1
|
Yu T, Ding Q, Wang N, Zhang S, Cheng Z, Zhao C, Li Q, Ding C, Liu W. Cranial repair-promoting effect of oxidised sodium alginate/amino gelatine injectable hydrogel loaded with deer antler blood peptides. Int J Biol Macromol 2025; 305:141116. [PMID: 39956235 DOI: 10.1016/j.ijbiomac.2025.141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to enhance the treatment of bone defects and increase peptide bioavailability. To achieve this, antioxidant-active peptides (DBPs) were extracted from deer antler blood and incorporated into an oxidised sodium alginate/amino gelatine injectable hydrogel (OSA/N-Gel). This bioscaffold was created through the Schiff base reaction, resulting in the development of an injectable hydrogel comprising OSA, amino gelatine, and deer antler blood peptides (OSA/N-Gel/DBP). OSA/N-Gel/DBP is characterised by a loose and porous structure that enhances nutrient flow and confers good degradability, enabling the gradual release of DBP to meet the long-lasting treatment requirements for bone repair. In vitro, 5-Ethynyl-2'-deoxyuridine (EDU), alkaline phosphatase (ALP), and Alizarin Red S (ARS) staining showed the pro-proliferative and pro-mineralising abilities of OSA/N-Gel and OSA/N-Gel/DBP on osteoblasts (MC3T3). OSA/N-Gel/DBP effectively promoted the expression of osteogenesis-related genes, such as ALP and vascular endothelial growth factor (CD31), and deposition of collagen (COL-1), and activated the wingless-related integration site (Wnt) signalling pathway, thereby promoting bone regeneration. The effect of OSA/N-Gel/DBP was significantly superior to that of the OSA/N-Gel group, indicating that DBP has good osteogenic properties. We successfully repaired bone defects and broadened the application of antler blood, thereby providing a novel approach to treating bone defects.
Collapse
Affiliation(s)
- Taojing Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Cheng
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Qingjie Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
2
|
Cheng L, Wang F, Guo Y, Du Q, Zeng X, Wu Z, Guo Y, Tu M, Pan D. Potential prebiotic properties and proliferation mechanism of fermented milk-derived polypeptides. Food Chem 2025; 463:141335. [PMID: 39316909 DOI: 10.1016/j.foodchem.2024.141335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The purpose of this paper is to investigate the potential prebiotic properties and proliferation mechanism of fermented milk-derived peptides. In this study, fermented milk-derived polypeptides were obtained by extraction, separation, and purification. The purified peptides were used to culture fecal flora in vitro, and the relative abundance and composition of the flora were analyzed by high-throughput 16S rRNA sequencing technology. The results showed that peptides can promote the proliferation of beneficial bacteria Lactococcus in the intestine and inhibit the proliferation of harmful bacteria Escherichia coli-Shigella. The amino acid sequence of polypeptide components was determined and synthesized in vitro to verify the proliferation of intestinal flora; the proliferation mechanism of peptides on Lactococcus lactis was studied using non-targeted LC-MS metabolomics technology. Five important peptides with molecular weights of 1000-2000 Da were identified by LC-MS: GRP1 (LTEEEK), GRP2 (ENDAPSPVM*K), GRP3 (ITVDDK), GRP4 (EAM*APK) and GRP5 (LPPPEK). The results showed that the peptides could affect the arginine biosynthesis pathway and the amino sugar and nucleotide sugar metabolism of Lactococcus lactis. In addition, the peptides increased the expression of organic acids and their derivatives in Lactococcus lactis. This study provides a research basis for expanding the potential sources of new prebiotics and also opens up a new idea for discovering new prebiotics in vitro.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuqiao Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| |
Collapse
|
3
|
Łuczak JW, Palusińska M, Matak D, Pietrzak D, Nakielski P, Lewicki S, Grodzik M, Szymański Ł. The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration. Int J Mol Sci 2024; 25:12766. [PMID: 39684476 DOI: 10.3390/ijms252312766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Bone defects and fractures present significant clinical challenges, particularly in orthopedic and maxillofacial applications. While minor bone defects may be capable of healing naturally, those of a critical size necessitate intervention through the use of implants or grafts. The utilization of traditional methodologies, encompassing autografts and allografts, is constrained by several factors. These include the potential for donor site morbidity, the restricted availability of suitable donors, and the possibility of immune rejection. This has prompted extensive research in the field of bone tissue engineering to develop advanced synthetic and bio-derived materials that can support bone regeneration. The optimal bone substitute must achieve a balance between biocompatibility, bioresorbability, osteoconductivity, and osteoinductivity while simultaneously providing mechanical support during the healing process. Recent innovations include the utilization of three-dimensional printing, nanotechnology, and bioactive coatings to create scaffolds that mimic the structure of natural bone and enhance cell proliferation and differentiation. Notwithstanding the advancements above, challenges remain in optimizing the controlled release of growth factors and adapting materials to various clinical contexts. This review provides a comprehensive overview of the current advancements in bone substitute materials, focusing on their biological mechanisms, design considerations, and clinical applications. It explores the role of emerging technologies, such as additive manufacturing and stem cell-based therapies, in advancing the field. Future research highlights the need for multidisciplinary collaboration and rigorous testing to develop advanced bone graft substitutes, improving outcomes and quality of life for patients with complex defects.
Collapse
Affiliation(s)
- Julia Weronika Łuczak
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Damian Matak
- European Biomedical Institute, 05-410 Jozefów, Poland
| | - Damian Pietrzak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- European Biomedical Institute, 05-410 Jozefów, Poland
| |
Collapse
|
4
|
Nielsen SDH, Liang N, Rathish H, Kim BJ, Lueangsakulthai J, Koh J, Qu Y, Schulz HJ, Dallas DC. Bioactive milk peptides: an updated comprehensive overview and database. Crit Rev Food Sci Nutr 2024; 64:11510-11529. [PMID: 37504497 PMCID: PMC10822030 DOI: 10.1080/10408398.2023.2240396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.
Collapse
Affiliation(s)
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Harith Rathish
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | | | - Jeewon Koh
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Yunyao Qu
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Hans-Jörg Schulz
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
6
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
7
|
Colucci Cante R, Nigro F, Passannanti F, Lentini G, Gallo M, Nigro R, Budelli AL. Gut health benefits and associated systemic effects provided by functional components from the fermentation of natural matrices. Compr Rev Food Sci Food Saf 2024; 23:e13356. [PMID: 38767859 DOI: 10.1111/1541-4337.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/26/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024]
Abstract
Recently, the role of the gut microbiota in metabolic health, immunity, behavioral balance, longevity, and intestine comfort has been the object of several studies from scientific communities. They were encouraged by a growing interest from food industries and consumers toward novel fermented ingredients and formulations with powerful biological effects, such as pre, pro, and postbiotic products. Depending on the selected strains, the operating conditions, the addition of suitable reagents or enzymes, the equipment, and the reactor configurations, functional compounds with high bioactivity, such as short-chain fatty acids, gamma-aminobutyric acid, bioactive peptides, and serotonin, can be enhanced and/or produced through fermentation of several vegetable matrices. Otherwise, their formation can also be promoted directly in the gut after the dietary intake of fermented foods: In this case, fermentation will aim to increase the content of precursor substances, such as indigestible fibers, polyphenols, some amino acids, and resistant starch, which can be potentially metabolized by endogenous gut microorganisms and converted in healthy molecules. This review provides an overview of the main functional components currently investigated in literature and the associated gut health benefits. The current state of the art about fermentation technology as a promising functionalization tool to promote the direct or indirect formation of gut-health-enhancing components was deepened, highlighting the importance of optimizing microorganism selection, system setups, and process conditions according to the target compound of interest. The collected data suggested the possibility of gaining novel functional food ingredients or products rich in functional molecules through fermentation without performing additional extraction and purification stages, which are needed when conventional culture broths are used.
Collapse
Affiliation(s)
- Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
8
|
Alabadi B, Civera M, Moreno-Errasquin B, Cruz-Jentoft AJ. Nutrition-Based Support for Osteoporosis in Postmenopausal Women: A Review of Recent Evidence. Int J Womens Health 2024; 16:693-705. [PMID: 38650834 PMCID: PMC11034565 DOI: 10.2147/ijwh.s409897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Postmenopausal osteoporosis stands as the predominant bone disorder in the developed world, posing a significant public health challenge. Nutritional factors play a crucial role in bone health and may contribute to its prevention or treatment. Calcium and vitamin D, extensively studied with robust scientific evidence, are integral components of the non-pharmacological treatment for this disorder. Nevertheless, other less-explored nutritional elements appear to influence bone metabolism. This review provides a comprehensive summary of the latest evidence concerning the relationship between various nutrients, such as phosphorus, magnesium, vitamins, phytate, and phytoestrogens; specific foods like dairy or soy, and dietary patterns such as the Mediterranean diet with bone health and osteoporosis.
Collapse
Affiliation(s)
- Blanca Alabadi
- Service of Endocrinology and Nutrition, Hospital Clinico Universitario of Valencia, Valencia, 46010, Spain
- INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
| | - Miguel Civera
- Service of Endocrinology and Nutrition, Hospital Clinico Universitario of Valencia, Valencia, 46010, Spain
- Department of Medicine, University of Valencia, Valencia, 46010, Spain
| | | | - Alfonso J Cruz-Jentoft
- Servicio de Geriatría, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, 28034, Spain
| |
Collapse
|
9
|
Yang M, Su S, Cheng S, Wang Z, Du M. Absorption and transport properties of a codfish-derived peptide and its protective effect on bone loss in ovariectomized mice. Food Funct 2024; 15:3496-3506. [PMID: 38463011 DOI: 10.1039/d3fo04819e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A potential osteogenic tetradecapeptide with the amino acid sequence GETNPADSKPGSIR (P-GM-2) was identified from Gadus morhua. The present study aimed to elucidate its absorption and transport properties using Caco-2/HT29-MTX co-culture monolayers and to evaluate its osteogenic activity using an ovariectomized mouse model. The results showed that P-GM-2 could cross Caco-2/HT29-MTX co-culture barriers intactly with an apparent permeability coefficient of 4.02 × 10-6 cm s-1via the TJ-mediated passive paracellular pathway. Pharmacokinetic results revealed that P-GM-2 was detectable in the blood of mice within 5 min of oral administration and reached its maximum concentration at 30 min. Furthermore, the oral administration of P-GM-2 for a duration of three months has been found to effectively regulate the secretion of key markers of bone turnover, thereby protecting against bone microstructure degeneration and bone loss in ovariectomized mice. Importantly, no toxicity related to the treatment was observed. Taken together, these findings offer valuable insights into the absorption and transport mechanisms of P-GM-2, highlighting its potential as a safe and effective active ingredient for preventing osteoporosis.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Shengpeng Su
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot 011500, P.R. China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Bellaver EH, Kempka AP. Potential of milk-derived bioactive peptides as antidiabetic, antihypertensive, and xanthine oxidase inhibitors: a comprehensive bibliometric analysis and updated review. Amino Acids 2023; 55:1829-1855. [PMID: 37938416 DOI: 10.1007/s00726-023-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Bioactive peptides consist of small protein fragments, which are inactive in their original conformation, and they become active when released from these through enzymatic hydrolysis or fermentation processes. The bioactivity of such peptides has been extensively reported in the literature as contributors to organic homeostasis processes, as well as in immunomodulation, organism defense against oxidative processes, among others. In this study, reports of the activity of BPs isolated from milk with the potential glycemic control, antihypertensive activity, and inhibitors of uric acid formation were compiled. A systematic literature review and bibliometric analysis were conducted, using the PICO strategy for the research. The temporal analysis of publications revealed a growing interest in the investigation of bioactive peptides with potential antidiabetic, antihypertensive, and xanthine oxidase inhibitory activities, using dairy sources as products for their extraction. The literature analysis also revealed an increase in research involving non-bovine dairy products for bioactive peptide extraction. The collaboration network among authors exhibited weaknesses in scientific cooperation. Regarding the analysis of keywords, the usage of terms such as "bioactive peptides", "antioxidant", "antihypertensive", and "diabetes" was evident, constituting the main research clusters. Peptides with low molecular weight, typically < 10 kDa, of hydrophobic nature with aliphatic and aromatic chains, have significant implications in molecular interactions for the required activities. Although there is a growing interest in the industry regarding the utilization of bioactive peptides as potential drugs, there is a need to address gaps related to elucidating their interactions with cellular targets and their use in human therapy.
Collapse
Affiliation(s)
- Emyr Hiago Bellaver
- Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology Santa Catarina State University, Lages, SC, Brazil
| | - Aniela Pinto Kempka
- Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology Santa Catarina State University, Lages, SC, Brazil.
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC, 89870-000, Brazil.
| |
Collapse
|
11
|
Mazzotti A, Langone L, Arceri A, Artioli E, Zielli SO, Bonelli S, Abdi P, Faldini C. Probiotics in Orthopedics: From Preclinical Studies to Current Applications and Future Perspective. Microorganisms 2023; 11:2021. [PMID: 37630580 PMCID: PMC10458220 DOI: 10.3390/microorganisms11082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, probiotics have been emerging as an attractive therapeutic strategy for several diseases. In orthopedics, probiotics seem to be a promising supplementation for treatment of osteoporosis, osteoarthritis, muscle loss-related disease, wound and ulcer issues, and prevention of surgical antibiotic prophylaxis side effects. Although probiotics are still not included in guidelines for these conditions, several studies have reported theoretical benefits of their administration. Further high-level clinical trials are necessary to convert research into solid clinical practice. However, probiotics represent a cost-effective future perspective and may play a role in association with traditional orthopedic therapies.
Collapse
Affiliation(s)
- Antonio Mazzotti
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123 Bologna, Italy
| | - Laura Langone
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Alberto Arceri
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Elena Artioli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Simone Ottavio Zielli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Simone Bonelli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Pejman Abdi
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Cesare Faldini
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123 Bologna, Italy
| |
Collapse
|
12
|
Azaman FA, Brennan Fournet ME, Sheikh Ab Hamid S, Zawawi MSF, da Silva Junior VA, Devine DM. Enhancement of Scaffold In Vivo Biodegradability for Bone Regeneration Using P28 Peptide Formulations. Pharmaceuticals (Basel) 2023; 16:876. [PMID: 37375823 DOI: 10.3390/ph16060876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The field of bone tissue engineering has shown a great variety of bone graft substitute materials under development to date, with the aim to reconstruct new bone tissue while maintaining characteristics close to the native bone. Currently, insufficient scaffold degradation remains the critical limitation for the success of tailoring the bone formation turnover rate. This study examines novel scaffold formulations to improve the degradation rate in vivo, utilising chitosan (CS), hydroxyapatite (HAp) and fluorapatite (FAp) at different ratios. Previously, the P28 peptide was reported to present similar, if not better performance in new bone production to its native protein, bone morphogenetic protein-2 (BMP-2), in promoting osteogenesis in vivo. Therefore, various P28 concentrations were incorporated into the CS/HAp/FAp scaffolds for implantation in vivo. H&E staining shows minimal scaffold traces in most of the defects induced after eight weeks, showing the enhanced biodegradability of the scaffolds in vivo. The HE stain highlighted the thickened periosteum indicating a new bone formation in the scaffolds, where CS/HAp/FAp/P28 75 µg and CS/HAp/FAp/P28 150 µg showed the cortical and trabecular thickening. CS/HAp/FAp 1:1 P28 150 µg scaffolds showed a higher intensity of calcein green label with the absence of xylenol orange label, which indicates that mineralisation and remodelling was not ongoing four days prior to sacrifice. Conversely, double labelling was observed in the CS/HAp/FAp 1:1 P28 25 µg and CS/HAp/FAp/P28 75 µg, which indicates continued mineralisation at days ten and four prior to sacrifice. Based on the HE and fluorochrome label, CS/HAp/FAp 1:1 with P28 peptides presented a consistent positive osteoinduction following the implantation in the femoral condyle defects. These results show the ability of this tailored formulation to improve the scaffold degradation for bone regeneration and present a cost-effective alternative to BMP-2.
Collapse
Affiliation(s)
- Farah Alwani Azaman
- PRISM Research Institute, Technological University of the Shannon (TUS), N37 HD68 Athlone, Ireland
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | | | - Suzina Sheikh Ab Hamid
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | - Muhamad Syahrul Fitri Zawawi
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | | | - Declan M Devine
- PRISM Research Institute, Technological University of the Shannon (TUS), N37 HD68 Athlone, Ireland
| |
Collapse
|
13
|
Yu H, Chen Y, Zhu J. Osteogenic activities of four calcium-chelating microalgae peptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6643-6649. [PMID: 35603586 DOI: 10.1002/jsfa.12031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adequate calcium intake is necessary to prevent osteoporosis, which poses significant public health challenges. The natural bioactive peptide calcium chelates have been regarded as superior calcium supplements. Microalgae peptides are regarded as potential candidates for protection from bone loss in osteoporosis. This study aimed to prepare microalgae calcium-chelating peptides from four microalgae proteins and assess their osteogenic activities in osteoporosis-like zebrafish. RESULTS After in vitro gastrointestinal digestion, 4.42% Chlorella pyrenoidosa protein, 2.74% Nannochloropsis oceanica protein, 6.07% Arthospira platensis protein and 10.47% Dunaliella salina protein were retained. The calcium-chelating capacities of four microalgae protein hydrolysates (MPHs) ranged from 14.10 ± 7.16% to 34.11 ± 9.34%. CaCl2 addition increased the maximum absorption peaks, absorption intensities and particle sizes of MPHs. Calcium-chelating MPHs showed stronger osteogenic activities than MPHs in the osteoporosis-like zebrafish model, with significantly increased mineralized tissue area and integrated optical density. CONCLUSION Microalgae proteins have favorable digestibilities. Among the four MPHs, Nannochloropsis oceanica protein hydrolysates showed the highest calcium-chelating capacity, which might be due to its high degree of hydrolysis after in vitro digestion and high content of Ser, Tyr, Thr, Asp and Glu. The absorption intensities and particle sizes of MPHs both increased after calcium addition. MPH treatment could reverse dexamethasone-induced osteoporosis of zebrafish, and MPHs-Ca chelates showed higher osteogenic activities in osteoporosis-like phenotype zebrafish. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huilin Yu
- Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yixuan Chen
- Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022; 14:nu14153001. [PMID: 35893855 PMCID: PMC9331789 DOI: 10.3390/nu14153001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics, including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived BAPs are gaining much interest worldwide due to their immense potential as health-promoting agents. These BAPs are now used to formulate products sold in the market, which reflects their safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs depends on knowledge of their particular functions/attributes and safety confirmation using human intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from in vivo and in vitro studies.
Collapse
|
15
|
Identification, production and bioactivity of casein phosphopeptides – A review. Food Res Int 2022; 157:111360. [DOI: 10.1016/j.foodres.2022.111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
16
|
Yue H, Tian Y, Feng X, Bo Y, Leng Z, Dong P, Xue C, Wang J. Novel peptides from sea cucumber intestinal hydrolysates promote longitudinal bone growth in adolescent mice through accelerating cell cycle progress by regulating glutamine metabolism. Food Funct 2022; 13:7730-7739. [PMID: 35762389 DOI: 10.1039/d2fo01063a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sea cucumber intestines are recognized as a major by-product in the sea cucumber processing industry and have been shown to exhibit bioactive properties. However, whether the sea cucumber intestine is beneficial for osteogenesis remains unknown. In this study, low molecular weight peptides rich in glutamate/glutamine were obtained from sea cucumber intestines (SCIP) by enzymatic hydrolysis, and orally administered to adolescent mice to investigate the effects on longitudinal bone growth. The results showed that the SCIP supplement significantly increased the femur length and new bone formation rate by 9.6% and 56.3%, and elevated the levels of serum osteogenic markers alkaline phosphatase (ALP), Collagen I and osteocalcin (OCN). Notably, H&E staining showed that SCIP significantly increased the height of the growth plate, in which the height of the proliferation zone was elevated by 95.6%. Glutamine is a major determinant of bone growth. SCIP supplement significantly increased glutamine levels in the growth plate by 44.2% and upregulated the expression of glutamine metabolism-related enzymes glutaminase 1 (Gls1) and glutamate dehydrogenase 1 (GLUD1) in the growth plate. Furthermore, SCIP supplement upregulated growth plate acetyl coenzyme A levels to promote histone acetylation and accelerated cell cycle progression by upregulating Sox9 expression, thereby contributing to rapid chondrocyte proliferation. To the best of our knowledge, this is the first report where SCIP could enhance longitudinal bone growth via promoting growth plate chondrocyte proliferation. The present study will provide new ideas and a theoretical basis for the high-value utilization of sea cucumber intestines.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China. .,Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, Shandong, China
| | - Xiaoxuan Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Yuying Bo
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Zhibing Leng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China. .,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, P.R. China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| |
Collapse
|
17
|
Shang N, Bhullar KS, Wu J. Tripeptide IRW Protects MC3T3-E1 Cells against Ang II Stress in an AT2R Dependent Manner. Molecules 2022; 27:molecules27123684. [PMID: 35744810 PMCID: PMC9230126 DOI: 10.3390/molecules27123684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple strategies including the use of bioactive peptides and other nutraceuticals are being adopted to maintain bone health. This study provides an improved and deeper understanding of the pharmacological effects that a bioactive peptide IRW (Ile-Arg-Trp) extends on bone health. Our results showed that IRW treatment protects osteoblasts against Ang II induced decline in cell proliferation and restores protein levels of collagen type I alpha 2 chain (COL1A2) and alkaline phosphatase (ALP) levels in MC3T3-E1 cells (p < 0.05). Apart from augmentation of these mineralization factors, the angiotensin II (Ang II) induced apoptotic stress in osteoblasts was mitigated by IRW as well. At the molecular level, IRW abolished the cytochrome-c release via modulation of pro-and anti-apoptotic genes in MC3T3-E1 cells (p < 0.05). Interestingly, IRW also increased cellular levels of cytoprotective local RAAS factors such as MasR, Ang (1−7), ACE2, and AT2R, and lowered the levels of Ang II effector receptor (AT1R). Further, our results indicated a lower content of inflammation and osteoclastogenesis biomarkers such as cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), and receptor activator of nuclear factor kappa-B ligand (RANKL) following IRW treatment in MC3T3-E1 cells (p < 0.05). The use of an antagonist-guided cell study indicated that IRW contributed to the process of cytoprotection and proliferation of osteoblasts via Runt-related transcription factor 2 (RUNX2) in face of Ang II stress in an AT2R dependent manner. The key findings of our study showed that IRW could potentially have a therapeutic role in the treatment and/or prevention of bone disorders.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; (N.S.); (K.S.B.)
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Khushwant S. Bhullar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; (N.S.); (K.S.B.)
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; (N.S.); (K.S.B.)
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-8524
| |
Collapse
|
18
|
Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022; 48:575-596. [PMID: 35080058 DOI: 10.1002/biof.1822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
With the rapid development of molecular biology and biochemical technology, great progress has been made in the study of peptides. Peptides are easy to digest and absorb, with lowering of blood pressure and cholesterol, improving immunity, regulating hormones, antibacterial, and antiviral effects. Peptides also have physiological regulation and biological metabolism functions with applications in the fields of feed production and biomedical research. In the future, the research focus of bioactive peptides will focus on their efficient preparation and application. This article introduces a comprehensive review of the types, synthesis, functionalization, and bio-related applications of bioactive peptides. For this aim, we introduced in detail various biopeptides and then presented the production methods of bioactive peptides, such as enzymatic synthesis, microbial fermentation, chemical synthesis, and others. The applications of bioactive peptides for anticancers, immune therapy, antibacterial, and other applications have been introduced and discussed. And discussed the development prospects of biologically active peptides.
Collapse
Affiliation(s)
- Linlin Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Xiao W, Shen Y, Xu Y. LOX G473A induces the formation of osteoclasts in RAW264.7 cells via IL-6/JAK2/STAT3 signaling. Exp Cell Res 2021; 409:112890. [PMID: 34695437 DOI: 10.1016/j.yexcr.2021.112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Formation of osteoclasts is known to be closely associated with osteoporosis progression. LOX is a key enzyme that catalyzes the synthesis of collagen, which is the new mediator in osteoclast formation. However, the effect of LOXG473A on of osteoclast formation needs to be explored. Thereby, we sought to explore the effect of LOXG473A on formation of osteoclasts and its underlying mechanism. To investigate the function of LOXG473A in osteoclast formation, Raw264.7 cells were stably transfected with LOX-WT or LOX-MUT (LOXG473A). Real-time PCR and western blotting were used to detect the relative levels of osteoclast formation related genes and proteins. TRAP staining and immunofluorescence staining were used to test the ability of Raw264.7 cells to form osteoclasts and the ability of cells to form rings, respectively. Bone erosion assay was used to test bone resorptive activity. The data indicated that LOXG473A significantly enhanced the ability of osteoclasts forming, ring-forming and bone resorpting in Raw264.7 cells. Mechanically, LOXG473A upregulated the expressions of NFATC1, ACP5, CTSK, IL-6, and the proportion of p-JAK2/JAK2 and p-STAT3/STAT3, thereby promoting the formation of osteoclasts. In conclusion, we have verified that LOXG473A induces the proliferation of osteoclasts in Raw264.7 cells via IL-6/JAK2/STAT3 signaling, suggesting a novel strategy for studying osteoporosis.
Collapse
Affiliation(s)
- Wenjin Xiao
- Department of Endocrinology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yuxia Shen
- Department of Ultrasound, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China
| | - Youjia Xu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
20
|
Probiotics as a New Regulator for Bone Health: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3582989. [PMID: 34394379 PMCID: PMC8355998 DOI: 10.1155/2021/3582989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023]
Abstract
Despite the proposed role of the gut microbiota-bone axis, findings on the association between probiotic consumption and bone health are conflicting. This systematic review aimed to assess the effect of probiotic consumption on bone health parameters. A systematic literature search of relevant reports published in PubMed/Medline, Web of Science, SCOPUS, EMBASE, and Google scholar before December 2020 was conducted. All clinical trials or experimental studies, which examined the relationship between probiotic consumption and bone health parameters, were included. No limitation was applied during the search. After screening articles based on inclusion criteria, 44 studies remained. In clinical trials, probiotic consumption affects bone health parameters such as serum calcium levels (3.82; 95% CI: 1.05, 6.59 mmol/l), urinary calcium levels (4.85; 95% CI: 1.16, 8.53 mmol/l), and parathyroid hormone (PTH) levels (−5.53; 95% CI: −9.83, −0.86 ng/l). In most studies, Lactobacillus species such as L. helveticus, L. reuteri, and L. casei were consumed and women aged 50 years or older were assessed. Spinal and total hip bone mineral density (BMD) was not affected significantly by probiotic consumption. In 37 animal experiments, probiotic or symbiotic feeding mostly had effects on bone health parameters. Some strains of Bifidobacterium and Lactobacillus including L. reuteri, L. casei, L. paracasei, L. bulgaricus, and L. acidophilus have indicated beneficial effects on bone health parameters. In conclusion, this systematic review and meta-analysis indicate that probiotic supplementation might improve bone health. Further studies are needed to decide on the best probiotic species and appropriate dosages.
Collapse
|
21
|
Guo D, Zhao M, Xu W, He H, Li B, Hou T. Dietary interventions for better management of osteoporosis: An overview. Crit Rev Food Sci Nutr 2021; 63:125-144. [PMID: 34251926 DOI: 10.1080/10408398.2021.1944975] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a public health concern and a cause of bone loss, increased risk of skeletal fracture, and a heavy economic burden. It is common in postmenopausal women and the elderly and is impacted by dietary factors, lifestyle and some secondary factors. Although many drugs are available for the treatment of osteoporosis, these therapies are accompanied by subsequent side effects. Hence, dietary interventions are highly important to prevent osteoporosis. This review was aimed to provide a comprehensive understanding of the roles of dietary nutrients derived from natural foods and of common dietary patterns in the regulation of osteoporosis. Nutrients from daily diets, such as unsaturated fatty acids, proteins, minerals, peptides, phytoestrogens, and prebiotics, can regulate bone metabolism and reverse bone loss. Meanwhile, these nutrients generally existed in food groups and certain dietary patterns also play critical roles in skeletal health. Appropriate dietary interventions (nutrients and dietary patterns) could be primary and effective strategies to prevent and treat osteoporosis across the lifespan for the consumers and food enterprises.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Xu Z, Fan F, Chen H, Shi P, Zhu D, Yang M, Wang Z, Ei-Seedi HR, Du M. Absorption and transport of a Mytilus edulis-derived peptide with the function of preventing osteoporosis. Food Funct 2021; 12:2102-2111. [PMID: 33564802 DOI: 10.1039/d0fo02353a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The YPRKDETGAERT peptide (PME-1) identified from the Mytilus edulis proteins has been shown to promote the proliferation and differentiation of osteoblasts and it has good bone-forming activity in vitro. Further, PME-1 has been shown to prevent osteoporosis in vivo. PME-1 can be absorbed through the gastrointestinal tract, and the passing rate in monolayer Caco-2 cells was 6.57%. PME-1 can also enter the blood circulation and the concentration of PME-1 in serum reached the maximum, 61.06 ± 26.32 ng mL-1, 20 min after feeding. The multifunctional in vivo imager was used to further determine the distribution of the 5-FITC-(Acp)-YPRKDETGAERT peptide (PME-1-FITC) 2 h after feeding the peptide, and the result confirmed the above results and showed that a part of PME-1-FITC can affect bone in vivo. Therefore, PME-1 not only was easily absorbed in the gastrointestinal tract, but also has the potential beneficial effect on preventing osteoporosis.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China. and College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pujie Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Dongyang Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75123, Sweden
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
23
|
Gan QF, Choy KW, Foo CN, Leong PP, Cheong SK. Incorporating insulin growth Factor‐1 into regenerative and personalised medicine for musculoskeletal disorders: A systematic review. J Tissue Eng Regen Med 2021; 15:419-441. [DOI: 10.1002/term.3192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2025]
Affiliation(s)
- Quan Fu Gan
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Ker Woon Choy
- Department of Anatomy Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Selangor Malaysia
| | - Chai Nien Foo
- Population Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Pooi Pooi Leong
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Soon Keng Cheong
- Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| |
Collapse
|
24
|
Cytoprotective Role of Edible Seahorse ( Hippocampus abdominalis)-Derived Peptides in H 2O 2-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells. Mar Drugs 2021; 19:md19020086. [PMID: 33546257 PMCID: PMC7913330 DOI: 10.3390/md19020086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H2O2-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H2O2-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H2O2-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H2O2 treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases.
Collapse
|
25
|
Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, Barba FJ. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar Drugs 2021; 19:71. [PMID: 33572713 PMCID: PMC7912481 DOI: 10.3390/md19020071] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
In fish processing, a great amount of side streams, including skin, bones, heads and viscera, is wasted or downgraded as feed on a daily basis. These side streams are rich sources of bioactive nitrogenous compounds and protein, which can be converted into peptides through enzymatic hydrolysis as well as bacterial fermentation. Peptides are short or long chains of amino acids differing in structure and molecular weight. They can be considered as biologically active as they can contribute to physiological functions in organisms with applications in the food and pharmaceutical industries. In the food industry, such bioactive peptides can be used as preservatives or antioxidants to prevent food spoilage. Furthermore, peptides contain several functional qualities that can be exploited as tools in modifying food ingredient solubility, water-holding and fat-binding capacity and gel formation. In the pharmaceutical industry, peptides can be used as antioxidants, but also as antihypertensive, anticoagulant and immunomodulatory compounds, amongst other functions. On the basis of their properties, peptides can thus be used in the development of functional foods and nutraceuticals. This review focuses on the bioactive peptides derived from seafood side streams and discusses their technological properties, biological activities and applications.
Collapse
Affiliation(s)
- Ilknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Maliha Afreen
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Sciences and Nutrition, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy;
| | - Celia Carrillo
- Nutrition and Food Science, Faculty of Science, Universidad de Burgos, 09001 Burgos, Spain;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| |
Collapse
|
26
|
Chen Y, Chen J, Chen J, Yu H, Zheng Y, Zhao J, Zhu J. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit Rev Food Sci Nutr 2020; 62:1187-1203. [PMID: 33094645 DOI: 10.1080/10408398.2020.1836606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marine biodiversity provides a range of diverse biological resources, including seafoods that are rich in protein and a well-balanced amino acid composition. Previous studies have shown that peptides can improve bone formation and/or inhibit bone resorption, suggesting the potential for seafood bioactive peptides (SBPs) in development of food and pharmaceuticals for management of osteoporosis. In this review, we provided an up-to-date overview of the anti-osteoporosis activity of SBPs and describe their underlying molecular mechanisms. We focus on SBPs' development, broadening the scope and depth of research, as well as strengthening in vivo and clinical research. In vitro cell cultures and in vivo animal osteoporosis models have demonstrated the potential for seafood-derived SBPs, including fish, mollusks, crustaceans, seaweed and microalgae, in preventing osteoporosis. These peptides may act by activating the signaling pathways, such as BMP/Smads, MAPK, OPG/RANKL/RANK, and NF-κB, which are associated with modulation bone health.
Collapse
Affiliation(s)
- Yixuan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jianchu Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Juan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Yangfan Zheng
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiawen Zhao
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
27
|
Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Oh Y, Ahn CB, Je JY. Blue Mussel-Derived Peptides PIISVYWK and FSVVPSPK Trigger Wnt/β-Catenin Signaling-Mediated Osteogenesis in Human Bone Marrow Mesenchymal Stem Cells. Mar Drugs 2020; 18:md18100510. [PMID: 33050263 PMCID: PMC7599581 DOI: 10.3390/md18100510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Marine-derived bioactive peptides have shown potential bone health promoting effects. Although various marine-derived bioactive peptides have potential nutraceutical or pharmaceutical properties, only a few of them are commercially available. This study presented an osteogenic mechanism of blue mussel-derived peptides PIISVYWK and FSVVPSPK as potential bone health promoting agents in human bone marrow-derived mesenchymal stem cells (hBMMSCs). Alkaline phosphatase (ALP) activity and mineralization were stimulated using PIISVYWK and FSVVPSPK as early and late markers of osteogenesis in a concentration-dependent manner. Western blot and RT-qPCR results revealed that PIISVYWK and FSVVPSPK increased osteoblast differentiation of hBMMSCs by activating canonical Wnt/β-catenin signaling-related proteins and mRNAs. Immunofluorescence images confirmed nuclear translocation of β-catenin in osteogenic differentiation. Treatment with the pharmacological inhibitor DKK-1 blocked PIISVYWK- and FSVVPSPK-induced ALP activity and mineralization, as well as mRNA expression of the canonical Wnt/β-catenin signaling pathway in hBMMSC differentiation into osteoblasts. These findings suggested that PIISVYWK and FSVVPSPK promoted the canonical Wnt/β-catenin signaling pathway in osteogenesis of hBMMSCs. Blue mussel-derived PIISVYWK and FSVVPSPK might help develop peptide-based therapeutic agents for bone-related diseases.
Collapse
Affiliation(s)
- Yunok Oh
- Institute of Marine Life Sciences, Pukyong National University, Busan 48613, Korea;
| | - Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea;
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Korea
- Correspondence: ; Tel.: +82-51-629-6871
| |
Collapse
|
29
|
Oh Y, Ahn CB, Je JY. Ark shell protein-derived bioactive peptides promote osteoblastic differentiation through upregulation of the canonical Wnt/β-catenin signaling in human bone marrow-derived mesenchymal stem cells. J Food Biochem 2020; 44:e13440. [PMID: 32808363 DOI: 10.1111/jfbc.13440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023]
Abstract
In this study, the stimulating effect of ark shell protein-derived peptides AWLNH and PHDL on osteoblast differentiation in human bone marrow-derived mesenchymal stem cells (hBMMSCs) and its molecular mechanism was investigated. The hBMMSCs were cultured with two peptides and osteogenic markers were analyzed. Results showed that enhanced ALP activity and calcification were detected in the presence of AWLNH and PHDL. Based on western blotting, RT-qPCR, and immunostaining analysis, AWLNH and PHDL are specific for osteoblast differentiation of hBMMSCs through activating the canonical Wnt/β-catenin signaling pathway followed by activating Runx2, osterix, and type I collagen. Loss-of-function assay with DKK-1, a Wnt antagonist, showed that the canonical Wnt/β-catenin signaling was essential for AWLNH and PHDL-induced osteogenesis in hBMMSCs. These findings suggested that AWLNH and PHDL can stimulate osteoblast differentiation of hBMMSCs via upregulating the canonical Wnt/β-catenin signaling and may be useful for a potential nutraceuticals or pharmaceuticals to treat osteoporosis. PRACTICAL APPLICATIONS: Ark shell is a popular foodstuff in Korea. However, biological effects of its protein and peptide have not been explored in many ways. This study demonstrated that ark shell protein-derived peptides promoted osteoblast differentiation in hBMMSCs through upregulating the canonical Wnt/β-catenin signaling. The results of this study could be a basis to promote its application as functional foods and/or nutraceuticals.
Collapse
Affiliation(s)
- Yunok Oh
- Institute of Marine Life Sciences, Pukyong National University, Busan, Republic of Korea
| | - Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
30
|
Antioxidant Peptides from Sepia esculenta Hydrolyzate Attenuate Oxidative Stress and Fat Accumulation in Caenorhabditis elegans. Mar Drugs 2020; 18:md18100490. [PMID: 32993031 PMCID: PMC7599988 DOI: 10.3390/md18100490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The hydrolysate of golden cuttlefish (Sepia esculenta) was prepared by using papain, and then, it was further separated by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The peptide components of the active fraction were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then two novel peptides, SeP2 (DVEDLEAGLAK, 1159.27 Da) and SeP5 (EITSLAPSTM, 1049.22 Da), were obtained and displayed significant alleviation effects on oxidative stress in Caenorhabditis elegans. Studies indicated that S. esculenta antioxidant peptides (SePs) increase superoxide dismutase (SOD) activity but reduce reactive oxygen species (ROS) and malondialdehyde (MDA) levelsin oxidation-damaged nematodes. Using transgenic CF1553 nematodes, the sod-3p::GFP expression in the worms treated with SePs was significantly higher than that of the control nematodes. Real-time PCR also demonstrated that the expression of stress-related genes such as sod-3 is up-regulated by SePs. Furthermore, studies showed that SePs could obviously decrease fat accumulation as well as reduce the elevated ROS and MDA levels in high-fat nematodes. Taken together, these results indicated that SePs are capable of the activation of antioxidant defense and the inhibition of free radicals and lipid peroxidation, play important roles in attenuating oxidative stress and fat accumulation in C. elegans, and might have the potential to be used in nutraceutical and functional foods.
Collapse
|
31
|
Xu Z, Chen H, Fan F, Shi P, Cheng S, Tu M, Ei-Seedi HR, Du M. Pharmacokinetics and Transport of an Osteogenic Dodecapeptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9961-9967. [PMID: 32786858 DOI: 10.1021/acs.jafc.0c02779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dodecapeptide with the amino acid sequence of IEELEEELEAER (PIE), identified from Mytilus edulis proteolysis hydrolysates, has shown good bone-forming activity in previous studies. The pharmacokinetics and transport of the PIE peptide in vivo or in vitro were investigated in this study. The results showed that the PIE peptide can be transported into monolayer Caco-2 cells, and the PIE peptide was identified in the serum after the mice reached the highest value of 173.60 ± 60.30 ng/mL, in which it was quantified by an optimized mass spectrometry method. In addition, the PIE peptide has a promoting effect on the bone morphogenetic protein pathway at the gene and protein levels. According to the distribution of PIE-FITC in ovariectomized mice after orally administrated PIE-FITC, it was confirmed that it can enter the gastrointestinal tract and serum, and reach the bones. Taken together, the PIE peptide can be absorbed well both in vitro and in vivo, and it could promote pre-osteoblast differentiation factors.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Pujie Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75 123, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
32
|
Upadhyay D, Kaur T, Kapila R, Kapila S. Repertoire of Structure-Activity-Based Novel Modified Peptides Elicits Enhanced Osteogenic Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8308-8320. [PMID: 32628843 DOI: 10.1021/acs.jafc.0c03385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biologically active peptides in milk proteins can be used as effective dietary supplements for management of bone-associated issues including osteoporosis. A bioactive peptide derived from milk, viz. VLPVPQK/PepC, has been validated previously from our lab for its osteoanabolic action. In this study, we report 14 novel variants of PepC, designed in silico, based on the structure-activity relationship, aiming to enhance its osteogenic effect that holds tremendous therapeutic utility for bone-related injuries. PepC was computationally modified at seven positions of its original sequence, resulting in 14 modified synthetic peptides for functional predictions and in vitro assessment by comparative analysis of modified peptides by PepC for improved ability in osteogenic functional assays (proliferation potential, antioxidant ability, gene and protein expression, cytotoxic effect, bone mineralization) using calvarial osteoblasts. For most peptides with the highest Peptide7 response relative to PepC (p < 0.05), enhanced osteoanabolic response was observed. Further observations on Peptide7 have therefore been investigated in depth (qPCR, immunoblotting, LCMS/MS, and PCA analysis). Peptide7 displayed a rise in the expression of osteogenes (Osterix, Opg, Bmp2, and Runx2, p < 0.05) and protein (Runx2 and Bmp2, p < 0.05). Besides, LCMS/MS findings suggest Peptide7 escapes intestinal peptidases degradation. Experimental evidence supports an improved osteological reaction to newly modified peptides and hence exploitation in the preparation of functional foods or supplements.
Collapse
Affiliation(s)
- Divya Upadhyay
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Taruneet Kaur
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Rajeev Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| |
Collapse
|
33
|
Eor JY, Tan PL, Son YJ, Lee CS, Kim SH. Milk products fermented by
Lactobacillus
strains modulate the gut–bone axis in an ovariectomised murine model. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ju Young Eor
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| | - Pei Lei Tan
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
| | - Yoon Ji Son
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| | - Chul Sang Lee
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| |
Collapse
|
34
|
Mada SB, Reddi S, Kumar N, Vij R, Yadav R, Kapila S, Kapila R. Casein-derived antioxidative peptide prevents oxidative stress-induced dysfunction in osteoblast cells. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|