory effect on intracellular and extracellular Staphylococcus aureus was observed after drug intervention. ELISA was used to detect inflammatory cytokines and oxidative stress markers levels. ROS, total iron, and Fe2+ levels were detected using corresponding assays. Additionally, HE staining detected the thickness of the epidermis and dermis of the rat wound tissue while the collagen deposition in the wound tissue was detected using Masson staining. In addition, Prussian blue staining was used to detect iron deposition, and C11 BODIPY 581/591 lipid peroxidation probe was used to detect lipid ROS. Our results suggested that the activation of SIRT1/Nrf2/p62 signaling affects cell proliferation, colony formation, ferroptosis, and the production of lipid ROS in DFU-infected cell model through autophagy. In vivo experiments indicated that activating SIRT1/Nrf2/p62 signaling affects oxidative stress, inflammation, and autophagy in wound tissue and promotes wound healing in DFU rats through mediating autophagy-dependent ferroptosis. Taken together, the activation of SIRT1/Nrf2/p62 pathway can promote DFU healing, which might be mediated by autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Qinglin Han
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China.
| | - Yuming Gu
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China
| | - Yongquan Qian
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China
| |
Collapse
|
5
|
Shuvo AUH, Alimullah M, Jahan I, Mitu KF, Rahman MJ, Akramuddaula K, Khan F, Dash PR, Subhan N, Alam MA. Evaluation of Xanthine Oxidase Inhibitors Febuxostat and Allopurinol on Kidney Dysfunction and Histological Damage in Two-Kidney, One-Clip (2K1C) Rats. SCIENTIFICA 2025; 2025:7932075. [PMID: 39886537 PMCID: PMC11779995 DOI: 10.1155/sci5/7932075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/14/2024] [Indexed: 02/01/2025]
Abstract
In chronic kidney disease (CKD), hyperuricemia is a common phenomenon, presumably due to reduced renal clearance of uric acid. This study investigated the effect of xanthine oxidase (XO) inhibitors allopurinol and febuxostat to prevent oxidative stress in the kidney of two-kidney, one-clip (2K1C) rats. In this investigation, 2K1C rats were used as an experimental animal model for kidney dysfunction. 2K1C rats were provided with food and drinking water and received febuxostat at a dose of 10 mg/kg or allopurinol at 100 mg/kg, respectively. After the treatment completion, all rats were sacrificed, and tissue samples were collected. 2K1C rats exhibited increased plasma creatinine, uric acid level, and glomerular injury assessed based on microscopic findings. Both allopurinol and febuxostat significantly normalized creatinine and uric acid levels. Furthermore, 2K1C rats showed increased lipid peroxidation (LPO), nitric oxide (NO), and advanced oxidation protein products (AOPP) alongside decreased superoxide dismutase (SOD) and catalase activity. Again, both drug treatments ameliorated these elevated oxidative stress parameters in 2K1C rats. The antioxidant genes such as Nrf-2, HO-1, and SOD were also restored in the kidneys of 2K1C rats by allopurinol and febuxostat treatment. 2K1C rats also showed increased IL-1β, IL-6, TNF-α, and NF-кB mRNA expression in the kidneys which were normalized by allopurinol and febuxostat treatment. Thus, the data suggest that XO inhibition protects kidney function potentially by restoring antioxidant enzyme function and suppressing inflammation.
Collapse
Affiliation(s)
- Asif Ul Haque Shuvo
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mirza Alimullah
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ishrat Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Kaniz Fatima Mitu
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Junaeid Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
8
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Zhang ZY, Pan L, Dang S, Wang N, Zhao SY, Li F, Wu LD, Zhang L, Liu HH, Zhao N, Yang YJ, Qian LL, Liu T, Wang RX. Glucose fluctuations aggravate cardiomyocyte apoptosis by enhancing the interaction between Txnip and Akt. BMC Cardiovasc Disord 2024; 24:470. [PMID: 39223509 PMCID: PMC11370038 DOI: 10.1186/s12872-024-04134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.
Collapse
Affiliation(s)
- Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Lu Pan
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shipeng Dang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ning Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shan-Ying Zhao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Feng Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Li-Da Wu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Lei Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China
| | - Ya-Juan Yang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China.
| |
Collapse
|
10
|
Wu Q, Yao J, Xiao M, Zhang X, Zhang M, Xi X. Targeting Nrf2 signaling pathway: new therapeutic strategy for cardiovascular diseases. J Drug Target 2024; 32:874-883. [PMID: 38753446 DOI: 10.1080/1061186x.2024.2356736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Qi Wu
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Jiangting Yao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengyun Xiao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Xiawei Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinting Xi
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| |
Collapse
|
11
|
Wu S, Rong C, Lin R, Ji K, Lin T, Chen W, Mao W, Xu Y. Chinese medicine PaBing-II protects human iPSC-derived dopaminergic neurons from oxidative stress. Front Immunol 2024; 15:1410784. [PMID: 39156892 PMCID: PMC11327085 DOI: 10.3389/fimmu.2024.1410784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Background PaBing-II Formula (PB-II) is a traditional Chinese medicine for treating Parkinson's disease (PD). However, owing to the complexity of PB-II and the difficulty in obtaining human dopaminergic neurons (DAn), the mechanism of action of PB-II in PD treatment remains unclear. The aim of this study was to investigate the mechanisms underlying the therapeutic benefits of PB-II in patients with PD. Methods hiPSCs derived DAn were treated with H2O2 to construct the DAn oxidative damage model. SwissTargetPrediction was employed to predict the potential targets of the main compounds in serum after PB-II treatment. Metascape was used to analyze the pathways. Sprague-Dawley rats were used to construct the 6-hydroxydopamine (6-OHDA)-induced PD model, and the duration of administration was four weeks. RNA sequencing was used for Transcriptome analysis to find the signal pathways related to neuronal damage. The associated inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). We identified PB-II as an Nrf2 activator using antioxidant-responsive element luciferase assay in MDA-MB-231 cells. Results In vitro experiments showed that the treatment of PB-II-treated serum increased the percentage of TH+ cells, decreased inflammation and the apoptosis, reduced cellular reactive oxygen species, and upregulated the expression of Nrf2 and its downstream genes. Pathway analysis of the RNA-seq data of samples before and after the treatment with PB-II-treated serum identified neuron-associated pathways. In vivo experiments demonstrated that PB-II treatment of PD rat model could activate the Nrf2 signaling pathway, protect the midbrain DAn, and improve the symptoms in PD rats. Conclusion PB-II significantly protects DAn from inflammation and oxidative stress via Nrf2 pathway activation. These findings elucidate the roles of PB-II in PD treatment and demonstrate the application of hiPSC-derived DAn in research of Chinese medicine.
Collapse
Affiliation(s)
- Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Cuiping Rong
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
- Laboratory of Molecular Biology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| | - Ruishan Lin
- Experimental Teaching Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Kaiyuan Ji
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Tongxiang Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Weimin Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Xu
- Department of Cardiology, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
12
|
Nawaz L, Grieve DJ, Muzaffar H, Iftikhar A, Anwar H. Methanolic Extract of Phoenix Dactylifera Confers Protection against Experimental Diabetic Cardiomyopathy through Modulation of Glucolipid Metabolism and Cardiac Remodeling. Cells 2024; 13:1196. [PMID: 39056777 PMCID: PMC11274523 DOI: 10.3390/cells13141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-β 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-β 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.
Collapse
Affiliation(s)
- Laaraib Nawaz
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK;
| | - Humaira Muzaffar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Arslan Iftikhar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Haseeb Anwar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| |
Collapse
|
13
|
L’Abbate S, Kusmic C. The Protective Effect of Flavonoids in the Diet on Autophagy-Related Cardiac Impairment. Nutrients 2024; 16:2207. [PMID: 39064651 PMCID: PMC11279826 DOI: 10.3390/nu16142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The compounds known as flavonoids, commonly found in fruits, vegetables, legumes, medicinal herbs, chocolate, and coffee and tea beverages, have been extensively researched for their impact on cardiovascular health. Flavonoids, with their demonstrated potential, have shown promising effects in regulating blood vessel function and apoptotic processes, as well as in improving lipid profiles. While their powerful antioxidant properties were initially thought to be the main reason behind these effects, recent studies have uncovered new insights into the positive effects of flavonoids on cardiovascular health, and researchers have now identified several signaling pathways and mechanisms that also play a role. Of particular interest are the studies that have highlighted the role of autophagy in maintaining the physiological functions of cardiomyocytes and protecting them from harm. Recent publications have linked the dysregulation of autophagic processes with the development of cardiomyopathies, heart failure, and other cardiovascular diseases. This review aims to present the latest, novel findings from preclinical research regarding the potential beneficial effects of flavonoids on various heart conditions associated with altered autophagy processes.
Collapse
Affiliation(s)
| | - Claudia Kusmic
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| |
Collapse
|
14
|
Ajiboye BO, Famusiwa CD, Amuda MO, Afolabi SO, Ayotunde BT, Adejumo AA, Akindele AFI, Oyinloye BE, Owolabi OV, Genovese C, Ojo OA. Attenuation of PI3K/AKT signaling pathway by Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic male rats. Biochem Biophys Rep 2024; 38:101735. [PMID: 38799115 PMCID: PMC11127474 DOI: 10.1016/j.bbrep.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes is a group of medical conditions characterized by the body's inability to effectively control blood glucose levels, due to either insufficient insulin synthesis in type 1 diabetes or inadequate insulin sensitivity in type 2 diabetes. According to this research, the PI3K/AKT pathway of Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic rats was studied. We purchased and used a total of forty (40) male Wistar rats for the study. We divided the animals into five (5) different groups: normal control (Group A), diabetic control (Group B), low dose (150 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (LDOGFL) (Group C), high dose (300 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (HDOGFL) (Group D), and 200 mg/kg of metformin (MET) (Group E). Streptozotocin induced all groups except Group A, which serves as the normal control group. The experiment lasted for 21 days, following which we sacrificed the animals and harvested their brains for biochemical analysis on the 22nd day. We carried out an analysis that included reduced glutathione (GSH), glutathione transferases (GST), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), along with GLUT4, MDA, pro-inflammatory cytokines, NO, neurotransmitters, cholinergic enzyme activities, cardiolipin, and the gene expression of PI3K/AKT. The obtained result indicates that the flavonoid-rich extracts of O. gratissimum significantly enhanced the levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin. The levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin, were significantly increased by gratissimum. Moreover, the extracts decrease the levels of MDA, pro-inflammatory cytokines, NO, neurotransmitters, and cholinergic enzyme activities. Additionally, the flavonoid-rich extracts of O. gratissimum significantly improved the AKT and PI3K gene expressions in diabetic rats. gratissimum had their AKT and PI3K gene expressions significantly (p < 0.05) improved. The findings indicate that O. gratissimum leaf flavonoids have the potential to treat diabetes mellitus. gratissimum leaf flavonoids possess therapeutic potential in themselves and can be applied in the management of diabetes mellitus. Although further analysis can be carried out in terms of isolating, profiling, or purifying the active compounds present in the plant's extract.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Courage Dele Famusiwa
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Monsurah Oluwaseyifunmi Amuda
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Stephen Oluwaseun Afolabi
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Benjamin Temidayo Ayotunde
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Adedeji A. Adejumo
- Department of Environmental Management and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Ajoke Fehintola Idayat Akindele
- Department of Biosciences and Biotechnology, Environmental Management and Toxicology Unit, Faculty of Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Claudia Genovese
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean Via Empedocle, 58,95128, Catania, Italy
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Osun State, Nigeria
- Good Health and Well being (SDG 03) Research Clusters, Bowen University, Iwo, Nigeria
| |
Collapse
|
15
|
AlAseeri AA, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, Bahaa MM, Alruwaili M, Batiha GES. The compelling role of allopurinol in hyperuricemia-induced epilepsy: Unrecognized like tears in rain. Brain Res Bull 2024; 213:110973. [PMID: 38723694 DOI: 10.1016/j.brainresbull.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
Epilepsy is a common neurological disease characterized by the recurrent, paroxysmal, and unprovoked seizures. It has been shown that hyperuricemia enhances and associated with the development and progression of epilepsy through induction of inflammation and oxidative stress. In addition, uric acid is released within the brain and contributes in the development of neuronal hyperexcitability and epileptic seizure. Brain uric acid acts as damage associated molecular pattern (DAMP) activates the immune response and induce the development of neuroinflammation. Therefore, inhibition of xanthine oxidase by allopurinol may reduce hyperuricemia-induced epileptic seizure and associated oxidative stress and inflammation. However, the underlying mechanism of allopurinol in the epilepsy was not fully elucidated. Therefore, this review aims to revise from published articles the link between hyperuricemia and epilepsy, and how allopurinol inhibits the development of epileptic seizure.
Collapse
Affiliation(s)
- Ali Abdullah AlAseeri
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens 11741, Greece; Department of Research & Development, AFNP Med, Wien 1030, Austria; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
16
|
Du MW, Zhu XL, Zhang DX, Chen XZ, Yang LH, Xiao JZ, Fang WJ, Xue XC, Pan WH, Liao WQ, Yang T. X-Paste improves wound healing in diabetes via NF-E2-related factor/HO-1 signaling pathway. World J Diabetes 2024; 15:1299-1316. [PMID: 38983806 PMCID: PMC11229958 DOI: 10.4239/wjd.v15.i6.1299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU), as severe complications of diabetes mellitus (DM), significantly compromise patient health and carry risks of amputation and mortality. AIM To offer new insights into the occurrence and development of DFU, focusing on the therapeutic mechanisms of X-Paste (XP) of wound healing in diabetic mice. METHODS Employing traditional Chinese medicine ointment preparation methods, XP combines various medicinal ingredients. High-performance liquid chromatography (HPLC) identified XP's main components. Using streptozotocin (STZ)-induced diabetic, we aimed to investigate whether XP participated in the process of diabetic wound healing. RNA-sequencing analyzed gene expression differences between XP-treated and control groups. Molecular docking clarified XP's treatment mechanisms for diabetic wound healing. Human umbilical vein endothelial cells (HUVECs) were used to investigate the effects of Andrographolide (Andro) on cell viability, reactive oxygen species generation, apoptosis, proliferation, and metastasis in vitro following exposure to high glucose (HG), while NF-E2-related factor-2 (Nrf2) knockdown elucidated Andro's molecular mechanisms. RESULTS XP notably enhanced wound healing in mice, expediting the healing process. RNA-sequencing revealed Nrf2 upregulation in DM tissues following XP treatment. HPLC identified 21 primary XP components, with Andro exhibiting strong Nrf2 binding. Andro mitigated HG-induced HUVECs proliferation, metastasis, angiogenic injury, and inflammation inhibition. Andro alleviates HG-induced HUVECs damage through Nrf2/HO-1 pathway activation, with Nrf2 knockdown reducing Andro's proliferative and endothelial protective effects. CONCLUSION XP significantly promotes wound healing in STZ-induced diabetic models. As XP's key component, Andro activates the Nrf2/HO-1 signaling pathway, enhancing cell proliferation, tubule formation, and inflammation reduction.
Collapse
Affiliation(s)
- Ming-Wei Du
- Institute of Cardiovascular Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xin-Lin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Dong-Xing Zhang
- Department of Dermatology, Dongshan Hospital, Meizhou 514000, Guangdong Province, China
| | - Xian-Zhen Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Li-Hua Yang
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan 316000, Zhejiang Province, China
| | - Jin-Zhou Xiao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wen-Jie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xiao-Chun Xue
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Pharmacy, 905th Hospital of People’s Liberation Army of China (PLA) Navy, Shanghai 200052, China
| | - Wei-Hua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wan-Qing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Tao Yang
- Institute of Cardiovascular Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
17
|
Li J, Xie Y, Zheng S, He H, Wang Z, Li X, Jiao S, Liu D, Yang F, Zhao H, Li P, Sun Y. Targeting autophagy in diabetic cardiomyopathy: From molecular mechanisms to pharmacotherapy. Biomed Pharmacother 2024; 175:116790. [PMID: 38776677 DOI: 10.1016/j.biopha.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.
Collapse
Affiliation(s)
- Jie Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, China
| | - Yingying Xie
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuwen Zheng
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Haoming He
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuexi Li
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Jiao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dong Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Furong Yang
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Yihong Sun
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| |
Collapse
|
18
|
Zhang L, Hu C, Jin B, Bai B, Liao J, Jin L, Wang M, Zhu W, Wu X, Zheng L, Xu X, Jiang Y, Wang Y, He Y. Bicyclol Alleviates Streptozotocin-induced Diabetic Cardiomyopathy By Inhibiting Chronic Inflammation And Oxidative Stress. Cardiovasc Drugs Ther 2024; 38:555-568. [PMID: 36662448 DOI: 10.1007/s10557-023-07426-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes. Inflammation and oxidative stress play important roles in DCM development. Bicyclol is a hepatoprotective drug in China that exerts anti-inflammatory effects by inhibiting the MAPK and NF-κB pathways to prevent obesity-induced cardiomyopathy. Our purpose was to explore the effect and mechanism of bicyclol on DCM. METHODS A type 1 diabetes mouse model was established using C57BL/6 mice by intraperitoneal injection of STZ. The therapeutic effect of bicyclol was evaluated in both heart tissues of diabetic mice and high concentration of glucose (HG)-stimulated H9c2 cells. RESULTS We showed that bicyclol significantly attenuated diabetes-induced cardiac hypertrophy and fibrosis, which is accompanied by the preservation of cardiac function in mice. In addition, bicyclol exhibited anti-inflammatory and anti-oxidative effects both in vitro and in vivo. Furthermore, bicyclol inhibited the hyperglycemia-induced activation of MAPKs and NF-κB pathways, while upregulating the Nrf-2/HO-1 pathway to exhibit protective effects. CONCLUSION Our data indicate that bicyclol could be a promising cardioprotective agent in the treatment of DCM.
Collapse
Affiliation(s)
- Lingxi Zhang
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Bo Jin
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China
| | - Xuedan Wu
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
| | - Li Zheng
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
| | - Xuelian Xu
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
| | - Yongsheng Jiang
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China
| | - Yi Wang
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China.
- Chemical Biology Research Center, School of Pharmacological Sciences, Wenzhou Medical University, Zhejiang, 325035, Wenzhou, China.
| | - Ying He
- Department of Pharmacy, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Zhejiang, 315700, Ningbo, China.
| |
Collapse
|
19
|
Zhou D, Yang Y, Chen J, Zhou J, He J, Liu D, Zhang A, Yuan B, Jiang Y, Xia W, Han R, Xia Z. N-acetylcysteine Protects Against Myocardial Ischemia-Reperfusion Injury Through Anti-ferroptosis in Type 1 Diabetic Mice. Cardiovasc Toxicol 2024; 24:481-498. [PMID: 38647950 PMCID: PMC11076402 DOI: 10.1007/s12012-024-09852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
The hearts of subjects with diabetes are vulnerable to ischemia-reperfusion injury (IRI). In contrast, experimentally rodent hearts have been shown to be more resistant to IRI at the very early stages of diabetes induction than the heart of the non-diabetic control mice, and the mechanism is largely unclear. Ferroptosis has recently been shown to play an important role in myocardial IRI including that in diabetes, while the specific mechanisms are still unclear. Non-diabetic control (NC) and streptozotocin-induced diabetic (DM) mice were treated with the antioxidant N-acetylcysteine (NAC) in drinking water for 4 week starting at 1 week after diabetes induction. Mice were subjected to myocardial IRI induced by occluding the coronary artery for 30 min followed by 2 h of reperfusion, subsequently at 1, 2, and 5 week of diabetes induction. The post-ischemic myocardial infarct size in the DM mice was smaller than that in NC mice at 1 week of diabetes but greater than that in the NC mice at 2 and 5 week of diabetes, which were associated with a significant increase of ferroptosis at 2 and 5 week but a significant reduction of ferroptosis at 1 week of diabetes. NAC significantly attenuated post-ischemic ferroptosis as well as oxidative stress and reduced infarct size at 2 and 5 week of diabetes. Application of erastin, a ferroptosis inducer, reversed the cardioprotective effects of NAC. It is concluded that increased oxidative stress and ferroptosis are the major factors attributable to the increased vulnerability to myocardial IRI in diabetes and that attenuation of ferroptosis represents a major mechanism whereby NAC confers cardioprotection against myocardial IRI in diabetes.
Collapse
Affiliation(s)
- Dongcheng Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuhui Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiajia Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianfeng He
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Anyuan Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bixian Yuan
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.
| |
Collapse
|
20
|
Saroj M, Prakash S, Vikram NK, Saraya A, Priyatma, Ganie MA, Arulselvi S, Pandey S. Hyperactive behaviour of growth differentiation factor- 15 (GDF-15) in conjunction with iron trafficking transporters and suppression of Nrf-2 gene in diabetes and metabolic syndrome. Mol Cell Biochem 2024; 479:1109-1120. [PMID: 37338675 DOI: 10.1007/s11010-023-04782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
Multiple parallel factors are frequently interrogated with various toxic radicals which are abundantly generated in the liver, heart, and pancreas in stress conditions. They are actively involved in the development of diabetes and metabolic aberrations. However, whether over-activation of GDF-15mRNA and influxes of iron-by-iron trafficking genes are directly suppressing the Nrf-2 gene in patients with diabetes and metabolic aberrations in context with undiagnosed individuals with diabetes and metabolic aberrations? Therefore, we have investigated inter and intra- related Zip8/14 mRNA, GDF-15mRNA, and Nrf-2 mRNA expressions in diabetes and metabolic syndrome as it is expected to be up to 134 million by 2045 in India. We recruited 120 subjects from the Department of Medicine, Endocrinology and Metabolic Clinic, All India Institute of Medical Sciences, New Delhi, India. Various investigations related to anthropometry, nutritional, hematological, biochemical, cytokine, and oxidative stress were measured in diabetes, metabolic syndrome, diabetes with metabolic aberration, and healthy controls. Relative expression of GDF-15, ZIP8, ZIP14, Nrf-2, and housekeeping genes was done in all subjects. Stress-responsive cytokines are highly expressed in patients with metabolic aberration with respect to body weight, IR, waist circumference, and fat mass. IL-1β, TNF-α, and IL-6 levels were significantly higher in metabolic syndrome, whereas Adiponectin levels were profoundly lower side. MDA levels were significantly raised in diabetes with metabolic syndrome while SOD activities were lowered (p = 0.001). GDF-15 mRNA expression was 1.79-fold upregulated in group III as compared with Group I while 2-threefold down-regulation of Nrf-2 expression was observed in diabetes with metabolic aberration groups. Zip 8 mRNA expressions were downregulated (p = 0.014), and Zip 14 mRNA expressions were upregulated (p = 0.06) in diabetes and metabolic aberrations. The association of GDF-15 and Nrf-2 mRNA expression was found contradictory and highly interlinked with ROS. Zip 8/14mRNA expressions were also dysregulated in diabetes and metabolic-associated complications.
Collapse
Affiliation(s)
- Manish Saroj
- Department of Laboratory Medicine, AIIMS, New Delhi, India
| | - Shyam Prakash
- Department of Laboratory Medicine, AIIMS, New Delhi, India.
- Department of Laboratory Medicine, All India Institute of Medical Sciences, Room No. 11, 2nd Floor, New Delhi, India.
| | | | - Anoop Saraya
- Department of Gastroenterology, AIIMS, New Delhi, India
| | - Priyatma
- Department of Laboratory Medicine, AIIMS, New Delhi, India
| | | | | | - Shivam Pandey
- Department of Biostatistics, AIIMS, New Delhi, India
| |
Collapse
|
21
|
Huang Q, Liu J, Peng C, Han X, Tan Z. Hesperidin ameliorates H 2O 2-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway. J Anim Sci Biotechnol 2024; 15:57. [PMID: 38589950 PMCID: PMC11003082 DOI: 10.1186/s40104-024-01012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells (bMECs) exposed to oxidative stress have not been elucidated. RESULTS In this study, we investigated the effects of hesperidin on H2O2-induced oxidative stress in bMECs and the underlying molecular mechanism. We found that hesperidin attenuated H2O2-induced cell damage by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increasing catalase (CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent. CONCLUSIONS Our results suggest that hesperidin could protect bMECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary.
Collapse
Affiliation(s)
- Qi Huang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiashuo Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Can Peng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xuefeng Han
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| |
Collapse
|
22
|
叶 红, 张 钰, 云 琦, 杜 若, 李 璐, 李 玉, 高 琴. [Resveratrol alleviates hyperglycemia-induced cardiomyocyte hypertrophy by maintaining mitochondrial homeostasis via enhancing SIRT1 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:45-51. [PMID: 38293975 PMCID: PMC10878887 DOI: 10.12122/j.issn.1673-4254.2024.01.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate whether resveratrol alleviates hyperglycemia-induced cardiomyocyte hypertrophy by enhancing the expression of silent information regulation 2 homolog 1 (SIRT1) to maintain mitochondrial homeostasis. METHODS Rat cardiomyocytes H9c2 cells with or without lentivirus-mediated mRNA interference of SIRT1 were cultured in high glucose (HG) and treated with resveratrol for 72 h. The changes in superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, reactive oxygen species (ROS) level, and relative surface of the cells were examined, and the mRNA expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and protein expressions of SIRT1, mitochondrial fusion related proteins optic atrophy protein 1 (OPA1) and mitofusin 2, mitochondrial division related proteins dynamin-related protein 1 (DRP1) and fission protein 1 (FIS1), and mitophagy-related proteins BNIP3L and LC3 were detected using RT-qPCR and Western blotting. RESULTS HG exposure significantly decreased SOD activity, increased MDA content, ROS production, relative cell surface, and the mRNA expressions of ANF and BNP in the cardiomyocytes; the protein expressions of SIRT1, OPA1, mitofusin 2 and BNIP3L and LC3-Ⅱ/LC3-Ⅰ ratio were all decreased and the protein expressions of DRP1 and FIS1 increased in HG-exposed cells (P<0.01). All these changes in HG-exposed cardiomyocytes were significantly alleviated by treatment with resveratrol (P<0.05). The protective effects of resveratrol against HG exposure in the cardiomyocytes were obviously attenuated by transfection of the cells with si-SIRT1 (P<0.05). CONCLUSION Resveratrol inhibits hyperglycemia-induced cardiomyocyte hypertrophy by reducing oxidative stress, the mechanisms of which involve enhancement of SIRT1 protein expression, regulation of mitochondrial fusion and division balance, and promoting BNIP3L-mediated mitophagy to maintain mitochondrial homeostasis in the cells.
Collapse
Affiliation(s)
- 红伟 叶
- 蚌埠医科大学生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管疾病基础与临床蚌埠医科大学重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 钰明 张
- 蚌埠医科大学生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管疾病基础与临床蚌埠医科大学重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 琦 云
- 蚌埠医科大学生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管疾病基础与临床蚌埠医科大学重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 若丽 杜
- 蚌埠医科大学生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管疾病基础与临床蚌埠医科大学重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 璐 李
- 蚌埠医科大学生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管疾病基础与临床蚌埠医科大学重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 玉萍 李
- 蚌埠医科大学生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管疾病基础与临床蚌埠医科大学重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 琴 高
- 蚌埠医科大学生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管疾病基础与临床蚌埠医科大学重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
23
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|
24
|
Zhang L, Gao M, Zhao Y, Yin Y, Zhang X, Zhou S, Wang X, Wang X, Zhao Y. N-Acetylserotonin Alleviates Retinal Autophagy via TrkB/AKT/Nrf2 Signaling Pathway in Retinal Ischemia-Reperfusion Injury Rats. Ophthalmic Res 2023; 67:125-136. [PMID: 38128509 DOI: 10.1159/000535786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The objective of this study was to investigate the impact of N-acetylserotonin (NAS) on the autophagy of retinal cells in rats with retinal ischemia-reperfusion injury (RIRI) and to explore the mechanisms by which NAS administration can alleviate RIRI through the tropomyosin-related kinase receptor B (TrkB)/protein kinase B (Akt)/nuclear factor erythroid-derived factor 2-related factor (Nrf2) signaling pathway. METHODS Healthy adult male rats were randomly assigned to four groups: sham, RIRI, RIRI+NAS, and RIRI+NAS+ANA-12. The RIRI group was induced by elevating intraocular pressure, and changes in retinal structure and edema were assessed using H&E staining. The RIRI+NAS and RIRI+NAS+ANA-12 groups received intraperitoneal injections of NAS before and after modeling. The RIRI+NAS+ANA-12 group was also administered ANA-12, a TrkB antagonist. Immunohistochemical staining and Western blot analysis were used to evaluate phosphorylated TrkB (p-TrkB), phosphorylated Akt (p-Akt), Nrf2, sequestosome 1 (P62), and microtubule-associated protein 1 light chain 3 (LC3-II) levels in the retinas of each group. Electroretinogram was recorded to detect retinal function in each group of rats 24 h after modeling. RESULTS The RIRI+NAS group had a thinner retina and more retinal ganglion cells (RGCs) than RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Immunohistochemical staining and Western blot results showed that p-TrkB, p-Akt, n-Nrf2, and P62 levels in the RIRI+NAS group were higher compared with those in RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Also, lower LC3-II levels were observed in the RIRI+NAS group compared with that in RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Electroretinogram recording results showed that 24 h after retinal ischemia-reperfusion, the magnitude of b-wave changes was attenuated in the RIRI+NAS group compared with the RIRI group (p < 0.05). CONCLUSION The administration of NAS activates the TrkB/Akt/Nrf2 signaling pathway, reduces autophagy, alleviates retinal edema, promotes the survival of retinal ganglion cells (RGCs), and provides neuroprotection against retinal injury.
Collapse
Affiliation(s)
- Luming Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Meng Gao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuze Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yi Yin
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuening Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Shuanhu Zhou
- Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, China
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yansong Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
Xu N, Liu S, Zhang Y, Chen Y, Zuo Y, Tan X, Liao B, Li P, Feng J. Oxidative stress signaling in the pathogenesis of diabetic cardiomyopathy and the potential therapeutic role of antioxidant naringenin. Redox Rep 2023; 28:2246720. [PMID: 37747066 PMCID: PMC10538464 DOI: 10.1080/13510002.2023.2246720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders that poses a global threat to human health. It can lead to complications in multiple organs and tissues, owing to its wide-ranging impact on the human body. Diabetic cardiomyopathy (DCM) is a specific cardiac manifestation of DM, which is characterized by heart failure in the absence of coronary heart disease, hypertension and valvular heart disease. Given that oxidative stress is a key factor in the pathogenesis of DCM, intervening to mitigate oxidative stress may serve as a therapeutic strategy for managing DCM. Naringenin is a natural product with anti-oxidative stress properties that can suppress oxidative damage by regulating various oxidative stress signaling pathways. In this review, we address the relationship between oxidative stress and its primary signaling pathways implicated in DCM, and explores the therapeutic potential of naringenin in DCM.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, People’s Republic of China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongqiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yujing Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiaoqiu Tan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
| | - Pengyun Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
26
|
Zhou YF, Liu HW, Yang X, Li CX, Chen JS, Chen ZP. Probucol attenuates high glucose-induced Müller cell damage through enhancing the Nrf2/p62 signaling pathway. Int Ophthalmol 2023; 43:4595-4604. [PMID: 37688651 PMCID: PMC10724314 DOI: 10.1007/s10792-023-02859-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE This study investigated the protective effect of probucol on Müller cells exposed to high glucose conditions and examined potential mechanisms of action. METHODS Primary human retinal Müller cells were incubated with high glucose (HG, 35 mM) in the present or absence of different concentrations of probucol for 24 h. Cell viability was determined using the CCK-8 method. Mitochondrial membrane potential (MMP) was measured using JC-1 staining and cell cycle by flow cytometry. The expression of nuclear factor E2-related factor 2 (Nrf2), glutamate-cysteine ligase catalytic subunit, and p62 was quantified using quantitative polymerase chain reaction and western blot. RESULTS We found that HG inhibited cell proliferation, arrested cell cycle, and increased MMP in human Müller cells. Probucol activated the Nrf2/p62 pathway and upregulated the anti-apoptotic protein, Bcl2, and attenuated HG-mediated damage in Müller cells. CONCLUSIONS Our results suggest that probucol may protect Müller cells from HG-induced damage through enhancing the Nrf2/p62 signaling pathway.
Collapse
Affiliation(s)
- Yu-Fan Zhou
- Department of Ophthalmology, Aier Eye Hospital of Changsha, Changsha, 410015, Hunan Province, China
- Aier School of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, China
| | - Heng-Wei Liu
- Department of Ophthalmology, Aier Eye Hospital of Changsha, Changsha, 410015, Hunan Province, China
- Aier School of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, China
| | - Xu Yang
- Aier Eye Research Laboratory, Aier Eye Institute, Changsha, 410015, Hunan Province, China
| | - Chen-Xiang Li
- Department of Ophthalmology, Aier Eye Hospital of Changsha, Changsha, 410015, Hunan Province, China
- Aier School of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, China
| | - Jian-Su Chen
- Aier School of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, China
- Medical College, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Zhong-Ping Chen
- Department of Ophthalmology, Aier Eye Hospital of Changsha, Changsha, 410015, Hunan Province, China.
- Aier School of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, China.
- The First Clinical Medical College of Jinan University, Guangzhou, 510000, China.
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
27
|
Zhang Y. The essential role of glutamine metabolism in diabetic cardiomyopathy: A review. Medicine (Baltimore) 2023; 102:e36299. [PMID: 38013301 PMCID: PMC10681453 DOI: 10.1097/md.0000000000036299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition caused by diabetes mellitus and is the leading cause of diabetes mellitus-related mortality. The pathophysiology of DCM involves various processes, such as oxidative stress, inflammation, ferroptosis, and abnormal protein modification. New evidence indicates that dysfunction of glutamine (Gln) metabolism contributes to the pathogenesis of DCM by regulating these pathophysiological mechanisms. Gln is a conditionally essential amino acid in the human body, playing a vital role in maintaining cell function. Although the precise molecular mechanisms of Gln in DCM have yet to be fully elucidated, recent studies have shown that supplementing with Gln improves cardiac function in diabetic hearts. However, excessive Gln may worsen myocardial injury in DCM by generating a large amount of glutamates or increasing O-GlcNacylation. To highlight the potential therapeutic method targeting Gln metabolism and its downstream pathophysiological mechanisms, this article aims to review the regulatory function of Gln in the pathophysiological mechanisms of DCM.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Cardiovascular Medicine, Wuxi No.2 People’s Hospital, Wuxi City, People’s Republic of China
| |
Collapse
|
28
|
Zhang Y, Cheng X, Wang Y, Guo H, Song Y, Wang H, Ma D. Phlorizin ameliorates myocardial fibrosis by inhibiting pyroptosis through restraining HK1-mediated NLRP3 inflammasome activation. Heliyon 2023; 9:e21217. [PMID: 38027628 PMCID: PMC10658207 DOI: 10.1016/j.heliyon.2023.e21217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The specific role of phlorizin (PHL), which has antioxidant, anti-inflammatory, hypoglycemic, antiarrhythmic and antiaging effects, on myocardial fibrosis (MF) and the related pharmacological mechanisms remain unknown. The objective of this study was to determine the protective actions of PHL on isoprenaline (ISO)-induced MF and its molecular mechanisms in mice. PHL was administered at 100 and 200 mg/kg for 15 consecutive days with a subcutaneous injection of ISO (10 mg/kg). MF was induced by ISO and alleviated by treatment with PHL, as shown by reduced fibrin accumulation in the myocardial interstitium and decreased levels of myocardial enzymes, such as creatinine kinase-MB, lactate dehydrogenase, and aspartate transaminase. In addition, PHL significantly decreased the expression of the fibrosis-related factors alpha smooth muscle actin, collagen I, and collagen III induced by ISO. The generation of intracellular reactive oxygen species induced by ISO was attenuated after PHL treatment. The malondialdehyde level was reduced, whereas the levels of superoxide dismutase, catalase, and glutathione were elevated with PHL administration. Moreover, compared to ISO, the level of Bcl-2 was increased and the level of Bax protein was decreased in the PHL groups. PHL relieved elevated TNF-α, IL-1β, and IL-18 levels as well as cardiac mitochondrial damage resulting from ISO. Further studies showed that PHL downregulated the high expression of hexokinase 1 (HK1), NLRP3, ASC, Caspase-1, and GSDMD-N caused by ISO. In conclusion, our findings suggest that PHL protects against ISO-induced MF due to its antioxidant, anti-apoptotic, and anti-inflammatory activities and via inhibition of pyroptosis mediated by the HK1/NLRP3 signaling pathway in vivo.
Collapse
Affiliation(s)
- Yuling Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Xizhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yanan Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Haochuan Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yongxing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050091, Hebei, China
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050091, Hebei, China
| |
Collapse
|
29
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
30
|
Gao Q, Zhao Y, Luo R, Su M, Zhang C, Li C, Liu B, Zhou X. Intrathecal umbilical cord mesenchymal stem cells injection alleviates neuroinflammation and oxidative stress in the cyclophosphamide-induced interstitial cystitis rats through the Sirt1/Nrf2/HO-1 pathway. Life Sci 2023; 331:122045. [PMID: 37634813 DOI: 10.1016/j.lfs.2023.122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
AIMS Neuroinflammation in the spinal dorsal horn (SDH) region plays an important role in the pathogenesis of interstitial cystitis (IC)/bladder pain syndrome (BPS). Oxidative stress is an important etiological factor for inflammatory diseases. This study aimed to investigate the therapeutic effects of umbilical cord mesenchymal stem cells UMSCs on neuroinflammation and oxidative stress in IC and the underlying mechanisms. MATERIALS AND METHODS Rats were intraperitoneally injected with cyclophosphamide (50 mg/kg bodyweight) to establish the IC animal model. Additionally, rats were intrathecally injected with a Sirt1-specific agonist (SRT1720; 8 μg/rat) or inhibitor (EX527; 8 μg/rat). Furthermore, rats were intrathecally injected with human UMSCs (hUMSCS; 8 × 105 cells/rat). Rat behavior was examined using the mechanical allodynia test, novel object recognition test, sucrose preference test, and urodynamics analysis. Neuroinflammation and oxidative stress the SDH region were examined using western blotting, immunofluorescence, enzyme-linked immunosorbent assay, and commercial kits. KEY FINDINGS The Sirt1/Nrf2/HO-1 pathway was downregulated in IC rats. Sirt1 activation and inhibition differentially affected the behavior of IC rats. hUMSCs effectively mitigated the upregulation of oxidative stress, proinflammatory cytokines, and glial activation in the SDH region. Additionally, hUMSCs suppressed mechanical allodynia, dysregulated urodynamics, memory deficits, and depressive-like behavior in IC rats. hUMSCs exerted therapeutic effects through the Sirt1/Nrf2/HO-1 pathway. SIGNIFICANCE intrathecal hUMSCs injection alleviated behavioral deficits of IC rats by mitigating neuroinflammation and oxidative stress through the Sirt1/Nrf2/HO-1 pathway and can be potentially an effective therapeutic strategy for IC.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Ruixiang Luo
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Cuiping Li
- Department of Biotherapy Center, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China.
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China.
| |
Collapse
|
31
|
ALTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. Esculeoside A Decreases Diabetic Cardiomyopathy in Streptozotocin-Treated Rats by Attenuating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis: Impressive Role of Nrf2. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1830. [PMID: 37893548 PMCID: PMC10608477 DOI: 10.3390/medicina59101830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: This experiment evaluated the preventative influence of the tomato-derived Esculeoside A (ESA) on diabetic cardiomyopathy in type 1 diabetes mellitus (T1DM) in rats induced by streptozotocin (STZ). It also examined whether the activation of Nrf2 signaling affords this protection. Materials and Methods: Adult male Wistar control nondiabetic rats and rats with T1DM (STZ-T1DM) were given either carboxymethylcellulose as a vehicle or ESA (100 mg/kg) (eight rats/group) orally daily for 12 weeks. A group of STZ-T1DM rats was also treated with 100 mg/kg ESA and co-treated i.p. with 2 mg/kg (twice/week), brusatol, and Nrf2 inhibitors for 12 weeks. Results and Conclusions: Treatment with ESA prevented the gain in heart weight and cardiomyocyte hypertrophy and improved the left ventricular (LV) systolic and diastolic function (LV) in the STZ-T1DM rat group. Likewise, it reduced their serum levels of triglycerides, cholesterol, and low-density lipoproteins (LDL-c), as well as their LV mRNA, cytoplasmic total, and nuclear total levels of NF-κB. ESA also reduced the total levels of malondialdehyde, tumor necrosis factor-α, interleukine-6 (IL-6), Bax, cytochrome-c, and caspase-3 in the LV of the STZ-T1DM rats. In parallel, ESA enhanced the nuclear and cytoplasmic levels of Nrf2 and the levels of superoxide dismutase, glutathione, and heme oxygenase-1, but decreased the mRNA and cytoplasmic levels of keap-1 in the LVs of the STZ-T1DM rats. Interestingly, ESA did not affect the fasting insulin and glucose levels of the diabetic rats. All of these beneficially protective effects of ESA were not seen in the ESA-treated rats that received brusatol. In conclusion, ESA represses diabetic cardiomyopathy in STZ-diabetic hearts by activating the Nrf2/antioxidant/NF-κB axis.
Collapse
Affiliation(s)
- Jozaa Z. ALTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Dalal H. Aljabryn
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| |
Collapse
|
32
|
Rofaeil RR, Ibrahim MA, Mohyeldin RH, El-Tahawy NF, Abdelzaher WY. Role of EGF/ERK1/2/HO-1 axis in mediating methotrexate induced testicular damage in rats and the ameliorative effect of xanthine oxidase inhibitors. Immunopharmacol Immunotoxicol 2023; 45:511-520. [PMID: 36883686 DOI: 10.1080/08923973.2023.2181684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
Objectives: Methotrexate (MTX) is commonly used in the management of several malignancies and autoimmune disorders; however, testicular damage is one of the most detrimental effects of MTX administration. The current the protective effect of xanthine oxidase inhibitors either purine analogue; allopurinol (ALL) or non-purine analogue; febuxostat (FEB) in testicular injury induced by MTX in rats.Materials and methods: Thirty-two rats were randomly allocated to four groups; control (received vehicles), MTX (received single dose, 20 mg/kg, i.p.), MTX + ALL (received MTX plus ALL) and MTX + FEB (received MTX plus ALL). ALL and FEB were administered orally at 100- and 10 mg/kg, respectively for 15 days. Total and free testosterone were measured in serum. In addition, total antioxidant capacity (TAC), epidermal growth factor (EGF), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), extracellular signal-regulating kinase1/2 (ERK1/2), and total nitrite/nitrate (NOx) end products were measured in testicular tissues. At the same time, immunoexpression of HO-1in testicular tissue was measured. Histopathological examination was done.Results: ALL and FEB increased total and free serum testosterone. Both drugs showed a significant reduction in testicular MDA, NOx, TNF-α levels with an increase in TAC, EGF, and ERK1/2 levels in testicular tissue. Furthermore, both drugs enhanced HO-1 immunoexpression in testicular tissue. All these findings were parallel to the preservation of normal testicular architecture in rats treated with ALL and FEB.Conclusion: All and FEB were equally protective against testicular damage induced by MTX through anti-inflammatory, anti-apoptotic, and antioxidant actions. Their effects might be through activation of the EGF/ERK1/2/HO-1 pathway.
Collapse
Affiliation(s)
- Remon Roshdy Rofaeil
- Department of Pharmacology, Minia University, Minia, Egypt
- Department of Pharmacology, Deraya University, New Minia, Minia, Egypt
| | | | - Reham H Mohyeldin
- Department of Pharmacology, Deraya University, New Minia, Minia, Egypt
| | - Nashwa F El-Tahawy
- Department of Histology and Cell Biology, Minia University, Minia, Egypt
| | | |
Collapse
|
33
|
Golpasandi H, Rahimi MR, Ahmadi S, Łubkowska B, Cięszczyk P. Effects of Vitamin D3 Supplementation and Aerobic Training on Autophagy Signaling Proteins in a Rat Model Type 2 Diabetes Induced by High-Fat Diet and Streptozotocin. Nutrients 2023; 15:4024. [PMID: 37764807 PMCID: PMC10535215 DOI: 10.3390/nu15184024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to investigate the combined effects of vitamin D3 supplementation and aerobic training on regulating the autophagy process in rats with type 2 diabetic induced by a high-fat diet and streptozotocin. A total of 40 Wistar rats were divided into five groups: normal control (NC), diabetic control (DC), diabetic + aerobic training (DAT), diabetic + vitamin D3 (DVD), and diabetic + aerobic training + vitamin D3 (DVDAT). The rats underwent eight weeks of aerobic training with an intensity of 60% maximum running speed for one hour, along with weekly subcutaneous injections of 10,000 units of vitamin D3. The protein levels of different autophagy markers were assessed in the left ventricular heart tissue. The results showed that the protein levels of AMPK, pAMPK, mTOR, and pmTOR were significantly lower in the DC group compared to the NC group. Conversely, the levels of ULK, Beclin-1, LC3II, Fyco, and Cathepsin D proteins were significantly higher in the DC group. However, the interventions of aerobic training and vitamin D3 supplementation, either individually or in combination, led to increased levels of AMPK, pAMPK, mTOR, and pmTOR, and decreased levels of ULK, Beclin-1, LC3II, Fyco, and Cathepsin D (p < 0.05). Additionally, the aerobic capacity in the DAT and DVDAT groups was significantly higher compared to the NC, DC, and DVD groups (p < 0.05). These findings suggest that type 2 diabetes is associated with excessive autophagy in the left ventricle. However, after eight weeks of vitamin D3 supplementation and aerobic training, a significant reduction in excessive autophagy was observed in rats with type 2 diabetes.
Collapse
Affiliation(s)
- Hadi Golpasandi
- Department of Exercise Physiology, University of Kurdistan, Sanandaj 66177-15175, Iran;
| | | | - Slahadin Ahmadi
- Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66186-34683, Iran;
| | - Beata Łubkowska
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; (B.Ł.); (P.C.)
| | - Paweł Cięszczyk
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, Gorskiego 1, 80-336 Gdansk, Poland; (B.Ł.); (P.C.)
| |
Collapse
|
34
|
Wu S, Lu D, Gajendran B, Hu Q, Zhang J, Wang S, Han M, Xu Y, Shen X. Tanshinone IIA ameliorates experimental diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress in cardiomyocytes via SIRT1. Phytother Res 2023; 37:3543-3558. [PMID: 37128721 DOI: 10.1002/ptr.7831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common complication in patients with diabetes, and ultimately leads to heart failure. Endoplasmic reticulum stress (ERS) induced by abnormal glycolipid metabolism is a critical factor that affects the occurrence and development of DCM. Additionally, the upregulation/activation of silent information regulation 2 homolog-1 (SIRT1) has been shown to protect against DCM. Tanshinone II A (Tan IIA), the main active component of Salviae miltiorrhizae radix et rhizome (a valuable Chinese medicine), has protective effects against cardiovascular disease and diabetes. However, its role and mechanisms in diabetes-induced cardiac dysfunction remain unclear. Therefore, we explored whether Tan IIA alleviates ERS-mediated DCM via SIRT1 and elucidated the underlying mechanism. The results suggested that Tan IIA alleviated the pathological changes in the hearts of diabetic mice, ameliorated the cytopathological morphology of cardiomyocytes, reduced the cell death rate, and inhibited the expression of ERS-related proteins and mRNA. The SIRT1 agonist inhibited the activities of glucose-regulated protein 78 (GRP78). Furthermore, the opposite results under the SIRT1 inhibitor. SIRT1 knockdown was induced by siRNA-SIRT1 transfection, and the degree of GRP78 acetylation was increased. Cumulatively, Tan IIA ameliorated DCM by inhibiting ERS and upregulating SIRT1 expression.
Collapse
Affiliation(s)
- Shun Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Dingchun Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China
| | - Babu Gajendran
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qilan Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jian Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Minzhen Han
- The Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
35
|
Wu ST, Han SS, Xu XM, Sun HJ, Zhou H, Shang K, Liu ZH, Liang SJ. 3-Methyladenine ameliorates surgery-induced anxiety-like behaviors in aged mice by inhibiting autophagy-induced excessive oxidative stress. Metab Brain Dis 2023; 38:1913-1923. [PMID: 37097438 DOI: 10.1007/s11011-023-01217-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Postoperative anxiety is a common surgical complication in older patients. Research has recently linked excessive autophagy to several neurological disorders, including anxiety. This study aimed to determine whether 3-Methyladenine (3-MA) administration reduced anxiety-like behaviors in a mouse model following abdominal exploratory laparotomy. METHODS An abdominal exploratory laparotomy model of postoperative anxiety was established using male C57BL/6 mice aged 20 months. 3-MA (6, 30, and 150 mg/ml) was administered via intracerebroventricular immediately following surgery. The mice were assessed 14 days after surgery using the marble burying, elevated plus maze tests, and local field potential recording in the amygdala. The levels of expression of phosphorylated-Akt, Beclin-1, LC3B, nuclear factor erythroid 2-related factor 2 (Nrf2)-occupied regions in NeuN-positive cells, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and glutathione (GSH) were measured at 24 h after surgery. RESULTS The injection of 3-MA reversed the increased number of marbles buried, decreased time spent in the open arm, and enhanced θ oscillation power after 14 days of abdominal exploratory laparotomy. In addition, administration of 3-MA reduced the ratio of phosphorylated- to total-Akt, decreased expression in Beclin-1 and LC3B, attenuated MDA levels, and increased the ratio of Nrf2-occupied areas in NeuN-positive cells, SOD activity, and GSH levels under abdominal exploratory laparotomy conditions. CONCLUSIONS 3-MA improved anxiety-like behaviors in aged mice undergoing abdominal exploratory laparotomy by inhibiting excessive autophagy-induced oxidative stress. These results suggest that 3-MA could be an effective treatment for postoperative anxiety.
Collapse
Affiliation(s)
- Song-Tao Wu
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Shan-Shan Han
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xi-Ming Xu
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Hai-Jun Sun
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Hua Zhou
- Hebei North University, Zhangjiakou, China
| | - Kun Shang
- Hebei North University, Zhangjiakou, China
| | - Zi-Hao Liu
- Hebei North University, Zhangjiakou, China
| | - Shu-Juan Liang
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, China.
| |
Collapse
|
36
|
Tantisuwat L, Saengklub N, Boonpala P, Kumphune S, Panyasing Y, Kalandakanond-Thongsong S, Kijtawornrat A. Sacubitril/valsartan mitigates cardiac remodeling, systolic dysfunction, and preserves mitochondrial quality in a rat model of mitral regurgitation. Sci Rep 2023; 13:11472. [PMID: 37455281 DOI: 10.1038/s41598-023-38694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Sacubitril/valsartan (SAC/VAL), an angiotensin receptor blocker-neprilysin inhibitor, has been widely used to treat several types of heart failure. Nevertheless, the effects of drugs in mitral regurgitation patients, from the molecular level to therapeutic effects, remain unclear. This study investigates the roles of SAC/VAL on cardiac function, mitochondrial quality, autophagy, mitophagy, and natriuretic peptides in a rat model of chronic mitral regurgitation. Male Sprague-Dawley rats underwent MR induction (n = 16) and sham surgeries (n = 8). Four weeks post-surgery confirmed MR rats were randomly divided into MR (n = 8) and SAC/VAL (n = 8) groups. The SAC/VAL group was administered SAC/VAL, whereas the MR and the sham rats received vehicle via oral gavage daily for 8 weeks. Cardiac geometry, function, and myocardial fibrosis were assessed by echocardiography and histopathology. Spectrophotometry and real-time PCR were performed to assess the pharmacological effects on mitochondrial quality, autophagy, mitophagy, and natriuretic peptides. MR rats demonstrated significant left heart dilation and left ventricular systolic dysfunction compared with the sham group, which could be significantly improved by SAC/VAL. In addition, SAC/VAL significantly reduced myocardial cardiac remodeling and fibrosis in MR rats. SAC/VAL improved the mitochondrial quality by attenuating mitochondrial reactive oxygen species production and mitochondrial depolarization compared with the MR group. Also, the upregulation of autophagy-related, mitophagy-related, and natriuretic peptide system gene expression in MR rats was attenuated by SAC/VAL treatment. In conclusion, this study demonstrated that SAC/VAL treatment could provide numerous beneficial effects in MR conditions, suggesting that this drug may be an effective treatment for MR.
Collapse
Affiliation(s)
- Lalida Tantisuwat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nakkawee Saengklub
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pakit Boonpala
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Chiang Mai, Thailand
| | - Yaowalak Panyasing
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Chulalongkorn University Laboratory Animal Center (CULAC), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
37
|
Farrag EAE, Hammad MO, Safwat SM, Hamed S, Hellal D. Artemisinin attenuates type 2 diabetic cardiomyopathy in rats through modulation of AGE-RAGE/HMGB-1 signaling pathway. Sci Rep 2023; 13:11043. [PMID: 37422477 PMCID: PMC10329689 DOI: 10.1038/s41598-023-37678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Diabetes mellitus is a common metabolic disorder. About two-thirds of diabetic patients develop diabetic cardiomyopathy (DCM), which becomes a challenging issue as it severely threatens the patient's life. Hyperglycemia and the resulting advanced glycated end products (AGE) and their receptor (RAGE)/High Mobility Group Box-1 (HMGB-1) molecular pathway are thought to be key players. Recently, artemisinin (ART) has gained more attention owing to its potent biological activities beyond its antimalarial effect. Herein, we aim to evaluate the effect of ART on DCM and the possible underlying mechanisms. Twenty-four male Sprague-Dawley rats were divided into: control, ART, type 2 diabetic and type 2 diabetic treated with ART groups. At the end of the research, the ECG was recorded, then the heart weight to body weight (HW/BW) ratio, fasting blood glucose, serum insulin and HOMA-IR were evaluated. Cardiac biomarkers (CK-MB and LDH), oxidative stress markers, IL-1β, AGE, RAGE and HMGB-1 expression were also measured. The heart specimens were stained for H&E as well as Masson's trichrome. DCM induced disturbances in all studied parameters; contrary to this, ART improved these insults. Our study concluded that ART could improve DCM through modulation of the AGE-RAGE/HMGB-1 signaling pathway, with subsequent impacts on oxidative stress, inflammation and fibrosis. ART could therefore be a promising therapy for the management of DCM.
Collapse
Affiliation(s)
- Eman A E Farrag
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Maha O Hammad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sally M Safwat
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Hamed
- Department of Medical Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Hellal
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
38
|
González-Candia A, Candia AA, Arias PV, Paz AA, Herrera EA, Castillo RL. Chronic intermittent hypobaric hypoxia induces cardiovascular dysfunction in a high-altitude working shift model. Life Sci 2023:121800. [PMID: 37245841 DOI: 10.1016/j.lfs.2023.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
AIMS Chronic intermittent hypobaric hypoxia (CIHH) exposure due to shift work occurs mainly in 4 × 4 or 7 × 7 days shifts in mining, astronomy, and customs activities, among other institutions. However, the long-lasting effects of CIHH on cardiovascular structure and function are not well characterized. We aimed to investigate the effects of CIHH on the cardiac and vascular response of adult rats simulating high-altitude (4600 m) x low-altitude (760 m) working shifts. MAIN METHODS We analyzed in vivo cardiac function through echocardiography, ex vivo vascular reactivity by wire myography, and in vitro cardiac morphology by histology and protein expression and immunolocalization by molecular biology and immunohistochemistry techniques in 12 rats, 6 exposed to CIHH in the hypoxic chamber, and respective normobaric normoxic controls (n = 6). KEY FINDINGS CIHH induced cardiac dysfunction with left and right ventricle remodeling, associated with an increased collagen content in the right ventricle. In addition, CIHH increased HIF-1α levels in both ventricles. These changes are associated with decreased antioxidant capacity in cardiac tissue. Conversely, CIHH decreased contractile capacity with a marked decreased in nitric oxide-dependent vasodilation in both, carotid and femoral arteries. SIGNIFICANCE These data suggest that CIHH induces cardiac and vascular dysfunction by ventricular remodeling and impaired vascular vasodilator function. Our findings highlight the impact of CIHH in cardiovascular function and the importance of a periodic cardiovascular evaluation in high-altitude workers.
Collapse
Affiliation(s)
| | - Alejandro A Candia
- Institute of Health Sciences, University of O'Higgins, Rancagua, Chile; Department for the Woman and Newborn Health Promotion, Universidad de Chile, Chile
| | - Pamela V Arias
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Adolfo A Paz
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), University of Chile, Putre, Chile.
| | - Rodrigo L Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Unidad de Paciente Crítico, Hospital del Salvador, Santiago, Chile.
| |
Collapse
|
39
|
Wu M, Li T, Li G, Niu B, Wu T, Yan L, Wang S, He S, Huang C, Tong W, Li N, Jiang J. LncRNA DANCR deficiency promotes high glucose-induced endothelial to mesenchymal transition in cardiac microvascular cells via the FoxO1/DDAH1/ADMA signaling pathway. Eur J Pharmacol 2023; 950:175732. [PMID: 37116560 DOI: 10.1016/j.ejphar.2023.175732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Cardiac fibrosis is the main pathological basis of diabetic cardiomyopathy (DCM), and endothelial-to-meschenymal transition (EndMT) is a key driver to cardiac fibrosis and plays an important role in the pathogenesis of DCM. Asymmetric dimethylarginine (ADMA), a crucial pathologic factor in diabetes mellitus, is involved in organ fibrosis. This study aims to evaluate underlying mechanisms of ADMA in DCM especially for EndMT under diabetic conditions. A diabetic rat model was induced by streptozotocin (STZ) injection, and human cardiac microvascular endothelial cells (HCMECs) were stimulated with high glucose to induce EndMT. Subsequently, the role of ADMA in EndMT was detected either by exogenous ADMA or by over-expressing dimethylarginine dimethylaminohydrolase 1 (DDAH1, degradation enzyme for ADMA) before high glucose stimulation. Furthermore, the relationships among forkhead box protein O1 (FoxO1), DDAH1 and ADMA were evaluated by FoxO1 over-expression or FoxO1 siRNA. Finally, we examined the roles of LncRNA DANCR in FoxO1/DDAH1/ADMA pathway and EndMT of HCMECs. Here, we found that EndMT in HCMECs was induced by high glucose, as evidenced by down-regulated expression of CD31 and up-regulated expression of FSP-1 and collagen Ⅰ. Importantly, ADMA induced EndMT in HCMECs, and over-expressing DDAH1 protected from developing EndMT by high glucose. Furthermore, we demonstrated that over-expression of FoxO1-ADA with mutant phosphorylation sites of T24A, S256D, and S316A induced EndMT of HCMECs by down-regulating of DDAH1 and elevating ADMA, and that EndMT of HCMECs induced by high glucose was reversed by FoxO1 siRNA. We also found that LncRNA DANCR siRNA induced EndMT of HCMECs, activated FoxO1, and inhibited DDAH1 expression. Moreover, over-expression of LncRNA DANCR could markedly attenuated high glucose-mediated EndMT of HCMECs by inhibiting the activation of FoxO1 and increasing the expression of DDAH1. Collectively, our results indicate that LncRNA DANCR deficiency promotes high glucose-induced EndMT in HCMECs by regulating FoxO1/DDAH1/ADMA pathway.
Collapse
Affiliation(s)
- Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Ting Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ge Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, 526020, China
| | - Bingxuan Niu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Collage of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shiming Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Chuyi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Weiqiang Tong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Niansheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
40
|
Hashemi M, Zandieh MA, Ziaolhagh S, Mojtabavi S, Sadi FH, Koohpar ZK, Ghanbarirad M, Haghighatfard A, Behroozaghdam M, Khorrami R, Nabavi N, Ren J, Reiter RJ, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: Therapeutic targeting, challenges and future prospective. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166714. [PMID: 37028606 DOI: 10.1016/j.bbadis.2023.166714] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Ghanbarirad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arvin Haghighatfard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 77030, United States
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
41
|
Tan G, Qin Z, Jiang S, Zhang L, Zhang G, Huang M, Huang Z, Jin J. MitoQ alleviates triptolide-induced cardiotoxicity via activation of p62/Nrf2 axis in H9c2 cells. Toxicol In Vitro 2023; 86:105487. [PMID: 36272531 DOI: 10.1016/j.tiv.2022.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022]
Abstract
Triptolide (TP) is one of the major components of Tripterygium wilfordii, which is a traditional Chinese medicine widely used in the treatment of various autoimmune and inflammatory diseases. However, the cardiotoxicity induced by TP greatly limits its widespread clinical application. In view of the role of ROS-mediated oxidative stress in TP-induced cardiotoxicity, mitoQ, a mitochondria-targeted ROS scavenger, was used in this study to investigate its protective effect against TP-induced cardiomyocyte toxicity and its possible underlying mechanism. Here we demonstrated that mitoQ could significantly attenuate TP-induced cardiotoxicity in cardiomyocyte H9c2 cells, with a remarkable improvement in cell viability and reduction in ROS levels. P62-Nrf2 signaling pathway has been reported to play a critical role in regulating oxidative stress and protecting cells from harmful stimuli. In this study, we found that mitoQ significantly activated p62-Nrf2 signaling pathway in H9c2 cells with or without TP treatment. Moreover, knockdown of p62 or Nrf2 could block the protective effect of mitoQ against TP in H9c2 cells. Taken together, our study demonstrates that mitoQ can alleviate TP-induced cardiotoxicity via the activation of p62-Nrf2 signaling pathway, which provides new potential strategies to combat TP-induced cardiomyocyte toxicity.
Collapse
Affiliation(s)
- Guoyao Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiyan Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gengyi Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
42
|
Yan WF, Xu HY, Jiang L, Zhang L, Guo YK, Li Y, Shen LT, Min CY, Yang ZG. Early longitudinal changes in left ventricular function and morphology in diabetic pigs: evaluation by 3.0T magnetic resonance imaging. Cardiovasc Diabetol 2023; 22:6. [PMID: 36627647 PMCID: PMC9830732 DOI: 10.1186/s12933-022-01734-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Previous researches on large animal models of diabetic cardiomyopathy were insufficient. The aim of this study was to evaluate early changes in left ventricular (LV) function and morphology in diabetic pigs using a cardiac magnetic resonance (CMR) time-volume curve and feature tracking technique. METHODS Streptozotocin (STZ) was used to induce diabetic in sixteen pigs. 3.0T MRI scanned the pig's heart before and 2, 6, 10 and 16 months after modelling. CMR biomarkers, including time-volume curve and myocardial strain, were compared to analyse the longitudinal changes in LV function and morphology. Pearson correlation was used to evaluate the relationship between LV strain and remodelling. Cardiac specimens were obtained at 6, 10, and 16 months after modelling to observe the myocardial ultrastructural and microstructure at different courses of diabetes. RESULTS Twelve pigs developed diabetes. The 80% diastolic volume recovery rate (DVR) at 6 months after modelling was significantly higher than that before modelling (0.78 ± 0.08vs. 0.67 ± 0.15). The LV global longitudinal peak strain (GLPS) (- 10.21 ± 3.15 vs. - 9.74 ± 2.78 vs. - 9.38 ± 3.71 vs. - 8.71 ± 2.68 vs. - 6.59 ± 2.90%) altered gradually from the baseline data to 2, 6, 10 and 16 months after modelling. After 16 months of modelling, the LV remodelling index (LVRI) of pigs increased compared with that before modelling (2.19 ± 0.97 vs. 1.36 ± 0.45 g/ml). The LVRI and myocardial peak strain were correlated in diabetic pigs (r= - 0.40 to - 0.54), with GLPS being the most significant. Electron microscopy and Masson staining showed that myocardial damage and fibrosis gradually increased with the progression of the disease. CONCLUSION Intravenous injection of STZ can induce a porcine diabetic cardiomyopathy model, mainly characterized by decreased LV diastolic function and strain changes accompanied by myocardial remodelling. The changes in CMR biomarkers could reflect the early myocardial injury of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Wei-Feng Yan
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Hua-Yan Xu
- grid.13291.380000 0001 0807 1581Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Jiang
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Lu Zhang
- grid.13291.380000 0001 0807 1581Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying-Kun Guo
- grid.13291.380000 0001 0807 1581Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Li-Ting Shen
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Chen-Yan Min
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
43
|
Huang Y, He B, Song C, Long X, He J, Huang Y, Liu L. Oxymatrine ameliorates myocardial injury by inhibiting oxidative stress and apoptosis via the Nrf2/HO-1 and JAK/STAT pathways in type 2 diabetic rats. BMC Complement Med Ther 2023; 23:2. [PMID: 36597092 PMCID: PMC9808977 DOI: 10.1186/s12906-022-03818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The necessity of increasing the efficiency of organ preservation has encouraged researchers to explore the mechanisms underlying diabetes-related myocardial injuries. This study intended to evaluate the protective effects of oxymatrine (OMT) in myocardial injury caused by type 2 diabetes mellitus. A model of diabetic rats was established to simulate type 2 diabetes mellitus using an intraperitoneal injection of a single dose of 65 mg/kg streptozotocin with a high-fat and high-cholesterol diet, and diabetic rats were subsequently treated with OMT (60, 120 mg/kg) by gavage for 8 weeks. Thereafter, diabetic rats demonstrated notable decreases in left ventricular systolic pressure (LVSP), ±dp/dtmax, and in the activities of glutathione peroxidase, superoxide dismutase, and catalase. Moreover, we found notable increases in left ventricular end-diastolic pressure, fasting blood glucose, and malondialdehyde, as well as changes in cell apoptosis and decreased expression levels of Nrf2, HO-1, tyrosine protein kinase JAK (JAK), and signal transducer and transcription activator (STAT). Treatment with OMT alleviated all of the measured parameters. Collectively, these findings suggest that activation of the Nrf2/HO-1 and inhibition of the JAK/STAT signaling are involved in mediating the cardioprotective effects of OMT and also highlight the benefits of OMT in ameliorating myocardial injury in diabetic rats.
Collapse
Affiliation(s)
- Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Bin He
- grid.67293.39School of Nursing, Hunan University of Medicine, Huaihua, 418000 China
| | - Chong Song
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, affiliated to University of South China, Huaihua, 418000 Hunan China
| | - Yansong Huang
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Lijing Liu
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| |
Collapse
|
44
|
Li T, Zhang T, Wang H, Zhang Q, Gao H, Liu R, Yin C. The ADMA-DDAH1 axis in ovarian apoptosis of polycystic ovary syndrome. J Steroid Biochem Mol Biol 2023; 225:106180. [PMID: 36243205 DOI: 10.1016/j.jsbmb.2022.106180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022]
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) mainly degrades asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor. Emerging evidence suggested that plasma ADMA is accumulated in patients with polycystic ovary syndrome (PCOS). However, ADMA-DDAH1 involvement in PCOS pathogenesis is unclear. Here, we used dehydroepiandrosterone (DHEA)-induced PCOS rats and the ovarian granulosa cell line KGN to investigate the effect of the ADMA-DDAH1 pathway on ovarian apoptosis. Moreover, we also quantified the ADMA levels and redox status in human serum specimens, Sprague Dawley rats and KGN cells to investigate the effect of ADMA-DDAH1 on redox status and ovarian apoptosis in PCOS. We enrolled 19 women with PCOS and 17 healthy women (controls) in this study. The women with PCOS had increased serum ADMA levels and decreased glutathione peroxidase (GSH-PX) compared with the controls. In Sprague Dawley rats, 21-day DHEA treatment established PCOS and the rat contained higher ADMA levels in serum and lower DDAH1 expression in ovaries. Moreover, the PCOS rat serum and ovaries exhibited increased levels of the oxidative stress marker malondialdehyde (MDA). ADMA treatment of the KGN cells induced reactive oxygen species accumulation and led to apoptosis. Contrastingly, overexpressing DDAH1 in the KGN cells significantly decreased ADMA levels, enhanced cell viability, and inhibited oxidative stress, while the effect was inverse in DDAH1 knockdown cells. Overall, our results demonstrated that PCOS involves elevated ADMA levels and redox imbalance. The ADMA-DDAH1 pathway exerted a marked effect on oxidative stress and ovarian apoptosis in PCOS. Our findings suggested that strategies for increasing DDAH1 activity in ovarian cells may provide a novel approach for ameliorating PCOS.
Collapse
Affiliation(s)
- Tianhe Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Tingting Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Huanhuan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoli Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Huimin Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ruixia Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
45
|
Kobara M, Toba H, Nakata T. Roles of autophagy in angiotensin II-induced cardiomyocyte apoptosis. Clin Exp Pharmacol Physiol 2022; 49:1342-1351. [PMID: 36059129 DOI: 10.1111/1440-1681.13719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
Autophagy is a self-degradation process of cytoplasmic components and occurs in the failing heart. Angiotensin II plays a critical role in the progression of heart failure and induces autophagy. We investigated the mechanism underlying angiotensin II-enhanced autophagy and examined the role of autophagy in angiotensin II-induced cardiomyocyte injury. Neonatal rat cardiomyocytes were treated with angiotensin II (1-100 nmol/L). Angiotensin II dose-dependently increased autophagy indicators of microtubule-associated protein 1 light chain (LC) 3-II and monodansylcadaverine-labelled vesicles. It also enhanced the intracellular production of reactive oxygen species (ROS), assessed by H2DCFDA, an intracellular ROS indicator. NADPH oxidase- and mitochondria-derived ROS production was increased by angiotensin II, while angiotensin II-induced LC3-II expression was suppressed by inhibitors of these sources of ROS. Confocal microscopy revealed that superoxide-producing mitochondria colocalized with lysosomes after the angiotensin II stimulation. Myocyte apoptosis was assessed by nuclear staining with DAPI and caspase-3 activity. A 6-h stimulation with angiotensin II did not affect myocyte apoptosis, while a co-treatment with 3-methyl-adenine (3MA), an autophagy inhibitor, augmented apoptosis. These results indicate that autophagy suppressed apoptosis because it removed damaged mitochondria in the early stages of the angiotensin II stimulation. A longer angiotensin II stimulation for 24 h induced apoptosis and propidium iodide-positive lethal myocytes, while the co-treatment with 3MA did not lead to further increases. In conclusion, angiotensin II-induced autophagy removes ROS-producing mitochondria. Autophagy is a beneficial phenomenon against myocyte apoptosis in the early phase, but its benefit was limited in the late phase of angiotensin II stimulation.
Collapse
Affiliation(s)
- Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuo Nakata
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
46
|
Li H, Wei Y, Xi Y, Jiao L, Wen X, Wu R, Chang G, Sun F, Hao J. DR1-CSE/H 2S pathway upregulates autophagy and inhibits H9C2 cells damage induced by high glucose. Acta Cardiol 2022:1-13. [PMID: 36197015 DOI: 10.1080/00015385.2022.2119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the cardiovascular system, long-term high glucose (HG) can lead to cardiomyocyte damage. Hydrogen sulfide (H2S) reduces cell autophagy in cardiomyocytes. Dopamine 1 receptors (DR1), a specific binding receptor for dopamine, which has a significant regulatory effect on cardiomyocytes. However, it is unclear whether DR1 inhibits HG-induced cardiomyocyte damage by regulating endogenous H2S production and the level of cell autophagy. The present data indicated that the expression of DR1 and cystathionine-γ-lyase (CSE, a key enzyme for endogenous H2S production) and H2S content were significantly reduced in HG-induced cardiomyocytes, which was reversed by SKF38393 (an agonist of DR1). NaHS (an exogenous H2S donor) only increased H2S content and the expression of CSE with no effect on DR1 expression. HG reduced cell viability, the expression of Bcl-2 and Beclin1, the production of autophagosomes and LC3 II/I ratio and increased the cell apoptotic ratio, the expression of cleaved caspase-3, cleaved caspase-9, cytochrome c, P62, and p-mTOR/t-mTOR ratio. SKF38393 and NaHS reversed the effects of HG. PPG (an inhibitor of CSE) and 3MA (an inhibitor of autophagy) abolished the beneficial effect of SKF38393. In addition, AICAR (an agonist of AMPK) and Rapamycin (an inhibitor of mTOR) increased the production of autophagosomes but decreased the p-mTOR/t-mTOR ratio, which was similar to the effects of SKF38393 and 3MA. Our findings suggest that DR1 reduces the HG-induced cardiomyocyte damage via up-regulating the CSE/H2S pathway, which increases cell autophagy by inhibiting the activation of mTOR.
Collapse
Affiliation(s)
- Hongzhu Li
- School of Medicine, Xiamen University, Xiamen, China.,Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yaxin Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,Department of Pathology, Northeast Yunnan Regional Central Hospital, Zhaotong, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Peng M, Xia T, Zhong Y, Zhao M, Yue Y, Liang L, Zhong R, Zhang H, Li C, Cao X, Yang M, Wang Y, Shu Z. Integrative pharmacology reveals the mechanisms of Erzhi Pill, a traditional Chinese formulation, against diabetic cardiomyopathy. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115474. [PMID: 35716918 DOI: 10.1016/j.jep.2022.115474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erzhi Pill (EZP) is a traditional Chinese prescription that has marked effects in treating type 2 diabetes mellitus and diabetic nephropathy. However, its underlying pharmacological mechanisms in the treatment of diabetic cardiomyopathy (DCM), remain to be elucidated. AIM OF THE STUDY This study aimed to apply an integrative pharmacological strategy to systematically evaluate the pharmacological effects and molecular mechanisms of EZP, and provide a solid theoretical basis for the clinical application of EZP in the treatment of DCM. MATERIALS AND METHODS In this study, the potential targets and key pathways of EZP were predicted and validated using network pharmacology and molecular docking, respectively. Changes in cardiac metabolites and major metabolic pathways in rat heart samples were examined using 1H-nuclear magnetic resonance (NMR) metabolomics. Finally, biochemical analysis was conducted to detect the protein expression levels of key pathways. RESULTS We found that EZP decreased fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL) levels, increased high-density lipoprotein (HDL) levels in the serum, and alleviated the morphological abnormalities of the heart tissue in diabetic rats. Furthermore, EZP effectively restored superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspase-3, caspase-8, and caspase-9 activity levels, as well as the levels of reactive oxygen species (ROS), malondialdehyde (MDA), B-cell lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) in the heart tissue. Network pharmacology prediction results indicated that the mechanism of EZP in treating DCM was closely related to apoptosis, oxidative stress, and the HIF-1, PI3K-Akt, and FoxO signaling pathways. In addition, 1H-NMR metabolomics confirmed that EZP primarily regulated both energy metabolism and amino acid metabolism, including the tricarboxylic acid (TCA) cycle, ketone bodies metabolism, glutamine and glutamate metabolism, glycine metabolism, and purine metabolism. Finally, immunohistochemistry results indicated that EZP reduced the expression levels of p-AMPK, p-PI3K, p-Akt, and p-FoxO3a proteins, in the heart tissue of DCM rats. CONCLUSION The results confirmed that the overall therapeutic effect of EZP in the DCM rat model is exerted via inhibition of oxidative stress and apoptosis, alongside the regulation of energy metabolism and amino acid metabolism, as well as the AMPK and PI3K/Akt/FoxO3a signaling pathways. This study provides an experimental basis for the use of EZP in DCM treatment.
Collapse
Affiliation(s)
- Mingming Peng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tianyi Xia
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yanmei Zhong
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Mantong Zhao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yimin Yue
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lanyuan Liang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Renxing Zhong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Han Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
| | - Chuanqiu Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xia Cao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Mengru Yang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yi Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zunpeng Shu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
48
|
Shen Y, Shen X, Wang S, Zhang Y, Wang Y, Ding Y, Shen J, Zhao J, Qin H, Xu Y, Zhou Q, Wang X, Shen J. Protective effects of Salvianolic acid B on rat ferroptosis in myocardial infarction through upregulating the Nrf2 signaling pathway. Int Immunopharmacol 2022; 112:109257. [PMID: 36174419 DOI: 10.1016/j.intimp.2022.109257] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Accumulating evidence has highlighted the role of ferroptosis, a novel type of programmed cell death involved in the pathological process of myocardial infarction (MI). However, the underlying mechanism of ferroptosis in mediating MI is complicated that needs to be further investigated. Salvianolic acid B (Sal B) extracted from the traditional Chinese medicine (TCM) herb Salvia miltiorrhiza possesses pharmacological function against MI, which provides us with a new direction to explore the effect of Sal B on ferroptosis after myocardial ischemic injury. In the present study, iron accumulation and expression levels of ferroptosis-related proteins in MI rats altered in a time-dependent manner. Importantly, treatment of ferroptosis inhibitors ferrostatin-1 (Fer-1) or deferoxamine (DFO) reversed typical changes of ferroptosis, including iron overload, lipid peroxide accumulation, mitochondrial damage, and specific expression levels of ferroptosis-related proteins, thereby alleviating myocardial injury in rats. Similar results were observed in Sal B-treated MI rats in a dose-dependent manner. In addition, NFE2-related factor 2 (Nrf2) was strongly activated by the treatment of Sal B. In vivo knockdown of Nrf2 in MI rats enhanced ferroptosis and damaged the protective effect of Sal B on MI. Furthermore, Sal B administration was unable to significantly reverse expression levels of target genes of Nrf2 that were associated with iron homeostasis and oxidative stress (e.g., HO-1, xCT, Gpx4, Fth1, and Fpn1) in MI rats after knockdown of Nrf2. Taken together, Sal B contributed to protecting MI by inhibiting ferroptosis via activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuehong Shen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210023, China
| | - Xinyu Shen
- Department of Biostatistics, School of Global Public Health, New York University, NY, USA
| | - Shulin Wang
- Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang 212008, China
| | - Yunyun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Yue Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Ye Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Jiayun Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Jianqiao Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Huahan Qin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Yijiao Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Qian Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China.
| | - Xindong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China.
| | - Jianping Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China.
| |
Collapse
|
49
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Niemi MS, Aljowaie RM, Almutairi SM, Alexiou A, Batiha GES. The Prospective Effect of Allopurinol on the Oxidative Stress Index and Endothelial Dysfunction in Covid-19. Inflammation 2022; 45:1651-1667. [PMID: 35199285 PMCID: PMC8865950 DOI: 10.1007/s10753-022-01648-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 by the direct cytopathic effect or indirectly through the propagation of pro-inflammatory cytokines could cause endothelial dysfunction (ED) and oxidative stress (OS). It has been reported that OS is triggered by various types of viral infections, including SARS-CoV-2. Into the bargain, allopurinol is regarded as a potent antioxidant that acts through inhibition of xanthine oxidase (XO), which is an essential enzyme of purine metabolism. Herein, the present study aimed to find the potential protective effects of allopurinol on the biomarkers of OS and ED in patients with severe Covid-19. This single-center cohort study recruited 39 patients with mild-moderate Covid-19 compared with 41 patients with severe Covid-19. Nineteen patients with severe Covid-19 were on the allopurinol treatment because of underlying chronic gout 3 years ago compared with 22 Covid-19 patients not on this treatment. The recruited patients were allocated into three groups: group I, mild-moderate Covid-19 on the standard therapy (n = 39); group II, severe Covid-19 patients on the standard therapy only (n = 22); and group III, severe Covid-19 patients on the standard therapy plus allopurinol (n = 19). The duration of the study was 3 weeks from the time of hospitalization till the time of recovery. In addition, inflammatory biomarkers (D-dimer, LDH, ferritin, CRP, procalcitonin), neutrophil-lymphocyte ratio (NLR), endothelin-1 (ET-1), uric acid and oxidative stress index (OSI), CT scan score, and clinical score were evaluated at the time of admission and discharge regarding the effect of allopurinol treatment adds to the standard treatment of Covid-19. Allopurinol plus standard treatment reduced LDH, ferritin, CRP, procalcitonin, and ET-1 serum level significantly (P < 0.05) compared with Covid-19 patients on standard treatment. Besides, neutrophil (%), lymphocyte (%), and neutrophil-lymphocyte ratio (NLR) were reduced in patients with severe Covid-19 on standard treatment plus allopurinol compared with Covid-19 patients on standard treatment alone (P < 0.01). OSI was higher in patients with severe Covid-19 than mild-moderate Covid-19 patients (P = 0.00001) at admission. At the time of discharge, the oxidative status of Covid-19 patients was significantly improved compared with that at admission (P = 0.01). In conclusion, Covid-19 severity is linked with high OS and inflammatory reaction with ED development. High uric acid in patients with severe Covid-19 is correlated with high OS and inflammatory biomarkers. Allopurinol with standard treatment in patients with severe Covid-19 reduced oxidative and inflammatory disorders with significant amelioration of ED and clinical outcomes.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL mustansiriyia University, Bagdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL mustansiriyia University, Bagdad, Iraq
| | - Marwa S Al-Niemi
- Department of Clinical Pharmacy, College of Pharmacy, Al-Farahidi University, Bagdad, Iraq
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
- AFNP Med Austria, Wien, Austria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, 22511, Egypt.
| |
Collapse
|
50
|
Chen F, Zhang HY, He D, Rao CM, Xu B. Cardioprotective Effect of Gynostemma pentaphyllum against Streptozotocin Induced Cardiac Toxicity in Rats via Alteration of AMPK/Nrf2/HO-1 Pathway. J Oleo Sci 2022; 71:991-1002. [PMID: 35781259 DOI: 10.5650/jos.ess21281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gynostemma pentaphyllum (GP) is a plant commonly used in diabetic therapy in China. GP having potent antioxidant effect against various free radicals. The purpose of the current investigation to identify the cardioprotective effect of GP against streptozotocin (STZ)/ high fat diet (HFD) induced cardiac dysfunction in rats via alteration of AMPK/Nrf2/HO-1 pathway. Wistar rats were used for the current protocol. The rats were received the intraperitoneal injection of STZ and HFD to induce the cardiac remodelling. Blood glucose level, insulin and lipid parameters were estimated. Blood pressure and heart rate were also estimated. Cardiac parameters, antioxidant, cytokines, total protein and inflammatory mediators were analysed. The mRNA expression was detected using the RT-qPCR, respectively. GP significantly (p < 0.001) decreased the BGL and improved the insulin level. GP altered the ratio of heart/BW, liver/BW, and lung/BW. GP treatment significantly (p < 0.001) suppressed the heart rate and blood pressure (diastolic, systolic and mean pressure). GP significantly (p < 0.001) reduced the level of TC, LDL, TG, VLDL and increased the level of HDL. DCM induced rats received the GP administration exhibited reduction in the level of CK and LDH. GP significantly (p < 0.001) reduced the levels of MDA, hydrogen peroxide, peroxynitrite, ROS and increased the level of GSH, SOD, CAT and GPx. GP significantly (p < 0.001) reduced the levels of cytokines (TNF-α, IL-6, IL-1β) and inflammatory parameters (COX-2 and NFκB). GP significantly (p < 0.001) suppressed the NLRP3 and NF-κB expression. GP also boosted mitochondrial biogenesis by boosting the PGC-1α, HO-1 and Nrf2 expression in cardiac tissue. GP treatment showed the cardioprotective effects against STZ induced diabetic cardiac dysfunction via alteration of AMPK/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Fang Chen
- Department of Cardiology, Affiliated Hospital of Yunnan University
| | - Huan-Yu Zhang
- Department of Ultrasound, Affiliated Hospital of Yunnan University
| | - Di He
- Department of Hematology, Affiliated Hospital of Yunnan University
| | - Chun-Mei Rao
- Diabetes, Pu'er Hospital of Traditional Chinese Medicine
| | - Bo Xu
- Department of Endocrinology, Affiliated Hospital of Yunnan University
| |
Collapse
|