1
|
Jarrett BJM, Downing PA, Svensson EI. Meta-analysis reveals that phenotypic plasticity and divergent selection promote reproductive isolation during incipient speciation. Nat Ecol Evol 2025; 9:833-844. [PMID: 40350540 PMCID: PMC12066359 DOI: 10.1038/s41559-025-02687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025]
Abstract
The evolution of reproductive isolation is a key evolutionary process, but the factors that shape its development in the early stages of speciation require clarification. Here, using a meta-analysis of 34 experimental speciation studies on arthropods, yeast and vertebrates, we show that populations subject to divergent selection evolved stronger reproductive isolation compared with populations that evolved in similar environments, consistent with ecological speciation theory. However, and contrary to predictions, reproductive isolation did not increase with the number of generations. Phenotypic plasticity could partly explain these results as divergent environments induce a plastic increase in reproductive isolation greater than the effect of divergent selection, but only for pre-mating isolating barriers. Our results highlight that adaptive evolution in response to different environments in conjunction with plasticity can initiate a rapid increase in reproductive isolation in the early stage of speciation.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK.
- Department of Biology, Lund University, Lund, Sweden.
| | - Philip A Downing
- Department of Biology, Lund University, Lund, Sweden
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | | |
Collapse
|
2
|
Martín-Díaz A, de Vega C, Martín-Hernanz S, Aparicio A, Albaladejo RG. De novo transcriptome assembly of the plant Helianthemum marifolium for the study of adaptive mechanisms. Sci Data 2025; 12:515. [PMID: 40148317 PMCID: PMC11950303 DOI: 10.1038/s41597-025-04888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
The genus Helianthemum, commonly known as rockroses, encompasses 140 species primarily distributed in the Palearctic region, with notable diversification driven by climatic and geological changes. These plants are valuable for studying speciation processes and ecological divergence. The chemical properties of the leaves have also been investigated for containing valuable bioactive compounds with several therapeutic properties. However, the availability of genomic resources for species in this genus are almost entirely lacking. Here, we assembled and annotated the first reference transcriptome of Helianthemum marifolium, a species with wide morphological variability and infraspecific diversity. Illumina paired-end RNA sequences were generated using leaves from 16 individuals, representing the four recognized subspecies, all cultivated in a greenhouse. RNA reads were assembled with Trinity and Oases, and EvidentialGene produced a transcriptome with 122,002 transcripts. The transcriptome showed 59524 hits on the UniProtBK database through BLASTx. This transcriptome will be an invaluable resource for transcriptome-level population studies, conservation genetics of the many endangered species within the genus, and for deepen into the metabolic pathways of leaf-derived compounds.
Collapse
Affiliation(s)
- Andrea Martín-Díaz
- Departamento de Biología Vegetal y Ecología. Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Departamento de Ecología y Evolución. Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Clara de Vega
- Departamento de Biología Vegetal y Ecología. Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sara Martín-Hernanz
- Departamento de Biodiversidad, Ecología y Evolución. Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología. Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología. Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
3
|
Bejerman N, Dietzgen R, Debat H. Novel Tri-Segmented Rhabdoviruses: A Data Mining Expedition Unveils the Cryptic Diversity of Cytorhabdoviruses. Viruses 2023; 15:2402. [PMID: 38140643 PMCID: PMC10747219 DOI: 10.3390/v15122402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10-16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name "Trirhavirus". Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory.
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| | - Ralf Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Humberto Debat
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| |
Collapse
|
4
|
White OW, Reyes-Betancort A, Carine MA, Chapman MA. Comparative transcriptomics and gene expression divergence associated with homoploid hybrid speciation in Argyranthemum. G3 (BETHESDA, MD.) 2023; 13:jkad158. [PMID: 37477910 PMCID: PMC10542503 DOI: 10.1093/g3journal/jkad158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/21/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
Ecological isolation is increasingly thought to play an important role in speciation, especially for the origin and reproductive isolation of homoploid hybrid species. However, the extent to which divergent and/or transgressive gene expression changes are involved in speciation is not well studied. In this study, we employ comparative transcriptomics to investigate gene expression changes associated with the origin and evolution of two homoploid hybrid plant species, Argyranthemum sundingii and A. lemsii (Asteraceae). As there is no standard methodology for comparative transcriptomics, we examined five different pipelines for data assembly and analysing gene expression across the four species (two hybrid and two parental). We note biases and problems with all pipelines, and the approach used affected the biological interpretation of the data. Using the approach that we found to be optimal, we identify transcripts showing DE between the parental taxa and between the homoploid hybrid species and their parents; in several cases, putative functions of these DE transcripts have a plausible role in ecological adaptation and could be the cause or consequence of ecological speciation. Although independently derived, the homoploid hybrid species have converged on similar expression phenotypes, likely due to adaptation to similar habitats.
Collapse
Affiliation(s)
- Oliver W White
- Algae, Fungi and Plants Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Mark A Carine
- Algae, Fungi and Plants Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
5
|
Tataru D, Wheeler EC, Ferris KG. Spatially and temporally varying selection influence species boundaries in two sympatric Mimulus. Proc Biol Sci 2023; 290:20222279. [PMID: 36750191 PMCID: PMC9904950 DOI: 10.1098/rspb.2022.2279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Spatially and temporally varying selection can maintain genetic variation within and between populations, but it is less well known how these forces influence divergence between closely related species. We identify the interaction of temporal and spatial variation in selection and their role in either reinforcing or eroding divergence between two closely related Mimulus species. Using repeated reciprocal transplant experiments with advanced generation hybrids, we compare the strength of selection on quantitative traits involved in adaptation and reproductive isolation in Mimulus guttatus and Mimulus laciniatus between two years with dramatically different water availability. We found strong divergent habitat-mediated selection on traits in the direction of species differences during a drought in 2013, suggesting that spatially varying selection maintains species divergence. However, a relaxation in divergent selection on most traits in an unusually wet year (2019), including flowering time, which is involved in pre-zygotic isolation, suggests that temporal variation in selection may weaken species differences. Therefore, we find evidence that temporally and spatially varying selection may have opposing roles in mediating species boundaries. Given our changing climate, future growing seasons are expected to be more similar to the dry year, suggesting that in this system climate change may actually increase species divergence.
Collapse
Affiliation(s)
- Diana Tataru
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| | - Emma C. Wheeler
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| | - Kathleen G. Ferris
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| |
Collapse
|
6
|
Leal BSS, Brandão MM, Palma-Silva C, Pinheiro F. Differential gene expression reveals mechanisms related to habitat divergence between hybridizing orchids from the Neotropical coastal plains. BMC PLANT BIOLOGY 2020; 20:554. [PMID: 33302865 PMCID: PMC7731501 DOI: 10.1186/s12870-020-02757-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Closely related hybridizing species are ideal systems for identifying genomic regions underlying adaptive divergence. Although gene expression plays a central role in determining ecologically-based phenotypic differences, few studies have inferred the role of gene expression for adaptive divergence in Neotropical systems. In this study, we conduct genome-wide expression analysis alongside soil elemental analysis in sympatric and allopatric populations of Epidendrum fulgens and E. puniceoluteum (Orchidaceae), which occur in contrasting adjacent habitats in the Neotropical coastal plains. RESULTS These species were highly differentiated by their gene expression profiles, as determined by 18-21% of transcripts. Gene ontology (GO) terms associated with reproductive processes were enriched according to comparisons between species in both allopatric and sympatric populations. Species showed differential expression in genes linked to salt and waterlogging tolerance according to comparisons between species in sympatry, and biological processes related to environmental stimulus appeared as representative among those transcripts associated with edaphic characteristics in each sympatric zone. Hybrids, in their turn, were well differentiated from E. fulgens, but exhibited a similar gene expression profile to flooding-tolerant E. puniceolutem. When compared with parental species, hybrids showed no transcripts with additive pattern of expression and increased expression for almost all transgressive transcripts. CONCLUSIONS This study sheds light on general mechanisms promoting ecological differentiation and assortative mating, and suggests candidate genes, such as those encoding catalase and calcium-dependent protein kinase, underling adaptation to harsh edaphic conditions in the Neotropical coastal plains. Moreover, it demonstrates that differential gene expression plays a central role in determining ecologically-based phenotypic differences among co-occurring species and their hybrids.
Collapse
Affiliation(s)
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| | - Fabio Pinheiro
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
7
|
Osborne OG, Kafle T, Brewer T, Dobreva MP, Hutton I, Savolainen V. Sympatric speciation in mountain roses ( Metrosideros) on an oceanic island. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190542. [PMID: 32654651 DOI: 10.1098/rstb.2019.0542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Shifts in flowering time have the potential to act as strong prezygotic reproductive barriers in plants. We investigate the role of flowering time divergence in two species of mountain rose (Metrosideros) endemic to Lord Howe Island, Australia, a minute and isolated island in the Tasman Sea. Metrosideros nervulosa and M. sclerocarpa are sister species and have divergent ecological niches on the island but grow sympatrically for much of their range, and likely speciated in situ on the island. We used flowering time and population genomic analyses of population structure and selection, to investigate their evolution, with a particular focus on the role of flowering time in their speciation. Population structure analyses showed the species are highly differentiated and appear to be in the very late stages of speciation. We found flowering times of the species to be significantly displaced, with M. sclerocarpa flowering 53 days later than M. nervulosa. Furthermore, the analyses of selection showed that flowering time genes are under selection between the species. Thus, prezygotic reproductive isolation is mediated by flowering time shifts in the species, and likely evolved under selection, to drive the completion of speciation within a small geographical area. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Owen G Osborne
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Tane Kafle
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Tom Brewer
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Mariya P Dobreva
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Ian Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW 2898, Australia
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| |
Collapse
|
8
|
Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. THE NEW PHYTOLOGIST 2020; 225:1883-1898. [PMID: 31536639 DOI: 10.1111/nph.16205] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation and de novo mutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Mantel SJ, Sweigart AL. Divergence in drought-response traits between sympatric species of Mimulus. Ecol Evol 2019; 9:10291-10304. [PMID: 31632643 PMCID: PMC6787937 DOI: 10.1002/ece3.5549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022] Open
Abstract
Differential adaptation to local environmental conditions is thought to be an important driver of speciation. Plants, whose sedentary lifestyle necessitates fine-tuned adaptation to edaphic conditions such as water availability, are often distributed based on these conditions. Populations occupying water-limited habitats may employ a variety of strategies, involving numerous phenotypes, to prevent and withstand desiccation. In sympatry, two closely related Mimulus species-M. guttatus and M. nasutus-occupy distinct microhabitats that differ in seasonal water availability. In a common garden experiment, we characterized natural variation within and between sympatric M. guttatus and M. nasutus in the ability to successfully set seed under well-watered and drought conditions. We also measured key phenotypes for drought adaptation, including developmental timing, plant size, flower size, and stomatal density. Consistent with their microhabitat associations in nature, M. nasutus set seed much more successfully than M. guttatus under water-limited conditions. This divergence in reproductive output under drought was due to differences in mortality after the onset of flowering, with M. nasutus surviving at a much higher rate than M. guttatus. Higher seed set in M. nasutus was mediated, at least in part, by a plastic increase in the rate of late-stage development (i.e., fruit maturation), consistent with the ability of this species to inhabit more ephemeral habitats in the field. Our results suggest adaptation to water availability may be an important factor in species maintenance of these Mimulus taxa in sympatry.
Collapse
|
10
|
Papadopulos AST, Igea J, Smith TP, Hutton I, Baker WJ, Butlin RK, Savolainen V. Ecological speciation in sympatric palms: 4. Demographic analyses support speciation of
Howea
in the face of high gene flow. Evolution 2019; 73:1996-2002. [DOI: 10.1111/evo.13813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Alexander S. T. Papadopulos
- Department of Life SciencesSilwood Park CampusImperial College London Ascot SL5 7PY United Kingdom
- Molecular Ecology and Fisheries Genetics LaboratoryEnvironment Centre WalesSchool of Natural SciencesBangor University Bangor LL57 2UW United Kingdom
| | - Javier Igea
- Department of Life SciencesSilwood Park CampusImperial College London Ascot SL5 7PY United Kingdom
- Department of Plant SciencesUniversity of Cambridge Cambridge CB2 3EA United Kingdom
| | - Thomas P. Smith
- Department of Life SciencesSilwood Park CampusImperial College London Ascot SL5 7PY United Kingdom
| | - Ian Hutton
- Lord Howe Island Museum Lord Howe Island New South Wales Australia
| | | | - Roger K. Butlin
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield S10 2TN United Kingdom
- Department of Marine SciencesUniversity of Gothenburg Gothenburg SE‐405 30 Sweden
| | - Vincent Savolainen
- Department of Life SciencesSilwood Park CampusImperial College London Ascot SL5 7PY United Kingdom
- Royal Botanic Gardens, Kew Richmond TW9 3AB United Kingdom
| |
Collapse
|
11
|
Papadopulos AST, Igea J, Dunning LT, Osborne OG, Quan X, Pellicer J, Turnbull C, Hutton I, Baker WJ, Butlin RK, Savolainen V. Ecological speciation in sympatric palms: 3. Genetic map reveals genomic islands underlying species divergence in Howea. Evolution 2019; 73:1986-1995. [PMID: 31298414 DOI: 10.1111/evo.13796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Although it is now widely accepted that speciation can occur in the face of continuous gene flow, with little or no spatial separation, the mechanisms and genomic architectures that permit such divergence are still debated. Here, we examined speciation in the face of gene flow in the Howea palms of Lord Howe Island, Australia. We built a genetic map using a novel method applicable to long-lived tree species, combining it with double digest restriction site-associated DNA sequencing of multiple individuals. Based upon various metrics, we detected 46 highly differentiated regions throughout the genome, four of which contained genes with functions that are particularly relevant to the speciation scenario for Howea, specifically salt and drought tolerance.
Collapse
Affiliation(s)
- Alexander S T Papadopulos
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom.,Molecular Ecology and Fisheries Genetics Laboratory, Environment Centre Wales, School of Biological Sciences, Bangor University, Bangor, LL57 2UW, United Kingdom
| | - Javier Igea
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom.,Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Luke T Dunning
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Owen G Osborne
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom
| | - Xueping Quan
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, TW9 3AB, United Kingdom
| | - Colin Turnbull
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom
| | - Ian Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW, 2898, Australia
| | - William J Baker
- Royal Botanic Gardens, Kew, Richmond, TW9 3AB, United Kingdom
| | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Marine Sciences, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, United Kingdom.,Royal Botanic Gardens, Kew, Richmond, TW9 3AB, United Kingdom
| |
Collapse
|
12
|
Speciation in Howea Palms Occurred in Sympatry, Was Preceded by Ancestral Admixture, and Was Associated with Edaphic and Phenological Adaptation. Mol Biol Evol 2019; 36:2682-2697. [DOI: 10.1093/molbev/msz166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Howea palms are viewed as one of the most clear-cut cases of speciation in sympatry. The sister species Howea belmoreana and H. forsteriana are endemic to the oceanic Lord Howe Island, Australia, where they have overlapping distributions and are reproductively isolated mainly by flowering time differences. However, the potential role of introgression from Australian mainland relatives had not previously been investigated, a process that has recently put other examples of sympatric speciation into question. Furthermore, the drivers of flowering time-based reproductive isolation remain unclear. We sequenced an RNA-seq data set that comprehensively sampled Howea and their closest mainland relatives (Linospadix, Laccospadix), and collected detailed soil chemistry data on Lord Howe Island to evaluate whether secondary gene flow had taken place and to examine the role of soil preference in speciation. D-statistics analyses strongly support a scenario whereby ancestral Howea hybridized frequently with its mainland relatives, but this only occurred prior to speciation. Expression analysis, population genetic and phylogenetic tests of selection, identified several flowering time genes with evidence of adaptive divergence between the Howea species. We found expression plasticity in flowering time genes in response to soil chemistry as well as adaptive expression and sequence divergence in genes pleiotropically linked to soil adaptation and flowering time. Ancestral hybridization may have provided the genetic diversity that promoted their subsequent adaptive divergence and speciation, a process that may be common for rapid ecological speciation.
Collapse
|
13
|
Rahi ML, Mather PB, Ezaz T, Hurwood DA. The Molecular Basis of Freshwater Adaptation in Prawns: Insights from Comparative Transcriptomics of Three Macrobrachium Species. Genome Biol Evol 2019; 11:1002-1018. [PMID: 30840062 PMCID: PMC6450038 DOI: 10.1093/gbe/evz045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Elucidating the molecular basis of adaptation to different environmental conditions is important because adaptive ability of a species can shape its distribution, influence speciation, and also drive a variety of evolutionary processes. For crustaceans, colonization of freshwater habitats has significantly impacted diversity, but the molecular basis of this process is poorly understood. In the current study, we examined three prawn species from the genus Macrobrachium (M. australiense, M. tolmerum, and M. novaehollandiae) to better understand the molecular basis of freshwater adaptation using a comparative transcriptomics approach. Each of these species naturally inhabit environments with different salinity levels; here, we exposed them to the same experimental salinity conditions (0‰ and 15‰), to compare expression patterns of candidate genes that previously have been shown to influence phenotypic traits associated with freshwater adaptation (e.g., genes associated with osmoregulation). Differential gene expression analysis revealed 876, 861, and 925 differentially expressed transcripts under the two salinities for M. australiense, M. tolmerum, and M. novaehollandiae, respectively. Of these, 16 were found to be unannotated novel transcripts and may be taxonomically restricted or orphan genes. Functional enrichment and molecular pathway mapping revealed 13 functionally enriched categories and 11 enriched molecular pathways that were common to the three Macrobrachium species. Pattern of selection analysis revealed 26 genes with signatures of positive selection among pairwise species comparisons. Overall, our results indicate that the same key genes and similar molecular pathways are likely to be involved with freshwater adaptation widely across this decapod group; with nonoverlapping sets of genes showing differential expression (mainly osmoregulatory genes) and signatures of positive selection (genes involved with different life history traits).
Collapse
Affiliation(s)
- Md Lifat Rahi
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter B Mather
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Tariq Ezaz
- Wildlife Genetics Laboratory, Institute for Applied Ecology, University of Canberra, Australian Capital Territory, Australia
| | - David A Hurwood
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Dunning LT, Moreno-Villena JJ, Lundgren MR, Dionora J, Salazar P, Adams C, Nyirenda F, Olofsson JK, Mapaura A, Grundy IM, Kayombo CJ, Dunning LA, Kentatchime F, Ariyarathne M, Yakandawala D, Besnard G, Quick WP, Bräutigam A, Osborne CP, Christin PA. Key changes in gene expression identified for different stages of C4 evolution in Alloteropsis semialata. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3255-3268. [PMID: 30949663 PMCID: PMC6598098 DOI: 10.1093/jxb/erz149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/19/2019] [Indexed: 05/23/2023]
Abstract
C4 photosynthesis is a complex trait that boosts productivity in tropical conditions. Compared with C3 species, the C4 state seems to require numerous novelties, but species comparisons can be confounded by long divergence times. Here, we exploit the photosynthetic diversity that exists within a single species, the grass Alloteropsis semialata, to detect changes in gene expression associated with different photosynthetic phenotypes. Phylogenetically informed comparative transcriptomics show that intermediates with a weak C4 cycle are separated from the C3 phenotype by increases in the expression of 58 genes (0.22% of genes expressed in the leaves), including those encoding just three core C4 enzymes: aspartate aminotransferase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxylase. The subsequent transition to full C4 physiology was accompanied by increases in another 15 genes (0.06%), including only the core C4 enzyme pyruvate orthophosphate dikinase. These changes probably created a rudimentary C4 physiology, and isolated populations subsequently improved this emerging C4 physiology, resulting in a patchwork of expression for some C4 accessory genes. Our work shows how C4 assembly in A. semialata happened in incremental steps, each requiring few alterations over the previous step. These create short bridges across adaptive landscapes that probably facilitated the recurrent origins of C4 photosynthesis through a gradual process of evolution.
Collapse
Affiliation(s)
- Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Marjorie R Lundgren
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Paolo Salazar
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | - Claire Adams
- Botany Department, Rhodes University, Grahamstown, South Africa
| | - Florence Nyirenda
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Jill K Olofsson
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Isla M Grundy
- Institute of Environmental Studies, University of Zimbabwe, Harare, Zimbabwe
| | | | - Lucy A Dunning
- Department of Social Sciences, University of Sheffield, Sheffield, UK
| | | | - Menaka Ariyarathne
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeiya, Sri Lanka
| | - Deepthi Yakandawala
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeiya, Sri Lanka
| | - Guillaume Besnard
- Laboratoire Évolution et Diversité Biologique (EDB UMR5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - W Paul Quick
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | | | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | |
Collapse
|
15
|
Qian C, Yan X, Yin H, Fan X, Yin X, Sun P, Li Z, Nevo E, Ma XF. Transcriptomes Divergence of Ricotia lunaria Between the Two Micro-Climatic Divergent Slopes at "Evolution Canyon" I, Israel. Front Genet 2018; 9:506. [PMID: 30487810 PMCID: PMC6246625 DOI: 10.3389/fgene.2018.00506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/08/2018] [Indexed: 01/19/2023] Open
Abstract
As one of the hotspot regions for sympatric speciation studies, Evolution Canyon (EC) became an ideal place for its high level of microclimatic divergence interslopes. In this study, to highlight the genetic mechanisms of sympatric speciation, phenotypic variation on flowering time and transcriptomic divergence were investigated between two ecotypes of Ricotia lunaria, which inhabit the opposite temperate and tropical slopes of EC I (Lower Nahal Oren, Mount Carmel, Israel) separated by 100 m at the bottom of the slopes. Growth chamber results showed that flowering time of the ecotype from south-facing slope population # 3 (SFS 3) was significantly 3 months ahead of the north-facing slope population # 5 (NFS 5). At the same floral development stage, transcriptome analysis showed that 1,064 unigenes were differentially expressed between the two ecotypes, which enriched in the four main pathways involved in abiotic and/or biotic stresses responses, including flavonoid biosynthesis, α-linolenic acid metabolism, plant-pathogen interaction and linoleic acid metabolism. Furthermore, based on Ka/Ks analysis, nine genes were suggested to be involved in the ecological divergence between the two ecotypes, whose homologs functioned in RNA editing, ABA signaling, photoprotective response, chloroplasts protein-conducting channel, and carbohydrate metabolism in Arabidopsis thaliana. Among them, four genes, namely, SPDS1, FCLY, Tic21 and BGLU25, also showed adaptive divergence between R. lunaria and A. thaliana, suggesting that these genes could play an important role in plant speciation, at least in Brassicaceae. Based on results of both the phenotype of flowering time and comparative transcriptome, we hypothesize that, after long-time local adaptations to their interslope microclimatic environments, the molecular functions of these nine genes could have been diverged between the two ecotypes. They might differentially regulate the expression of the downstream genes and pathways that are involved in the interslope abiotic stresses, which could further diverge the flowering time between the two ecotypes, and finally induce the reproductive isolation establishment by natural selection overruling interslope gene flow, promoting sympatric speciation.
Collapse
Affiliation(s)
- Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xia Yan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Sun
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Li
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
16
|
Osborne OG, De‐Kayne R, Bidartondo MI, Hutton I, Baker WJ, Turnbull CGN, Savolainen V. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. THE NEW PHYTOLOGIST 2018; 217:1254-1266. [PMID: 29034978 PMCID: PMC5813143 DOI: 10.1111/nph.14850] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/14/2017] [Indexed: 05/14/2023]
Abstract
Microbes can have profound effects on their hosts, driving natural selection, promoting speciation and determining species distributions. However, soil-dwelling microbes are rarely investigated as drivers of evolutionary change in plants. We used metabarcoding and experimental manipulation of soil microbiomes to investigate the impact of soil and root microbes in a well-known case of sympatric speciation, the Howea palms of Lord Howe Island (Australia). Whereas H. forsteriana can grow on both calcareous and volcanic soils, H. belmoreana is restricted to, but more successful on, volcanic soil, indicating a trade-off in adaptation to the two soil types. We suggest a novel explanation for this trade-off. Arbuscular mycorrhizal fungi (AMF) are significantly depleted in H. forsteriana on volcanic soil, relative to both H. belmoreana on volcanic soil and H. forsteriana on calcareous soil. This is mirrored by the results of survival experiments, where the sterilization of natural soil reduces Howea fitness in every soil-species combination except H. forsteriana on volcanic soil. Furthermore, AMF-associated genes exhibit evidence of divergent selection between Howea species. These results show a mechanism by which divergent adaptation can have knock-on effects on host-microbe interactions, thereby reducing interspecific competition and promoting the coexistence of plant sister species.
Collapse
Affiliation(s)
- Owen G. Osborne
- Department of Life SciencesImperial College LondonAscotSL5 7PYUK
| | - Rishi De‐Kayne
- Department of Life SciencesImperial College LondonAscotSL5 7PYUK
| | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonAscotSL5 7PYUK
- Royal Botanic Gardens, KewRichmondTW9 3DSUK
| | - Ian Hutton
- Lord Howe Island MuseumLord Howe IslandNSW2898Australia
| | | | | | - Vincent Savolainen
- Department of Life SciencesImperial College LondonAscotSL5 7PYUK
- Royal Botanic Gardens, KewRichmondTW9 3DSUK
- University of JohannesburgAuckland ParkJohannesburg2006South Africa
| |
Collapse
|
17
|
Pespeni MH, Ladner JT, Moczek AP. Signals of selection in conditionally expressed genes in the diversification of three horned beetle species. J Evol Biol 2017; 30:1644-1657. [PMID: 28379613 DOI: 10.1111/jeb.13079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/05/2017] [Indexed: 01/20/2023]
Abstract
Species radiations may be facilitated by phenotypic differences already present within populations, such as those arising through sex-specific development or developmental processes biased towards particular reproductive or trophic morphs. We sought to test this hypothesis by utilizing a comparative transcriptomic approach to contrast among- and within-species differentiation using three horned beetle species in the genus Onthophagus. These three species exhibit differences along three phenotypic axes reflective of much of the interspecific diversity present within the genus: horn location, polarity of sexual dimorphism and degree of nutritional sensitivity. Our approach combined de novo transcript assembly, assessment of amino acid substitutions (dN/dS) across orthologous gene pairs and integration of gene function and conditional gene expression data. We identified 17 genes across the three species pairs related to axis patterning, development and metabolism with dN/dS > 1 and detected elevated dN/dS in genes related to metabolism and biosynthesis in the most closely related species pair, which is characterized by a loss of nutritional polyphenism and a reversal of sexual dimorphism. Further, we found that genes that are conditionally expressed (i.e. as a function of sex, nutrition or body region) within one of our focal species also showed significantly stronger signals of positive or relaxed purifying selection between species divergent along the same morphological axis (i.e. polarity of sexual dimorphism, degree of nutritional sensitivity or location of horns). Our findings thus reveal a positive relationship between intraspecific differentiation due to condition-specific development and genetic divergences among species.
Collapse
Affiliation(s)
- M H Pespeni
- Department of Biology, Indiana University, Bloomington, IN, USA.,Department of Biology, University of Vermont, Burlington, VT, USA
| | - J T Ladner
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - A P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
18
|
Hipperson H, Dunning LT, Baker WJ, Butlin RK, Hutton I, Papadopulos AST, Smadja CM, Wilson TC, Devaux C, Savolainen V. Ecological speciation in sympatric palms: 2. Pre- and post-zygotic isolation. J Evol Biol 2016; 29:2143-2156. [PMID: 27374779 PMCID: PMC5096058 DOI: 10.1111/jeb.12933] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023]
Abstract
We evaluated reproductive isolation in two species of palms (Howea) that have evolved sympatrically on Lord Howe Island (LHI, Australia). We estimated the strength of some pre- and post-zygotic mechanisms in maintaining current species boundaries. We found that flowering time displacement between species is consistent across in and ex situ common gardens and is thus partly genetically determined. On LHI, pre-zygotic isolation due solely to flowering displacement was 97% for Howea belmoreana and 80% for H. forsteriana; this asymmetry results from H. forsteriana flowering earlier than H. belmoreana and being protandrous. As expected, only a few hybrids (here confirmed by genotyping) at both juvenile and adult stages could be detected in two sites on LHI, in which the two species grow intermingled (the Far Flats) or adjacently (Transit Hill). Yet, the distribution of hybrids was different between sites. At Transit Hill, we found no hybrid adult trees, but 13.5% of younger palms examined there were of late hybrid classes. In contrast, we found four hybrid adult trees, mostly of late hybrid classes, and only one juvenile F1 hybrid in the Far Flats. This pattern indicates that selection acts against hybrids between the juvenile and adult stages. An in situ reciprocal seed transplant between volcanic and calcareous soils also shows that early fitness components (up to 36 months) were affected by species and soil. These results are indicative of divergent selection in reproductive isolation, although it does not solely explain the current distribution of the two species on LHI.
Collapse
Affiliation(s)
- H Hipperson
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| | - L T Dunning
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| | - W J Baker
- Royal Botanic Gardens, Kew, Richmond, UK
| | - R K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Sven Lovén Centre for Marine Sciences, Tjärnö, University of Gothenburg, Stromstäd, Sweden
| | - I Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW, Australia
| | - A S T Papadopulos
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
- Royal Botanic Gardens, Kew, Richmond, UK
| | - C M Smadja
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| | - T C Wilson
- Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | | | - V Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK.
- Royal Botanic Gardens, Kew, Richmond, UK.
| |
Collapse
|