1
|
Melnik BC, Weiskirchen R, John SM, Stremmel W, Leitzmann C, Weiskirchen S, Schmitz G. White Adipocyte Stem Cell Expansion Through Infant Formula Feeding: New Insights into Epigenetic Programming Explaining the Early Protein Hypothesis of Obesity. Int J Mol Sci 2025; 26:4493. [PMID: 40429638 PMCID: PMC12110815 DOI: 10.3390/ijms26104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Prolonged breastfeeding (BF), as opposed to artificial infant formula feeding (FF), has been shown to prevent the development of obesity later in life. The aim of our narrative review is to investigate the missing molecular link between postnatal protein overfeeding-often referred to as the "early protein hypothesis"-and the subsequent transcriptional and epigenetic changes that accelerate the expansion of adipocyte stem cells (ASCs) in the adipose vascular niche during postnatal white adipose tissue (WAT) development. To achieve this, we conducted a search on the Web of Science, Google Scholar, and PubMed databases from 2000 to 2025 and reviewed 750 papers. Our findings revealed that the overactivation of mechanistic target of rapamycin complex 1 (mTORC1) and S6 kinase 1 (S6K1), which inhibits wingless (Wnt) signaling due to protein overfeeding, serves as the primary pathway promoting ASC commitment and increasing preadipocyte numbers. Moreover, excessive protein intake, combined with the upregulation of the fat mass and obesity-associated gene (FTO) and a deficiency of breast milk-derived microRNAs from lactation, disrupts the proper regulation of FTO and Wnt pathway components. This disruption enhances ASC expansion in WAT while inhibiting brown adipose tissue development. While BF has been shown to have protective effects against obesity, the postnatal transcriptional and epigenetic changes induced by excessive protein intake from FF may predispose infants to early and excessive ASC commitment in WAT, thereby increasing the risk of obesity later in life.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | | | - Claus Leitzmann
- Institut für Ernährungswissenschaft, Universität Gießen, D-35392 Gießen, Germany;
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
2
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
3
|
Han SM, Nahmgoong H, Yim KM, Kim JB. How obesity affects adipocyte turnover. Trends Endocrinol Metab 2025; 36:147-160. [PMID: 39095230 DOI: 10.1016/j.tem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Yim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Bum Kim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Neugebauer J, Raulien N, Arndt L, Akkermann D, Hobusch C, Lindhorst A, Fröba J, Gericke M. The Impact of Resident Adipose Tissue Macrophages on Adipocyte Homeostasis and Dedifferentiation. Int J Mol Sci 2024; 25:13019. [PMID: 39684730 DOI: 10.3390/ijms252313019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is concurrent with immunological dysregulation, resulting in chronic low-grade inflammation and cellular dysfunction. In pancreatic islets, this loss of function has been correlated with mature β-cells dedifferentiating into a precursor-like state through constant exposure to inflammatory stressors. As mature adipocytes likewise have the capability to dedifferentiate in vitro and in vivo, we wanted to analyze this cellular change in relation to adipose tissue (AT) inflammation and adipose tissue macrophage (ATM) activity. Using our organotypic AT explant culture method combined with a double-reporter mouse model for labeling ATMs and mature adipocytes, we were able to visualize and quantify dedifferentiated fat (DFAT) cells in AT explants. Preliminary testing showed increased dedifferentiation after tamoxifen (TAM) stimulation, making TAM-dependent lineage-tracing models unsuitable for quantification of naturally occurring DFAT cells. The regulatory role of ATMs in adipocyte dedifferentiation was shown through macrophage depletion using Plexxicon 5622 or clodronate liposomes, which significantly increased DFAT cell levels. Subsequent bulk RNA sequencing of macrophage-depleted explants revealed enrichment of the tumor necrosis factor α (TNFα) signaling pathway as well as downregulation of associated genes. Direct stimulation with TNFα decreased adipocyte dedifferentiation, while application of a TNFα-neutralizing antibody did not significantly alter DFAT cell levels. Our findings suggest a regulatory role of resident ATMs in maintaining the mature adipocyte phenotype and preventing excessive adipocyte dedifferentiation. The specific regulatory pathways as well as the impact that DFAT cells might have on ATMs, and vice versa, are subject to further investigation.
Collapse
Affiliation(s)
- Julia Neugebauer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Lilli Arndt
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Dagmar Akkermann
- Paul-Flechsig-Institute, Leipzig University, 04103 Leipzig, Germany
| | | | | | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Abobeleira JP, Neto AC, Mauersberger J, Salazar M, Botelho M, Fernandes AS, Martinho M, Serrão MP, Rodrigues AR, Almeida H, Gouveia AM, Neves D. Evidence of Browning and Inflammation Features in Visceral Adipose Tissue of Women with Endometriosis. Arch Med Res 2024; 55:103064. [PMID: 39244839 DOI: 10.1016/j.arcmed.2024.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Patients with endometriosis tend to have a low body mass index, suggesting an inverse relationship between body fat and risk of disease. This is supported by evidence that miRNAs differentially expressed in endometriosis induce browning of pre-adipocytes in vitro. Thus, we hypothesize that endometriosis may underlie adipose tissue (AT) dysfunction and browning. AIMS Identify inflammation and browning processes in AT collected from endometriosis patients. METHODS Visceral and subcutaneous AT samples were obtained during endometriosis (n = 32) or uterine myoma (n = 14; controls) surgery. Blood catecholamines were determined by high-performance liquid chromatography while IL-6 and TGF-β levels were quantified by ELISA. Adipocyte cross-sectional areas were analyzed in H&E-stained sections by computer-assisted morphometry. Macrophages (F4/80; Galectin-3) and browning activation (UCP-1; PGC-1α) in tissues were identified by dual label immunofluorescence. Expression of inflammatory (IL-6; MCP-1; Galectin-3; CD206; TIMP1; TGF-β) and browning-related (UCP-1; PGC-1α; DIO2; CITED1; CIDEA; TMEM26; TBX1; PRDM16; PPAR-γ) molecules in AT were assessed by RT-PCR and Western blotting. RESULTS Compared to controls, patients presented smaller adipocytes, especially in VAT, and lower norepinephrine levels. Serum IL-6, but not TGF-β, was increased in patients. UCP-1, PGC-1α, IL-6, and MCP-1 were upregulated in VAT from endometriosis women, which also evidenced a reduction of CD206, relative to controls. However, no differences were found in mRNA expression of IL-6, TIMP1, and TGF-β nor Galectin-3 protein levels. In SAT, protein expression remained unchanged between patients and controls. CONCLUSIONS Our findings support an endometriosis' role as a pro-catabolic state along with local signals of VAT browning and inflammation.
Collapse
Affiliation(s)
- José Pedro Abobeleira
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Jan Mauersberger
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Maria Salazar
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Maria Botelho
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Ana Sofia Fernandes
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Margarida Martinho
- Department of Obstetrics and Gynecology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Maria Paula Serrão
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Adriana Raquel Rodrigues
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Henrique Almeida
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Alexandra Maria Gouveia
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal
| | - Delminda Neves
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, i3S, Porto, Portugal.
| |
Collapse
|
6
|
DeBari MK, Johnston EK, Scott JV, Ilzuka E, Sun W, Webster-Wood VA, Abbott RD. A Preliminary Study on Factors That Drive Patient Variability in Human Subcutaneous Adipose Tissues. Cells 2024; 13:1240. [PMID: 39120271 PMCID: PMC11311805 DOI: 10.3390/cells13151240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue is a dynamic regulatory organ that has profound effects on the overall health of patients. Unfortunately, inconsistencies in human adipose tissues are extensive and multifactorial, including large variability in cellular sizes, lipid content, inflammation, extracellular matrix components, mechanics, and cytokines secreted. Given the high human variability, and since much of what is known about adipose tissue is from animal models, we sought to establish correlations and patterns between biological, mechanical, and epidemiological properties of human adipose tissues. To do this, twenty-six independent variables were cataloged for twenty patients, which included patient demographics and factors that drive health, obesity, and fibrosis. A factorial analysis for mixed data (FAMD) was used to analyze patterns in the dataset (with BMI > 25), and a correlation matrix was used to identify interactions between quantitative variables. Vascular endothelial growth factor A (VEGFA) and actin alpha 2, smooth muscle (ACTA2) gene expression were the highest loadings in the first two dimensions of the FAMD. The number of adipocytes was also a key driver of patient-related differences, where a decrease in the density of adipocytes was associated with aging. Aging was also correlated with a decrease in overall lipid percentage of subcutaneous tissue, with lipid deposition being favored extracellularly, an increase in transforming growth factor-β1 (TGFβ1), and an increase in M1 macrophage polarization. An important finding was that self-identified race contributed to variance between patients in this study, where Black patients had significantly lower gene expression levels of TGFβ1 and ACTA2. This finding supports the urgent need to account for patient ancestry in biomedical research to develop better therapeutic strategies for all patients. Another important finding was that TGFβ induced factor homeobox 1 (TGIF1), an understudied signaling molecule, which is highly correlated with leptin signaling, was correlated with metabolic inflammation. Furthermore, this study draws attention to what we define as "extracellular lipid droplets", which were consistently found in collagen-rich regions of the obese adipose tissues evaluated here. Reduced levels of TGIF1 were correlated with higher numbers of extracellular lipid droplets and an inability to suppress fibrotic changes in adipose tissue. Finally, this study indicated that M1 and M2 macrophage markers were correlated with each other and leptin in patients with a BMI > 25. This finding supports growing evidence that macrophage polarization in obesity involves a complex, interconnecting network system rather than a full switch in activation patterns from M2 to M1 with increasing body mass. Overall, this study reinforces key findings in animal studies and identifies important areas for future research, where human and animal studies are divergent. Understanding key drivers of human patient variability is required to unravel the complex metabolic health of unique patients.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Elizabeth K. Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Jacqueline V. Scott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Erica Ilzuka
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Wenhuan Sun
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Victoria A. Webster-Wood
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| |
Collapse
|
7
|
Huang X, Chen J, Li H, Cai Y, Liu L, Dong Q, Li Y, Ren Y, Xiang W, He X. LncRNA SNHG12 suppresses adipocyte inflammation and insulin resistance by regulating the HDAC9/Nrf2 axis. FASEB J 2024; 38:e23794. [PMID: 38967258 DOI: 10.1096/fj.202400236rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Obesity is often associated with low-grade inflammation. The incidence of obesity has increased annually worldwide, which seriously affects human health. A previous study indicated that long noncoding RNA SNHG12 was downregulated in obesity. Nevertheless, the role of SNHG12 in obesity remains to be elucidated. In this study, qRT-PCR, western blot, and ELISA were utilized to examine the gene and protein expression. Flow cytometry was employed to investigate the M2 macrophage markers. RNA pull-down assay and RIP were utilized to confirm the interactions of SNHG12, hnRNPA1, and HDAC9. Eventually, a high-fat diet-fed mouse model was established for in vivo studies. SNHG12 overexpression suppressed adipocyte inflammation and insulin resistance and promoted M2 polarization of macrophages that was caused by TNF-α treatment. SNHG12 interacted with hnRNPA1 to downregulate HDAC9 expression, which activated the Nrf2 signaling pathway. HDAC9 overexpression reversed the effect of SNHG12 overexpression on inflammatory response, insulin resistance, and M2 phenotype polarization. Overexpression of SNHG12 improved high-fat diet-fed mouse tissue inflammation. This study revealed the protective effect of SNHG12 against adipocyte inflammation and insulin resistance. This result further provides a new therapeutic target for preventing inflammation and insulin resistance in obesity.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China
| | - Jixiong Chen
- Department of Medical Care Center, Hainan Provincial People's Hospital, Haikou, China
| | - Haidan Li
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China
| | - Yuhua Cai
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China
| | - Li Liu
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China
| | - Qi Dong
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China
| | - Yan Li
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, China
| | - Yi Ren
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou, China
| | - Wei Xiang
- Hainan Women and Children's Medical Center, Haikou, China
| | - Xiaojie He
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Arlat A, Renoud ML, Nakhle J, Thomas M, Fontaine J, Arnaud E, Dray C, Authier H, Monsarrat P, Coste A, Casteilla L, Ousset M, Cousin B. Generation of functionally active resident macrophages from adipose tissue by 3D cultures. Front Immunol 2024; 15:1356397. [PMID: 38975341 PMCID: PMC11224291 DOI: 10.3389/fimmu.2024.1356397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Within adipose tissue (AT), different macrophage subsets have been described, which played pivotal and specific roles in upholding tissue homeostasis under both physiological and pathological conditions. Nonetheless, studying resident macrophages in-vitro poses challenges, as the isolation process and the culture for extended periods can alter their inherent properties. Methods Stroma-vascular cells isolated from murine subcutaneous AT were seeded on ultra-low adherent plates in the presence of macrophage colony-stimulating factor. After 4 days of culture, the cells spontaneously aggregate to form spheroids. A week later, macrophages begin to spread out of the spheroid and adhere to the culture plate. Results This innovative three-dimensional (3D) culture method enables the generation of functional mature macrophages that present distinct genic and phenotypic characteristics compared to bone marrow-derived macrophages. They also show specific metabolic activity and polarization in response to stimulation, but similar phagocytic capacity. Additionally, based on single-cell analysis, AT-macrophages generated in 3D culture mirror the phenotypic and functional traits of in-vivo AT resident macrophages. Discussion Our study describes a 3D in-vitro system for generating and culturing functional AT-resident macrophages, without the need for cell sorting. This system thus stands as a valuable resource for exploring the differentiation and function of AT-macrophages in vitro in diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- Adèle Arlat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Marie-Laure Renoud
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Jean Nakhle
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Miguel Thomas
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Jessica Fontaine
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Emmanuelle Arnaud
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Cédric Dray
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Hélène Authier
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Paul Monsarrat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
- Dental Faculty and Hospital of Toulouse – Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France
| | - Agnès Coste
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Marielle Ousset
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Béatrice Cousin
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| |
Collapse
|
9
|
Zubova SG, Morshneva AV. The role of autophagy and macrophage polarization in the processes of chronic inflammation and regeneration. ЦИТОЛОГИЯ 2024; 66:20-34. [DOI: 10.31857/s0041377124010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The cause of many seriousillnesses, including diabetes, obesity, osteoporosis and neurodegenerative diseases is chronic inflammation that develops in adipose tissue, bones or the brain. This inflammation occurs due to a shift in the polarization of macrophages/microglia towards the pro-inflammatory phenotype M1. It has now been proven that the polarization of macrophages is determined by the intracellular level of autophagy in the macrophage. By modulating autophagy, it is possible to cause switching of macrophage activities towards M1 or M2. Summarizing the material accumulated in the literature, we believe that the activation of autophagy reprograms the macrophage towards M2, replacing its protein content, receptor apparatus and including a different type of metabolism. The term reprogramming is most suitable for this process, since it is followed by a change in the functional activity of the macrophage, namely, switching from cytotoxic pro-inflammatory activity to anti-inflammatory (regenerative). Modulation of autophagy can be an approach to the treatment of oncological diseases, neurodegenerative disorders, osteoporosis, diabetes and other serious diseases.
Collapse
Affiliation(s)
- S. G. Zubova
- Institute of Cytology of the Russian Academy of Sciences
| | | |
Collapse
|
10
|
Zubova SG, Morshneva AV. The Role of Autophagy and Macrophage Polarization in the Process of Chronic Inflammation and Regeneration. CELL AND TISSUE BIOLOGY 2024; 18:244-256. [DOI: 10.1134/s1990519x24700184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 01/04/2025]
|
11
|
Wu Y, Teh YC, Chong SZ. Going Full TeRM: The Seminal Role of Tissue-Resident Macrophages in Organ Remodeling during Pregnancy and Lactation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:513-521. [PMID: 38315948 DOI: 10.4049/jimmunol.2300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 02/07/2024]
Abstract
During pregnancy and lactation, the uterus and mammary glands undergo remarkable structural changes to perform their critical reproductive functions before reverting to their original dormant state upon childbirth and weaning, respectively. Underlying this incredible plasticity are complex remodeling processes that rely on coordinated decisions at both the cellular and tissue-subunit levels. With their exceptional versatility, tissue-resident macrophages play a variety of supporting roles in these organs during each stage of development, ranging from maintaining immune homeostasis to facilitating tissue remodeling, although much remains to be discovered about the identity and regulation of individual macrophage subsets. In this study, we review the increasingly appreciated contributions of these immune cells to the reproductive process and speculate on future lines of inquiry. Deepening our understanding of their interactions with the parenchymal or stromal populations in their respective niches may reveal new strategies to ameliorate complications in pregnancy and breastfeeding, thereby improving maternal health and well-being.
Collapse
Affiliation(s)
- Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
12
|
Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. JOURNAL OF CELLULAR SIGNALING 2024; 5:65-86. [PMID: 38826152 PMCID: PMC11141760 DOI: 10.33696/signaling.5.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Support for stem cell self-renewal and differentiation hinges upon the intricate microenvironment termed the stem cell 'niche'. Within the adipose tissue stem cell niche, diverse cell types, such as endothelial cells, immune cells, mural cells, and adipocytes, intricately regulate the function of adipocyte precursors. These interactions, whether direct or indirect, play a pivotal role in governing the balance between self-renewal and differentiation of adipocyte precursors into adipocytes. The mechanisms orchestrating the maintenance and coordination of this niche are still in the early stages of comprehension, despite their crucial role in regulating adipose tissue homeostasis. The complexity of understanding adipocyte precursor renewal and differentiation is amplified due to the challenges posed by the absence of suitable surface receptors for identification, limitations in creating optimal ex vivo culture conditions for expansion and constraints in conducting in vivo studies. This review delves into the current landscape of knowledge surrounding adipocyte precursors within the adipose stem cell niche. We will review the identification of adipocyte precursors, the cell-cell interactions they engage in, the factors influencing their renewal and commitment toward adipocytes and the transformations they undergo during instances of obesity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
13
|
Yan L, Guo L. Exercise-regulated white adipocyte differentitation: An insight into its role and mechanism. J Cell Physiol 2023; 238:1670-1692. [PMID: 37334782 DOI: 10.1002/jcp.31056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
White adipocytes play a key role in the regulation of fat mass amount and energy balance. An appropriate level of white adipocyte differentiation is important for maintaining metabolic homeostasis. Exercise, an important way to improve metabolic health, can regulate white adipocyte differentiation. In this review, the effect of exercise on the differentiation of white adipocytes is summarized. Exercise could regulate adipocyte differentiation in multiple ways, such as exerkines, metabolites, microRNAs, and so on. The potential mechanism underlying the role of exercise in adipocyte differentiation is also reviewed and discussed. In-depth investigation of the role and mechanism of exercise in white adipocyte differentiation would provide new insights into exercise-mediated improvement of metabolism and facilitate the application of exercise-based strategy against obesity.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
14
|
English J, Orofino J, Cederquist CT, Paul I, Li H, Auwerx J, Emili A, Belkina A, Cardamone D, Perissi V. GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity. Mol Metab 2023; 69:101682. [PMID: 36731652 PMCID: PMC9922684 DOI: 10.1016/j.molmet.2023.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells. METHODS We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding. RESULTS Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFβ-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion. CONCLUSIONS Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the 'secretome' released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Joseph Orofino
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Carly T. Cederquist
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Indranil Paul
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Anna Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Dafne Cardamone
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
15
|
Papotti B, Opstad TB, Åkra S, Tønnessen T, Braathen B, Hansen CH, Arnesen H, Solheim S, Seljeflot I, Ronda N. Macrophage polarization markers in subcutaneous, pericardial, and epicardial adipose tissue are altered in patients with coronary heart disease. Front Cardiovasc Med 2023; 10:1055069. [PMID: 36937936 PMCID: PMC10017535 DOI: 10.3389/fcvm.2023.1055069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Epicardial and pericardial adipose tissue (EAT and PAT) surround and protect the heart, with EAT directly sharing the microcirculation with the myocardium, possibly presenting a distinct macrophage phenotype that might affect the inflammatory environment in coronary heart disease (CHD). This study aims to investigate the expression of genes in different AT compartments driving the polarization of AT macrophages toward an anti-inflammatory (L-Galectin 9; CD206) or pro-inflammatory (NOS2) phenotype. Methods EAT, PAT, and subcutaneous (SAT) biopsies were collected from 52 CHD patients undergoing coronary artery bypass grafting, and from 22 CTRLs undergoing aortic valve replacement. L-Galectin9 (L-Gal9), CD206, and NOS2 AT gene expression and circulating levels were analyzed through RT-PCR and ELISA, respectively. Results L-Gal9, CD206, and NOS2 gene expression was similar in all AT compartments in CHD and CTRLs, as were also L-Gal9 and CD206 circulating levels, while NOS2 serum levels were higher in CHD (p = 0.012 vs. CTRLs). In CTRLs, NOS2 expression was lower in EAT vs. SAT (p = 0.007), while in CHD patients CD206 expression was lower in both SAT and EAT as compared to PAT (p = 0.003, p = 0.006, respectively), suggestive of a possible macrophage reprogramming toward a pro-inflammatory phenotype in EAT. In CHD patients, NOS2 expression in SAT correlated to that in PAT and EAT (p = 0.007, both), CD206 expression correlated positively to L-Gal9 (p < 0.001) only in EAT, and CD206 expression associated with that of macrophage identifying markers in all AT compartments (p < 0.001, all). In CHD patients, subjects with LDL-C above 1.8 mmol/L showed significantly higher NOS2 expression in PAT and EAT as compared to subjects with LDL-C levels below (p < 0.05), possibly reflecting increased cardiac AT pro-inflammatory activation. In SAT and PAT, CD206 expression associated with BMI in both CHD and CTRLs (p < 0.05, all), and with L-Gal9 in EAT, however only in CTRLs (p = 0.002). Conclusion CHD seems to be accompanied by an altered cardiac, and especially epicardial AT macrophage polarization. This may represent an important pathophysiological mechanism and a promising field of therapy targeting the excessive AT inflammation, in need of further investigation.
Collapse
Affiliation(s)
- Bianca Papotti
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Food and Drug, University of Parma, Parma, Italy
- *Correspondence: Bianca Papotti,
| | - Trine Baur Opstad
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sissel Åkra
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Theis Tønnessen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Bjørn Braathen
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Charlotte Holst Hansen
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Harald Arnesen
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Solheim
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingebjørg Seljeflot
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Nawaz A, Bilal M, Fujisaka S, Kado T, Aslam MR, Ahmed S, Okabe K, Igarashi Y, Watanabe Y, Kuwano T, Tsuneyama K, Nishimura A, Nishida Y, Yamamoto S, Sasahara M, Imura J, Mori H, Matzuk MM, Kudo F, Manabe I, Uezumi A, Nakagawa T, Oishi Y, Tobe K. Depletion of CD206 + M2-like macrophages induces fibro-adipogenic progenitors activation and muscle regeneration. Nat Commun 2022; 13:7058. [PMID: 36411280 PMCID: PMC9678897 DOI: 10.1038/s41467-022-34191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-β1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-β signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells.
Collapse
Affiliation(s)
- Allah Nawaz
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.16694.3c0000 0001 2183 9479Present Address: Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215 USA
| | - Muhammad Bilal
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Shiho Fujisaka
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Tomonobu Kado
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Muhammad Rahil Aslam
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Saeed Ahmed
- grid.415712.40000 0004 0401 3757Department of Medicine and Surgery, Rawalpindi Medical University, Rawalpindi, Punjab 46000 Pakistan
| | - Keisuke Okabe
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yoshiko Igarashi
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yoshiyuki Watanabe
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Takahide Kuwano
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Koichi Tsuneyama
- grid.267335.60000 0001 1092 3579Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503 Japan
| | - Ayumi Nishimura
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yasuhiro Nishida
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Seiji Yamamoto
- grid.267346.20000 0001 2171 836XDepartment of Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Masakiyo Sasahara
- grid.267346.20000 0001 2171 836XDepartment of Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Johji Imura
- grid.267346.20000 0001 2171 836XDepartment of Diagnostic Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Hisashi Mori
- grid.267346.20000 0001 2171 836XDepartment of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Martin M. Matzuk
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030-3411 USA
| | - Fujimi Kudo
- grid.136304.30000 0004 0370 1101Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Ichiro Manabe
- grid.136304.30000 0004 0370 1101Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Akiyoshi Uezumi
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Takashi Nakagawa
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yumiko Oishi
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Kazuyuki Tobe
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| |
Collapse
|
17
|
Wu S, Ma J, Liu J, Liu C, Ni S, Dai T, Wang Y, Weng Y, Zhao H, Zhou D, Zhao X. Immunomodulation of Telmisartan-Loaded PCL/PVP Scaffolds on Macrophages Promotes Endogenous Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15942-15955. [PMID: 35353482 DOI: 10.1021/acsami.1c24748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomaterial-immune system interactions play an important role in postimplantation osseointegration to retain the functionality of healthy and intact bones. Therefore, appropriate osteoimmunomodulation of implants has been considered and validated as an efficient strategy to alleviate inflammation and enhance new bone formation. Here, we fabricated a nanostructured PCL/PVP (polycaprolactone/polyvinylpyrrolidone) electrospinning scaffold for cell adhesion, tissue ingrowth, and bone defect padding. In addition, telmisartan, an angiotensin 2 receptor blocker with distinct immune bioactivity, was doped into PCL-/PVP-electrospun scaffolds at different proportions [1% (TPP-1), 5% (TPP-5), and 10% (TPP-10)] to investigate its immunomodulatory effects and osteoinductivity/conductivity. Telmisartan-loaded scaffolds displayed in vitro anti-inflammatory bioactivity on lipopolysaccharide-induced M1 macrophages by polarizing them to an M2-like phenotype and exhibited pro-osteogenic properties on bone marrow-derived mesenchymal stem cells (BMSCs). Histological analysis and micro-CT results of a rat skull defect model also showed that the telmisartan-loaded scaffolds induced a higher M2/M1 ratio, less inflammatory infiltration, and better bone regenerative patterns. Furthermore, activation of the BMP2 (bone morphogenetic protein-2)-Smad signaling pathway was found to be dominant in telmisartan-loaded scaffold-mediated macrophage-BMSC interactions. These findings indicate that telmisartan incorporation with PCL/PVP nanofibrous scaffolds is a potential therapeutic strategy for promoting bone healing by modulating M1 macrophages to a more M2 phenotype at early stages of postimplantation.
Collapse
Affiliation(s)
- Siyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Jiayi Ma
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Jun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Ting Dai
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Yan Wang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Yiping Weng
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Hongbin Zhao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Dong Zhou
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| |
Collapse
|
18
|
Dai M, Yang X, Yu Y, Pan W. Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Front Immunol 2022; 13:827486. [PMID: 35281054 PMCID: PMC8913526 DOI: 10.3389/fimmu.2022.827486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic health problem. Metabolic inflammation, lipid accumulation and insulin resistance contribute to the progression of these diseases, thereby becoming targets for drug development. Epidemiological data have showed that the rate of helminth infection negatively correlates with the incidence of obesity and Mets. Correspondingly, numerous animal experiments and a few of clinic trials in human demonstrate that helminth infection or its derived molecules can mitigate obesity and Mets via induction of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and improvement of glucose tolerance, insulin resistance and metabolic inflammation. Interestingly, sporadic studies also uncover that several helminth infections can reshape gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may be a novel direction for obesity and Mets therapy. The present article reviews the molecular mechanism of how helminth masters immunity and metabolism in obesity.
Collapse
Affiliation(s)
- Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| |
Collapse
|
19
|
Özdemir AT, Nalbantsoy A, Özgül Özdemir RB, Berdeli A. Effects of 15-Lipoxygenase Overexpressing Adipose Tissue Mesenchymal Stem Cells on The Th17 / Treg Plasticity. Prostaglandins Other Lipid Mediat 2021; 159:106610. [PMID: 34963632 DOI: 10.1016/j.prostaglandins.2021.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
15-lipoxygenase (15-LOX) is a critical enzyme that allows the direction of arachidonic acid metabolism to change from inflammation into the resolution. This study aims to reveal how the immunomodulation properties of mesenchymal stem cells (MSC) alter by the 15-LOX overexpression. For this purpose, peripheral blood mononuclear cells (PBMCs) isolated from seven healthy volunteers, and both MSCs and 15-LOX overexpressing MSCs (15-LOXMSCs) were co-cultured at different cell ratios (1/1, 1/5 and 1/10). Alterations of CD4+Tbet+, CD4+Gata3+, CD4+RoRC2+, and CD4+FoxP3+ lymphocyte frequencies were detected by flow cytometry, and IFN-γ, IL-4, IL-6, IL-10, IL-17a, TGF-β and LXA4 levels of medium supernatants were measured by ELISA method. According to our findings, MSC and 15-LOXMSCs have a suppressive effect on PHA activated PBMCs. However, as the ratio of PBMCs increased, the effects of 15-LOXMSCs increased significantly, while the effects of MSCs decreased. The most notable effect of the 15-LOX modification was the significant reduction in IL-6, IL-10 and IL-17a expression and the accompanying increase in TGF-β and LXA4 levels. We also observed a similar situation between CD4+RoRC2+ and CD4+FoxP3+ cell frequencies. These data suggested that the effects of MSCs on the balance of Th17 / Treg could change by the 15-LOX overexpression, and this might be in favor of the Treg cells.
Collapse
Affiliation(s)
- Alper Tunga Özdemir
- Ege University, Institute of Health Sciences, Department of Stem Cell, Izmir, Turkey.
| | - Ayşe Nalbantsoy
- Manisa City Hospital, Allergy and Clinical Immunology Clinic, Manisa, Turkey
| | | | - Afig Berdeli
- Ege University, Institute of Health Sciences, Department of Stem Cell, Izmir, Turkey
| |
Collapse
|
20
|
Cataldi S, Aprile M, Melillo D, Mucel I, Giorgetti-Peraldi S, Cormont M, Italiani P, Blüher M, Tanti JF, Ciccodicola A, Costa V. TNFα Mediates Inflammation-Induced Effects on PPARG Splicing in Adipose Tissue and Mesenchymal Precursor Cells. Cells 2021; 11:cells11010042. [PMID: 35011604 PMCID: PMC8750445 DOI: 10.3390/cells11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Low-grade chronic inflammation and reduced differentiation capacity are hallmarks of hypertrophic adipose tissue (AT) and key contributors of insulin resistance. We identified PPARGΔ5 as a dominant-negative splicing isoform overexpressed in the AT of obese/diabetic patients able to impair adipocyte differentiation and PPARγ activity in hypertrophic adipocytes. Herein, we investigate the impact of macrophage-secreted pro-inflammatory factors on PPARG splicing, focusing on PPARGΔ5. We report that the epididymal AT of LPS-treated mice displays increased PpargΔ5/cPparg ratio and reduced expression of Pparg-regulated genes. Interestingly, pro-inflammatory factors secreted from murine and human pro-inflammatory macrophages enhance the PPARGΔ5/cPPARG ratio in exposed adipogenic precursors. TNFα is identified herein as factor able to alter PPARG splicing—increasing PPARGΔ5/cPPARG ratio—through PI3K/Akt signaling and SRp40 splicing factor. In line with in vitro data, TNFA expression is higher in the SAT of obese (vs. lean) patients and positively correlates with PPARGΔ5 levels. In conclusion, our results indicate that inflammatory factors secreted by metabolically-activated macrophages are potent stimuli that modulate the expression and splicing of PPARG. The resulting imbalance between canonical and dominant negative isoforms may crucially contribute to impair PPARγ activity in hypertrophic AT, exacerbating the defective adipogenic capacity of precursor cells.
Collapse
Affiliation(s)
- Simona Cataldi
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
| | - Marianna Aprile
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (D.M.); (P.I.)
| | - Inès Mucel
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Sophie Giorgetti-Peraldi
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Mireille Cormont
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (D.M.); (P.I.)
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jean-François Tanti
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
- Department of Science and Technology, University of Naples ‘‘Parthenope’’, 80143 Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
- Correspondence: ; Tel.: +39-0816132617
| |
Collapse
|
21
|
Nawaz A, Nishida Y, Takikawa A, Fujisaka S, Kado T, Aminuddin A, Bilal M, Jeelani I, Aslam MR, Nishimura A, Kuwano T, Watanabe Y, Igarashi Y, Okabe K, Ahmed S, Manzoor A, Usui I, Yagi K, Nakagawa T, Tobe K. Astaxanthin, a Marine Carotenoid, Maintains the Tolerance and Integrity of Adipose Tissue and Contributes to Its Healthy Functions. Nutrients 2021; 13:4374. [PMID: 34959926 PMCID: PMC8703397 DOI: 10.3390/nu13124374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, obesity-induced insulin resistance, type 2 diabetes, and cardiovascular disease have become major social problems. We have previously shown that Astaxanthin (AX), which is a natural antioxidant, significantly ameliorates obesity-induced glucose intolerance and insulin resistance. It is well known that AX is a strong lipophilic antioxidant and has been shown to be beneficial for acute inflammation. However, the actual effects of AX on chronic inflammation in adipose tissue (AT) remain unclear. To observe the effects of AX on AT functions in obese mice, we fed six-week-old male C57BL/6J on high-fat-diet (HFD) supplemented with or without 0.02% of AX for 24 weeks. We determined the effect of AX at 10 and 24 weeks of HFD with or without AX on various parameters including insulin sensitivity, glucose tolerance, inflammation, and mitochondrial function in AT. We found that AX significantly reduced oxidative stress and macrophage infiltration into AT, as well as maintaining healthy AT function. Furthermore, AX prevented pathological AT remodeling probably caused by hypoxia in AT. Collectively, AX treatment exerted anti-inflammatory effects via its antioxidant activity in AT, maintained the vascular structure of AT and preserved the stem cells and progenitor's niche, and enhanced anti-inflammatory hypoxia induction factor-2α-dominant hypoxic response. Through these mechanisms of action, it prevented the pathological remodeling of AT and maintained its integrity.
Collapse
Affiliation(s)
- Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (I.J.); (K.O.); (T.N.)
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Aminuddin Aminuddin
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
- Department of Nutrition, Faculty of Medicine, University of Hasanuddin, Makassar 90245, Indonesia
| | - Muhammad Bilal
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Ishtiaq Jeelani
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (I.J.); (K.O.); (T.N.)
| | - Muhammad Rahil Aslam
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Ayumi Nishimura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Takahide Kuwano
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Keisuke Okabe
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (I.J.); (K.O.); (T.N.)
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
- Center for Clinical Research, Faculty of Medicine, Toyama University Hospital, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Saeed Ahmed
- Department of Medicine and Surgery, Rawalpindi Medical University, Rawalpindi 46000, Pakistan;
| | | | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu 321-0293, Japan;
| | - Kunimasa Yagi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (I.J.); (K.O.); (T.N.)
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (A.T.); (S.F.); (T.K.); (A.A.); (M.B.); (M.R.A.); (A.N.); (T.K.); (Y.W.); (Y.I.); (K.Y.)
| |
Collapse
|
22
|
Bilal M, Nawaz A, Kado T, Aslam MR, Igarashi Y, Nishimura A, Watanabe Y, Kuwano T, Liu J, Miwa H, Era T, Ikuta K, Imura J, Yagi K, Nakagawa T, Fujisaka S, Tobe K. Fate of adipocyte progenitors during adipogenesis in mice fed a high-fat diet. Mol Metab 2021; 54:101328. [PMID: 34562641 PMCID: PMC8495176 DOI: 10.1016/j.molmet.2021.101328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Expansion of adipose tissue during obesity through the recruitment of newly generated adipocytes (hyperplasia) is metabolically healthy, whereas that through the enlargement of pre-existing adipocytes (hypertrophy) leads to metabolic complications. Accumulating evidence from genetic fate mapping studies suggests that in animal models receiving a high-fat diet (HFD), only adipocyte progenitors (APs) in gonadal white adipose tissue (gWAT) have proliferative potential. However, the proliferative potential and differentiating capacity of APs in the inguinal WAT (iWAT) of male mice remains controversial. The objective of this study was to investigate the proliferative and adipogenic potential of APs in the iWAT of HFD-fed male mice. METHODS We generated PDGFRα-GFP-Cre-ERT2/tdTomato (KI/td) mice and traced PDGFRα-positive APs in male mice fed HFD for 8 weeks. We performed a comprehensive phenotypic analysis, including the histology, immunohistochemistry, flow cytometry, and gene expression analysis, of KI/td mice fed HFD. RESULTS Contrary to the findings of others, we found an increased number of newly generated tdTomato+ adipocytes in the iWAT of male mice, which was smaller than that observed in the gWAT. We found that in male mice, the iWAT has more proliferating tdTomato+ APs than the gWAT. We also found that tdTomato+ APs showed a higher expression of Dpp4 and Pi16 than tdTomato- APs, and the expression of these genes was significantly higher in the iWAT than in the gWAT of mice fed HFD for 8 weeks. Collectively, our results reveal that HFD feeding induces the proliferation of tdTomato+ APs in the iWAT of male mice. CONCLUSION In male mice, compared with gWAT, iWAT undergoes hyperplasia in response to 8 weeks of HFD feeding through the recruitment of newly generated adipocytes due to an abundance of APs with a high potential for proliferation and differentiation.
Collapse
Affiliation(s)
- Muhammad Bilal
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Muhammad Rahil Aslam
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ayumi Nishimura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takahide Kuwano
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jianhui Liu
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroyuki Miwa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Koichi Ikuta
- Department of Virus Research, Laboratory of Immune Regulation, Institute of Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kunimasa Yagi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
23
|
Painter JD, Akbari O. Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Front Immunol 2021; 12:727008. [PMID: 34489979 PMCID: PMC8416625 DOI: 10.3389/fimmu.2021.727008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2) are the innate counterparts of Th2 cells and are critically involved in the maintenance of homeostasis in a variety of tissues. Instead of expressing specific antigen receptors, ILC2s respond to external stimuli such as alarmins released from damage. These cells help control the delicate balance of inflammation in adipose tissue, which is a determinant of metabolic outcome. ILC2s play a key role in the pathogenesis of type 2 diabetes mellitus (T2DM) through their protective effects on tissue homeostasis. A variety of crosstalk takes place between resident adipose cells and ILC2s, with each interaction playing a key role in controlling this balance. ILC2 effector function is associated with increased browning of adipose tissue and an anti-inflammatory immune profile. Trafficking and maintenance of ILC2 populations are critical for tissue homeostasis. The metabolic environment and energy source significantly affect the number and function of ILC2s in addition to affecting their interactions with resident cell types. How ILC2s react to changes in the metabolic environment is a clear determinant of the severity of disease. Treating sources of metabolic instability via critical immune cells provides a clear avenue for modulation of systemic homeostasis and new treatments of T2DM.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
AGMO Inhibitor Reduces 3T3-L1 Adipogenesis. Cells 2021; 10:cells10051081. [PMID: 34062826 PMCID: PMC8147360 DOI: 10.3390/cells10051081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Alkylglycerol monooxygenase (AGMO) is a tetrahydrobiopterin (BH4)-dependent enzyme with major expression in the liver and white adipose tissue that cleaves alkyl ether glycerolipids. The present study describes the disclosure and biological characterization of a candidate compound (Cp6), which inhibits AGMO with an IC50 of 30–100 µM and 5–20-fold preference of AGMO relative to other BH4-dependent enzymes, i.e., phenylalanine-hydroxylase and nitric oxide synthase. The viability and metabolic activity of mouse 3T3-L1 fibroblasts, HepG2 human hepatocytes and mouse RAW264.7 macrophages were not affected up to 10-fold of the IC50. However, Cp6 reversibly inhibited the differentiation of 3T3-L1 cells towards adipocytes, in which AGMO expression was upregulated upon differentiation. Cp6 reduced the accumulation of lipid droplets in adipocytes upon differentiation and in HepG2 cells exposed to free fatty acids. Cp6 also inhibited IL-4-driven differentiation of RAW264.7 macrophages towards M2-like macrophages, which serve as adipocyte progenitors in adipose tissue. Collectively, the data suggest that pharmacologic AGMO inhibition may affect lipid storage.
Collapse
|
25
|
Basic Science of Resident Stem Cells. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Chishti MA, Mohi-Ud-Din E, Zakki SA, Aslam MR, Siddiqui S, Ahmad S, Hayee A. Antibacterial and Toxicity Evaluation of Eastern Medicine Formulation Eczegone for the Management of Eczema. Dose Response 2020; 18:1559325820956798. [PMID: 32952485 PMCID: PMC7485166 DOI: 10.1177/1559325820956798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
The present study was conducted to evaluate the antibacterial activity, in vitro and in vivo cytotoxicity, cell viability and safety of Eastern Medicine coded medicinal formulation Eczegone comprising extracts of Azadirachta indica (Azin), Fumaria indica (Fuin), Sphaeranthus indicus (Spin) and Lawsonia inermis (Lain). This work also evaluated antibacterial activity of Eczegone formulation having above mentioned plants ethanolic extracts against different bacteria’s by disk diffusion method. In vitro toxicity of Eczegone formulation was investigated by using human skin keratinocytes HaCaT cell line, crystal violet stained cells, and methyl tetrazolium cytotoxicity (MTT) assay. In vivo acute oral and dermal cytotoxicity was determined by using Swiss albino mice and albino rabbits, respectively. The Eczegone formulation showed antibacterial activity against 3 gram negative bacteria including Escherichia coli, Klebsiella pneumonia, Proteus vulgaris and a gram positive Staphylococcus aureus. We didn’t observe any toxic effect of Eczegone formulation on the skin keratinocytes. Furthermore, the Ezcegone formulation was non-irritant according to draize score (OECD TG404, 2002). After rigorous safety evaluation by in vitro and in vivo acute oral and dermal toxicity analysis, we concluded that Eczegone formualtion possessses antibacterial effects and is safe, non-toxic, non-irritant, and the drug would be subjected for further biochemical and clinical studies.
Collapse
Affiliation(s)
- Muhammad Amjad Chishti
- Department of Basic Clinical Sciences, Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | - Ejaz Mohi-Ud-Din
- Department of Surgery and Allied Sciences, Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | | | - Muhammad Rahil Aslam
- University College of Conventional Medicine, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Pakistan
| | - Sheraz Siddiqui
- Department of Community Medicine and Behavioural Sciences, Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | - Saeed Ahmad
- University College of Agriculture, University of Sargodha, Pakistan
| | - Abdul Hayee
- University College of Conventional Medicine, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
27
|
Elieh Ali Komi D, Shafaghat F, Christian M. Crosstalk Between Mast Cells and Adipocytes in Physiologic and Pathologic Conditions. Clin Rev Allergy Immunol 2020; 58:388-400. [PMID: 32215785 PMCID: PMC7244609 DOI: 10.1007/s12016-020-08785-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive fatty acids and glucose uptake support the infiltration of adipose tissue (AT) by a variety of immune cells including neutrophils, pro-inflammatory M1 macrophages, and mast cells (MCs). These cells promote inflammation by releasing pro-inflammatory mediators. The involvement of MCs in AT biology is supported by their accumulation in the AT of obese individuals along with significantly higher serum levels of MC-derived tryptase. AT-resident MCs under the influence of locally derived adipokines such as leptin become activated and release pro-inflammatory cytokines including TNFα that worsens the inflammatory state. MCs support angiogenesis in AT by releasing chymase and inducing preadipocyte differentiation and also the proliferation of adipocytes through 15-deoxy-delta PGJ2/PPARγ interaction. Additionally, they contribute to the remodeling of the AT extracellular matrix (ECM) and play a role in the recruitment and activation of leukocytes. MC degranulation has been linked to brown adipocyte activation, and evidence indicates an important link between MCs and the appearance of BRITE/beige adipocytes in white AT. Cell crosstalk between MCs and AT-resident cells, mainly adipocytes and immune cells, shows that these cells play a critical role in the regulation of AT homeostasis and inflammation.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark Christian
- School of Science and Technology, Nottingham, NG11 8NS, UK.
| |
Collapse
|
28
|
Qian S, Pan J, Su Y, Tang Y, Wang Y, Zou Y, Zhao Y, Ma H, Zhang Y, Liu Y, Guo L, Tang QQ. BMPR2 promotes fatty acid oxidation and protects white adipocytes from cell death in mice. Commun Biol 2020; 3:200. [PMID: 32350411 PMCID: PMC7190840 DOI: 10.1038/s42003-020-0928-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adipocyte cell death is pathologically involved in both obesity and lipodystrophy. Inflammation and pro-inflammatory cytokines are generally regarded as inducers for adipocyte apoptosis, but whether some innate defects affect their susceptibility to cell death has not been extensively studied. Here, we found bone morphogenetic protein receptor type 2 (BMPR2) knockout adipocytes were prone to cell death, which involved both apoptosis and pyroptosis. BMPR2 deficiency in adipocytes inhibited phosphorylation of perilipin, a lipid-droplet-coating protein, and impaired lipolysis when stimulated by tumor necrosis factor (TNFα), which lead to failure of fatty acid oxidation and oxidative phosphorylation. In addition, impaired lipolysis was associated with mitochondria-mediated apoptosis and pyroptosis as well as elevated inflammation. These results suggest that BMPR2 is important for maintaining the functional integrity of adipocytes and their ability to survive when interacting with inflammatory factors, which may explain why adipocytes among individuals show discrepancy for death responses in inflammatory settings.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jiabao Pan
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yan Su
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200032, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yina Wang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ying Zou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yaxin Zhao
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Hong Ma
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Youyou Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Liu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Liang Guo
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|