1
|
Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M, Feron R, Knytl M, Kloas W, Schartl M, Winkler C, Stöck M. A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun 2024; 15:4781. [PMID: 38839766 PMCID: PMC11153619 DOI: 10.1038/s41467-024-49025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326, Castanet-Tolosan, France
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Baturalp Koyun
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
- Department of Molecular Biology and Genetics, Genetics, Faculty of Science, Bilkent University, SB Building, Ankara, 06800, Turkey
| | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea, 820112, Romania
- Advanced Research and Development Center for Experimental Medicine-CEMEX, "Grigore T. Popa", University of Medicine and Pharmacy, Mihail Kogălniceanu Street 9-13, Iasi, 700259, Romania
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, ON, Canada
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
| |
Collapse
|
2
|
Zhang N, Zhang Y. Y-chromosome Degeneration due to Speciation and Founder Effect. Acta Biotheor 2024; 72:6. [PMID: 38819710 DOI: 10.1007/s10441-024-09482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The Y chromosome in the XY sex-determination system is often shorter than its X counterpart, a condition attributed to degeneration after Y recombination ceases. Contrary to the traditional view of continuous, gradual degeneration, our study reveals stabilization within large mating populations. In these populations, we demonstrate that both mutant and active alleles on the Y chromosome can reach equilibrium through a mutation-selection balance. However, the emergence of a new species, particularly through the founder effect, can disrupt this equilibrium. Specifically, if the male founders of a new species carry only a mutant allele for a particular Y-linked gene, this allele becomes fixed, leading to the loss of the corresponding active gene on the Y chromosome. Our findings suggest that the rate of Y-chromosome degeneration may be linked to the frequency of speciation events associated with single-male founder events.
Collapse
Affiliation(s)
- Nianqin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongjun Zhang
- Science college, Liaoning Technical University, Fuxin, China.
| |
Collapse
|
3
|
Wang Z, Luo W, Ping J, Xia Y, Ran J, Zeng X. Large X-effects are absent in torrent frogs with nascent sex chromosomes. Mol Ecol 2023; 32:5338-5349. [PMID: 37602937 DOI: 10.1111/mec.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Sex chromosomes are popularized as a special role in driving speciation. However, the empirical evidence from natural population processes has been limited to organisms with degenerated sex chromosomes, where hemizygosity is mainly considered to act as the driver of reproductive isolation. Here, we examined several hybrid zones of torrent frog Amolops mantzorum species complex, using an approach by mapping species-diagnostic loci onto the reference genome to compare sex-linked versus autosomal patterns of introgression. We find little support in sex-linked incompatibilities for large X-effects for these populations in hybrid zones with homomorphic sex chromosomes, due to the absence of the hemizygous effects. As expected, the large X-effects were not found in those with heteromorphic but newly evolved sex chromosomes, owing to the absence of strong genetic differences between X and Y chromosomes. The available data so far on amphibians suggest little role for sex-linked genes in speciation. The large X-effects in those with nascent sex chromosomes may not be as ubiquitous as presumed across the animal kingdom.
Collapse
Affiliation(s)
- Ziwen Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Jun Ping
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jianghong Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
4
|
Schenkel MA, Billeter JC, Beukeboom LW, Pen I. Divergent evolution of genetic sex determination mechanisms along environmental gradients. Evol Lett 2023; 7:132-147. [PMID: 37251583 PMCID: PMC10210438 DOI: 10.1093/evlett/qrad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 10/28/2023] Open
Abstract
Sex determination (SD) is a crucial developmental process, but its molecular underpinnings are very diverse, both between and within species. SD mechanisms have traditionally been categorized as either genetic (GSD) or environmental (ESD), depending on the type of cue that triggers sexual differentiation. However, mixed systems, with both genetic and environmental components, are more prevalent than previously thought. Here, we show theoretically that environmental effects on expression levels of genes within SD regulatory mechanisms can easily trigger within-species evolutionary divergence of SD mechanisms. This may lead to the stable coexistence of multiple SD mechanisms and to spatial variation in the occurrence of different SD mechanisms along environmental gradients. We applied the model to the SD system of the housefly, a global species with world-wide latitudinal clines in the frequencies of different SD systems, and found that it correctly predicted these clines if specific genes in the housefly SD system were assumed to have temperature-dependent expression levels. We conclude that environmental sensitivity of gene regulatory networks may play an important role in diversification of SD mechanisms.
Collapse
Affiliation(s)
- Martijn A Schenkel
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Heterogeneous Evolution of Sex Chromosomes in the Torrent Frog Genus Amolops. Int J Mol Sci 2022; 23:ijms231911146. [PMID: 36232446 PMCID: PMC9570394 DOI: 10.3390/ijms231911146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
In sharp contrast to birds and mammals, in numerous cold-blooded vertebrates, sex chromosomes have been described as homomorphic. This sex chromosome homomorphy has been suggested to result from the high turnovers often observed across deeply diverged clades. However, little is known about the tempo and mode of sex chromosome evolution among the most closely related species. Here, we examined the evolution of sex chromosome among nine species of the torrent frog genus Amolops. We analyzed male and female GBS and RAD-seq from 182 individuals and performed PCR verification for 176 individuals. We identified signatures of sex chromosomes involving two pairs of chromosomes. We found that sex-chromosome homomorphy results from both turnover and X–Y recombination in the Amolops species, which simultaneously exhibits heterogeneous evolution on homologous and non-homologous sex chromosomes. A low turnover rate of non-homologous sex chromosomes exists in these torrent frogs. The ongoing X–Y recombination in homologous sex chromosomes will act as an indispensable force in preventing sex chromosomes from differentiating.
Collapse
|
6
|
Dufresnes C, Crochet PA. Sex chromosomes as supergenes of speciation: why amphibians defy the rules? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210202. [PMID: 35694748 PMCID: PMC9189495 DOI: 10.1098/rstb.2021.0202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As reflected by the two rules of speciation (Haldane's rule and the large X-/Z-effect), sex chromosomes are expected to behave like supergenes of speciation: they recombine only in one sex (XX females or ZZ males), supposedly recruit sexually antagonistic genes and evolve faster than autosomes, which can all contribute to pre-zygotic and post-zygotic isolation. While this has been mainly studied in organisms with conserved sex-determining systems and highly differentiated (heteromorphic) sex chromosomes like mammals, birds and some insects, these expectations are less clear in organismal groups where sex chromosomes repeatedly change and remain mostly homomorphic, like amphibians. In this article, we review the proposed roles of sex-linked genes in isolating nascent lineages throughout the speciation continuum and discuss their support in amphibians given current knowledge of sex chromosome evolution and speciation modes. Given their frequent recombination and lack of differentiation, we argue that amphibian sex chromosomes are not expected to become supergenes of speciation, which is reflected by the rarity of empirical studies consistent with a 'large sex chromosome effect' in frogs and toads. The diversity of sex chromosome systems in amphibians has a high potential to disentangle the evolutionary mechanisms responsible for the emergence of sex-linked speciation genes in other organisms. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | | |
Collapse
|
7
|
Gatto KP, Timoshevskaya N, Smith JJ, Lourenço LB. Sequencing of laser captured Z and W chromosomes of the tocantins paradoxical frog (Pseudis tocantins) provides insights on repeatome and chromosomal homology. J Evol Biol 2022; 35:1659-1674. [PMID: 35642451 DOI: 10.1111/jeb.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Pseudis tocantins is the only frog species of the hylid genus Pseudis that possesses highly heteromorphic sex chromosomes. Z and W chromosomes of Ps. tocantins differ in size, morphology, position of the nucleolar organizer region (NOR) and the amount and distribution of heterochromatin. A chromosomal inversion and heterochromatin amplification on the W chromosome were previously inferred to be involved in the evolution of this sex chromosome pair. Despite these findings, knowledge related to the molecular composition of the large heterochromatic band of this W chromosome is restricted to the PcP190 satellite DNA, and no data are available regarding the gene content of either the W or the Z chromosome of Ps. tocantins. Here, we sequenced microdissected Z and W chromosomes of this species to further resolve their molecular composition. Comparative genomic analysis suggests that Ps. tocantins sex chromosomes are likely homologous to chromosomes 4 and 10 of Xenopus tropicalis. Analyses of the repetitive DNA landscape in the Z and W assemblies allowed for the identification of several transposable elements and putative satellite DNA sequences. Finally, some transposable elements from the W assembly were found to be highly diverse and divergent from elements found elsewhere in the genome, suggesting a rapid amplification of these elements on the W chromosome.
Collapse
Affiliation(s)
- Kaleb Pretto Gatto
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Laboratory of Herpetology and Aquaculture Center, Department of Zoology, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Nataliya Timoshevskaya
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeramiah J Smith
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Luciana Bolsoni Lourenço
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
8
|
Mikó Z, Nemesházi E, Ujhegyi N, Verebélyi V, Ujszegi J, Kásler A, Bertalan R, Vili N, Gál Z, Hoffmann OI, Hettyey A, Bókony V. Sex reversal and ontogeny under climate change and chemical pollution: are there interactions between the effects of elevated temperature and a xenoestrogen on early development in agile frogs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117464. [PMID: 34380212 DOI: 10.1016/j.envpol.2021.117464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic environmental change poses a special threat to species in which genetic sex determination can be overwritten by the thermal and chemical environment. Endocrine disrupting chemicals as well as extreme temperatures can induce sex reversal in such species, with potentially wide-ranging consequences for fitness, demography, population viability and evolution. Despite accumulating evidence suggesting that chemical and thermal effects may interact in ecological contexts, little is known about their combined effects on sex reversal. Here we assessed the simultaneous effects of high temperature (female-to-male sex-reversing agent) and 17α-ethinylestradiol (EE2), a widespread xenoestrogen (male-to-female sex-reversing agent), on sexual development and fitness-related traits in agile frogs (Rana dalmatina). We exposed tadpoles to a six-days heat wave (30 °C) and/or an ecologically relevant concentration of EE2 (30 ng/L) in one of three consecutive larval periods, and diagnosed sex reversals two months after metamorphosis using species-specific markers for genetic sexing. We found that high temperature induced female-to-male sex reversal, decreased survival, delayed metamorphosis, decreased body mass at metamorphosis, and increased the proportion of animals that had no fat bodies, while EE2 had no effect on these traits. Simultaneous exposure to heat and EE2 had non-additive effects on juvenile body mass, which were dependent on treatment timing and further complicated by a negative effect of sex reversal on body mass. These results show that environmentally relevant exposure to EE2 does not diminish the female-to-male sex-reversing effects of high temperature. Instead, our findings on growth suggest that climate change and chemical pollution may have complex consequences for individual fitness and population persistence in species with environment-sensitive sex determination.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary; Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Fish Parasitology Research Team, Veterinary Medical Research Institute, Eötvös Loránd Research Network, Hungária körút 21, H-1143, Budapest, Hungary
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| | - Réka Bertalan
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Nóra Vili
- Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary
| | - Zoltán Gál
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Orsolya I Hoffmann
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| |
Collapse
|
9
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
10
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
11
|
Ma WJ, Veltsos P. The Diversity and Evolution of Sex Chromosomes in Frogs. Genes (Basel) 2021; 12:483. [PMID: 33810524 PMCID: PMC8067296 DOI: 10.3390/genes12040483] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Paris Veltsos
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
12
|
Dufresnes C, Brelsford A, Baier F, Perrin N. When Sex Chromosomes Recombine Only in the Heterogametic Sex: Heterochiasmy and Heterogamety in Hyla Tree Frogs. Mol Biol Evol 2021; 38:192-200. [PMID: 32761205 PMCID: PMC7782862 DOI: 10.1093/molbev/msaa201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sex chromosomes are classically predicted to stop recombining in the heterogametic sex, thereby enforcing linkage between sex-determining (SD) and sex-antagonistic (SA) genes. With the same rationale, a pre-existing sex asymmetry in recombination is expected to affect the evolution of heterogamety, for example, a low rate of male recombination might favor transitions to XY systems, by generating immediate linkage between SD and SA genes. Furthermore, the accumulation of deleterious mutations on nonrecombining Y chromosomes should favor XY-to-XY transitions (which discard the decayed Y), but disfavor XY-to-ZW transitions (which fix the decayed Y as an autosome). Like many anuran amphibians, Hyla tree frogs have been shown to display drastic heterochiasmy (males only recombine at chromosome tips) and are typically XY, which seems to fit the above expectations. Instead, here we demonstrate that two species, H. sarda and H. savignyi, share a common ZW system since at least 11 Ma. Surprisingly, the typical pattern of restricted male recombination has been maintained since then, despite female heterogamety. Hence, sex chromosomes recombine freely in ZW females, not in ZZ males. This suggests that heterochiasmy does not constrain heterogamety (and vice versa), and that the role of SA genes in the evolution of sex chromosomes might have been overemphasized.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA
| | - Felix Baier
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Nemesházi E, Gál Z, Ujhegyi N, Verebélyi V, Mikó Z, Üveges B, Lefler KK, Jeffries DL, Hoffmann OI, Bókony V. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Mol Ecol 2020; 29:3607-3621. [PMID: 32799395 DOI: 10.1111/mec.15596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
Populations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios. However, we have troublingly little information on sex reversals in natural populations, due to unavailability of genetic sex markers. Here, we developed a genetic sexing method based on sex-linked single nucleotide polymorphism loci to study the prevalence and fitness consequences of sex reversal in agile frogs (Rana dalmatina). Out of 125 juveniles raised in laboratory without exposure to sex-reversing stimuli, 6 showed male phenotype but female genotype according to our markers. These individuals exhibited several signs of poor physiological condition, suggesting stress-induced sex reversal and inferior fitness prospects. Among 162 adults from 11 wild populations in North-Central Hungary, 20% of phenotypic males had female genotype according to our markers. These individuals occurred more frequently in areas of anthropogenic land use; this association was attributable to agriculture and less strongly to urban land use. Female-to-male sex-reversed adults had similar body mass as normal males. We recorded no events of male-to-female sex reversal either in the laboratory or in the wild. These results support recent suspicions that sex reversal is widespread in nature, and suggest that human-induced environmental changes may contribute to its pervasiveness. Furthermore, our findings indicate that sex reversal is associated with stress and poor health in early life, but sex-reversed individuals surviving to adulthood may participate in breeding.
Collapse
Affiliation(s)
- Edina Nemesházi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Gál
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Institute for Conservation of Natural Resources, Szent István University, Gödöllő, Hungary
| | - Daniel Lee Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
14
|
Dufresnes C, Litvinchuk SN, Rozenblut-Kościsty B, Rodrigues N, Perrin N, Crochet PA, Jeffries DL. Hybridization and introgression between toads with different sex chromosome systems. Evol Lett 2020; 4:444-456. [PMID: 33014420 PMCID: PMC7523563 DOI: 10.1002/evl3.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/26/2023] Open
Abstract
The growing interest in the lability of sex determination in non‐model vertebrates such as amphibians and fishes has revealed high rates of sex chromosome turnovers among closely related species of the same clade. Can such lineages hybridize and admix with different sex‐determining systems, or could the changes have precipitated their speciation? We addressed these questions in incipient species of toads (Bufonidae), where we identified a heterogametic transition and characterized their hybrid zone with genome‐wide markers (RADseq). Adult and sibship data confirmed that the common toad B. bufo is female heterogametic (ZW), while its sister species the spined toad B. spinosus is male heterogametic (XY). Analysis of a fine scale transect across their parapatric ranges in southeastern France unveiled a narrow tension zone (∼10 km), with asymmetric mitochondrial and nuclear admixture over hundreds of kilometers southward and northward, respectively. The geographic extent of introgression is consistent with an expansion of B. spinosus across B. bufo’s former ranges in Mediterranean France, as also suggested by species distribution models. However, widespread cyto‐nuclear discordances (B. spinosus backrosses carrying B. bufo mtDNA) run against predictions from the dominance effects of Haldane's rule, perhaps because Y and W heterogametologs are not degenerated. Common and spined toads can thus successfully cross‐breed despite fundamental differences in their sex determination mechanisms, but remain partially separated by reproductive barriers. Whether and how the interactions of their XY and ZW genes contribute to these barriers shall provide novel insights on the debated role of labile sex chromosomes in speciation.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER College of Biology and the Environment Nanjing Forestry University Nanjing People's Republic of China.,Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Spartak N Litvinchuk
- Institute of Cytology Russian Academy of Sciences Saint Petersburg Russia.,Dagestan State University Makhachkala Russia
| | - Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates Faculty of Biological Sciences University of Wrocław Wrocław Poland
| | - Nicolas Rodrigues
- Department of Ecology & Evolution University of Lausanne Lausanne Switzerland
| | - Nicolas Perrin
- Department of Ecology & Evolution University of Lausanne Lausanne Switzerland
| | - Pierre-André Crochet
- CEFE Univ. Montpellier, CNRS, EPHE, IRD Univ Paul Valéry Montpellier 3 Montpellier France
| | - Daniel L Jeffries
- Department of Ecology & Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
15
|
Darolti I, Wright AE, Mank JE. Guppy Y Chromosome Integrity Maintained by Incomplete Recombination Suppression. Genome Biol Evol 2020; 12:965-977. [PMID: 32426836 PMCID: PMC7337182 DOI: 10.1093/gbe/evaa099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of recombination triggers divergence between the sex chromosomes and promotes degeneration of the sex-limited chromosome. Several livebearers within the genus Poecilia share a male-heterogametic sex chromosome system that is roughly 20 Myr old, with extreme variation in the degree of Y chromosome divergence. In Poecilia picta, the Y is highly degenerate and associated with complete X chromosome dosage compensation. In contrast, although recombination is restricted across almost the entire length of the sex chromosomes in Poecilia reticulata and Poecilia wingei, divergence between the X chromosome and the Y chromosome is very low. This clade therefore offers a unique opportunity to study the forces that accelerate or hinder sex chromosome divergence. We used RNA-seq data from multiple families of both P. reticulata and P. wingei, the species with low levels of sex chromosome divergence, to differentiate X and Y coding sequences based on sex-limited SNP inheritance. Phylogenetic tree analyses reveal that occasional recombination has persisted between the sex chromosomes for much of their length, as X- and Y-linked sequences cluster by species instead of by gametolog. This incomplete recombination suppression maintains the extensive homomorphy observed in these systems. In addition, we see differences between the previously identified strata in the phylogenetic clustering of X-Y orthologs, with those that cluster by chromosome located in the older stratum, the region previously associated with the sex-determining locus. However, recombination arrest appears to have expanded throughout the sex chromosomes more gradually instead of through a stepwise process associated with inversions.
Collapse
Affiliation(s)
- Iulia Darolti
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Judith E Mank
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
16
|
Abstract
Sex chromosomes and sex determining genes can evolve fast, with the sex-linked chromosomes often differing between closely related species. Population genetics theory has been developed and tested to explain the rapid evolution of sex chromosomes and sex determination. However, we do not know why the sex chromosomes are divergent in some taxa and conserved in others. Addressing this question requires comparing closely related taxa with conserved and divergent sex chromosomes to identify biological features that could explain these differences. Cytological karyotypes suggest that muscid flies (e.g., house fly) and blow flies are such a taxonomic pair. The sex chromosomes appear to differ across muscid species, whereas they are conserved across blow flies. Despite the cytological evidence, we do not know the extent to which muscid sex chromosomes are independently derived along different evolutionary lineages. To address that question, we used genomic and transcriptomic sequence data to identify young sex chromosomes in two closely related muscid species, horn fly (Haematobia irritans) and stable fly (Stomoxys calcitrans). We provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the young sex chromosomes of the closely related house fly (Musca domestica). We present three different scenarios that could have given rise to the sex chromosomes of horn fly and stable fly, and we describe how the scenarios could be distinguished. Distinguishing between these scenarios in future work could identify features of muscid genomes that promote sex chromosome divergence.
Collapse
|
17
|
Dufresnes C, Mazepa G, Jablonski D, Oliveira RC, Wenseleers T, Shabanov DA, Auer M, Ernst R, Koch C, Ramírez-Chaves HE, Mulder KP, Simonov E, Tiutenko A, Kryvokhyzha D, Wennekes PL, Zinenko OI, Korshunov OV, Al-Johany AM, Peregontsev EA, Masroor R, Betto-Colliard C, Denoël M, Borkin LJ, Skorinov DV, Pasynkova RA, Mazanaeva LF, Rosanov JM, Dubey S, Litvinchuk S. Fifteen shades of green: The evolution of Bufotes toads revisited. Mol Phylogenet Evol 2019; 141:106615. [DOI: 10.1016/j.ympev.2019.106615] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023]
|
18
|
Extreme heterogeneity in sex chromosome differentiation and dosage compensation in livebearers. Proc Natl Acad Sci U S A 2019; 116:19031-19036. [PMID: 31484763 PMCID: PMC6754558 DOI: 10.1073/pnas.1905298116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Once recombination is halted between the X and Y chromosomes, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about the variation in sex chromosome differentiation within clades. Here, we combined whole-genome and transcriptome sequencing data to characterize the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged roughly 20 million years ago. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata and P. wingei are largely homomorphic, with recombination in the former persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely nonrecombining and strikingly heteromorphic. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of functional chromosome-wide dosage compensation in this species, which has not been previously observed in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.
Collapse
|
19
|
Carpentier F, Rodríguez de la Vega RC, Branco S, Snirc A, Coelho MA, Hood ME, Giraud T. Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Res 2019; 29:944-953. [PMID: 31043437 PMCID: PMC6581054 DOI: 10.1101/gr.242578.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The degree of selfing has major impacts on adaptability and is often controlled by molecular mechanisms determining mating compatibility. Changes in compatibility systems are therefore important evolutionary events, but their underlying genomic mechanisms are often poorly understood. Fungi display frequent shifts in compatibility systems, and their small genomes facilitate elucidation of the mechanisms involved. In particular, linkage between the pre- and postmating compatibility loci has evolved repeatedly, increasing the odds of gamete compatibility under selfing. Here, we studied the mating-type chromosomes of two anther-smut fungi with unlinked mating-type loci despite a self-fertilization mating system. Segregation analyses and comparisons of high-quality genome assemblies revealed that these two species displayed linkage between mating-type loci and their respective centromeres. This arrangement renders the same improved odds of gamete compatibility as direct linkage of the two mating-type loci under the automictic mating (intratetrad selfing) of anther-smut fungi. Recombination cessation was found associated with a large inversion in only one of the four linkage events. The lack of trans-specific polymorphism at genes located in nonrecombining regions and linkage date estimates indicated that the events of recombination cessation occurred independently in the two sister species. Our study shows that natural selection can repeatedly lead to similar genomic patterns and phenotypes, and that different evolutionary paths can lead to distinct yet equally beneficial responses to selection. Our study further highlights that automixis and gene linkage to centromeres have important genetic and evolutionary consequences, while being poorly recognized despite being present in a broad range of taxa.
Collapse
Affiliation(s)
- Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
20
|
Gatto KP, Seger KR, Garcia PCDA, Lourenço LB. Satellite DNA Mapping in Pseudis fusca (Hylidae, Pseudinae) Provides New Insights into Sex Chromosome Evolution in Paradoxical Frogs. Genes (Basel) 2019; 10:E160. [PMID: 30791490 PMCID: PMC6410007 DOI: 10.3390/genes10020160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022] Open
Abstract
In the frog genus Pseudis, previous works found a sex-linked heteromorphism of the PcP190 satellite DNA in the nucleolus organizer region (NOR)-bearing chromosome pairs of Pseudis bolbodactyla and Pseudis tocantins, which possess a ZZ/ZW sex determination system. A pericentromeric inversion was inferred to have occurred during W chromosome evolution, moving a chromosomal cluster enriched by the PcP190 from the short arm (as observed in P. bolbodactyla) to the NOR-bearing long arm (as observed in P. tocantins). However, whether such an inversion happened in P. tocantins or in the common ancestor of Pseudis fusca and P. tocantins remained unclear. To assess this question, we mapped PcP190 in the karyotype of P. fusca from three distinct localities. Southern blotting was used to compare males and females. The mitochondrial H1 fragment (which contains the 12S ribosomal RNA (rRNA), tRNAval, and 16S rRNA genes) and cytochrome b gene were partially sequenced, and a species tree was inferred to guide our analysis. Pseudis fusca specimens were placed together as the sister group of P. tocantins, but based on genetic distance, one of the analyzed populations is probably an undescribed species. A cluster of PcP190, located in the long arm of chromosome 7, is sex linked in this putative new species but not in the remaining P. fusca. We could infer that the pericentromeric inversion that moved the PcP190 site to the NOR-bearing chromosome arm (long arm) occurred in the common ancestor of P. fusca, the putative undescribed species, and P. tocantins.
Collapse
Affiliation(s)
- Kaleb Pretto Gatto
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-863, SP, Brazil.
| | - Karin Regina Seger
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-863, SP, Brazil.
| | | | - Luciana Bolsoni Lourenço
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-863, SP, Brazil.
| |
Collapse
|
21
|
Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci Rep 2018; 8:17882. [PMID: 30552368 PMCID: PMC6294749 DOI: 10.1038/s41598-018-36209-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
In the Mexican axolotl (Ambystoma mexicanum), sex is determined by a single Mendelian factor, yet its sex chromosomes do not exhibit morphological differentiation typical of many vertebrate taxa that possess a single sex-determining locus. As sex chromosomes are theorized to differentiate rapidly, species with undifferentiated sex chromosomes provide the opportunity to reconstruct early events in sex chromosome evolution. Whole genome sequencing of 48 salamanders, targeted chromosome sequencing and in situ hybridization were used to identify the homomorphic sex chromosome that carries an A. mexicanum sex-determining factor and sequences that are present only on the W chromosome. Altogether, these sequences cover ~300 kb of validated female-specific (W chromosome) sequence, representing ~1/100,000th of the 32 Gb genome. Notably, a recent duplication of ATRX, a gene associated with mammalian sex-determining pathways, is one of few functional (non-repetitive) genes identified among these W-specific sequences. This duplicated gene (ATRW) was used to develop highly predictive markers for diagnosing sex and represents a strong candidate for a recently-acquired sex determining locus (or sexually antagonistic gene) in A. mexicanum.
Collapse
|
22
|
Gerchen JF, Dufresnes C, Stöck M. Introgression across Hybrid Zones Is Not Mediated by Large X-Effects in Green Toads with Undifferentiated Sex Chromosomes. Am Nat 2018; 192:E178-E188. [DOI: 10.1086/699162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Furman BLS, Evans BJ. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems. Genome Biol Evol 2018; 10:742-755. [PMID: 29608717 PMCID: PMC5841384 DOI: 10.1093/gbe/evy045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 02/02/2023] Open
Abstract
There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions.
Collapse
Affiliation(s)
| | - Ben J Evans
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Betto-Colliard C, Hofmann S, Sermier R, Perrin N, Stöck M. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc Biol Sci 2018; 285:rspb.2017.2667. [PMID: 29436499 PMCID: PMC5829204 DOI: 10.1098/rspb.2017.2667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
The evolutionary causes and consequences of allopolyploidization, an exceptional pathway to instant hybrid speciation, are poorly investigated in animals. In particular, when and why hybrid polyploids versus diploids are produced, and constraints on sources of paternal and maternal ancestors, remain underexplored. Using the Palearctic green toad radiation (including bisexually reproducing species of three ploidy levels) as model, we generate a range-wide multi-locus phylogeny of 15 taxa and present four new insights: (i) at least five (up to seven) distinct allotriploid and allotetraploid taxa have evolved in the Pleistocene; (ii) all maternal and paternal ancestors of hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya, 3.1-9.6 Mya), with distinctly greater divergence than the parental species of diploid hybrids found at secondary contact zones; (iii) allotriploid taxa possess two conspecific genomes and a deeply diverged allospecific one, suggesting that genomic imbalance and divergence are causal for their partly clonal reproductive mode; (iv) maternal versus paternal genome contributions exhibit asymmetry, with the maternal nuclear (and mitochondrial) genome of polyploids always coming from the same clade, and the paternal genome from the other. We compare our findings with similar patterns in diploid/polyploid vertebrates, and suggest deep ancestral divergence as a precondition for successful allopolyploidization.
Collapse
Affiliation(s)
- Caroline Betto-Colliard
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Sylvia Hofmann
- Department of Conservation Biology, UFZ Helmholtz-Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
25
|
More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 2018; 127:269-278. [PMID: 29372309 DOI: 10.1007/s00412-018-0663-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Heteromorphic sex chromosomes are common in eukaryotes and largely ubiquitous in birds and mammals. The largest number of multiple sex chromosomes in vertebrates known today is found in the monotreme platypus (Ornithorhynchus anatinus, 2n = 52) which exhibits precisely 10 sex chromosomes. Interestingly, fish, amphibians, and reptiles have sex determination mechanisms that do or do not involve morphologically differentiated sex chromosomes. Relatively few amphibian species carry heteromorphic sex chromosomes, and when present, they are frequently represented by only one pair, either XX:XY or ZZ:ZW types. Here, in contrast, with several evidences, from classical and molecular cytogenetic analyses, we found 12 sex chromosomes in a Brazilian population of the smoky jungle frog, designated as Leptodactylus pentadactylus Laurenti, 1768 (Leptodactylinae), which has a karyotype with 2n = 22 chromosomes. Males exhibited an astonishing stable ring-shaped meiotic chain composed of six X and six Y chromosomes. The number of sex chromosomes is larger than the number of autosomes found, and these data represent the largest number of multiple sex chromosomes ever found among vertebrate species. Additionally, sequence and karyotype variation data suggest that this species may represent a complex of species, in which the chromosomal rearrangements may possibly have played an important role in the evolution process.
Collapse
|
26
|
Sutherland BJG, Rico C, Audet C, Bernatchez L. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis. G3 (BETHESDA, MD.) 2017; 7:2749-2762. [PMID: 28626004 PMCID: PMC5555479 DOI: 10.1534/g3.117.040915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these traits important to aquaculture and evolution.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Ciro Rico
- School of Marine Studies, Molecular Diagnostics Laboratory, University of the South Pacific, Suva, Fiji
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092 Sevilla, Spain
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Quebec G5L 3A1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
27
|
Rodrigues N, Dufresnes C. Using conventional F-statistics to study unconventional sex-chromosome differentiation. PeerJ 2017; 5:e3207. [PMID: 28462023 PMCID: PMC5410149 DOI: 10.7717/peerj.3207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 01/23/2023] Open
Abstract
Species with undifferentiated sex chromosomes emerge as key organisms to understand the astonishing diversity of sex-determination systems. Whereas new genomic methods are widening opportunities to study these systems, the difficulty to separately characterize their X and Y homologous chromosomes poses limitations. Here we demonstrate that two simple F-statistics calculated from sex-linked genotypes, namely the genetic distance (Fst) between sexes and the inbreeding coefficient (Fis) in the heterogametic sex, can be used as reliable proxies to compare sex-chromosome differentiation between populations. We correlated these metrics using published microsatellite data from two frog species (Hyla arboreaand Rana temporaria), and show that they intimately relate to the overall amount of X–Y differentiation in populations. However, the fits for individual loci appear highly variable, suggesting that a dense genetic coverage will be needed for inferring fine-scale patterns of differentiation along sex-chromosomes. The applications of these F-statistics, which implies little sampling requirement, significantly facilitate population analyses of sex-chromosomes.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dufresnes
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Comparative High-Density Linkage Mapping Reveals Conserved Genome Structure but Variation in Levels of Heterochiasmy and Location of Recombination Cold Spots in the Common Frog. G3-GENES GENOMES GENETICS 2017; 7:637-645. [PMID: 28040782 PMCID: PMC5295608 DOI: 10.1534/g3.116.036459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By combining 7077 SNPs and 61 microsatellites, we present the first linkage map for some of the early diverged lineages of the common frog, Rana temporaria, and the densest linkage map to date for this species. We found high homology with the published linkage maps of the Eastern and Western lineages but with differences in the order of some markers. Homology was also strong with the genome of the Tibetan frog Nanorana parkeri and we found high synteny with the clawed frog Xenopus tropicalis. We confirmed marked heterochiasmy between sexes and detected nonrecombining regions in several groups of the male linkage map. Contrary to the expectations set by the male heterogamety of the common frog, we did not find male heterozygosity excess in the chromosome previously shown to be linked to sex determination. Finally, we found blocks of loci showing strong transmission ratio distortion. These distorted genomic regions might be related to genetic incompatibilities between the parental populations, and are promising candidates for further investigation into the genetic basis of speciation and adaptation in the common frog.
Collapse
|
29
|
Muyle A, Käfer J, Zemp N, Mousset S, Picard F, Marais GA. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms. Genome Biol Evol 2016; 8:2530-43. [PMID: 27492231 PMCID: PMC5010906 DOI: 10.1093/gbe/evw172] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20-35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Niklaus Zemp
- Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | - Sylvain Mousset
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Franck Picard
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Gabriel Ab Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
30
|
Wright AE, Dean R, Zimmer F, Mank JE. How to make a sex chromosome. Nat Commun 2016; 7:12087. [PMID: 27373494 PMCID: PMC4932193 DOI: 10.1038/ncomms12087] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/27/2016] [Indexed: 12/19/2022] Open
Abstract
Sex chromosomes can evolve once recombination is halted between a homologous pair of chromosomes. Owing to detailed studies using key model systems, we have a nuanced understanding and a rich review literature of what happens to sex chromosomes once recombination is arrested. However, three broad questions remain unanswered. First, why do sex chromosomes stop recombining in the first place? Second, how is recombination halted? Finally, why does the spread of recombination suppression, and therefore the rate of sex chromosome divergence, vary so substantially across clades? In this review, we consider each of these three questions in turn to address fundamental questions in the field, summarize our current understanding, and highlight important areas for future work. Sex chromosome evolution begins when recombination between a homologous pair of chromosomes is halted. Here, Wright et al. review our current understanding of the causes and mechanisms of recombination suppression between incipient sex chromosomes and suggest future directions for the field.
Collapse
Affiliation(s)
- Alison E. Wright
- Department of Genetics, Evolution and Environment University College London, London WC1E 6BT UK
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment University College London, London WC1E 6BT UK
| | - Fabian Zimmer
- Department of Genetics, Evolution and Environment University College London, London WC1E 6BT UK
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment University College London, London WC1E 6BT UK
| |
Collapse
|
31
|
Śliwińska EB, Martyka R, Tryjanowski P. Evolutionary interaction between W/Y chromosome and transposable elements. Genetica 2016; 144:267-78. [PMID: 27000053 PMCID: PMC4879163 DOI: 10.1007/s10709-016-9895-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.
Collapse
Affiliation(s)
- Ewa B Śliwińska
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland.
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
| | - Rafał Martyka
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| |
Collapse
|
32
|
Ma WJ, Rodrigues N, Sermier R, Brelsford A, Perrin N. Dmrt1 polymorphism covaries with sex-determination patterns in Rana temporaria. Ecol Evol 2016; 6:5107-17. [PMID: 27551369 PMCID: PMC4891206 DOI: 10.1002/ece3.2209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Patterns of sex-chromosome differentiation and gonadal development have been shown to vary among populations of Rana temporaria along a latitudinal transect in Sweden. Frogs from the northern-boreal population of Ammarnäs displayed well-differentiated X and Y haplotypes, early gonadal differentiation, and a perfect match between phenotypic and genotypic sex. In contrast, no differentiated Y haplotypes could be detected in the southern population of Tvedöra, where juveniles furthermore showed delayed gonadal differentiation. Here, we show that Dmrt1, a gene that plays a key role in sex determination and sexual development across all metazoans, displays significant sex differentiation in Tvedöra, with a Y-specific haplotype distinct from Ammarnäs. The differential segment is not only much shorter in Tvedöra than in Ammarnäs, it is also less differentiated and associates with both delayed gonadal differentiation and imperfect match between phenotypic and genotypic sex. Whereas Tvedöra juveniles with a local Y haplotype tend to ultimately develop as males, those without it may nevertheless become functional XX males, but with strongly female-biased progeny. Our findings suggest that the variance in patterns of sex determination documented in common frogs might result from a genetic polymorphism within a small genomic region that contains Dmrt1. They also substantiate the view that recurrent convergences of sex determination toward a limited set of chromosome pairs may result from the co-option of small genomic regions that harbor key genes from the sex-determination pathway.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Nicolas Rodrigues
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Alan Brelsford
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland; Present address: Department of Biology University of California at Riverside California 92521
| | - Nicolas Perrin
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| |
Collapse
|
33
|
Gerchen JF, Reichert SJ, Röhr JT, Dieterich C, Kloas W, Stöck M. A Single Transcriptome of a Green Toad (Bufo viridis) Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers. PLoS One 2016; 11:e0156419. [PMID: 27232626 PMCID: PMC4883742 DOI: 10.1371/journal.pone.0156419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/15/2016] [Indexed: 12/13/2022] Open
Abstract
Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species.
Collapse
Affiliation(s)
- Jörn F Gerchen
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Samuel J Reichert
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Johannes T Röhr
- Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Matthias Stöck
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
34
|
Rodrigues N, Vuille Y, Loman J, Perrin N. Sex-chromosome differentiation and 'sex races' in the common frog (Rana temporaria). Proc Biol Sci 2016; 282:20142726. [PMID: 25833852 DOI: 10.1098/rspb.2014.2726] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sex-chromosome differentiation was recently shown to vary among common frog populations in Fennoscandia, suggesting a trend of increased differentiation with latitude. By rearing families from two contrasted populations (respectively, from northern and southern Sweden), we show this disparity to stem from differences in sex-determination mechanisms rather than in XY-recombination patterns. Offspring from the northern population display equal sex ratios at metamorphosis, with phenotypic sexes that correlate strongly with paternal LG2 haplotypes (the sex chromosome); accordingly, Y haplotypes are markedly differentiated, with male-specific alleles and depressed diversity testifying to their smaller effective population size. In the southern population, by contrast, a majority of juveniles present ovaries at metamorphosis; only later in development do sex ratios return to equilibrium. Even at these later stages, phenotypic sexes correlate only mildly with paternal LG2 haplotypes; accordingly, there are no recognizable Y haplotypes. These distinct patterns of gonadal development fit the concept of 'sex races' proposed in the 1930s, with our two populations assigned to the 'differentiated' and 'semi-differentiated' races, respectively. Our results support the suggestion that 'sex races' differ in the genetic versus epigenetic components of sex determination. Analysing populations from the 'undifferentiated race' with high-density genetic maps should help to further test this hypothesis.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Yvan Vuille
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Jon Loman
- Rana Konsult, Sjöstorp 332, Dalby 247 94, Sweden
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
35
|
Tamschick S, Rozenblut-Kościsty B, Ogielska M, Lehmann A, Lymberakis P, Hoffmann F, Lutz I, Kloas W, Stöck M. Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages. Sci Rep 2016; 6:23825. [PMID: 27029458 PMCID: PMC4814869 DOI: 10.1038/srep23825] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/15/2016] [Indexed: 01/17/2023] Open
Abstract
Multiple anthropogenic stressors cause worldwide amphibian declines. Among several poorly investigated causes is global pollution of aquatic ecosystems with endocrine disrupting compounds (EDCs). These substances interfere with the endocrine system and can affect the sexual development of vertebrates including amphibians. We test the susceptibility to an environmentally relevant contraceptive, the artificial estrogen 17α-ethinylestradiol (EE2), simultaneously in three deeply divergent systematic anuran families, a model-species, Xenopus laevis (Pipidae), and two non-models, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae). Our new approach combines synchronized tadpole exposure to three EE2-concentrations (50, 500, 5,000 ng/L) in a flow-through-system and pioneers genetic and histological sexing of metamorphs in non-model anurans for EDC-studies. This novel methodology reveals striking quantitative differences in genetic-male-to-phenotypic-female sex reversal in non-model vs. model species. Our findings qualify molecular sexing in EDC-analyses as requirement to identify sex reversals and state-of-the-art approaches as mandatory to detect species-specific vulnerabilities to EDCs in amphibians.
Collapse
Affiliation(s)
- Stephanie Tamschick
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| | - Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Andreas Lehmann
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Knossou Ave., 71409 Heraklion, Crete, Greece
| | - Frauke Hoffmann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany
| |
Collapse
|
36
|
Brelsford A, Dufresnes C, Perrin N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity (Edinb) 2015; 116:177-81. [PMID: 26374238 DOI: 10.1038/hdy.2015.83] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/12/2015] [Accepted: 07/29/2015] [Indexed: 01/16/2023] Open
Abstract
Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits.
Collapse
Affiliation(s)
- A Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - C Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - N Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Estimating tempo and mode of Y chromosome turnover: explaining Y chromosome loss with the fragile Y hypothesis. Genetics 2015; 197:561-72. [PMID: 24939995 DOI: 10.1534/genetics.114.164269] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomal sex determination is phylogenetically widespread, having arisen independently in many lineages. Decades of theoretical work provide predictions about sex chromosome differentiation that are well supported by observations in both XY and ZW systems. However, the phylogenetic scope of previous work gives us a limited understanding of the pace of sex chromosome gain and loss and why Y or W chromosomes are more often lost in some lineages than others, creating XO or ZO systems. To gain phylogenetic breadth we therefore assembled a database of 4724 beetle species' karyotypes and found substantial variation in sex chromosome systems. We used the data to estimate rates of Y chromosome gain and loss across a phylogeny of 1126 taxa estimated from seven genes. Contrary to our initial expectations, we find that highly degenerated Y chromosomes of many members of the suborder Polyphaga are rarely lost, and that cases of Y chromosome loss are strongly associated with chiasmatic segregation during male meiosis. We propose the "fragile Y" hypothesis, that recurrent selection to reduce recombination between the X and Y chromosome leads to the evolution of a small pseudoautosomal region (PAR), which, in taxa that require XY chiasmata for proper segregation during meiosis, increases the probability of aneuploid gamete production, with Y chromosome loss. This hypothesis predicts that taxa that evolve achiasmatic segregation during male meiosis will rarely lose the Y chromosome. We discuss data from mammals, which are consistent with our prediction.
Collapse
|
38
|
Dufresnes C, Borzée A, Horn A, Stöck M, Ostini M, Sermier R, Wassef J, Litvinchuck SN, Kosch TA, Waldman B, Jang Y, Brelsford A, Perrin N. Sex-Chromosome Homomorphy in Palearctic Tree Frogs Results from Both Turnovers and X-Y Recombination. Mol Biol Evol 2015; 32:2328-37. [PMID: 25957317 DOI: 10.1093/molbev/msv113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Contrasting with birds and mammals, poikilothermic vertebrates often have homomorphic sex chromosomes, possibly resulting from high rates of sex-chromosome turnovers and/or occasional X-Y recombination. Strong support for the latter mechanism was provided by four species of European tree frogs, which inherited from a common ancestor (∼ 5 Ma) the same pair of homomorphic sex chromosomes (linkage group 1, LG1), harboring the candidate sex-determining gene Dmrt1. Here, we test sex linkage of LG1 across six additional species of the Eurasian Hyla radiation with divergence times ranging from 6 to 40 Ma. LG1 turns out to be sex linked in six of nine resolved cases. Mapping the patterns of sex linkage to the Hyla phylogeny reveals several transitions in sex-determination systems within the last 10 My, including one switch in heterogamety. Phylogenetic trees of DNA sequences along LG1 are consistent with occasional X-Y recombination in all species where LG1 is sex linked. These patterns argue against one of the main potential causes for turnovers, namely the accumulation of deleterious mutations on nonrecombining chromosomes. Sibship analyses show that LG1 recombination is strongly reduced in males from most species investigated, including some in which it is autosomal. Intrinsically low male recombination might facilitate the evolution of male heterogamety, and the presence of important genes from the sex-determination cascade might predispose LG1 to become a sex chromosome.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Amaël Borzée
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Agnès Horn
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB, Berlin, Germany
| | - Massimo Ostini
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Wassef
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | | | - Tiffany A Kosch
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yikweon Jang
- Department of Life Sciences and Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
| | - Alan Brelsford
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Tamschick S, Rozenblut-Kościsty B, Bonato L, Dufresnes C, Lymberakis P, Kloas W, Ogielska M, Stöck M. Sex Chromosome Conservation, DMRT1 Phylogeny and Gonad Morphology in Diploid Palearctic Green Toads ( Bufo viridis Subgroup). Cytogenet Genome Res 2015; 144:315-24. [DOI: 10.1159/000380841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
|
40
|
Betto-Colliard C, Sermier R, Litvinchuk S, Perrin N, Stöck M. Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers. Heredity (Edinb) 2015; 114:300-8. [PMID: 25370211 PMCID: PMC4815583 DOI: 10.1038/hdy.2014.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023] Open
Abstract
Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.
Collapse
Affiliation(s)
- C Betto-Colliard
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - R Sermier
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - S Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - N Perrin
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - M Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
41
|
Discovery of triploidy in Palearctic green toads (Anura: Bufonidae) from Iran with indications for a reproductive system involving diploids and triploids. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Dufresnes C, Bertholet Y, Wassef J, Ghali K, Savary R, Pasteur B, Brelsford A, Rozenblut-Kościsty B, Ogielska M, Stöck M, Perrin N. Sex-chromosome differentiation parallels postglacial range expansion in European tree frogs (Hyla arborea). Evolution 2014; 68:3445-56. [PMID: 25209463 DOI: 10.1111/evo.12525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/25/2014] [Indexed: 11/28/2022]
Abstract
Occasional XY recombination is a proposed explanation for the sex-chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW-European Hyla arborea populations identified male-specific alleles at sex-linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex-linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex-chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY-recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations).
Collapse
Affiliation(s)
- Christophe Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yazdi HP, Ellegren H. Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites. Mol Biol Evol 2014; 31:1444-1453. [DOI: 10.1093/molbev/msu101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
44
|
Inferring the degree of incipient speciation in secondary contact zones of closely related lineages of Palearctic green toads (Bufo viridis subgroup). Heredity (Edinb) 2014; 113:9-20. [PMID: 24713825 DOI: 10.1038/hdy.2014.26] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 01/31/2014] [Accepted: 02/24/2014] [Indexed: 11/08/2022] Open
Abstract
Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid offspring >20 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is poorly studied. Palearctic green toads (Bufo viridis subgroup) offer an excellent system to address this question, comprising several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers, we previously demonstrated that in Sicily, B. siculus and B. balearicus developed advanced reproductive isolation after Plio-Pleistocene divergence (2.6 My, 3.3-1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low, if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My, 2.5-1.3) in northeastern Italy (B. balearicus, B. viridis). We find significantly more, asymmetric nuclear and wider, differential mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with strong introgression may develop when secondary contacts occur <2 My after divergence, whereas narrower zones with restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing lineages with different divergence times within the same radiation.
Collapse
|
45
|
Gamble T, Geneva AJ, Glor RE, Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution 2014; 68:1027-41. [PMID: 24279795 PMCID: PMC3975651 DOI: 10.1111/evo.12328] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
To explain the frequency and distribution of heteromorphic sex chromosomes in the lizard genus Anolis, we compared the relative roles of sex chromosome conservation versus turnover of sex-determining mechanisms. We used model-based comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes onto a newly generated Anolis phylogeny. We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of repetitive DNA showed variable rates of Y chromosome degeneration among Anolis species and identified previously undetected, homomorphic sex chromosomes in two species. We confirmed homology of sex chromosomes in the genus by performing FISH of an X-linked bacterial artificial chromosome (BAC) and quantitative PCR of X-linked genes in multiple Anolis species sampled across the phylogeny. Taken together, these results are consistent with long-term conservation of sex chromosomes in the group. Our results pave the way to address additional questions related to Anolis sex chromosome evolution and describe a conceptual framework that can be used to evaluate the origins and evolution of heteromorphic sex chromosomes in other clades.
Collapse
Affiliation(s)
- Tony Gamble
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church St. SE, Minneapolis, Minnesota, 55455; Bell Museum of Natural History, University of Minnesota, 10 Church St. SE, Minneapolis, Minnesota, 55455.
| | | | | | | |
Collapse
|
46
|
Malcom JW, Kudra RS, Malone JH. The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J Genomics 2014; 2:68-76. [PMID: 25031658 PMCID: PMC4091447 DOI: 10.7150/jgen.8044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution.
Collapse
Affiliation(s)
- Jacob W Malcom
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| | - Randal S Kudra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| | - John H Malone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| |
Collapse
|
47
|
Blaser O, Neuenschwander S, Perrin N. Sex-chromosome turnovers: the hot-potato model. Am Nat 2013; 183:140-6. [PMID: 24334743 DOI: 10.1086/674026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sex-determining systems often undergo high rates of turnover but for reasons that remain largely obscure. Two recent evolutionary models assign key roles, respectively, to sex-antagonistic (SA) mutations occurring on autosomes and to deleterious mutations accumulating on sex chromosomes. These two models capture essential but distinct key features of sex-chromosome evolution; accordingly, they make different predictions and present distinct limitations. Here we show that a combination of features from the two models has the potential to generate endless cycles of sex-chromosome transitions: SA alleles accruing on a chromosome after it has been co-opted for sex induce an arrest of recombination; the ensuing accumulation of deleterious mutations will soon make a new transition ineluctable. The dynamics generated by these interactions share several important features with empirical data, namely, (i) that patterns of heterogamety tend to be conserved during transitions and (ii) that autosomes are not recruited randomly, with some chromosome pairs more likely than others to be co-opted for sex.
Collapse
Affiliation(s)
- Olivier Blaser
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
48
|
Stöck M, Savary R, Zaborowska A, Górecki G, Brelsford A, Rozenblut-Kościsty B, Ogielska M, Perrin N. Maintenance of ancestral sex chromosomes in Palearctic tree frogs: direct evidence from Hyla orientalis. Sex Dev 2013; 7:261-6. [PMID: 23735903 DOI: 10.1159/000351089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2013] [Indexed: 11/19/2022] Open
Abstract
Contrasting with the situation found in birds and mammals, sex chromosomes are generally homomorphic in poikilothermic vertebrates. This homomorphy was recently shown to result from occasional X-Y recombinations (not from turnovers) in several European species of tree frogs (Hyla arborea, H. intermedia and H. molleri). Because of recombination, however, alleles at sex-linked loci were rarely diagnostic at the population level; support for sex linkage had to rely on multilocus associations, combined with occasional sex differences in allelic frequencies. Here, we use direct evidence, obtained from anatomical and histological analyses of offspring with known pedigrees, to show that the Eastern tree frog (H. orientalis) shares the same pair of sex chromosomes, with identical patterns of male heterogamety and complete absence of X-Y recombination in males. Conservation of an ancestral pair of sex chromosomes, regularly rejuvenated via occasional X-Y recombination, seems thus a widespread pattern among Hyla species. Sibship analyses also identified discrepancies between genotypic and phenotypic sex among offspring, associated with abnormal gonadal development, suggesting a role for sexually antagonistic genes on the sex chromosomes.
Collapse
Affiliation(s)
- M Stöck
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Brelsford A, Stöck M, Betto-Colliard C, Dubey S, Dufresnes C, Jourdan-Pineau H, Rodrigues N, Savary R, Sermier R, Perrin N. HOMOLOGOUS SEX CHROMOSOMES IN THREE DEEPLY DIVERGENT ANURAN SPECIES. Evolution 2013; 67:2434-40. [DOI: 10.1111/evo.12151] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Matthias Stöck
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB); Müggelseedamm; 310, D-12587 Berlin Germany
| | | | - Sylvain Dubey
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Christophe Dufresnes
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Hélène Jourdan-Pineau
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Nicolas Rodrigues
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Romain Savary
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| |
Collapse
|
50
|
Rodrigues N, Betto-Colliard C, Jourdan-Pineau H, Perrin N. Within-population polymorphism of sex-determination systems in the common frog (Rana temporaria). J Evol Biol 2013; 26:1569-77. [PMID: 23711162 DOI: 10.1111/jeb.12163] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/07/2013] [Accepted: 03/15/2013] [Indexed: 11/30/2022]
Abstract
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex-determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large-scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female-biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex-determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild-caught male and female adults, except in one high-altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex-chromosome differentiation in amphibians.
Collapse
Affiliation(s)
- N Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|