1
|
Goyal A, Afzal M, Goyal K, Ganesan S, Kumari M, Sunitha S, Dash A, Saini S, Rana M, Gupta G, Ali H, Wong LS, Kumarasamy V, Subramaniyan V. MSC-derived extracellular vesicles: Precision miRNA delivery for overcoming cancer therapy resistance. Regen Ther 2025; 29:303-318. [PMID: 40237010 PMCID: PMC11999318 DOI: 10.1016/j.reth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer remains a prominent worldwide health concern, presenting existing therapies with frequent difficulties, including major toxicity, limited effectiveness, and treatment resistance emergence. These issues highlight the necessity for novel and enhanced remedies. Exosomes, tiny extracellular vesicles that facilitate intercellular communication, have attracted interest for their potential medicinal applications. Carrying a variety of molecules, including microRNAs, small interfering RNAs, long non-coding RNAs, proteins, lipids, and DNA, these vesicles are positioned as promising cancer treatment options. Current studies have increasingly investigated the capacity of microRNAs as a strategic approach for combating malignancy. Mesenchymal stem cells (MSC) are recognized for their aptitude to augment blood vessel formation, safeguard against cellular death, and modulate immune responses. Consequently, researchers examine exosomes derived from MSCs as a safer, non-cellular choice over therapies employing MSCs, which risk undesirable differentiation. The focus is shifting towards employing miRNA-encapsulated exosomes sourced from MSCs to target and heal cancerous cells selectively. However, the exact functions of miRNAs within MSC-derived exosomes in the context of cancer are still not fully understood. Additional exploration is necessary to clarify the role of these miRNAs in malignancy progression and to pinpoint viable therapeutic targets. This review offers a comprehensive examination of exosomes derived from mesenchymal stem cells, focusing on the encapsulation of miRNAs, methods for enhancing cellular uptake and stability, and their potential applications in cancer treatment. It also addresses the difficulties linked to this methodology and considers future avenues, including insights from current clinical oncology research.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S. Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Shah KA, Ali T, Hussain Y, Dormocara A, You B, Cui JH. Isolation, characterization and therapeutic potentials of exosomes in lung cancer: Opportunities and challenges. Biochem Biophys Res Commun 2025; 759:151707. [PMID: 40153996 DOI: 10.1016/j.bbrc.2025.151707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/08/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer (LC) signifies the primary cause of cancer-related mortality, representing 24 % of all cancer fatalities. LC is intricate and necessitates innovative approaches for early detection, precise diagnosis, and tailored treatment. Exosomes (EXOs), a subclass of extracellular vesicles (EVs), are integral to LC advancement, intercellular communication, tumor spread, and resistance to anticancer therapies. EXOs represent a viable drug delivery strategy owing to their distinctive biological characteristics, such as natural origin, biocompatibility, stability in blood circulation, minimal immunogenicity, and potential for modification. They can function as vehicles for targeted pharmaceuticals and facilitate the advancement of targeted therapeutics. EXOs are pivotal in the metastatic cascade, facilitating communication between cancer cells and augmenting their invasive capacity. Nonetheless, obstacles such as enhancing cargo loading efficiency, addressing homogeneity concerns during preparation, and facilitating large-scale clinical translation persist. Interdisciplinary collaboration in research is crucial for enhancing the efficacy of EXOs drug delivery systems. This review explores the role of EXOs in LC, their potential as therapeutic agents, and challenges in their development, aiming to advance targeted treatments. Future research should concentrate on engineering optimization and developing innovative EXOs to improve flexibility and effectiveness in clinical applications.
Collapse
Affiliation(s)
- Kiramat Ali Shah
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Yaseen Hussain
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Amos Dormocara
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Bengang You
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Balaraman AK, Arockia Babu M, Afzal M, Sanghvi G, M M R, Gupta S, Rana M, Ali H, Goyal K, Subramaniyan V, Wong LS, Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen Ther 2025; 28:558-572. [PMID: 40034540 PMCID: PMC11872554 DOI: 10.1016/j.reth.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Recently, increasing interest has been in utilizing mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially exosomes, as nanocarriers for miRNA delivery in cancer treatment. Due to such characteristics, nanocarriers are specific: biocompatible, low immunogenicity, and capable of spontaneous tumor accumulation. MSC-EVs were loaded with therapeutic miRNAs and minimized their susceptibility to degradation by protecting the miRNA from accessibility to degrading enzymes and providing targeted delivery of the miRNAs to the tumor cells to modulate oncogenic pathways. In vitro and in vivo experiments suggest that MSC-EVs loaded with miRNAs may inhibit tumor growth, prevent metastasis, and increase the effectiveness of chemotherapy and radiotherapy. However, these improvements present difficulties such as isolation, scalability, and stability of delivered miRNA during storage. Furthermore, the issues related to off-target effects, as well as immunogenicity, can be a focus. The mechanisms of miRNA loading into MSC-EVs, as well as their targeting efficiency and therapeutic potential, can be outlined in this manuscript. For the final part of the manuscript, the current advances in MSC-EV engineering and potential strategies for clinical application have been described. The findings of MSC-EVs imply that they present MSC-EVs as a second-generation tool for precise oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | - M. Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP, 281406, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Cordeiro BM, Leite Fontes CF, Meyer-Fernandes JR. Molecular Basis of Na, K-ATPase Regulation of Diseases: Hormone and FXYD2 Interactions. Int J Mol Sci 2024; 25:13398. [PMID: 39769162 PMCID: PMC11678576 DOI: 10.3390/ijms252413398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na+ and K+ ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity. In this context, the enzyme serves as a regulatory target for hormones, either through direct actions or via signaling cascades triggered by hormone receptors. Notably, FXYDs small transmembrane proteins regulators of Na, K-ATPase serve as intermediaries linking hormonal signaling to enzymatic regulation at various levels. Specifically, members of the FXYD family, particularly FXYD1 and FXYD2, are that undergo phosphorylation by kinases activated through hormone receptor signaling, which subsequently influences their modulation of Na, K-ATPase activity. This review describes the effects of FXYD2, cardiotonic steroid signaling, and hormones such as angiotensin II, dopamine, insulin, and catecholamines on the regulation of Na, K-ATPase. Furthermore, this review highlights the implications of Na, K-ATPase in diseases such as hypertension, renal hypomagnesemia, and cancer.
Collapse
Affiliation(s)
- Bárbara Martins Cordeiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - Carlos Frederico Leite Fontes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| |
Collapse
|
5
|
Hu Z, Zhu L, Zhu Y, Xu Y. Mesenchymal Stem Extracellular Vesicles in Various Respiratory Diseases: A New Opportunity. J Inflamm Res 2024; 17:9041-9058. [PMID: 39583853 PMCID: PMC11586120 DOI: 10.2147/jir.s480345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Lung diseases are associated with high morbidity and mortality rates, thereby jeopardizing human health and imposing a great burden on society. Currently, lung diseases are mainly treated with medications, oxygen therapy and mechanical ventilation, but these approaches are unable to effectively reduce the mortality rate. Therefore, lung transplantation remains the ultimate treatment for various chronic lung diseases, but this treatment is also hindered by the limited availability of lung sources, immature technology and a low survival rate after transplantation. With constant changes in the environment, pathogens, type and amount of harmful substances and the prevalence of respiratory diseases, there is an urgent need to identify alternative treatment methods. Research on stem cell therapy has been very successful in recent years, and mesenchymal stem cells (MSCs), together with their secretory bodies, play a significant therapeutic role. Extracellular vesicles of MSCs (MSC-EVs) are also major components of the paracrine secretion of MSCs, including exosomes, microvesicles, and apoptotic bodies, among which exosomes are the most typical. MSC-EVs are believed to be present in various tissues of the human body where they can carry proteins, DNA, RNA and biologically active factors, just to name a few. They can also transmit various biological signals to participate in different biological activities, including the maintenance of homeostasis within the tissue. Several studies have further demonstrated that MSCs and their generated extracellular vesicles play an important role in the treatment of diseases. In this paper, the origin, properties and roles of MSCs and MSC-EVs are reviewed, the mechanisms of different lung diseases, the limitations of current therapeutic options and the roles of MSC-EVs in Chronic Obstructive Pulmonary Disease, asthma, infectious lung disease, lung cancer, pulmonary fibrosis, pulmonary arterial hypertension, and acute lung injury/ acute respiratory distress syndrome are also discussed (Figure 1). In addition, the current limitations and possible future research directions are also discussed in view of providing new ideas for the role of MSC-EVs in the treatment of lung diseases.
Collapse
Affiliation(s)
- Zijun Hu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| | - Yanglin Zhu
- Department of Hepatobiliary Pancreatic Gastrointestinal Surgery 2, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, Zhejiang, People’s Republic of China
| | - Yejin Xu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Yang B, Lu L, Xiong T, Fan W, Wang J, Barbier-Torres L, Chhimwal J, Sinha S, Tsuchiya T, Mavila N, Tomasi ML, Cao D, Zhang J, Peng H, Mato JM, Liu T, Yang X, Kalinichenko VV, Ramani K, Han J, Seki E, Yang H, Lu SC. The role of forkhead box M1-methionine adenosyltransferase 2 A/2B axis in liver inflammation and fibrosis. Nat Commun 2024; 15:8388. [PMID: 39333125 PMCID: PMC11436801 DOI: 10.1038/s41467-024-52527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Methionine adenosyltransferase 2 A (MAT2A) and MAT2B are essential for hepatic stellate cells (HSCs) activation. Forkhead box M1 (FOXM1) transgenic mice develop liver inflammation and fibrosis. Here we examine if they crosstalk in male mice. We found FOXM1/MAT2A/2B are upregulated after bile duct ligation (BDL) and carbon tetrachloride (CCl4) treatment in hepatocytes, HSCs and Kupffer cells (KCs). FDI-6, a FOXM1 inhibitor, attenuates the development and reverses the progression of CCl4-induced fibrosis while lowering the expression of FOXM1/MAT2A/2B, which exert reciprocal positive regulation on each other transcriptionally. Knocking down any of them lowers HSCs and KCs activation. Deletion of FOXM1 in hepatocytes, HSCs, and KCs protects from BDL-mediated inflammation and fibrosis comparably. Interestingly, HSCs from Foxm1Hep-/-, hepatocytes from Foxm1HSC-/-, and HSCs and hepatocytes from Foxm1KC-/- have lower FOXM1/MAT2A/2B after BDL. This may be partly due to transfer of extracellular vesicles between different cell types. Altogether, FOXM1/MAT2A/MAT2B axis drives liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Bing Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liqing Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ting Xiong
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, 410015, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jyoti Chhimwal
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Sonal Sinha
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, CSMC LA, Los Angeles, CA, 90048, USA
| | - Jing Zhang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Peng
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48120, Derio, Bizkaia, Spain
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Key Laboratory of Cancer proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jenny Han
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Society and Genetics, UCLA LA, Los Angeles, CA, 92620, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Heping Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA.
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA.
| |
Collapse
|
7
|
Mirgh D, Sonar S, Ghosh S, Adhikari MD, Subramaniyan V, Gorai S, Anand K. Landscape of exosomes to modified exosomes: a state of the art in cancer therapy. RSC Adv 2024; 14:30807-30829. [PMID: 39328877 PMCID: PMC11426072 DOI: 10.1039/d4ra04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) that naturally originate from endosomes. They play a significant role in cellular communication. Tumor-secreted exosomes play a crucial role in cancer development and significantly contribute to tumorigenesis, angiogenesis, and metastasis by intracellular communication. Tumor-derived exosomes (TEXs) are a promising biomarker source of cancer detection in the early stages. On the other hand, they offer revolutionary cutting-edge approaches to cancer therapeutics. Exosomes offer a cell-free approach to cancer therapeutics, which overcomes immune cell and stem cell therapeutics-based limitations (complication, toxicity, and cost of treatment). There are multiple sources of therapeutic exosomes present (stem cells, immune cells, plant cells, and synthetic and modified exosomes). This article explores the dynamic source of exosomes (plants, mesenchymal stem cells, and immune cells) and their modification (chimeric, hybrid exosomes, exosome-based CRISPR, and drug delivery) based on cancer therapeutic development. This review also highlights exosomes based clinical trials and the challenges and future orientation of exosome research. We hope that this article will inspire researchers to further explore exosome-based cancer therapeutic platforms for precision oncology.
Collapse
Affiliation(s)
- Divya Mirgh
- Vaccine and Immunotherapy Centre, Massachusetts General Hospital Boston USA
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu 602105 India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College Kolkata West Bengal 700017 India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal Darjeeling West Bengal India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University Bandar Sunway Subang Jaya Selangor 47500 Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center Chicago IL USA
| | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Faculty of Health Sciences, University of the Free State Bloemfontein 9300 South Africa
| |
Collapse
|
8
|
Hu S, Zhang C, Ma Q, Li M, Yu X, Zhang H, Lv S, Shi Y, He X. Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions. Front Pharmacol 2024; 15:1438177. [PMID: 39161894 PMCID: PMC11330784 DOI: 10.3389/fphar.2024.1438177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs) to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs) to tumor cells, thereby manipulating multiple key cancer-related pathways, and further playing a vital role in the tumor growth, metastasis, drug resistance and other aspects. In addition, tumor cells can also influence the behaviors of MSCs in the tumor microenvironment (TME), orchestrating this regulatory process via miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-derived EV-miRNAs regulate tumor progression, as well as investigating the roles of EV-miRNAs in the TME will contribute to their applications in tumor pharmacotherapy. This article mainly reviews the multifaceted roles and mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Lyu Z, Xin M, Oyston DR, Xue T, Kang H, Wang X, Wang Z, Li Q. Cause and consequence of heterogeneity in human mesenchymal stem cells: Challenges in clinical application. Pathol Res Pract 2024; 260:155354. [PMID: 38870711 DOI: 10.1016/j.prp.2024.155354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Human mesenchymal stem cells (hMSCs) are mesoderm-derived adult stem cells with self-proliferation capacity, pluripotent differentiation potency, and excellent histocompatibility. These advantages make hMSCs a promising tool in clinical application. However, the majority of clinical trials using hMSC therapy for diverse human diseases do not achieve expectations, despite the prospective pre-clinical outcomes in animal models. This is partly attributable to the intrinsic heterogeneity of hMSCs. In this review, the cause of heterogeneity in hMSCs is systematically discussed at multiple levels, including isolation methods, cultural conditions, donor-to-donor variation, tissue sources, intra-tissue subpopulations, etc. Additionally, the effect of hMSCs heterogeneity on the contrary role in tumor progression and immunomodulation is also discussed. The attempts to understand the cellular heterogeneity of hMSCs and its consequences are important in supporting and improving therapeutic strategies for hMSCs.
Collapse
Affiliation(s)
- Zhao Lyu
- Department of Clinical Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Miaomiao Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shaanxi, China; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodnany, Czech Republic
| | - Dale Reece Oyston
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Tingyu Xue
- Department of Clinical Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hong Kang
- Department of Clinical Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Xiangling Wang
- Department of Clinical Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan, China.
| | - Qian Li
- Changsha Medical University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Garza Treviño EN, Quiroz Reyes AG, Delgado Gonzalez P, Rojas Murillo JA, Islas JF, Alonso SS, Gonzalez Villarreal CA. Applications of Modified Mesenchymal Stem Cells as Targeted Systems against Tumor Cells. Int J Mol Sci 2024; 25:7791. [PMID: 39063032 PMCID: PMC11276748 DOI: 10.3390/ijms25147791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Combined gene and cell therapy are promising strategies for cancer treatment. Given the complexity of cancer, several approaches are actively studied to fight this disease. Using mesenchymal stem cells (MSCs) has demonstrated dual antitumor and protumor effects as they exert massive immune/regulatory effects on the tissue microenvironment. MSCs have been widely investigated to exploit their antitumor target delivery system. They can be genetically modified to overexpress genes and selectively or more efficiently eliminate tumor cells. Current approaches tend to produce more effective and safer therapies using MSCs or derivatives; however, the effect achieved by engineered MSCs in solid tumors is still limited and depends on several factors such as the cell source, transgene, and tumor target. This review describes the progress of gene and cell therapy focused on MSCs as a cornerstone against solid tumors, addressing the different MSC-engineering methods that have been approached over decades of research. Furthermore, we summarize the main objectives of engineered MSCs against the most common cancers and discuss the challenges, limitations, risks, and advantages of targeted treatments combined with conventional ones.
Collapse
Affiliation(s)
- Elsa N. Garza Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Adriana G. Quiroz Reyes
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Paulina Delgado Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Juan Antonio Rojas Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Jose Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Santiago Saavedra Alonso
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| | - Carlos A. Gonzalez Villarreal
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| |
Collapse
|
11
|
Lin H, Zhou J, Ding T, Zhu Y, Wang L, Zhong T, Wang X. Therapeutic potential of extracellular vesicles from diverse sources in cancer treatment. Eur J Med Res 2024; 29:350. [PMID: 38943222 PMCID: PMC11212438 DOI: 10.1186/s40001-024-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Cancer, a prevalent and complex disease, presents a significant challenge to the medical community. It is characterized by irregular cell differentiation, excessive proliferation, uncontrolled growth, invasion of nearby tissues, and spread to distant organs. Its progression involves a complex interplay of several elements and processes. Extracellular vesicles (EVs) serve as critical intermediaries in intercellular communication, transporting critical molecules such as lipids, RNA, membrane, and cytoplasmic proteins between cells. They significantly contribute to the progression, development, and dissemination of primary tumors by facilitating the exchange of information and transmitting signals that regulate tumor growth and metastasis. However, EVs do not have a singular impact on cancer; instead, they play a multifaceted dual role. Under specific circumstances, they can impede tumor growth and influence cancer by delivering oncogenic factors or triggering an immune response. Furthermore, EVs from different sources demonstrate distinct advantages in inhibiting cancer. This research examines the biological characteristics of EVs and their involvement in cancer development to establish a theoretical foundation for better understanding the connection between EVs and cancer. Here, we discuss the potential of EVs from various sources in cancer therapy, as well as the current status and future prospects of engineered EVs in developing more effective cancer treatments.
Collapse
Affiliation(s)
- Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jun Zhou
- Department of Laboratory Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550000, China
| | - Tao Ding
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
12
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
13
|
Arefnezhad R, Helfi M, Okhravijouybari R, Goleij P, Sargolzaeimoghaddam M, Mohammadi H, Mahdaviyan N, Fatemian H, Sarg A, Jahani S, Rezaei-Tazangi F, Nazari A. Umbilical cord mesenchymal stem cells and lung cancer: We should be hopeful or hopeless? Tissue Cell 2024; 88:102410. [PMID: 38772275 DOI: 10.1016/j.tice.2024.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Lung cancer (LC) is one of the leading causes of cancer-caused death that possesses a poor prognosis and low survival rate worldwide. In general, LC is classified into small-cell (SCLC) and non-small-cell carcinoma (NSCLC) (involving 80% of patients). Although chemotherapy, radiotherapy, surgery, and molecular-targeted therapy are considered standard approaches for LC treatment, these options have low success with detrimental effects on the life quality of patients. Ergo, recommending treatment with maximum effectiveness and minimum side effects for LC patients has been a substantial challenge for researchers and clinicians in the present era. Recently, mesenchymal stem cells (MSCs)-based strategies have sparked much interest in preventing or treating numerous illnesses. These multipotent stem cells can be isolated from diverse sources, such as umbilical cord, bone marrow, and adipose tissue. Among these sources, umbilical cord mesenchymal stem cells (UC-MSCs) have been in the spotlight of MSCs-based therapies thanks to their considerable advantages, such as high proliferation ability, low immune reactions and tumorigenesis, and easiness in collection and isolation. Some experimental studies have investigated the functionality of intact UC-MSCs and extracellular vesicles, exosomes, and conditioned medium derived from UC-MSCs, as well as genetically engineered UC-MSCs. In this review, we aimed to highlight the influences of these UMSCs-based methods in LC treatment with cellular and molecular insights.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Helfi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hanieh Mohammadi
- Student Research Committee, Tehran University of Medical Science, Tehran, Iran
| | | | - Hossein Fatemian
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arya Sarg
- Istanbul Medipol University, Medical Student, Istanbul, Turkey
| | - Saleheh Jahani
- Department of pathology, University of California, San Diego, United states
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Li S, Mao L, Song L, Xia X, Wang Z, Cheng Y, Lai J, Tang X, Chen X. Extracellular Vesicles Derived from Glioma Stem Cells Affect Glycometabolic Reprogramming of Glioma Cells Through the miR-10b-5p/PTEN/PI3K/Akt Pathway. Stem Cell Rev Rep 2024; 20:779-796. [PMID: 38294721 DOI: 10.1007/s12015-024-10677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Glioma is one of the most prevalently diagnosed types of primary malignant brain tumors. Glioma stem cells (GSCs) are crucial in glioma recurrence. This study aims to elucidate the mechanism by which extracellular vehicles (EVs) derived from GSCs modulate glycometabolic reprogramming in glioma. METHODS Xenograft mouse models and cell models of glioma were established and treated with GSC-EVs. Additionally, levels and activities of PFK1, LDHA, and FASN were assessed to evaluate the effect of GSC-EVs on glycometabolic reprogramming in glioma. Glioma cell proliferation, invasion, and migration were evaluated using MTT, EdU, Colony formation, and Transwell assays. miR-10b-5p expression was determined, with its target gene PTEN and downstream pathway PI3K/Akt evaluated. The involvement of miR-10b-5p and the PI3K/Akt pathway in the effect of GSC-EVs on glycometabolic reprogramming was tested through joint experiments. RESULTS GSC-EVs facilitated glycometabolic reprogramming in glioma mice, along with enhancing glucose uptake, lactate level, and adenosine monophosphate-to-adenosine triphosphate ratio. Moreover, GSC-EV treatment potentiated glioma cell proliferation, invasion, and migration, reinforced cell resistance to temozolomide, and raised levels and activities of PFK1, LDHA, and FASN. miR-10b-5p was highly-expressed in GSC-EV-treated glioma cells while being carried into glioma cells by GSC-EVs. miR-10b-5p targeted PTEN and activated the PI3K/Akt pathway, hence stimulating glycometabolic reprogramming. CONCLUSION GSC-EVs target PTEN and activate the PI3K/Akt pathway through carrying miR-10b-5p, subsequently accelerating glycometabolic reprogramming in glioma, which might provide new insights into glioma treatment.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Lifang Mao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Lvmeng Song
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xiaochao Xia
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zihao Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yinchuan Cheng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jinqing Lai
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
15
|
Han Y, Maimaiti N, Sun Y, Yao J. Knockout of KDM3A in MDA-MB-231 breast cancer cells inhibits tumor malignancy and promotes apoptosis. J Mol Histol 2024; 55:139-148. [PMID: 38165573 PMCID: PMC10830655 DOI: 10.1007/s10735-023-10178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/03/2023] [Indexed: 01/04/2024]
Abstract
The histone lysine demethylase 3 A (KDM3A) is vital for the regulation of cancer physiology and pathophysiology. The purpose of this study was to investigate the effect of KDM3A expression with triple-negative breast cancer (TNBC) invasion and metastasis. In our results, knockout of KDM3A in TNBC MDA-MB-231 cells promoted apoptosis and inhibited the proliferation, invasion and metastasis of MDA-MB-231 cells. In addition, we found that in vivo experiments indicated that the growth, invasion and metastasis of metastatic neoplasms were significantly inhibited by knockout of KDM3A in a TNBC metastasis model. These findings suggest that KDM3A may be a potential therapeutic target for the treatment and prevention of TNBC, providing a critical theoretical basis for the effective prevention or treatment of breast cancer disease.
Collapse
Affiliation(s)
- Yuanxing Han
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Nueryemu Maimaiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Yue Sun
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Juan Yao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
- Imaging Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
16
|
Feng Y, Guo K, Jiang J, Lin S. Mesenchymal stem cell-derived exosomes as delivery vehicles for non-coding RNAs in lung diseases. Biomed Pharmacother 2024; 170:116008. [PMID: 38071800 DOI: 10.1016/j.biopha.2023.116008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The burden of lung diseases is gradually increasing with an increase in the average human life expectancy. Therefore, it is necessary to identify effective methods to treat lung diseases and reduce their social burden. Currently, an increasing number of studies focus on the role of mesenchymal stem cell-derived exosomes (MSC-Exos) as a cell-free therapy in lung diseases. They show great potential for application to lung diseases as a more stable and safer option than traditional cell therapies. MSC-Exos are rich in various substances, including proteins, nucleic acids, and DNA. Delivery of Non-coding RNAs (ncRNAs) enables MSC-Exos to communicate with target cells. MSC-Exos significantly inhibit inflammatory factors, reduce oxidative stress, promote normal lung cell proliferation, and reduce apoptosis by delivering ncRNAs. Moreover, MSC-Exos carrying specific ncRNAs affect the proliferation, invasion, and migration of lung cancer cells, thereby playing a role in managing lung cancer. The detailed mechanisms of MSC-Exos in the clinical treatment of lung disease were explored by developing standardized culture, isolation, purification, and administration strategies. In summary, MSC-Exo-based delivery methods have important application prospects for treating lung diseases.
Collapse
Affiliation(s)
- Yuqian Feng
- Hangzhou School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310003, China
| | - Jing Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
17
|
Xue Z, Liao Y, Li Y. Effects of microenvironment and biological behavior on the paracrine function of stem cells. Genes Dis 2024; 11:135-147. [PMID: 37588208 PMCID: PMC10425798 DOI: 10.1016/j.gendis.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 08/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), the most well-studied cell type in the field of stem cell therapy, have multi-lineage differentiation and self-renewal potential. MSC-based therapies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function. An increasing body of evidence demonstrates that paracrine function is central to the effects of MSC-based therapy. Growth factors, cytokines, chemokines, extracellular matrix components, and extracellular vehicles all contribute to the beneficial effects of MSCs on tissue regeneration and repair. The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior. In this review, we discuss the bioactive substances secreted by MSCs depending on the microenvironment and biological behavior and their regulatory mechanisms, which explain their potential to treat human diseases, to provide new ideas for further research and clinical cell-free therapy.
Collapse
Affiliation(s)
- Zhixin Xue
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
18
|
He Y, Li R, She W, Ai Y, Li K, Kumeria T, Jiang Z, Shao Q, Zou C, Albashari AA, Duan X, Ye Q. Inhibitory effects of the nanoscale lysate derived from xenogenic dental pulp stem cells in lung cancer models. J Nanobiotechnology 2023; 21:488. [PMID: 38105218 PMCID: PMC10726628 DOI: 10.1186/s12951-023-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Lung cancer is a highly prevalent malignancy and has the highest mortality rate among all tumors due to lymph node metastasis. Bone marrow and umbilical cord-derived mesenchymal stem cells (MSCs) have demonstrated tumor-suppressive effects on lung cancer. This study investigated the effects of DPSC lysate on proliferation, apoptosis, migration and invasion of cancer cells were studied in vivo and in vitro. METHODS The proliferation, apoptosis, and migration/metastasis were evaluated by cell counting kit-8 assay, Annexin-V and propidium iodide staining, and the transwell assay, respectively. The expression levels of apoptosis-, cell cycle-, migration-, and adhesion-related mRNA and proteins were measured by qRT-PCR and western blot. The level and mRNA expression of tumor markers carcino embryonic antigen (CEA), neuron-specific enolase (NSE), and squamous cell carcinoma (SCC) were measured by Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR. Finally, a tumor-bearing mouse model was constructed to observe the tumor-suppressive effect of DPSC lysate after intraperitoneal injection. RESULTS DPSC lysate decreased the viability of A549 cells and induced apoptosis in lung cancer cells. Western blot confirmed that levels of Caspase-3, Bax, and Bad were increased, and Bcl-2 protein levels were decreased in A549 cells treated with DPSC lysate. In addition, DPSC lysate inhibited the migration and invasion of A549 cells; downregulated key genes of the cell cycle, migration, and adhesion; and significantly suppressed tumor markers. Xenograft results showed that DPSC lysate inhibited tumor growth and reduced tumor weight. CONCLUSIONS DPSC lysate inhibited proliferation, invasion, and metastasis; promoted apoptosis in lung cancer cells; and suppressed tumor growth- potentially providing a cell-based alternative therapy for lung cancer treatment.
Collapse
Affiliation(s)
- Yan He
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
- Institute for Regenerative and Translational Research, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 460030, Hubei, China
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 324025, Zhejiang, China
| | - Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
| | - Wenting She
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
| | - Yilong Ai
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Kesheng Li
- Institute for Regenerative and Translational Research, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 460030, Hubei, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ziran Jiang
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Qing Shao
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Chen Zou
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China.
| | | | - Xingxiang Duan
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 324025, Zhejiang, China.
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Zhou J, Xiang H, Cao Z. Dual mechanism of Let-7i in tumor progression. Front Oncol 2023; 13:1253191. [PMID: 37829341 PMCID: PMC10565035 DOI: 10.3389/fonc.2023.1253191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Let-7i regulates tumors primarily by binding to the 3' untranslated region (3' UTR) of mRNA, which indirectly regulates post-transcriptional gene expression. Let-7i also has an epigenetic function via modulating DNA methylation to directly regulate gene expression. Let-7i performs a dual role by inducing both the promotion and inhibition of various malignancies, depending on its target. The mechanism of Let-7i action involves cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition, EV transmission, angiogenesis, autophagy, and drug resistance sensitization. Let-7i is closely related to cancer, and hence, is a potential biomarker for the diagnosis and prognosis of various cancers. Therapeutically, it can be used to promote an anti-cancer immune response by modifying exosomes, thus exerting a tumor-suppressive effect.
Collapse
Affiliation(s)
- Jiapei Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhiqun Cao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Ding L, Hao K, Sang L, Shen X, Zhang C, Fu D, Qi X. ATF2-driven osteogenic activity of enoxaparin sodium-loaded polymethylmethacrylate bone cement in femoral defect regeneration. J Orthop Surg Res 2023; 18:646. [PMID: 37653390 PMCID: PMC10470168 DOI: 10.1186/s13018-023-04017-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Polymethylmethacrylate (PMMA) bone cement loaded with enoxaparin sodium (PMMA@ES) has been increasingly highlighted to affect the bone repair of bone defects, but the molecular mechanisms remain unclear. We addressed this issue by identifying possible molecular mechanisms of PMMA@ES involved in femoral defect regeneration based on bioinformatics analysis and network pharmacology analysis. METHODS The upregulated genes affecting the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were selected through bioinformatics analysis, followed by intersection with the genes of ES-induced differentiation of BMSCs identified by network pharmacology analysis. PMMA@ES was constructed. Rat primary BMSCs were isolated and cultured in vitro in the proliferation medium (PM) and osteogenic medium (OM) to measure alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and the expression of RUNX2 and OCN using gain- or loss-of-function experiments. A rat femoral bone defect model was constructed to detect the new bone formation in rats. RESULTS ATF2 may be a key gene in differentiating BMSCs into osteoblasts. In vitro cell assays showed that PMMA@ES promoted the osteogenic differentiation of BMSCs by increasing ALP activity, extracellular matrix mineralization, and RUNX2 and OCN expression in PM and OM. In addition, ATF2 activated the transcription of miR-335-5p to target ERK1/2 and downregulate the expression of ERK1/2. PMMA@ES induced femoral defect regeneration and the repair of femoral defects in rats by regulating the ATF2/miR-335-5p/ERK1/2 axis. CONCLUSION The evidence provided by our study highlighted the ATF2-mediated mechanism of PMMA@ES in the facilitation of the osteogenic differentiation of BMSCs and femoral defect regeneration.
Collapse
Affiliation(s)
- Luobin Ding
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Orthopedic Surgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People's Republic of China
| | - Kangning Hao
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Linchao Sang
- Department of Orthopedic Surgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ce Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, People's Republic of China.
| | - Xiangbei Qi
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
21
|
Zhou Y, Dong Y, Zhang A, Wu J, Sun Q. The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer. Front Bioeng Biotechnol 2023; 11:1214190. [PMID: 37662434 PMCID: PMC10470003 DOI: 10.3389/fbioe.2023.1214190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuqing Dong
- China Medical University and Department of Pathology, Shenyang, China
| | - Aixue Zhang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Hou J, Sun X. Let -7i : A key player and a promising biomarker in diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:909-919. [PMID: 37587077 PMCID: PMC10930445 DOI: 10.11817/j.issn.1672-7347.2023.220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 08/18/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding single-stranded small RNAs that regulate gene expression by recognizing homologous sequences and interfering with transcriptional, translational or epigenetic processes. MiRNAs are involved in a variety of disease processes, and regulate the physiological and pathological status of diseases by modulating target cell activity, migration, invasion, apoptosis, autophagy and other processes. Among them, let-7i is highly expressed in various systems, which participates in the process of tumors, cardiovascular and cerebrovascular diseases, fibrotic diseases, inflammatory diseases, neurodegenerative diseases and other diseases, and plays a positive or negative regulatory role in these diseases through different signal pathways and key molecules. Moreover, it can be used as an early diagnosis and prognostic marker for a variety of diseases and become a potential therapeutic target. As a biomarker, let-7i is frequently tested in combination with other miRNAs to diagnose multiple diseases and evaluate the clinical treatment or prognosis.
Collapse
Affiliation(s)
- Jiali Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078.
- National Engineering Research Center of Human Stem Cells, Changsha 410205, China.
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078.
- National Engineering Research Center of Human Stem Cells, Changsha 410205, China.
| |
Collapse
|
23
|
TomyTomcy A, Sindhu ER. Mesenchymal stem cells- an excellent therapeutic agent for cancer. Asia Pac J Clin Oncol 2023. [PMID: 37190944 DOI: 10.1111/ajco.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Despite rapid advancement in research of diagnostics and therapeutics, cancer is the most dangerous disease-causing millions of deaths worldwide. Many of the conventional anticancer therapies can even lead to developing resistance to therapy and recurrence of cancer. To find a new, alternative treatment strategy for a variety of ailments scientists and researchers have turned their attention to cell therapies and regenerative medicine. Stem cells are now being researched for their extensive potential application in therapy for several incurable illnesses including cancer. One of the most often employed cell types for regenerative medicine is mesenchymal stem cells. Mesenchymal stem cells (MSCs) are considered a promising source of stem cells in personalized cell-based therapies. The inherent tumor tropic and immune-modulatory properties of MSCs can be used to target cancer cells. This review aims to focus on the anticancer properties of MSCs and their effect on different signaling pathways. Later on, we discuss the advantages of engineered MSCs over non-engineered MSCsin cancer therapy.
Collapse
Affiliation(s)
- Anjilikal TomyTomcy
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Edakkadath Raghavan Sindhu
- Division of Biochemistry, Department of Clinical Laboratory Services and Translational Research, Malabar Cancer Centre, Kannur, Kerala, India
| |
Collapse
|
24
|
Nicodemou A, Bernátová S, Čeháková M, Danišovič Ľ. Emerging Roles of Mesenchymal Stem/Stromal-Cell-Derived Extracellular Vesicles in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051453. [PMID: 37242693 DOI: 10.3390/pharmaceutics15051453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the tremendous efforts of many researchers and clinicians, cancer remains the second leading cause of mortality worldwide. Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in numerous human tissues and presenting unique biological properties, such as low immunogenicity, powerful immunomodulatory and immunosuppressive capabilities, and, in particular, homing abilities. Therapeutic functions of MSCs are mediated mostly by the paracrine effect of released functional molecules and other variable components, and among them the MSC-derived extracellular vesicles (MSC-EVs) seem to be one of the central mediators of the therapeutic functions of MSCs. MSC-EVs are membrane structures secreted by the MSCs, rich in specific proteins, lipids, and nucleic acids. Amongst these, microRNAs have achieved the most attention currently. Unmodified MSC-EVs can promote or inhibit tumor growth, while modified MSC-EVs are involved in the suppression of cancer progression via the delivery of therapeutic molecules, including miRNAs, specific siRNAs, or suicide RNAs, as well as chemotherapeutic drugs. Here, we present an overview of the characteristics of the MSCs-EVs and describe the current methods for their isolation and analysis, the content of their cargo, and modalities for the modification of MSC-EVs in order for them to be used as drug delivery vehicles. Finally, we describe different roles of MSC-EVs in the tumor microenvironment and summarize current advances of MCS-EVs in cancer research and therapy. MSC-EVs are expected to be a novel and promising cell-free therapeutic drug delivery vehicle for the treatment of cancer.
Collapse
Affiliation(s)
- Andreas Nicodemou
- Lambda Life a. s., Levocska 3617/3, 851 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Soňa Bernátová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Čeháková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Centre for Tissue Engineering and Regenerative Medicine-Translational Research Unit in the Branch of Regenerative Medicine, Faculty of Medicine, Comenius University, Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
25
|
Li Y, Zhu J, Yu Z, Li H, Jin X. The role of Lamin B2 in human diseases. Gene 2023; 870:147423. [PMID: 37044185 DOI: 10.1016/j.gene.2023.147423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Lamin B2 (LMNB2), on the inner side of the nuclear envelope, constitutes the nuclear skeleton by connecting with other nuclear proteins. LMNB2 is involved in a wide range of nuclear functions, including DNA replication and stability, regulation of chromatin, and nuclear stiffness. Moreover, LMNB2 regulates several cellular processes, such as tissue development, cell cycle, cellular proliferation and apoptosis, chromatin localization and stability, and DNA methylation. Besides, the influence of abnormal expression and mutations of LMNB2 has been gradually discovered in cancers and laminopathies. Therefore, this review summarizes the recent advances of LMNB2-associated biological roles in physiological or pathological conditions, with a particular emphasis on cancers and laminopathies, as well as the potential mechanism of LMNB2 in related cancers.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| |
Collapse
|
26
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
27
|
Zhu Z, Wang Y. miR-218-5p-Modified Bone Marrow Mesenchymal Stem Cells Mediate the Healing Effect of EphrinB2-EphB4 Signals on Alveolar Bone Defect. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abnormally expressed miR-218-5p involves in alveolar bone defect. We intend to investigate whether miR-218-5p-modified bone marrow mesenchymal stem cells (BMSCs) mediates the healing effects of EphrinB2-EphB4 signals on the alveolar bone defect. Fifty germ-free rats (6-month-old) were
utilized in this study. The grouping was set up as follows: blank group, model group, miR-218-5p group, EphrinB2-EphB4 antagonist group, and positive control group (10 rats in each group). HE staining was employed to quantify bone resorption lacunae number. And the following indicators were
monitored: miR-218-5p expression, differentiation status of osteoblasts, concentrations of TNF-α/IL-10/ IL-8, and EphrinB2 and EphB4 expression. As shown in HE staining, massive infiltration of inflammatory cells was denoted at the alveolar bone defective sites in rats from model
group. However, infiltration of inflammatory cells in lesions was moderate in rats from EphrinB2-EphB4 antagonist group and positive control group, which was accompanied by formation of small bone islands. Furthermore, lesser infiltration of inflammatory cells was denoted at the alveolar bone
defective sites in rats from the miR-218-5p group, which also exhibited a larger number of newly formed bone trabeculae growing toward the center of lesions. On the 3rd day of culture, absorption lacunae were rare in the model group, while remaining undetectable in other groups. On the 7th
day of culture, bone resorption lacunae number in samples from model group was significantly higher in comparison with that in other groups. Meanwhile, it was reduced significantly in miR-218-5p group. However, it was increased in EphrinB2-EphB4 antagonist group and positive control group
(P <0.05). An elevation of the intracellular miR-218-5p level was denoted in the modified BMSCs in comparison with those unmodified BMSCs (P < 0.05). In comparison with blank group, other groups exhibited significantly elevated ALP levels, among which model group showed
highest level. However, decline of ALP levels was denoted in positive control group, EphrinB2-EphB4 antagonist group and miR-218-5p group, with lowest ALP level in miR-218-5p group (P <0.05). Except blank group, rats in other groups exhibited a significant elevation of TNF-α,
IL-10 and IL-8 in the serum, among which those in the model group displayed the most remarkable increase of these cytokines. Rats in miR-218-5p group, EphrinB2-EphB4 antagonist group and positive control group exhibited significantly reduced levels of IL-8, IL-10 and TNF-α in
the serum, with miR-218-5p group showing lowest levels (P < 0.05). In comparison with the blank group, other groups showed significantly enhanced protein expression of EphrinB2 and EphB4, among which the model group displayed the most remarkable enrichment of these proteins. In comparison
with the model group, samples from the miR-218-5p group, EphrinB2-EphB4 antagonist group and positive control group exhibited significantly weakened expression of EphrinB2 and EphB4, among which the miR-218-5p group displayed the most remarkable decrease of these proteins (P <0.05).
miR-218-5p-modified BMSCs can modulate the EphrinB2-EphB4 signal transduction pathway to produce two-way transmission, which included their inhibition of the osteoclast generation and their enhancement of the osteoclast differentiation. In this way, they aided in alleviating inflammatory response
in alveolar bone defective lesions, thereby accelerating the healing process of alveolar bone defect. The function of miR-218-5p-modified BMSCs is mainly achieved in the healing process of the alveolar bone defect.
Collapse
Affiliation(s)
- Zufeng Zhu
- Department of Stomatology, Xiaoshan Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, 311201, China
| | - Yanhong Wang
- Department of Stomatology, Xiaoshan Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, 311201, China
| |
Collapse
|
28
|
Fu X, Liu H, Fan Y, Yuan J. Extracellular vesicle-mediated transfer of lncRNA CLDN10-AS1 aggravates low-density lipoprotein-induced vascular endothelial injury. Physiol Genomics 2022; 54:471-485. [PMID: 36250558 DOI: 10.1152/physiolgenomics.00094.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) stimulation impairs the oxidation-reduction equilibrium in vascular endothelial cells (VECs) and contributes to atherosclerosis (AS). This study probed the mechanisms of extracellular vesicle (EV)-mediated transfer of lncRNA CLDN10 antisense RNA 1 (CLDN10-AS1) in ox-LDL-induced VEC injury. Initially, VEC injury models were established by treating human umbilical vein endothelial cells (HUVECs) with ox-LDL. EVs were isolated from HUVECs (HUVECs-EVs) and identified. CLDN10-AS1, microRNA (miR)-186, and Yin Yang 1 (YY1) expressions in ox-LDL-treated HUVECs and EVs derived from these cells (ox-EVs) were measured. HUVECs were incubated with EVs, after which the cell viability, apoptosis, and concentrations of proinflammatory cytokines and oxidative stress markers were measured. We discovered that CLDN10-AS1 and YY1 were upregulated in ox-LDL-treated HUVECs, whereas miR-186 was downregulated. ox-EVs treatment elevated CLDN10-AS1 expression in HUVECs and ox-EVs overexpressing CLDN10-AS1 promoted VEC injury. Besides, CLDN10-AS1 is competitively bound to miR-186 and promoted YY1 expression. Rescue experiments revealed that miR-186 overexpression or YY1 suppression partially reversed the roles of ox-EVs overexpressing CLDN10-AS1 in ox-LDL-induced VEC injury. Lastly, clinical serum samples were collected for verification. Overall, CLDN10-AS1 carried by HUVECs-EVs into HUVECs competitively bound to miR-186 to elevate YY1 expression, thereby aggravating ox-LDL-induced VEC injury.
Collapse
Affiliation(s)
- Xiaoyang Fu
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China.,People's Hospital of Zhengzhou University, Zhengzhou, China.,Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.,School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Heng Liu
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yulong Fan
- Department of Vascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ji Yuan
- Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.,School of Clinical Medicine, Henan University, Zhengzhou, China.,Department of Anaesthesia, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Anaesthesia, Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
29
|
Yang L, Zhang Q, Yang Q. KDM3A promotes oral squamous cell carcinoma cell proliferation and invasion via H3K9me2 demethylation-activated DCLK1. Genes Genomics 2022; 44:1333-1342. [PMID: 36094735 DOI: 10.1007/s13258-022-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a frequently-diagnosed malignancy with high potential for proliferation and invasion. Histone methylation is known as a crucial mechanism that regulates pathological processes in various cancers, including OSCC. OBJECTIVE This study sought to delve into the molecular mechanism of lysine demethylase 3 A (KDM3A) in OSCC cell proliferation and invasion. METHODS Expression levels of KDM3A, lysin-9 of di-methylated histone H3 (H3K9me2), and doublecortin-like kinase 1 (DCLK1) in cells were determined by reverse-transcription quantitative polymerase chain reaction or Western blot analysis. Cell proliferation and invasion were evaluated by cell counting kit-8, colony formation, and Transwell assays. The enrichment of KDM3A and H3K9me2 on the DCLK1 promoter was determined by chromatin immunoprecipitation assay. The functional rescue experiment was performed with DCLK1 overexpression vector and si-KDM3A in CAL-27 and SCC-9 cells. RESULTS KDM3A was elevated in OSCC cells. KDM3A knockdown suppressed OSCC proliferation and invasion, along with increased H3K9me2 level in OSCC cells. KDM3A and H3K9me2 were enriched on the DCLK1 promoter and inhibiting H3K9me2 improved DCLK1 expression levels. DCLK1 overexpression neutralized the inhibition of KDM3A knockdown on OSCC proliferation and invasion. CONCLUSIONS KDM3A facilitated OSCC proliferation and invasion by eliminating H3K9me2 to upregulate DCLK1 expression levels.
Collapse
Affiliation(s)
- Lei Yang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China.
| | - Qiqiong Zhang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China
| | - Qiuye Yang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China
| |
Collapse
|
30
|
Wang J, Ma Y, Long Y, Chen Y. Extracellular Vesicle Derived From Mesenchymal Stem Cells Have Bidirectional Effects on the Development of Lung Cancer. Front Oncol 2022; 12:914832. [PMID: 35860555 PMCID: PMC9289533 DOI: 10.3389/fonc.2022.914832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stem cell is a kind of pluripotent cells with the ability of self-renewal and multi-directional differentiation, which exist in bone marrow, umbilical cord blood, umbilical cord tissue, placenta tissue, adipose tissue and so on. Extracellular vesicles are membranous lipid vesicles secreted by a variety of cells and widely present in body fluids, which contain proteins, mRNA, microRNA and other substances, and are an important medium of intercellular communication. At present, more and more evidence shows that mesenchymal stem cell-derived extracellular vesicles play an important role in the development of lung cancer. Regulating the levels of proteins, RNAs and other substances in MSC-EVs and then transplanting them into patients may be a new way to alleviate the development of lung cancer. We mainly introduce the role of extracellular vesicles derived from human umbilical cord mesenchymal stem cells, bone marrow mesenchymal stem cells and adipose mesenchymal stem cells in lung cancer, to provide new alternatives for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingjiao Long
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yingjiao Long,
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Zhang X, Lu Y, Wu S, Zhang S, Li S, Tan J. An Overview of Current Research on Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Bibliometric Analysis From 2009 to 2021. Front Bioeng Biotechnol 2022; 10:910812. [PMID: 35814000 PMCID: PMC9268551 DOI: 10.3389/fbioe.2022.910812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are important mediators of intercellular communication and participate in numerous physiological and pathological processes in the body. This study aims to introduce the research status, analyze the research hotspots, and predict the development trend through bibliometric analysis of MSC-EVs. Methods: We searched all relevant literature on MSC-EVs from 2009 to 2021 in the Web of Science. R-bibliometrix, VOSviewer, and CiteSpace software were used to visualize the quantitative analysis of the published literature, including co-authorship, co-occurrence, citation, and co-citation, to provide objective presentation and predictions in the field. Results: A total of 1595 articles and reviews on MSC-EVs published between 2009 and 2021 were identified. The annual publication outputs increased at an exponential rate, reaching as high as 555 publications in 2021. China contributed the most publications (n = 899, 56.36%) and had the most citations (n = 24,210). The United States had the strongest intensity of cooperation in this field. Shanghai Jiao Tong University had the maximum number of publications (n = 79). In terms of the number of publications and co-citations, the journal of Stem cell research & therapy ranked first. Camussi G was the most productive and most cited author. The top three themes in the research area were cell biology, research experimental medicine, and biochemistry molecular biology. Keyword co-occurrence and co-citation clustering analysis revealed that studies of MSC-EVs covered cellular origin (bone marrow mesenchymal stem cell, adipose-derived mesenchymal stem cell), injurious diseases (spinal cord injury, acute lung injury, ischemia/reperfusion injury, acute kidney injury, traumatic brain injury), tumor (breast cancer, tumor microenvironment), biological processes (drug delivery system, angiogenesis, inflammation, proliferation, differentiation, senescence), and molecular mechanisms (signaling pathway, signal transduction, oxidative stress, VEGF, TGF β). Conclusions: Studies on MSC-EVs have shown a steep growth trend in recent years. Available studies mostly focused on the therapeutic effects and underlying mechanisms of MSC-EVs in aplastic diseases. Multidisciplinary integration is a development trend in this field, and senescence-related topics might be the focus of future research on MSC-EVs.
Collapse
Affiliation(s)
- Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Yimeng Lu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Shuyu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
- *Correspondence: Jichun Tan,
| |
Collapse
|
32
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
33
|
Sanmartin MC, Borzone FR, Giorello MB, Yannarelli G, Chasseing NA. Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Biological Carriers for Drug Delivery in Cancer Therapy. Front Bioeng Biotechnol 2022; 10:882545. [PMID: 35497332 PMCID: PMC9046597 DOI: 10.3389/fbioe.2022.882545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death worldwide, with 10.0 million cancer deaths in 2020. Despite advances in targeted therapies, some pharmacological drawbacks associated with anticancer chemo and immunotherapeutic agents include high toxicities, low bioavailability, and drug resistance. In recent years, extracellular vesicles emerged as a new promising platform for drug delivery, with the advantage of their inherent biocompatibility and specific targeting compared to artificial nanocarriers, such as liposomes. Particularly, mesenchymal stem/stromal cells were proposed as a source of extracellular vesicles for cancer therapy because of their intrinsic properties: high in vitro self-renewal and proliferation, regenerative and immunomodulatory capacities, and secretion of extracellular vesicles that mediate most of their paracrine functions. Moreover, extracellular vesicles are static and safer in comparison with mesenchymal stem/stromal cells, which can undergo genetic/epigenetic or phenotypic changes after their administration to patients. In this review, we summarize currently reported information regarding mesenchymal stem/stromal cell-derived extracellular vesicles, their proper isolation and purification techniques - from either naive or engineered mesenchymal stem/stromal cells - for their application in cancer therapy, as well as available downstream modification methods to improve their therapeutic properties. Additionally, we discuss the challenges associated with extracellular vesicles for cancer therapy, and we review some preclinical and clinical data available in the literature.
Collapse
Affiliation(s)
- María Cecilia Sanmartin
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
34
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles: Pleiotropic Impacts on Breast Cancer Occurrence, Development, and Therapy. Int J Mol Sci 2022; 23:ijms23062927. [PMID: 35328347 PMCID: PMC8954385 DOI: 10.3390/ijms23062927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023] Open
Abstract
Breast cancer (BC) is one of the most devastating cancers, with high morbidity and mortality, among the female population worldwide. In BC, mesenchymal stem cells (MSCs), as pluripotent stromal stem cells, play a significant role in TME formation and tumor progression. Recently, an increasing number of studies have demonstrated that extracellular vesicles (EVs) are essential for the crosstalk between MSCs and BC cells. MSC-derived EVs (MSC-EVs) can deliver a diversity of molecules, including lipids, proteins, and nucleic acids, etc., to target cells, and produce corresponding effects. Studies have demonstrated that MSC-EVs exert both inhibitory and promotive effects in different situations and different stages of BC. Meanwhile, MSC-EVs provide novel therapeutic options for BC, such as EVs as carriers for drug delivery. Therefore, in this review, we summarize the role of MSC-EVs in BC progression and application in clinical treatment, in the hope of providing a basis for further research.
Collapse
|
35
|
Zhang X, Gao Y, Wu H, Mao Y, Qi Y. LncRNA HOX transcript antisense RNA mitigates cardiac function injury in chronic heart failure via regulating microRNA-30a-5p to target KDM3A. J Cell Mol Med 2022; 26:1473-1485. [PMID: 35083842 PMCID: PMC8899154 DOI: 10.1111/jcmm.17160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been studied in multiple diseases, but the role of HOTAIR on chronic heart failure (CHF) through the regulation of microRNA (miR)‐30a‐5p and lysine‐specific demethylase 3A (KDM3A) remains unexplored. This research aims to probe the effects of HOTAIR on CHF progression via modulating miR‐30a‐5p to target KDM3A. CHF mouse model was established by intraperitoneal injection of doxorubicin. The CHF mice were then injected with high‐expressed HOTAIR, miR‐30a‐5p or KDM3A adenovirus vectors to determine the cardiac function, oxidative stress, inflammatory response, pathological change and cardiomyocyte apoptosis. HOTAIR, miR‐30a‐5p, KDM3A and Bcl‐2/adenovirus E1B 19kDa interacting protein 3 (BNIP3) expression in CHF mice was detected. The binding relations among HOTAIR, miR‐30a‐5p and KDM3A were validated. HOTAIR and KDM3A were depleted, while miR‐30a‐5p was augmented in CHF mice. The elevated HOTAIR or KDM3A or could improve cardiac function, mitigate oxidative stress and pathological change, reduce inflammatory factor levels and cardiomyocyte apoptosis, while the increased miR‐30a‐5p exerted opposite effects. The miR‐30a‐5p elevation could reverse the effects of enriched HOTAIR, while BNIP3 reduction abrogated the effects of KDM3A on CHF. HOTAIR sponged miR‐30a‐5p that targeted KDM3A. HOTAIR improves cardiac injury in CHF via modulating miR‐30a‐5p to target KDM3A. This study provides novel therapeutic strategies for CHF treatment.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yakun Gao
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Hongyu Wu
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yong Mao
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yanqing Qi
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
36
|
Weng Z, Zhang B, Wu C, Yu F, Han B, Li B, Li L. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol 2021; 14:136. [PMID: 34479611 PMCID: PMC8414028 DOI: 10.1186/s13045-021-01141-y] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane structures enclosing proteins, lipids, RNAs, metabolites, growth factors, and cytokines. EVs have emerged as essential intercellular communication regulators in multiple physiological and pathological processes. Previous studies revealed that mesenchymal stem cells (MSCs) could either support or suppress tumor progression in different cancers by paracrine signaling via MSC-derived EVs. Evidence suggested that MSC-derived EVs could mimic their parental cells, possessing pro-tumor and anti-tumor effects, and inherent tumor tropism. Therefore, MSC-derived EVs can be a cell-free cancer treatment alternative. This review discusses different insights regarding MSC-derived EVs' roles in cancer treatment and summarizes bioengineered MSC-derived EVs’ applications as safe and versatile anti-tumor agent delivery platforms. Meanwhile, current hurdles of moving MSC-derived EVs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Jin M, Zhang H, Yang J, Zheng Z, Liu K. Expression mode and prognostic value of FXYD family members in colon cancer. Aging (Albany NY) 2021; 13:18404-18422. [PMID: 34270462 PMCID: PMC8351680 DOI: 10.18632/aging.203290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
The FXYD gene family comprises seven members that encode a class of small-membrane proteins characterized by an FXYD motif and interact with Na+/K+-ATPase. Until now, the expression patterns and prognostic roles of the FXYD family in colon cancer (CC) have not been systematically reported. Gene expression, methylation, clinicopathological features and the prognoses of CC patients were obtained from The Cancer Genome Atlas (TCGA) database. The expression feature and prognostic values of FXYD members were identified. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism underlying the function of the FXYD family in CC. Tumor Immune Estimation Resource (TIMER) and CIBERSORT analysis were used to assess the correlations between FXYD family members and tumor immune infiltrating cells (TIICs). FXYD family members were differentially expressed in CC except for FXYD2. FXYD2, FXYD3 and FXYD4 were revealed as independent prognostic factors for recurrence, while FXYD3 and FXYD7 were identified as prognostic factors for survival according to univariate and multivariate analyses with Cox regression. GSEA revealed that FXYD family members were involved in complicated biological functions underlying cancer progression. TIMER and CIBERSORT analyses showed significant associations between FXYD family genes and TIICs. The present study comprehensively revealed the expression mode and prognostic value of FXYD members in CC, providing insights for further study of the FXYD family as potential clinical biomarkers in CC.
Collapse
Affiliation(s)
- Ming Jin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hui Zhang
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Jun Yang
- Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Li A, Zhao Y, Li Y, Jiang L, Gu Y, Liu J. Cell-derived biomimetic nanocarriers for targeted cancer therapy: cell membranes and extracellular vesicles. Drug Deliv 2021; 28:1237-1255. [PMID: 34142930 PMCID: PMC8216268 DOI: 10.1080/10717544.2021.1938757] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology provides synthetic carriers for cancer drug delivery that protect cargos from degradation, control drug release and increase local accumulation at tumors. However, these non-natural vehicles display poor tumor targeting and potential toxicity and are eliminated by the immune system. Recently, biomimetic nanocarriers have been widely developed based on the concept of ‘mimicking nature.’ Among them, cell-derived biomimetic vehicles have become the focus of bionics research because of their multiple natural functions, such as low immunogenicity, long circulation time and targeting ability. Cell membrane-coated carriers and extracellular vesicles are two widely used cell-based biomimetic materials. Here, this review summarizes the latest progress in the application of these two biomimetic carriers in targeted cancer therapy. Their properties and performance are compared, and their future challenges and development prospects are discussed.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixiu Li
- Department of Pharmacy, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liangdi Jiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Fodor A, Lazar AL, Buchman C, Tiperciuc B, Orasan OH, Cozma A. MicroRNAs: The Link between the Metabolic Syndrome and Oncogenesis. Int J Mol Sci 2021; 22:ijms22126337. [PMID: 34199293 PMCID: PMC8231835 DOI: 10.3390/ijms22126337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) represents a cluster of disorders that increase the risk of a plethora of conditions, in particular type two diabetes, cardiovascular diseases, and certain types of cancers. MetS is a complex entity characterized by a chronic inflammatory state that implies dysregulations of adipokins and proinflammatory cytokins together with hormonal and growth factors imbalances. Of great interest is the implication of microRNA (miRNA, miR), non-coding RNA, in cancer genesis, progression, and metastasis. The adipose tissue serves as an important source of miRs, which represent a novel class of adipokines, that play a crucial role in carcinogenesis. Altered miRs secretion in the adipose tissue, in the context of MetS, might explain their implication in the oncogenesis. The interplay between miRs expressed in adipose tissue, their dysregulation and cancer pathogenesis are still intriguing, taking into consideration the fact that miRNAs show both carcinogenic and tumor suppressor effects. The aim of our review was to discuss the latest publications concerning the implication of miRs dysregulation in MetS and their significance in tumoral signaling pathways. Furthermore, we emphasized the role of miRNAs as potential target therapies and their implication in cancer progression and metastasis.
Collapse
Affiliation(s)
- Adriana Fodor
- Department of Diabetes and Nutrtion, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Andrada Luciana Lazar
- Department of Dermatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Cristina Buchman
- Department of Oncology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Brandusa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Olga Hilda Orasan
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| | - Angela Cozma
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| |
Collapse
|
40
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
41
|
Liu J, Feng Y, Zeng X, He M, Gong Y, Liu Y. Extracellular vesicles-encapsulated let-7i shed from bone mesenchymal stem cells suppress lung cancer via KDM3A/DCLK1/FXYD3 axis. J Cell Mol Med 2020; 25:1911-1926. [PMID: 33350586 PMCID: PMC7882949 DOI: 10.1111/jcmm.15866] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has suggested that extracellular vesicles (EVs) play a crucial role in lung cancer treatment. Thus, we aimed to investigate the modulatory role of bone marrow mesenchymal stem cell (BMSC)-EV-derived let-7i and their molecular mechanism in lung cancer progression. Microarray-based analysis was applied to predict lung cancer-related miRNAs and their downstream genes. RT-qPCR and Western blot analyses were conducted to determine Let-7i, lysine demethylase 3A (KDM3A), doublecortin-like kinase 1 (DCLK1) and FXYD domain-containing ion transport regulator 3 (FXYD3) expressions, after which dual-luciferase reporter gene assay and ChIP assay were used to identify the relationship among them. After loss- and gain-of-function assays, the effects of let-7i, KDM3A, DCLK1 and FXYD3 on the biological characteristics of lung cancer cells were assessed. Finally, tumour growth in nude mice was assessed by xenograft tumours in nude mice. Bioinformatics analysis screened out the let-7i and its downstream gene, that is KDM3A. The findings showed the presence of a high expression of KDM3A and DCLK1 and reduced expression of let-7i and FXYD3 in lung cancer. KDM3A elevated DCLK1 by removing the methylation of H3K9me2. Moreover, DCLK1 suppressed the FXYD3 expression. BMSC-EV-derived let-7i resulted in the down-regulation of KDM3A expression and reversed its promoting role in lung cancer development. Consistently, in vivo experiments in nude mice also confirmed that tumour growth was suppressed by the BMSC-EV-derived let-7i. In conclusion, our findings demonstrated that the BMSC-EV-derived let-7i possesses an inhibitory role in lung cancer progression through the KDM3A/DCLK1/FXYD3 axis, suggesting a new molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Jiefeng Liu
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yuhua Feng
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Zeng
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Miao He
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yujing Gong
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|