1
|
Song T, Wang B, Li Y, Zhao Y, Li J, Wang Y, Li X. 1,25-D3 Protects Diabetic Brain Injury Through GLP-1R/PI3K/Akt Pathway by Experimental and Molecular Docking Studies. Mediators Inflamm 2025; 2025:8217035. [PMID: 40224490 PMCID: PMC11986256 DOI: 10.1155/mi/8217035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Diabetes can cause an increase in intracellular glucose, leading to neuronal damage and microvascular dysfunction. Neuroprotective agents 1α,25-dihydroxyvitamin D3 (1,25-D3) can reduce neurological complications. The main purpose of this study is to evaluate the levels of inflammatory factors and vascular protective factors in streptozotocin (STZ)-induced diabetic rats and determine whether 1,25-D3 can protect the rat brains from hyperglycemia through the glucagon-like peptide-1 (GLP-1)R/PI3K/AKT signal pathway. Methods: We first evaluated whether the relevant target could effectively bind to 1,25-D3 through molecular docking. Next, we established STZ-induced diabetic rat models for in vivo experiments to verify the targets in molecular docking that have good binding effects on 1,25-D3. After 8 weeks of a high-fat diet (HFD) and an intraperitoneal injection of STZ (35 mg/kg body weight), the experimental type 2 diabetic rat model was created, and the morphological changes of the cerebral cortex were measured by performing hematoxylin and eosin (H&E) staining. Western blotting (WB) was used to detect the proteins' expression of relevant targets, and the RT-qPCR was used to analyze the mRNA levels of relevant targets in the cerebral cortex. We also utilized the enzyme-linked immunosorbent assay (ELISA) kit for detecting the protein content of relevant targets. Results: Molecular docking showed that 1,25-D3 had good binding ability with related targets, such as GLP-1R, PI3K, AKT1, vascular endothelial growth factor-α (VEGF-α), endothelial nitric oxide (NO) synthase (e-NOS), intercellular adhesion molecule-1 (ICAM-1), and vascular intercellular adhesion molecule-1 (VCAM-1). Experimental verification results found that 1,25-D3 partially prevented abnormalities in brain function and structure caused by diabetes. Meanwhile, the ICAM-1 and VCAM-1 levels were increased in the high-glucose group, e-NOS levels were decreased, and the relative expression of GLP-1R, VEGF-α, p-PI3K/PI3K, and p-AKT/AKT was reduced. 1,25-D3 abolished these changes, and these effects were suppressed by specific inhibitors. Conclusions: 1,25-D3 alleviates neuroinflammation and improves vascular endothelial dysfunction through multitarget and multipathway by upregulating the GLP-1R/PI3K/AKT signaling axis to improve diabetes-induced brain injury.
Collapse
Affiliation(s)
- Ting Song
- Department of Neurology Ⅱ, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Bin Wang
- Department of Neurology Ⅱ, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yutian Li
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Yingzhe Zhao
- Department of Neurology Ⅱ, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jian Li
- Department of Neurology Ⅱ, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yanqiang Wang
- Department of Neurology Ⅱ, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Internal Medicine, The Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Oh Y, Cho Y. Dipeptidyl peptidase 4 as an injury-responsive protein in the mouse sciatic nerve. Mol Cells 2024; 47:100159. [PMID: 39577744 DOI: 10.1016/j.mocell.2024.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) is a membrane-bound protease known for its roles in immunity and metabolism; however, its function in the nervous system remains largely unexplored. We found that DPP4 is predominantly expressed in the Schwann cells of the sciatic nerve, and its systemic depletion in postnatal mice resulted in a decline in motor function. Importantly, the inhibition of its proteolytic activity did not affect axon regeneration, indicating that DPP4's protease activity may not be directly involved in axon regeneration. Instead, we observed a reduction in DPP4 protein levels in the sciatic nerve after injury and increased in serum postinjury, suggesting that DPP4 may be shed into circulation, potentially mediating systemic responses following injury. These findings highlight DPP4's importance in sensory function and its potential role in systemic responses after peripheral nerve injury.
Collapse
Affiliation(s)
- Yeonsoo Oh
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Yongcheol Cho
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
3
|
Harej Hrkać A, Pilipović K, Belančić A, Juretić L, Vitezić D, Mršić-Pelčić J. The Therapeutic Potential of Glucagon-like Peptide 1 Receptor Agonists in Traumatic Brain Injury. Pharmaceuticals (Basel) 2024; 17:1313. [PMID: 39458954 PMCID: PMC11510130 DOI: 10.3390/ph17101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI), which is a global public health concern, can take various forms, from mild concussions to blast injuries, and each damage type has a particular mechanism of progression. However, TBI is a condition with complex pathophysiology and heterogenous clinical presentation, which makes it difficult to model for in vitro and in vivo studies and obtain relevant results that can easily be translated to the clinical setting. Accordingly, the pharmacological options for TBI management are still scarce. Since a wide spectrum of processes, such as glucose homeostasis, food intake, body temperature regulation, stress response, neuroprotection, and memory, were demonstrated to be modulated after delivering glucagon-like peptide 1 (GLP-1) or GLP-1 receptor agonists into the brain, we aimed to speculate on their potential role in TBI management by comprehensively overviewing the preclinical and clinical body of evidence. Based on promising preclinical data, GLP-1 receptor agonists hold the potential to extend beyond metabolic disorders and address unmet needs in neuroprotection and recovery after TBI, but also other types of central nervous system injuries such as the spinal cord injury or cerebral ischemia. This overview can lay the basis for tailoring new research hypotheses for future in vitro and in vivo models in TBI settings. However, large-scale clinical trials are crucial to confirm their safety and efficacy in these new therapeutic applications.
Collapse
Affiliation(s)
- Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Lea Juretić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| |
Collapse
|
4
|
Mangoura SA, Ahmed MA, Zaka AZ. New Insights into the Pleiotropic Actions of Dipeptidyl Peptidase-4 Inhibitors Beyond Glycaemic Control. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:19-29. [PMID: 39526061 PMCID: PMC11548370 DOI: 10.17925/ee.2024.20.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a multifunctional serine ectopeptidase that cleaves and modifies a plethora of substrates, including regulatory peptides, cytokines and chemokines. DPP-4 is implicated in the regulation of immune response, viral entry, cellular adhesion, metastasis and chemotaxis. Regarding its numerous substrates and extensive expression inside the body, multitasking DPP-4 has been assumed to participate in different pathophysiological mechanisms. DPP-4 inhibitors or gliptins are increasingly used for the treatment of type 2 diabetes mellitus. Several reports from experimental and clinical studies have clarified that DPP-4 inhibitors exert many beneficial pleiotropic effects beyond glycaemic control, which are mediated by anti-inflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic actions. The present review will highlight the most recent findings in the literature about these pleiotropic effects and the potential mechanisms underlying these benefits, with a specific focus on the potential effectiveness of DPP-4 inhibitors in coronavirus disease-19 and diabetic kidney disease.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Li Y, Luo W, Meng C, Shi K, Gu R, Cui S. Exosomes as promising bioactive materials in the treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:335. [PMID: 39334506 PMCID: PMC11438208 DOI: 10.1186/s13287-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Patients with spinal cord injury (SCI) have permanent devastating motor and sensory disabilities. Secondary SCI is known for its complex progression and presents with sophisticated aberrant inflammation, vascular changes, and secondary cellular dysfunction, which aggravate the primary damage. Since their initial discovery, the potent neuroprotective effects and powerful delivery abilities of exosomes (Exos) have been reported in different research fields, including SCI. In this study, we summarize therapeutic advances related to the application of Exos in preclinical animal studies. Subsequently, we discuss the mechanisms of action of Exos derived from diverse cell types, including neurogenesis, angiogenesis, blood-spinal cord barrier preservation, anti-apoptosis, and anti-inflammatory potential. We also evaluate the relationship between the Exo delivery cargo and signaling pathways. Finally, we discuss the challenges and advantages of using Exos to offer innovative insights regarding the development of efficient clinical strategies for SCI.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Chuikai Meng
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Kaiyuan Shi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| |
Collapse
|
6
|
Gao X, Li Q, Hao J, Sun K, Feng H, Guo K, Gao C. Therapeutic effects of exendin-4 on spinal cord injury via restoring autophagy function and decreasing necroptosis in neuron. CNS Neurosci Ther 2024; 30:e14835. [PMID: 39004783 PMCID: PMC11246977 DOI: 10.1111/cns.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
AIMS Necroptosis is one of programmed death that may aggravate spinal cord injury (SCI). We aimed to investigate the effect and mechanism of exendin-4 (EX-4) on the recovery of motor function and necroptosis after SCI. METHODS The SD rats with left hemisection in the T10 spinal cord as SCI model were used. The behavior tests were measured within 4 weeks. The effects of EX-4 on necroptosis-associated proteins and autophagy flux were explored. In addition, the SHSY5Y cell model was introduced to explore the direct effect of EX-4 on neurons. The effect of lysosome was explored using mTOR activator and AO staining. RESULTS EX-4 could improve motor function and limb strength, promote the recovery of autophagy flux, and accelerate the degradation of necroptosis-related protein at 3 d after injury in rats. EX-4 reduced lysosome membrane permeability, promoted the recovery of lysosome function and autophagy flux, and accelerated the degradation of necroptosis-related proteins by inhibiting the phosphorylation level of mTOR in the SHSY5Y cell model. CONCLUSION Our results demonstrated that EX-4 may improve motor function after SCI via inhibiting mTOR phosphorylation level and accelerating the degradation of necroptosis-related proteins in neurons. Our findings may provide new therapeutic targets for clinical treatment after SCI.
Collapse
Affiliation(s)
- Xiao Gao
- Nanjing Medical UniversityNanjingChina
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Qu‐Peng Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Jing‐Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| | - Kai Sun
- Nanjing Medical UniversityNanjingChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| | - Hu Feng
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Kai‐Jin Guo
- Nanjing Medical UniversityNanjingChina
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Can Gao
- Nanjing Medical UniversityNanjingChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
7
|
Ruska Y, Csibi A, Dorogházi B, Szilvásy-Szabó A, Mohácsik P, Környei Z, Dénes Á, Kádár A, Puskár Z, Hrabovszky E, Gereben B, Wittmann G, Fekete C. Topography of the GLP-1/GLP-1 receptor system in the spinal cord of male mice. Sci Rep 2024; 14:14403. [PMID: 38909126 PMCID: PMC11193760 DOI: 10.1038/s41598-024-65442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are now commonly used to treat type 2 diabetes and obesity. GLP-1R signaling in the spinal cord has been suggested to account for the mild tachycardia caused by GLP-1R agonists, and may also be involved in the therapeutic effects of these drugs. However, the neuroanatomy of the GLP-1/GLP-1R system in the spinal cord is still poorly understood. Here we applied in situ hybridization and immunohistochemistry to characterize this system, and its relation to cholinergic neurons. GLP-1R transcript and protein were expressed in neuronal cell bodies across the gray matter, in matching distribution patterns. GLP-1R-immunolabeling was also robust in dendrites and axons, especially in laminae II-III in the dorsal horn. Cerebrospinal fluid-contacting neurons expressed GLP-1R protein at exceedingly high levels. Only small subpopulations of cholinergic neurons expressed GLP-1R, including a subset of sympathetic preganglionic neurons at the rostral tip of the intermediolateral nucleus. GLP-1 axons innervated all regions where GLP-1R neurons were distributed, except laminae II-III. Scattered preproglucagon (Gcg) mRNA-expressing neurons were identified in the cervical and lumbar enlargements. The results will facilitate further studies on how GLP-1 regulates the sympathetic system and other autonomic and somatic functions via the spinal cord.
Collapse
Affiliation(s)
- Yvette Ruska
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Andrea Csibi
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Beáta Dorogházi
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Petra Mohácsik
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Zsuzsanna Környei
- "Momentum" Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Andrea Kádár
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Gábor Wittmann
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary.
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary.
| |
Collapse
|
8
|
Liu Y, Chu W, Ma H, Peng W, Li Q, Han L, Wang H, Wang L, Zhang B, Yang J, Lu X. Fisetin orchestrates neuroinflammation resolution and facilitates spinal cord injury recovery through enhanced autophagy in pro-inflammatory glial cells. Int Immunopharmacol 2024; 130:111738. [PMID: 38428149 DOI: 10.1016/j.intimp.2024.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Neuroinflammation, a critical component of the secondary injury cascade post-spinal cord injury, involves the activation of pro-inflammatory cells and release of inflammatory mediators. Resolution of neuroinflammation is closely linked to cellular autophagy. This study investigates the potential of Fisetin, a natural anti-inflammatory compound, to ameliorate neuroinflammation and confer spinal cord injury protection through the regulation of autophagy in pro-inflammatory cells. METHODS Utilizing a rat T10 spinal cord injury model with distinct treatment groups (Sham, Fisetin-treated, and Fisetin combined with autophagy inhibitor), alongside in vitro models involving lipopolysaccharide (LPS)-stimulated microglial cell activation and co-culture with neurons, we employed techniques such as transcriptomic sequencing, histological assessments (immunofluorescence staining, etc.), molecular analyses (PCR, WB, ELISA, etc.), and behavioral evaluations to discern differences in neuroinflammation, autophagy, neuronal apoptosis, and neurological function recovery. RESULTS Fisetin significantly augmented autophagic activity in injured spinal cord tissue, crucially contributing to neurological function recovery in spinal cord-injured rats. Fisetin's autophagy-dependent effects were associated with a reduction in neuronal apoptosis at the injury site. The treatment reduced the population of CD68+ and iNOS+ cells, coupled with decreased pro-inflammatory cytokines IL-6 and TNF-α levels, through autophagy-dependent pathways. Fisetin pre-treatment attenuated LPS-induced pro-inflammatory polarization of microglial cells, with this protective effect partially blocked by autophagy inhibition. Fisetin-induced autophagy in the injured spinal cord and pro-inflammatory microglial cells was associated with significant activation of AMPK and inhibition of mTOR. CONCLUSION Fisetin orchestrates enhanced autophagy in pro-inflammatory microglial cells through the AMPK-mTOR signaling pathway, thereby mitigating neuroinflammation and reducing the apoptotic effects of neuroinflammation on neurons. This mechanistic insight significantly contributes to the protection and recovery of neurological function following spinal cord injury, underscoring the vital nature of Fisetin as a potential therapeutic agent.
Collapse
Affiliation(s)
- Yishan Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China; Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Spinal Surgery, Subei People's Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
| | - Wenxiang Chu
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongdao Ma
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weilin Peng
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qisheng Li
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lin Han
- Department of Orthopaedics, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haibin Wang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Wang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bangke Zhang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiandong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China; Department of Spinal Surgery, Subei People's Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China.
| | - Xuhua Lu
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
9
|
Zhong M, Wu Z, Chen Z, Wu L, Zhou J. Geniposide alleviates cholesterol-induced endoplasmic reticulum stress and apoptosis in osteoblasts by mediating the GLP-1R/ABCA1 pathway. J Orthop Surg Res 2024; 19:179. [PMID: 38468352 PMCID: PMC10926581 DOI: 10.1186/s13018-024-04665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Cholesterol (CHO) is an essential component of the body. However, high CHO levels in the body can damage bone mass and promote osteoporosis. CHO accumulation can cause osteoblast apoptosis, which has a negative effect on bone formation. The pathogenesis of osteoporosis is a complicate process that includes oxidative stress, endoplasmic reticulum (ER) stress, and inflammation. Geniposide (GEN) is a natural compound with anti-osteoporotic effect. However, the roles of GEN in osteopathogenesis are still unclear. Our previous studies demonstrated that GEN could reduce the accumulation of CHO in osteoblasts and the activation of ER stress in osteoblasts. However, the molecular mechanism of GEN in inhibiting CHO-induced apoptosis in osteoblasts needs to be further investigated. METHODS MC3T3-E1 cells were treated with osteogenic induction medium (OIM). Ethanol-solubilized cholesterol (100 µM) was used as a stimulator, and 10 µM and 25 µM geniposide was added for treatment. The alterations of protein expression were detected by western blot, and the cell apoptosis was analyzed by a flow cytometer. RESULTS CHO promoted osteoblast apoptosis by activating ER stress in osteoblasts, while GEN alleviated the activation of ER stress and reduced osteoblast apoptosis by activating the GLP-1R/ABCA1 pathway. Inhibition of ABCA1 or GLP-1R could eliminate the protective activity of GEN against CHO-induced ER stress and osteoblast apoptosis. CONCLUSION GEN alleviated CHO-induced ER stress and apoptosis in osteoblasts by mediating the GLP-1R/ABCA1 pathway.
Collapse
Affiliation(s)
- Mingliang Zhong
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, China
| | - Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou, 341000, China.
| |
Collapse
|
10
|
Li X, Xu J, Su W, Su L, Chen X, Yang J, Lin X, Yang L. GPNMB Modulates Autophagy to Enhance Functional Recovery After Spinal Cord Injury in Rats. Cell Transplant 2024; 33:9636897241233040. [PMID: 38400732 PMCID: PMC10894544 DOI: 10.1177/09636897241233040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
Spinal cord injury (SCI) severely affects the quality of life and autonomy of patients, and effective treatments are currently lacking. Autophagy, an essential cellular metabolic process, plays a crucial role in neuroprotection and repair after SCI. Glycoprotein non-metastatic melanoma protein B (GPNMB) has been shown to promote neural regeneration and synapse reconstruction, potentially through the facilitation of autophagy. However, the specific role of GPNMB in autophagy after SCI is still unclear. In this study, we utilized the spinal cord transection method to establish SCI rats model and overexpressed GPNMB using adenoviral vectors. We assessed tissue damage using hematoxylin and eosin (H&E) and Nissl staining, and observed cell apoptosis using TUNEL staining. We evaluated the inflammatory response by measuring inflammatory factors using enzyme-linked immunosorbent assay (ELISA). In addition, we measured reactive oxygen species (ROS) levels using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and assessed oxidative stress levels by measuring malondialdehyde (MDA) and glutathione (GSH) using ELISA. To evaluate autophagy levels, we performed immunofluorescence staining for the autophagy marker Beclin-1 and conducted Western blot analysis for autophagy-related proteins. We also assessed limb recovery through functional evaluation. Meanwhile, we induced cell injury using lipopolysaccharide (LPS) and added an autophagy inhibitor to verify the impact of GPNMB on SCI through autophagy modulation. The results demonstrated that GPNMB alleviated the inflammatory response, reduced oxidative stress levels, inhibited cell apoptosis, and promoted autophagy following SCI. Inhibiting autophagy reversed the effects of GPNMB. These findings suggest that GPNMB promotes neural injury repair after SCI, potentially through attenuating the inflammatory response, reducing oxidative stress, and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Xixi Li
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiakun Xu
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijie Su
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luoxi Su
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangkun Chen
- Intensive Care Unit, The First People’s Hospital of Suqian City, Suqian, China
| | - Jia Yang
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xunxun Lin
- Department of Plastic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixuan Yang
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Guha L, Kumar H. Drug Repurposing for Spinal Cord Injury: Progress Towards Therapeutic Intervention for Primary Factors and Secondary Complications. Pharmaceut Med 2023; 37:463-490. [PMID: 37698762 DOI: 10.1007/s40290-023-00499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/13/2023]
Abstract
Spinal cord injury (SCI) encompasses a plethora of complex mechanisms like the involvement of major cell death pathways, neurodegeneration of spinal cord neurons, overexpression of glutaminergic transmission and inflammation cascade, along with different co-morbidities like neuropathic pain, urinary and sexual dysfunction, respiratory and cardiac failures, making it one of the leading causes of morbidity and mortality globally. Corticosteroids such as methylprednisolone and dexamethasone, and non-steroidal anti-inflammatory drugs such as naproxen, aspirin and ibuprofen are the first-line treatment options for SCI, inhibiting primary and secondary progression by preventing inflammation and action of reactive oxygen species. However, they are constrained by a short effective drug administration window and their pharmacological action being limited to symptomatic relief of the secondary effects related to spinal cord injury only. Although post-injury rehabilitation treatments may enable functional recovery, they take a long time to show results. Drug repurposing might be an innovative method for expanding therapy alternatives, utilising drugs that are already approved by various esteemed federal agencies throughout the world. Reutilising a drug molecule to treat SCI can eliminate the need for expensive and lengthy drug discovery processes and pave the way for new therapeutic approaches in SCI. This review summarises marketed drugs that could be repurposed based on their safety and efficacy data. We also discuss their mechanisms of action and provide a list of repurposed drugs under clinical trials for SCI therapy.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air Force Station, Palaj, P.O-382355, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air Force Station, Palaj, P.O-382355, Gandhinagar, Gujarat, India.
| |
Collapse
|
12
|
Cantacorps L, Coull BM, Falck J, Ritter K, Lippert RN. Gut-derived peptide hormone receptor expression in the developing mouse hypothalamus. PLoS One 2023; 18:e0290043. [PMID: 37590249 PMCID: PMC10434938 DOI: 10.1371/journal.pone.0290043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE In adult organisms, a number of receptors have been identified which modulate metabolic processes related to peptides derived from the intestinal tract. These receptors play significant roles in glucose homeostasis, food intake and energy balance. Here we assess these classical metabolic receptors and their expression as well as their potential role in early development of hypothalamic neuronal circuits. METHODS Chow-fed C57BL6/N female mice were mated and hypothalamic tissue was collected from offspring across postnatal development (postnatal day 7-21). Subsequent qPCR and Western Blot analyses were used to determine mRNA and protein changes in gut-derived peptide hormone receptors. Correlations to body weight, blood glucose and circulating leptin levels were analyzed. RESULTS We describe the gene expression and dynamic protein regulation of key gut-derived peptide hormone receptors in the early postnatal period of the mouse brain. Specifically, we show changes to Gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide 1 receptor (GLP1R), and cholecystokinin receptor 2 (CCK2R) in the developing hypothalamus. The changes to GIPR and InsR seem to be strongly negatively correlated with body weight. CONCLUSIONS This comprehensive analysis underscores the need to understand the roles of maternal-derived circulating gut hormones and their direct effect on offspring brain development.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bethany M. Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Joanne Falck
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Tang C, Xu T, Dai M, Zhong X, Shen G, Liu L. Sitagliptin attenuates neuronal apoptosis via inhibiting the endoplasmic reticulum stress after acute spinal cord injury. Hum Exp Toxicol 2023; 42:9603271231168761. [PMID: 36977492 DOI: 10.1177/09603271231168761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Regulation of endoplasmic reticulum stress (ER) stress-induced apoptosis and nerve regeneration is a hopeful way for acute spinal cord injury (SCI). Sitagliptin (Sita) is one of dipeptidyl peptidase-4 (DPP-4) inhibitor, which is beneficial neurons damaged diseases. However, its protective mechanisms of avoiding nerve injury remain unclear. In this study, we further investigated the mechanism of the anti-apoptotic and neuroprotective effects of Sita in promoting locomotor recovery from SCI. In vivo results showed that Sita treatment reduced neural apoptosis caused by SCI. Moreover, Sita effectively attenuated the ER tress and associated apoptosis in rats with SCI. A striking feature was the occurrence of nerve fiber regeneration at the lesion site, which eventually led to significant locomotion recovery. In vitro results showed that the PC12 cell injury model induced by Thapsigargin (TG) also showed similar neuroprotective effects. Overall, sitagliptin showed potent neuroprotective effects by targeting the ER stress-induced apoptosis both in vivo and vitro, thus facilitating the regeneration of the injured spinal cord.
Collapse
Affiliation(s)
- Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangjie Shen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Busa P, Kuthati Y, Huang N, Wong CS. New Advances on Pathophysiology of Diabetes Neuropathy and Pain Management: Potential Role of Melatonin and DPP-4 Inhibitors. Front Pharmacol 2022; 13:864088. [PMID: 35496279 PMCID: PMC9039240 DOI: 10.3389/fphar.2022.864088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Pre-diabetes and diabetes are growing threats to the modern world. Diabetes mellitus (DM) is associated with comorbidities such as hypertension (83.40%), obesity (90.49%), and dyslipidemia (93.43%), creating a substantial burden on patients and society. Reductive and oxidative (Redox) stress level imbalance and inflammation play an important role in DM progression. Various therapeutics have been investigated to treat these neuronal complications. Melatonin and dipeptidyl peptidase IV inhibitors (DPP-4i) are known to possess powerful antioxidant and anti-inflammatory properties and have garnered significant attention in the recent years. In this present review article, we have reviewed the recently published reports on the therapeutic efficiency of melatonin and DPP-4i in the treatment of DM. We summarized the efficacy of melatonin and DPP-4i in DM and associated complications of diabetic neuropathy (DNP) and neuropathic pain. Furthermore, we discussed the mechanisms of action and their efficacy in the alleviation of oxidative stress in DM.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Niancih Huang
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- Grauate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
15
|
Sesamol Attenuates Neuroinflammation by Regulating the AMPK/SIRT1/NF- κB Signaling Pathway after Spinal Cord Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8010670. [PMID: 35035666 PMCID: PMC8758308 DOI: 10.1155/2022/8010670] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is one of the crucial mechanisms mediating spinal cord injury (SCI) progress. Sesamol, a component of sesame oil, has anti-inflammatory activity, but its mechanism in SCI remains unclear. We investigated if the AMPK/SIRT1/NF-κB pathway participated in anti-inflammation of sesamol in SCI. Sesamol could inhibit neuronal apoptosis, reduce neuroinflammation, enhance M2 phenotype microglial polarization, and improved motor function recovery in mice after SCI. Furthermore, sesamol increased SIRT1 protein expression and p-AMPK/AMPK ratio, while it downregulated the p-p65/p65 ratio, indicating that sesamol treatment upregulated the AMPK/SIRT1 pathway and inhibited NF-κB activation. However, these effects were blocked by compound C which is a specific AMPK inhibitor. Together, the study suggests that sesamol is a potential drug for antineuroinflammation and improving locomotor functional recovery through regulation of the AMPK/SIRT1/NF-κB pathway in SCI.
Collapse
|
16
|
Li C, Qin T, Liu Y, Wen H, Zhao J, Luo Z, Peng W, Lu H, Duan C, Cao Y, Hu J. Microglia-Derived Exosomal microRNA-151-3p Enhances Functional Healing After Spinal Cord Injury by Attenuating Neuronal Apoptosis via Regulating the p53/p21/CDK1 Signaling Pathway. Front Cell Dev Biol 2022; 9:783017. [PMID: 35127706 PMCID: PMC8811263 DOI: 10.3389/fcell.2021.783017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is a catastrophic event mainly involving neuronal apoptosis and axonal disruption, and it causes severe motor and sensory deficits. Due to the complicated pathological process of SCI, there is currently still a lack of effective treatment for SCI. Microglia, a type of immune cell residing in the central nervous system (CNS), need to respond to various stimuli to protect neuronal cells from death. It was also reported that microRNAs (miRNAs) had been identified in microglia-derived exosomes that can be taken up by neurons. However, the kinds of miRNAs in exosome cargo derived from microglia and the underlying mechanisms by which they contribute to neuroprotection after SCI remain unknown. In the present study, a contusive SCI mouse model and in vitro experiments were applied to explore the therapeutic effects of microglia-derived exosomes on neuronal apoptosis, axonal regrowth, and functional recovery after SCI. Then, miRNA analysis, rescue experiments, and luciferase activity assays for target genes were performed to confirm the role and underlying mechanism of microglia-derived exosomal miRNAs in SCI. We revealed that microglia-derived exosomes could promote neurological functional recovery by suppressing neuronal apoptosis and promoting axonal regrowth both in vivo and in vitro. MicroRNA-151-3p is abundant in microglia-derived exosomes and is necessary for mediating the neuroprotective effect of microglia-derived exosomes for SCI repair. Luciferase activity assays reported that P53 was the target gene for miR-151-3p and that p53/p21/CDK1 signaling cascades may be involved in the modulation of neuronal apoptosis and axonal regrowth by microglia-derived exosomal microRNA-151-3p. In conclusion, our data demonstrated that microglia-derived exosomes (microglia-Exos) might be a promising, cell-free approach for the treatment of SCI. MicroRNA-151-3p is the key molecule in microglia-derived exosomes that mediates the neuroprotective effects of SCI treatments.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Haicheng Wen
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Chunyue Duan, ; Yong Cao, ; Jianzhong Hu,
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Chunyue Duan, ; Yong Cao, ; Jianzhong Hu,
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Chunyue Duan, ; Yong Cao, ; Jianzhong Hu,
| |
Collapse
|
17
|
Kuthati Y, Rao VN, Busa P, Wong CS. Teneligliptin Exerts Antinociceptive Effects in Rat Model of Partial Sciatic Nerve Transection Induced Neuropathic Pain. Antioxidants (Basel) 2021; 10:antiox10091438. [PMID: 34573072 PMCID: PMC8465046 DOI: 10.3390/antiox10091438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Neuropathic pain (NP), is a chronic pain resulting from nerve injury, with limited treatment options. Teneligliptin (TEN) is a dipeptidyl peptidase-4 inhibitor (DPP-4i) approved to treat type 2 diabetes. DPP-4is prevent the degradation of the incretin hormone glucagon-like peptide 1 (GLP-1) and prolong its circulation. Apart from glycemic control, GLP-1 is known to have antinociceptive and anti-inflammatory effects. Herein, we investigated the antinociceptive properties of TEN on acute pain, and partial sciatic nerve transection (PSNT)-induced NP in Wistar rats. Seven days post PSNT, allodynia and hyperalgesia were confirmed as NP, and intrathecal (i.t) catheters were implanted and connected to an osmotic pump for the vehicle (1 μL/h) or TEN (5 μg/1 μL/h) or TEN (5 μg) + GLP-1R antagonist Exendin-3 (9–39) amide (EXE) 0.1 μg/1 μL/h infusion. The tail-flick response, mechanical allodynia, and thermal hyperalgesia were measured for 7 more days. On day 14, the dorsal horn was harvested and used for Western blotting and immunofluorescence assays. The results showed that TEN had mild antinociceptive effects against acute pain but remarkable analgesic effects against NP. Furthermore, co-infusion of GLP-1R antagonist EXE with TEN partially reversed allodynia but not tail-flick latency. Immunofluorescence examination of the spinal cord revealed that TEN decreased the immunoreactivity of glial fibrillary acidic protein (GFAP). Taken together, our findings suggest that TEN is efficient in attenuation of PSNT-induced NP. Hence, the pleiotropic effects of TEN open a new avenue for NP management.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 280, Taiwan; (Y.K.); (P.B.)
| | - Vaikar Navakanth Rao
- Department of Biomedical Sciences, Academia Sinica Institute, Taipei 11529, Taiwan;
| | - Prabhakar Busa
- Department of Anesthesiology, Cathy General Hospital, Taipei 280, Taiwan; (Y.K.); (P.B.)
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathy General Hospital, Taipei 280, Taiwan; (Y.K.); (P.B.)
- National Defense Medical Center, Institute of Medical Sciences, Taipei 280, Taiwan
- Correspondence: ; Tel.: +886-2-270-82-121; Fax: +886-2-879-24-835
| |
Collapse
|
18
|
Zhang LQ, Zhang W, Li T, Yang T, Yuan X, Zhou Y, Zou Q, Yang H, Gao F, Tian Y, Mei W, Tian XB. GLP-1R activation ameliorated novel-object recognition memory dysfunction via regulating hippocampal AMPK/NF-κB pathway in neuropathic pain mice. Neurobiol Learn Mem 2021; 182:107463. [PMID: 34015440 DOI: 10.1016/j.nlm.2021.107463] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023]
Abstract
Growing evidences indicate that neuropathic pain is frequently accompanied with cognitive impairments, which aggravate the decrease in the quality of life of chronic pain patients. Furthermore, it has been shown that the activation of Glucagon-like-peptide-1receptor (GLP-1R) improved memory deficit in multiple diseases, including Alzheimer's disease (AD), stroke. However, whether GLP-1R activation could improve memory impairment induced by neuropathic pain and the mechanisms underlying the effect of the activation of GLP-1R on memory protection have not yet been established. The spared nerve injury (SNI) model was established as a kind of neuropathic pain. And novel-object recognition memory (hippocampus-dependent memory) was tested by the novel object recognition test (NORT). The expression levels of GLP-1, GLP-1R, adenosine monophosphate-activated protein kinase (AMPK), p-AMPKThr172, nuclear factor κ B p65 (NF-κB p65), interleukin-1beta (IL-1β), IL-1β p17 (mature IL-1β), tumor necrosis factor-alpha (TNF-α) and the synaptic proteins were tested in the murine hippocampus with memory deficits caused by neuropathic pain. Then, exenatide acetate (Ex-4, a GLP-1R agonist), exendin (9-39) (Ex(9-39), a GLP-1R antagonist) and Compound C dihydrochloride (CC, an AMPK inhibitor) were used to test the effects of the activation of GLP-1R in the mice with neuropathic pain. First, we uncovered that neuropathic pain could inhibit GLP-1/GLP-R axis, disturb inflammatory signaling pathway, increase the expression of IL-1β, IL-1β p17 and TNF-α, downregulate the synaptic proteins (postsynaptic density protein 95 (PSD95) and Arc). Subsequently, we reported that Ex-4 treatment could improve recognition memory impairment, increase the ratio of p-AMPKThr172/AMPK, inhibit the phosphorylation NF-κB p65 and decrease the expression of IL-1β, IL-1β p17 and TNF-α, upregulate the levels of PSD95 and Arc. Moreover, we found that Ex(9-39) and CC treatment could abrogate the memory protection of activation of GLP-1R in mice with neuropathic pain. The results indicated that the activation of GLP-1R could improve recognition memory impairment via regulating AMPK/NF-κB pathway, improving neuroinflammation, reversing the decreased level of synaptic proteins in neuropathic pain mice.
Collapse
Affiliation(s)
- Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoman Yuan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - YuKe Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue-Bi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Han W, Li Y, Cheng J, Zhang J, Chen D, Fang M, Xiang G, Wu Y, Zhang H, Xu K, Wang H, Xie L, Xiao J. Sitagliptin improves functional recovery via GLP-1R-induced anti-apoptosis and facilitation of axonal regeneration after spinal cord injury. J Cell Mol Med 2020; 24:8687-8702. [PMID: 32573108 PMCID: PMC7412681 DOI: 10.1111/jcmm.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Axon growth and neuronal apoptosis are considered to be crucial therapeutic targets against spinal cord injury (SCI). Growing evidences have reported stimulation of glucagon‐like peptide‐1 (GLP‐1)/GLP‐1 receptor (GLP‐1R) signalling axis provides neuroprotection in experimental models of neurodegeneration disease. Endogenous GLP‐1 is rapidly degraded by dipeptidyl peptidase‐IV (DPP4), resulting in blocking of GLP‐1/GLP1R signalling process. Sitagliptin, a highly selective inhibitor of DPP4, has approved to have beneficial effects on diseases in which neurons damaged. However, the roles and the underlying mechanisms of sitagliptin in SCI repairing remain unclear. In this study, we used a rat model of SCI and PC12 cells/primary cortical neurons to explore the mechanism of sitagliptin underlying SCI recovery. We discovered the expression of GLP‐1R decreased in the SCI model. Administration of sitagliptin significantly increased GLP‐1R protein level, alleviated neuronal apoptosis, enhanced axon regeneration and improved functional recovery following SCI. Nevertheless, treatment with exendin9‐39, a GLP‐1R inhibitor, remarkably reversed the protective effect of sitagliptin. Additionally, we detected the AMPK/PGC‐1α signalling pathway was activated by sitagliptin stimulating GLP‐1R. Taken together, sitagliptin may be a potential agent for axon regrowth and locomotor functional repair via GLP‐1R‐induced AMPK/ PGC‐1α signalling pathway after SCI.
Collapse
Affiliation(s)
- Wen Han
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangting Cheng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Dingwen Chen
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Mingqiao Fang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangheng Xiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Hangxiang Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|