1
|
Díaz N, Muñoz S, Medina A, Riquelme C, Lozano-Muñoz I. Microchloropsis gaditana as a Natural Antimicrobial with a One Health Approach to Food Safety in Farmed Salmon. Life (Basel) 2025; 15:455. [PMID: 40141798 PMCID: PMC11943575 DOI: 10.3390/life15030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Sustainably farmed Atlantic salmon could drive global food system solutions by contributing essential nutrients to the human diet while delivering high-quality protein. One of the biggest obstacles to sustainable salmon aquaculture in Chile is the prevalence of piscirickettsiosis disease caused by the Gram-negative bacteria Piscirickettsia salmonis and the excessive amount of antibiotics used to eradicate this disease. Farmed salmon products can be consumed without prior processing and therefore present a substantial risk for the transfer of resistant pathogens to humans. Antibiotics also carry the risk of antibiotic residues and damage to the environment. An alternative to antibiotics is the use of natural antimicrobials without the negative influence on the consumer's microbiome. Here, we evaluate the potential antimicrobial activity against P. salmonis of the marine microalgae Microchloropsis gaditana. A non-genetically modified M. gaditana was grown with nitrogen deprivation to improve the synthesis of the eicosapentaenoic fatty acid (EPA). A spray-dried M. gaditana concentrate (Mg) was elaborated and given to Atlantic salmon for a period of 49 days, and serum and fillet samples were collected. Our results showed a significant increase in the nutritional quality improving the levels of EPA+ Docosapentaenoic acid (DPA) (23%) and Vitamin D3 (106%) of the fillets treated with Mg. Fish fed serum were challenged with P. salmonis, and serum antibacterial activity was measured. Sera from fish fed Mg-enriched diets showed a significant increase in antibacterial activity (85.68%) against P. salmonis. Our results indicate that Mg can be used as a viable alternative to address the critical problem of microbial resistance and to assure consumers that farm-raised Atlantic salmon is safe.
Collapse
Affiliation(s)
- Nelson Díaz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820000, Chile; (N.D.); (S.M.)
| | - Susana Muñoz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820000, Chile; (N.D.); (S.M.)
| | - Alberto Medina
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de los Lagos, Alberto Hertha Fuchslocher 1305, Osorno 5380000, Chile;
| | - Carlos Riquelme
- Centro de Bioinnovación, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Angamos 601, Antofagasta 1270300, Chile;
| | - Ivonne Lozano-Muñoz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820000, Chile; (N.D.); (S.M.)
| |
Collapse
|
2
|
Carril G, Winther-Larsen HC, Løvoll M, Sørum H. Differential Transcriptomic Profile of Piscirickettsia salmonis LF-89 and EM-90 During an In Vivo Spatial Separation Co-Culture in Atlantic Salmon. Microorganisms 2024; 12:2480. [PMID: 39770683 PMCID: PMC11727826 DOI: 10.3390/microorganisms12122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 01/16/2025] Open
Abstract
Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. Piscirickettsia salmonis, a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of P. salmonis, designated as LF-89 and EM-90, have been identified. Previous studies suggested that their cohabitation triggers the expression of virulence effectors, which may be related to a higher pathogenicity in salmonids during co-infection with both P. salmonis genogroups. Therefore, we aimed to evaluate if the physical contact between two isolates from LF-89 and EM-90 is necessary to activate this effect. Through a spatially separated in vivo co-culture inside Atlantic salmon (Salmo salar) post smolts and RNA-seq analysis, we compared the differentially expressed genes (DEGs) with previous results from an in vivo mixed co-culture. The results showed that although the LF-89-like isolate and the EM-90-like isolate had a similar DEG profile under both co-culture conditions, important virulence factors observed during the mixed co-cultures (i.e., flagellar-related genes, CydD, and NCS2) were absent in the spatially separated co-cultures. Hence, the synergistic effect linked to increased pathogenicity to the host may be driven by the physical co-localization and contact between the P. salmonis LF-89-like and EM-90-like isolates.
Collapse
Affiliation(s)
- Gabriela Carril
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Hanne C. Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway;
| | | | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
3
|
Rozas-Serri M, Kani T, Jaramillo V, Correa R, Ildefonso R, Rabascall C, Barrientos S, Coñuecar D, Peña A. Current vaccination strategy against Piscirickettsia salmonis in Chile based only on the EM-90 genogroup shows incomplete cross-protection for the LF-89 genogroup. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109893. [PMID: 39260531 DOI: 10.1016/j.fsi.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Piscirickettsia salmonis, the primary bacterial disease in Chilean salmon farming, necessitates a constant refinement of control strategies. This study hypothesized that the current vaccination strategy for SRS control in the Chilean Atlantic salmon aquaculture industry, which has been in place since 2017 (ALPHA JECT® 5.1 plus LiVac®), solely relies on vaccines formulated with the EM-90 genogroup of P. salmonis (PS-EM-90), triggering a partial cross-immunity response in fish infected with the LF-89 genogroup (PS-LF-89). Relative Percent Survival (RPS) and cell-mediated immune (CMI) response were evaluated in Atlantic salmon post-smolts vaccinated with the standard vaccination strategy but challenged with both PS-EM-90 and PS-LF-89, in addition to other vaccination strategies considering primo vaccination and booster with other commercial vaccines and the possible enhancing effects of the combination with a natural immunomodulator (PAQ-Xtract®) administered orally. The intraperitoneal (I.P.) challenge was performed after 2395°-days (DD) after the start of the immunostimulant delivery, 1905 DD after the primo vaccination, and 1455 DD after the booster vaccination. Unvaccinated fish showed 73.6 and 41.7 % mortality when challenged with PS-EM-90 and PS-LF-89, respectively. Fish infected with PS-LF-89 died significantly faster (21 days post-infection, dpi) than fish challenged with PS-EM-90 (28 dpi) (p = 0.0043) and had a higher probability of death (0.4626) than fish challenged with PS-EM-90. RPS had a significant positive correlation with the PS-EM-90 load of the P. salmonis genogroup (r = 0.540, p < 0.01) but not with the PS-LF-89 load (r = 0.155, p > 0.05). This demonstrated that the immunization strategies were more effective in lowering PS-EM-90 loads, resulting in higher survival rates in fish challenged with PS-EM-90. The current industry vaccination strategy recorded a 100 % RPS when fish were challenged with PS-EM-90, but the RPS dropped significantly to 77 % when fish were challenged with PS-LF-89, meaning that the strategy did not show complete cross-protection. But after adding PAQ-Xtract®, the RPS improved from 77 % to 92 % in fish that were vaccinated with the standard method but then challenged with PS-LF-89. The most effective vaccination strategy was based on LiVac® as primo vaccination and ALPHA JECT® 5.1 plus LiVac® as booster vaccination, with or without PAQ-Xtract®, in both PS-EM-90 (100 %) and PS-LF-89 (96 %) challenged fish. The serum concentration of anti-P. salmonis IgM did not show a correlation with the protection of immunization strategies expressed in survival. Low serum IL-12 and high serum IFNγ concentrations showed a correlation with higher bacterial loads and lower survival. Aggregate analysis showed a significant correlation between higher numbers of CD8+ cells in the head-kidney, higher fish survival, and a lower bacterial load. The immunization strategies were safe for fish and induced only mild microscopic lesions in the gut. Taken together, our results help to better understand the biological interaction between P. salmonis and post-smolt vaccinated Atlantic salmon to deepen the knowledge on vaccine-induced protection, CMI immune response, and cross-immunity applied to improve the current immunization strategy for SRS control in the Chilean salmon industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea Peña
- Pathovet Labs, Puerto Montt, Los Lagos, Chile
| |
Collapse
|
4
|
Isla A, Aguilar M, Flores-Martin SN, Barrientos CA, Soto-Rauch G, Mancilla-Schulz J, Almendras F, Figueroa J, Yañez AJ. Advancements in rapid diagnostics and genotyping of Piscirickettsia salmonis using Loop-mediated Isothermal Amplification. Front Microbiol 2024; 15:1392808. [PMID: 39380674 PMCID: PMC11458457 DOI: 10.3389/fmicb.2024.1392808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/20/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Piscirickettsia salmonis, the causative agent of Piscirickettsiosis, poses a significant threat to the Chilean aquaculture industry, resulting in substantial economic losses annually. The pathogen, first identified as specie in 1992, this pathogen was divided into two genogroups: LF-89 and EM-90, associated with different phenotypic mortality and pathogenicity. Traditional genotyping methods, such as multiplex PCR, are effective but limited by their cost, equipment requirements, and the need for specialized expertise. Methods This study validates Loop-mediated Isothermal Amplification (LAMP) as a rapid and specific alternative for diagnosing P. salmonis infections. We developed the first qPCR and LAMP assay targeting the species-conserved tonB receptor gene (tonB-r, WP_016210144.1) for the specific species-level identification of P. salmonis. Additionally, we designed two genotyping LAMP assays to differentiate between the LF-89 and EM-90 genogroups, utilizing the unique coding sequences Nitronate monooxygenase (WP_144420689.1) for LF-89 and Acid phosphatase (WP_016210154.1) for EM-90. Results The LAMP assays demonstrated sensitivity and specificity comparable to real-time PCR, with additional benefits including rapid results, lower costs, and simplified operation, making them particularly suitable for field use. Specificity was confirmed by testing against other salmonid pathogens, such as Renibacterium salmoninarum, Vibrio ordalii, Flavobacterium psychrophilum, Tenacibaculum maritimum, and Aeromonas salmonicida, with no cross-reactivity observed. Discussion The visual detection method and precise differentiation between genogroups underscore LAMP's potential as a robust diagnostic tool for aquaculture. This advancement in the specie detection (qPCR and LAMP) and genotyping of P. salmonis represents a significant step forward in disease management within the aquaculture industry. The implementation of LAMP promises enhanced disease surveillance, early detection, and improved management strategies, ultimately benefiting the salmonid aquaculture sector.
Collapse
Affiliation(s)
- Adolfo Isla
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia, Chile
- Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Marcelo Aguilar
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sandra N. Flores-Martin
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia A. Barrientos
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Genaro Soto-Rauch
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Felipe Almendras
- Departamento de Investigación y Desarrollo, Greenvolution SpA., Puerto Varas, Chile
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro J. Yañez
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Departamento de Investigación y Desarrollo, Greenvolution SpA., Puerto Varas, Chile
| |
Collapse
|
5
|
Carril G, Morales-Lange B, Løvoll M, Inami M, Winther-Larsen HC, Øverland M, Sørum H. Salmonid Rickettsial Septicemia (SRS) disease dynamics and Atlantic salmon immune response to Piscirickettsia salmonis LF-89 and EM-90 co-infection. Vet Res 2024; 55:102. [PMID: 39152462 PMCID: PMC11328376 DOI: 10.1186/s13567-024-01356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/27/2024] [Indexed: 08/19/2024] Open
Abstract
In Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P. salmonis LF-89-like and EM-90-like co-infection on post-smolt Atlantic salmon after an intraperitoneal challenge to compare changes in disease dynamics and host immune response. Co-infected fish had a significantly lower survival rate (24.1%) at 21 days post-challenge (dpc), compared with EM-90-like single-infected fish (40.3%). In contrast, all the LF-89-like single-infected fish survived. In addition, co-infected fish presented a higher presence of clinical lesions than any of the single-infected fish. The gene expression of salmon immune-related biomarkers evaluated in the head kidney, spleen, and liver showed that the EM-90-like isolate and the co-infection induced the up-regulation of cytokines (e.g., il-1β, ifnγ, il8, il10), antimicrobial peptides (hepdicin) and pattern recognition receptors (PRRs), such as TLR5s. Furthermore, in serum samples from EM-90-like and co-infected fish, an increase in the total IgM level was observed. Interestingly, specific IgM against P. salmonis showed greater detection of EM-90-like antigens in LF-89-like infected fish serum (cross-reaction). These data provide evidence that P. salmonis LF-89-like and EM-90-like interactions can modulate SRS disease dynamics in Atlantic salmon, causing a synergistic effect that increases the severity of the disease and the mortality rate of the fish. Overall, this study contributes to achieving a better understanding of P. salmonis population dynamics.
Collapse
Affiliation(s)
- Gabriela Carril
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Byron Morales-Lange
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | | | | | - Hanne C Winther-Larsen
- Department of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316, Oslo, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
6
|
Parra M, Aldabaldetrecu M, Arce P, Soto-Aguilera S, Vargas R, Guerrero J, Tello M, Modak B. Oral administration of a new copper (I) complex with coumarin as ligand: modulation of the immune response and the composition of the intestinal microbiota in Onchorhynchus mykiss. Front Chem 2024; 12:1338614. [PMID: 38807978 PMCID: PMC11131136 DOI: 10.3389/fchem.2024.1338614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.
Collapse
Affiliation(s)
- Mick Parra
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Maialen Aldabaldetrecu
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Pablo Arce
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Sarita Soto-Aguilera
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Rodrigo Vargas
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- Aquaculture Production Unit, Universidad de Los Lagos, Osorno, Chile
| | - Juan Guerrero
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Mario Tello
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
7
|
Olsen RH, Finne-Fridell F, Bordevik M, Nygaard A, Rajan B, Karlsen M. The Effect of an Attenuated Live Vaccine against Salmonid Rickettsial Septicemia in Atlantic Salmon ( Salmo salar) Is Highly Dependent on Water Temperature during Immunization. Vaccines (Basel) 2024; 12:416. [PMID: 38675798 PMCID: PMC11053689 DOI: 10.3390/vaccines12040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonid Rickettsial Septicemia (SRS), caused by the bacterium Piscirickettsia salmonis, is the main reason for antibiotic usage in the Chilean aquaculture industry. In 2016, a live attenuated vaccine (ALPHA JECT LiVac® SRS, PHARMAQ AS) was licensed in Chile and has been widely used in farmed salmonids since then. In experimental injection and cohabitation laboratory challenge models, we found that the vaccine is effective in protecting Atlantic salmon (Salmo salar) for at least 15 months against P. salmonis-induced mortality. However, the protection offered by the vaccine is sensitive to temperature during immunization. Fish vaccinated and immunized at 10 °C and above were well protected, but those immunized at 7 °C and 8 °C (the lower end of the temperature range commonly found in Chile) experienced a significant loss of protection. This temperature-dependent loss of effect correlated with the amount of vaccine-strain RNA detected in the liver the first week after vaccination and with in vitro growth curves, which failed to detect any growth at 8 °C. We found that good vaccine efficacy can be restored by exposing fish to 15 °C for the first five days after vaccination before lowering the temperature to 7 °C for the remaining immunization period. This suggests that maintaining the correct temperature during the first few days after vaccination is crucial for achieving a protective immune response with ALPHA JECT LiVac® SRS. Our results emphasize the importance of temperature control when vaccinating poikilothermic animals with live vaccines.
Collapse
Affiliation(s)
| | - Frode Finne-Fridell
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
- Pure Salmon Technology, 3241 Sandefjord, Norway
| | - Marianne Bordevik
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
| | - Anja Nygaard
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
| | - Binoy Rajan
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
| | - Marius Karlsen
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
| |
Collapse
|
8
|
Parra M, Aldabaldetrecu M, Arce P, Soto-Aguilera S, Vargas R, Guerrero J, Tello M, Modak B. [Cu(NN 1) 2]ClO 4, a Copper (I) Complex as an Antimicrobial Agent for the Treatment of Piscirickettsiosis in Atlantic Salmon. Int J Mol Sci 2024; 25:3700. [PMID: 38612511 PMCID: PMC11011784 DOI: 10.3390/ijms25073700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 μg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1β, CD4, lysozyme and perforin was observed in fish treated with 40 μg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Mick Parra
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile;
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (S.S.-A.); (R.V.)
| | - Maialen Aldabaldetrecu
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (M.A.); (P.A.); (J.G.)
| | - Pablo Arce
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (M.A.); (P.A.); (J.G.)
| | - Sarita Soto-Aguilera
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (S.S.-A.); (R.V.)
| | - Rodrigo Vargas
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (S.S.-A.); (R.V.)
- Aquaculture Production Unit, Universidad of Los Lagos, Osorno 5290000, Chile
| | - Juan Guerrero
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (M.A.); (P.A.); (J.G.)
| | - Mario Tello
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (S.S.-A.); (R.V.)
| | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile;
| |
Collapse
|
9
|
Schober I, Bunk B, Carril G, Freese HM, Ojeda N, Riedel T, Meier-Kolthoff JP, Göker M, Spröer C, Flores-Herrera PA, Nourdin-Galindo G, Gómez F, Cárdenas C, Vásquez-Ponce F, Labra A, Figueroa J, Olivares-Pacheco J, Nübel U, Sikorski J, Marshall SH, Overmann J. Ongoing diversification of the global fish pathogen Piscirickettsia salmonis through genetic isolation and transposition bursts. THE ISME JOURNAL 2023; 17:2247-2258. [PMID: 37853183 PMCID: PMC10689435 DOI: 10.1038/s41396-023-01531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The management of bacterial pathogens remains a key challenge of aquaculture. The marine gammaproteobacterium Piscirickettsia salmonis is the etiological agent of piscirickettsiosis and causes multi-systemic infections in different salmon species, resulting in considerable mortality and substantial commercial losses. Here, we elucidate its global diversity, evolution, and selection during human interventions. Our comprehensive analysis of 73 closed, high quality genome sequences covered strains from major outbreaks and was supplemented by an analysis of all P. salmonis 16S rRNA gene sequences and metagenomic reads available in public databases. Genome comparison showed that Piscirickettsia comprises at least three distinct, genetically isolated species of which two showed evidence for continuing speciation. However, at least twice the number of species exist in marine fish or seawater. A hallmark of Piscirickettsia diversification is the unprecedented amount and diversity of transposases which are particularly active in subgroups undergoing rapid speciation and are key to the acquisition of novel genes and to pseudogenization. Several group-specific genes are involved in surface antigen synthesis and may explain the differences in virulence between strains. However, the frequent failure of antibiotic treatment of piscirickettsiosis outbreaks cannot be explained by horizontal acquisition of resistance genes which so far occurred only very rarely. Besides revealing a dynamic diversification of an important pathogen, our study also provides the data for improving its surveillance, predicting the emergence of novel lineages, and adapting aquaculture management, and thereby contributes towards the sustainability of salmon farming.
Collapse
Affiliation(s)
- Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gabriela Carril
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Heike M Freese
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nicolás Ojeda
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Patricio A Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Guillermo Nourdin-Galindo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Constanza Cárdenas
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Felipe Vásquez-Ponce
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alvaro Labra
- Laboratorio de Patógenos Acuícolas, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jorge Olivares-Pacheco
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Milenio para la Investigación Colaborativa en Resistencia Antimicrobiana (MICROB-R), Santiago, Chile
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sergio H Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany.
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
10
|
Carril G, Winther-Larsen HC, Løvoll M, Sørum H. Cohabitation of Piscirickettsia salmonis genogroups (LF-89 and EM-90): synergistic effect on growth dynamics. Front Cell Infect Microbiol 2023; 13:1253577. [PMID: 37953796 PMCID: PMC10634514 DOI: 10.3389/fcimb.2023.1253577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
Piscirickettsia salmonis, the biological agent of Salmonid Rickettsial Septicemia (SRS), is a facultative intracellular bacterium that can be divided into two genogroups (LF-89 and EM-90) with different virulence levels and patterns. Studies have found co-infection of these genogroups in salmonid farms in Chile, but it is essential to assess whether this interaction within the host is related to virulence and changes in pathogen dynamics. In this study, we studied four isolates from EM-90 and one LF-89 isolate chosen based on their genomic differences. The aim was to evaluate how co-cultivation affects bacterial growth performance and virulence factor expression in Atlantic salmon (Salmo salar) in vitro and in vivo. In vitro results using FN2 medium, showed a similar growth curve between co-cultures of LF-89 and EM-90 compared to EM-90 monocultures. This was explained by the higher ratio of EM-90 to LF-89 in all co-cultures. When evaluating the expression of virulence factors, it was discovered that the luxR gene was expressed only in EM-90-like isolates and that there were significant differences between mono- and co-cultures for flaA and cheA, suggesting a response to cohabitation. Moreover, during in vivo co-cultures, transcriptomic analysis revealed an upregulation of transposases, flagellum-related genes (fliI and flgK), transporters, and permeases that could unveil novel virulence effectors used in the early infection process of P. salmonis. Thus, our work has shown that cohabitation of P. salmonis genogroups can modulate their behavior and virulence effector expression. These data can contribute to new strategies and approaches to improve the current health treatments against this salmonid pathogen.
Collapse
Affiliation(s)
- Gabriela Carril
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hanne C. Winther-Larsen
- Department of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Palacio DA, Oñate P, Esquivel S, Meléndrez M, Pereira E, Rivas BL. Study of the Efficiency of a Polycation Using the Diafiltration Technique in the Removal of the Antibiotic Oxytetracycline Used in Aquaculture. MEMBRANES 2023; 13:828. [PMID: 37888000 PMCID: PMC10608924 DOI: 10.3390/membranes13100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
The presence of antibiotics in aquatic systems in recent years has become a global environmental and public health concern due to the appearance of strains resistant to these antibiotics. Oxytetracycline (OXT) is a high-impact antibiotic used for both human and veterinary consumption, and it is the second most used antibiotic in aquaculture in Chile. Based on the above, this problem is addressed using a linear polymer whose structure is composed of aromatic rings and quaternary ammonium groups, which will help enhance the removal capacity of this antibiotic. To obtain the polycation, a radical polymerization synthesis was carried out using (4-vinylbenzyl)-trimethylammonium chloride as the monomer. The polycation was characterized via Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The removal studies were conducted under different experimental conditions such as pH levels (3.0, 5.0, 7.0, 8.0, and 11.0), ionic strength (0.0-0.50 mg L-1 of NaCl), polymer dose (0.25-25.5 mg), variation of the antibiotic concentration (1-100 mg L-1), and evaluation of the maximum retention capacity, as well as load and discharge studies. The antibiotic retention removal was higher than 80.0%. The antibiotic removal performance is greatly affected by the effect of pH, ionic strength, molar ratio, and/or OXT concentration, as these parameters directly affect the electrostatic interactions between the polymer and the antibiotics. The diafiltration technique was shown to be highly efficient for the removal of OXT, with maximum removal capacities of 1273, 966, and 778 mg OXT g-1 polycation. In conclusion, it can be said that coupling water-soluble polymers to the diafiltration technique is an excellent low-cost way to address the problem of antibiotics in aquatic systems.
Collapse
Affiliation(s)
- Daniel A. Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.); (S.E.)
| | - Pablo Oñate
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.); (S.E.)
| | - Samir Esquivel
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.); (S.E.)
| | - Manuel Meléndrez
- Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 270, Casilla 160-C, Concepción 4070409, Chile
| | - Eduardo Pereira
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción 4070409, Chile
| | - Bernabé L. Rivas
- Universidad San Sebastián, sede Concepción, Concepción 4080871, Chile
| |
Collapse
|
12
|
Rozas-Serri M, Peña A, Gardner I, Peñaloza E, Maldonado L, Muñoz A, Mardones FO, Rodríguez C, Ildefonso R, Senn C, Aranis F. Co-Infection by Lf-89-like and Em-90-like Genogroups of Pis-Cirickettsia Salmonis in Farmed Atlantic Salmon in Chile: Implications for Surveillance and Control of Piscirickettsiosis. Pathogens 2023; 12:pathogens12030450. [PMID: 36986371 PMCID: PMC10053882 DOI: 10.3390/pathogens12030450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Piscirickettsiosis (SRS), caused by Piscirickettsia salmonis, is the main infectious disease that affects farmed Atlantic salmon in Chile. Currently, the official surveillance and control plan for SRS in Chile is based only on the detection of P. salmonis, but neither of its genogroups (LF-89-like and EM-90-like) are included. Surveillance at the genogroup level is essential not only for defining and evaluating the vaccination strategy against SRS, but it is also of utmost importance for early diagnosis, clinical prognosis in the field, treatment, and control of the disease. The objectives of this study were to characterize the spatio-temporal distribution of P. salmonis genogroups using genogroup-specific real-time probe-based polymerase chain reaction (qPCR) to discriminate between LF-89-like and EM-90-like within and between seawater farms, individual fish, and tissues/organs during early infection in Atlantic salmon under field conditions. The spatio-temporal distribution of LF-89-like and EM-90-like was shown to be highly variable within and between seawater farms. P. salmonis infection was also proven to be caused by both genogroups at farm, fish, and tissue levels. Our study demonstrated for the first time a complex co-infection by P. salmonis LF-89-like and EM-90-like in Atlantic salmon. Liver nodules (moderate and severe) were strongly associated with EM-90-like infection, but this phenotype was not detected by infection with LF-89-like or co-infection of both genogroups. The detection rate of P. salmonis LF-89-like increased significantly between 2017 and 2021 and was the most prevalent genogroup in Chilean salmon aquaculture during this period. Lastly, a novel strategy to identify P. salmonis genogroups based on novel genogroup-specific qPCR for LF-89-like and EM-90-like genogroups is suggested.
Collapse
Affiliation(s)
| | - Andrea Peña
- Pathovet Labs SpA, Puerto Montt 5480000, Chile
| | - Ian Gardner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | | | | | - Ariel Muñoz
- Pathovet Labs SpA, Puerto Montt 5480000, Chile
| | - Fernando O. Mardones
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 3542000, Chile
| | | | | | | | | |
Collapse
|
13
|
Levipan HA, Irgang R, Opazo LF, Araya-León H, Avendaño-Herrera R. Collective behavior and virulence arsenal of the fish pathogen Piscirickettsia salmonis in the biofilm realm. Front Cell Infect Microbiol 2022; 12:1067514. [PMID: 36544910 PMCID: PMC9760808 DOI: 10.3389/fcimb.2022.1067514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Piscirickettsiosis is a fish disease caused by the Gram-negative bacterium Piscirickettsia salmonis. This disease has a high socio-economic impact on the Chilean salmonid aquaculture industry. The bacterium has a cryptic character in the environment and their main reservoirs are yet unknown. Bacterial biofilms represent a ubiquitous mechanism of cell persistence in diverse natural environments and a risk factor for the pathogenesis of several infectious diseases, but their microbiological significance for waterborne veterinary diseases, including piscirickettsiosis, have seldom been evaluated. This study analyzed the in vitro biofilm behavior of P. salmonis LF-89T (genogroup LF-89) and CA5 (genogroup EM-90) using a multi-method approach and elucidated the potential arsenal of virulence of the P. salmonis LF-89T type strain in its biofilm state. P. salmonis exhibited a quick kinetics of biofilm formation that followed a multi-step and highly strain-dependent process. There were no major differences in enzymatic profiles or significant differences in cytotoxicity (as tested on the Chinook salmon embryo cell line) between biofilm-derived bacteria and planktonic equivalents. The potential arsenal of virulence of P. salmonis LF-89T in biofilms, as determined by whole-transcriptome sequencing and differential gene expression analysis, consisted of genes involved in cell adhesion, polysaccharide biosynthesis, transcriptional regulation, and gene mobility, among others. Importantly, the global gene expression profiles of P. salmonis LF-89T were not enriched with virulence-related genes upregulated in biofilm development stages at 24 and 48 h. An enrichment in virulence-related genes exclusively expressed in biofilms was also undetected. These results indicate that early and mature biofilm development stages of P. salmonis LF-89T were transcriptionally no more virulent than their planktonic counterparts, which was supported by cytotoxic trials, which, in turn, revealed that both modes of growth induced important and very similar levels of cytotoxicity on the salmon cell line. Our results suggest that the aforementioned biofilm development stages do not represent hot spots of virulence compared with planktonic counterparts. This study provides the first transcriptomic catalogue to select specific genes that could be useful to prevent or control the (in vitro and/or in vivo) adherence and/or biofilm formation by P. salmonis and gain further insights into piscirickettsiosis pathogenesis.
Collapse
Affiliation(s)
- Héctor A. Levipan
- Laboratorio de Ecopatología y Nanobiomateriales, Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile,Centro de Espectroscopía Atómica y Molecular (ATMOS-C), Universidad de Playa Ancha, Valparaíso, Chile,*Correspondence: Héctor A. Levipan, ; ; Ruben Avendaño-Herrera, ;
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - L. Felipe Opazo
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile,Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Henry Araya-León
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile,*Correspondence: Héctor A. Levipan, ; ; Ruben Avendaño-Herrera, ;
| |
Collapse
|
14
|
Valenzuela-Aviles P, Torrealba D, Figueroa C, Mercado L, Dixon B, Conejeros P, Gallardo-Matus J. Why vaccines fail against Piscirickettsiosis in farmed salmon and trout and how to avoid it: A review. Front Immunol 2022; 13:1019404. [PMID: 36466828 PMCID: PMC9714679 DOI: 10.3389/fimmu.2022.1019404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/24/2022] [Indexed: 09/28/2023] Open
Abstract
Piscirickettsiosis is the most severe, persistent, and damaging disease that has affected the Chilean salmon industry since its origins in the 1980s. As a preventive strategy for this disease, different vaccines have been developed and used over the last 30 years. However, vaccinated salmon and trout frequently die in the sea cages and the use of antibiotics is still high demonstrating the low efficiency of the available vaccines. The reasons why the vaccines fail so often are still debated, but it could involve different extrinsic and intrinsic factors. Among the extrinsic factors, mainly associated with chronic stress, we can distinguish: 1) biotic including coinfection with sea lice, sealions attacks or harmful algal blooms; 2) abiotic including low oxygen or high temperature; and 3) farm-management factors including overcrowding or chemical delousing treatments. Among the intrinsic factors, we can distinguish: 1) fish-related factors including host's genetic variability (species, population and individual), sex or age; 2) pathogen-related factors including their variability and ability to evade host immune responses; and 3) vaccine-related factors including low immunogenicity and poor matches with the circulating pathogen strain. Based on the available evidence, in order to improve the development and the efficacy of vaccines against P. salmonis we recommend: a) Do not perform efficacy evaluations by intraperitoneal injection of pathogens because they generate an artificial protective immune response, instead cohabitation or immersion challenges must be used; b) Evaluate the diversity of pathogen strains in the field and ensure a good antigenic match with the vaccines; c) Investigate whether host genetic diversity could be improved, e.g. through selection, in favor of better and longer responses to vaccination; d) To reduce the stressful effects at the cage level, controlling the co-infection of pathogens and avoiding fish overcrowding. To date, we do not know the immunological mechanisms by which the vaccines against P. salmonis may or may not generate protection. More studies are required to identify what type of response, cellular or molecular, is required to develop effective vaccines.
Collapse
Affiliation(s)
- Paula Valenzuela-Aviles
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Débora Torrealba
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carolina Figueroa
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Instituto de Biología, Valparaíso, Chile
| | - Brian Dixon
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Canada
| | - Pablo Conejeros
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Facultad de Ciencias, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | - José Gallardo-Matus
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
15
|
Isla A, Sánchez P, Ruiz P, Albornoz R, Pontigo JP, Rauch MC, Hawes C, Vargas-Chacoff L, Yáñez AJ. Effect of low-dose Piscirickettsia salmonis infection on haematological-biochemical blood parameters in Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2022; 101:1021-1032. [PMID: 35838309 DOI: 10.1111/jfb.15167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Piscirickettsia salmonis is the etiological agent of Piscirickettsiosis, a severe disease that affects Atlantic salmon (Salmo salar) farmed in Chile and many other areas (Norway, Scotland, Ireland, Canada and the USA). This study investigated the effects of low-dose P. salmonis infection (1 × 102 CFU/ml) on Atlantic salmon. In this study, we challenged fish with an isolated representative of the EM-90 genogroup via intraperitoneal injection for 42 days. Infected fish displayed decreased haematocrit and haemoglobin levels at day 13 post-infection, indicating erythropenia, haemolysis and haemodilution. Conversely, their white blood cell counts increased on days 13 and 21 post-infection. Additionally, their iron levels decreased from day 2 post-infection, indicating iron deficiency and an inability to retrieve stored iron before infection. Their magnesium levels also decreased at day 28 post-infection, possibly due to osmoregulatory problems. Also, we observed an increase in lactate dehydrogenase activity on days 5, 21, and 28 post-infection, suggesting early symptoms of hepatotoxicity. Later analyses determined a decrease in plasma glucose levels from day 2 post-infection. This may be attributed to the hypoxic conditions caused by P. salmonis, leading to an excess utilization of stored carbohydrates. Our results suggest that the blood parameters we studied are useful for monitoring the physiological status of Atlantic salmon infected with P. salmonis.
Collapse
Affiliation(s)
- Adolfo Isla
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Patricio Sánchez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ruiz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Romina Albornoz
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Juan P Pontigo
- Laboratorio de Biotecnología Aplicada, Facultad de Ciencas de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Puerto Montt, Chile
| | - María Cecilia Rauch
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Luis Vargas-Chacoff
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro J Yáñez
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
16
|
Commercial Vaccines Do Not Confer Protection against Two Genogroups of Piscirickettsia salmonis, LF-89 and EM-90, in Atlantic Salmon. BIOLOGY 2022; 11:biology11070993. [PMID: 36101374 PMCID: PMC9312220 DOI: 10.3390/biology11070993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Vaccination represents one of the most relevant strategies to prevent and control infectious diseases in aquaculture. However, vaccines have failed to control and prevent Piscirickettsia salmonis, a bacterium that causes large economic losses to the industry. Therefore, we evaluated the performance of two commercial vaccines in Atlantic salmon through a cohabitation challenge (healthy fish were challenged by cohabitation with infected fish) of the two most prevalent and ubiquitous Piscirickettsia genetic variants in Chile. We found no evidence that vaccines confer protection against the LF-89 or EM-90 genogroups in Atlantic salmon. Abstract In Atlantic salmon, vaccines have failed to control and prevent Piscirickettsiosis, for reasons that remain elusive. In this study, we report the efficacy of two commercial vaccines developed with the Piscirickettsia salmonis isolates AL100005 and AL 20542 against another two genogroups which are considered highly and ubiquitously prevalent in Chile: LF-89 and EM-90. Two cohabitation trials were performed to mimic field conditions and vaccine performance: (1) post-smolt fish were challenged with a single infection of LF-89, (2) adults were coinfected with EM-90, and a low level coinfection of sea lice. In the first trial, the vaccine delayed smolt mortalities by two days; however, unvaccinated and vaccinated fish did not show significant differences in survival (unvaccinated: 60.3%, vaccinated: 56.7%; p = 0.28). In the second trial, mortality started three days later for vaccinated fish than unvaccinated fish. However, unvaccinated and vaccinated fish did not show significant differences in survival (unvaccinated: 64.6%, vaccinated: 60.2%, p = 0.58). Thus, we found no evidence that the evaluated vaccines confer effective protection against the genogroups LF-89 and EM-90 of P. salmonis with estimated relative survival proportions (RPSs) of −9% and −12%, respectively. More studies are necessary to evaluate whether pathogen heterogeneity is a key determinant of the lack of vaccine efficacy against P. salmonis.
Collapse
|
17
|
Rozas-Serri M. Why Does Piscirickettsia salmonis Break the Immunological Paradigm in Farmed Salmon? Biological Context to Understand the Relative Control of Piscirickettsiosis. Front Immunol 2022; 13:856896. [PMID: 35386699 PMCID: PMC8979166 DOI: 10.3389/fimmu.2022.856896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Piscirickettsiosis (SRS) has been the most important infectious disease in Chilean salmon farming since the 1980s. It was one of the first to be described, and to date, it continues to be the main infectious cause of mortality. How can we better understand the epidemiological situation of SRS? The catch-all answer is that the Chilean salmon farming industry must fight year after year against a multifactorial disease, and apparently only the environment in Chile seems to favor the presence and persistence of Piscirickettsia salmonis. This is a fastidious, facultative intracellular bacterium that replicates in the host’s own immune cells and antigen-presenting cells and evades the adaptive cell-mediated immune response, which is why the existing vaccines are not effective in controlling it. Therefore, the Chilean salmon farming industry uses a lot of antibiotics—to control SRS—because otherwise, fish health and welfare would be significantly impaired, and a significantly higher volume of biomass would be lost per year. How can the ever-present risk of negative consequences of antibiotic use in salmon farming be balanced with the productive and economic viability of an animal production industry, as well as with the care of the aquatic environment and public health and with the sustainability of the industry? The answer that is easy, but no less true, is that we must know the enemy and how it interacts with its host. Much knowledge has been generated using this line of inquiry, however it remains insufficient. Considering the state-of-the-art summarized in this review, it can be stated that, from the point of view of fish immunology and vaccinology, we are quite far from reaching an effective and long-term solution for the control of SRS. For this reason, the aim of this critical review is to comprehensively discuss the current knowledge on the interaction between the bacteria and the host to promote the generation of more and better measures for the prevention and control of SRS.
Collapse
|
18
|
Herrera V, Olavarría N, Saavedra J, Yuivar Y, Bustos P, Almarza O, Mancilla M. Complete Lipopolysaccharide of Piscirickettsia salmonis Is Required for Full Virulence in the Intraperitoneally Challenged Atlantic Salmon, Salmo salar, Model. Front Cell Infect Microbiol 2022; 12:845661. [PMID: 35372121 PMCID: PMC8972169 DOI: 10.3389/fcimb.2022.845661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial cell envelopes play a critical role in host-pathogen interactions. Macromolecular components of these structures have been closely linked to the virulence of pathogens. Piscirickettsia salmonis is a relevant salmonid pathogen with a worldwide distribution. This bacterium is the etiological agent of piscirickettsiosis, a septicemic disease that causes a high economic burden, especially for the Chilean salmon farming industry. Although P. salmonis has been discovered long ago, its pathogenicity and virulence mechanisms are not completely understood. In this work, we present a genetic approach for producing in-frame deletion mutants on genes related to the biosynthesis of membrane-associated polysaccharides. We provide a detailed in vitro phenotype description of knock-out mutants on wzx and wcaJ genes, which encode predicted lipopolysaccharide (LPS) flippase and undecaprenyl-phosphate glucose phosphotransferase enzymes, respectively. We exhibit evidence that the wzx mutant strain carries a defect in the probably most external LPS moiety, while the wcaJ mutant proved to be highly susceptible to the bactericidal action of serum but retained the ability of biofilm production. Beyond that, we demonstrate that the deletion of wzx, but not wcaJ, impairs the virulence of P. salmonis in an intraperitoneally infected Atlantic salmon, Salmo salar, model of piscirickettsiosis. Our findings support a role for LPS in the virulence of P. salmonis during the onset of piscirickettsiosis.
Collapse
Affiliation(s)
| | - Nicole Olavarría
- Laboratorio de Diagnóstico y Biotecnología, R & D Department, ADL Diagnostic Chile, Puerto Montt, Chile
| | - José Saavedra
- Laboratorio de Diagnóstico y Biotecnología, R & D Department, ADL Diagnostic Chile, Puerto Montt, Chile
| | - Yassef Yuivar
- Laboratorio de Diagnóstico y Biotecnología, R & D Department, ADL Diagnostic Chile, Puerto Montt, Chile
| | - Patricio Bustos
- Laboratorio de Diagnóstico y Biotecnología, R & D Department, ADL Diagnostic Chile, Puerto Montt, Chile
| | - Oscar Almarza
- Blue Genomics SpA, Puerto Varas, Chile
- *Correspondence: Oscar Almarza, ; Marcos Mancilla,
| | - Marcos Mancilla
- Laboratorio de Diagnóstico y Biotecnología, R & D Department, ADL Diagnostic Chile, Puerto Montt, Chile
- *Correspondence: Oscar Almarza, ; Marcos Mancilla,
| |
Collapse
|
19
|
Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11054-11075. [PMID: 35028843 DOI: 10.1007/s11356-021-17825-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Aquaculture is remarkably one of the most promising industries among the food-producing industries in the world. Aquaculture production as well as fish consumption per capita have been dramatically increasing over the past two decades. Shifting of culture method from semi-intensive to intensive technique and applying of antibiotics to control the disease outbreak are the major factors for the increasing trend of aquaculture production. Antibiotics are usually present at subtherapeutic levels in the aquaculture environment, which increases the selective pressure to the resistant bacteria and stimulates resistant gene transfer in the aquatic environment. It is now widely documented that antibiotic resistance genes and resistant bacteria are transported from the aquatic environment to the terrestrial environment and may pose adverse effects on human and animal health. However, data related to antibiotic usage and bacterial resistance in aquaculture is very limited or even absent in major aquaculture-producing countries. In particular, residual levels of antibiotics in fish and shellfish are not well documented. Recently, some of the countries have already decided the maximum residue levels (MRLs) of antibiotics in fish muscle or skin; however, many antibiotics are yet not to be decided. Therefore, an urgent universal effort needs to be taken to monitor antibiotic concentration and resistant bacteria particularly multiple antibiotic-resistant bacteria and to assess the associated risks in aquaculture. Finally, we suggest to take an initiative to make a uniform antibiotic registration process, to establish the MRLs for fish/shrimp and to ensure the use of only aquaculture antibiotics in fish and shellfish farming globally.
Collapse
Affiliation(s)
- Anwar Hossain
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ichiro Nagano
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha Ltd, 32-3 Nanakuni 1-Chome, Hacjioji, Tokyo, 192-0991, Japan
| | - Shigeki Masunaga
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| | - Daisuke Kitazawa
- Center for Integrated Underwater Observation Technology, Institute of Industrial Science, The University of Tokyo, Chiba, 277-8574, Japan
| | - Hiroyuki Matsuda
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| |
Collapse
|
20
|
Xue X, Caballero-Solares A, Hall JR, Umasuthan N, Kumar S, Jakob E, Skugor S, Hawes C, Santander J, Taylor RG, Rise ML. Transcriptome Profiling of Atlantic Salmon ( Salmo salar) Parr With Higher and Lower Pathogen Loads Following Piscirickettsia salmonis Infection. Front Immunol 2022; 12:789465. [PMID: 35035387 PMCID: PMC8758579 DOI: 10.3389/fimmu.2021.789465] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, is one of the most devastating diseases of salmonids. However, the transcriptomic responses of Atlantic salmon (Salmon salar) in freshwater to an EM-90-like isolate have not been explored. Here, we infected Atlantic salmon parr with an EM-90-like isolate and conducted time-course qPCR analyses of pathogen load and four biomarkers (campb, hampa, il8a, tlr5a) of innate immunity on the head kidney samples. Transcript expression of three of these genes (except hampa), as well as pathogen level, peaked at 21 days post-injection (DPI). Multivariate analyses of infected individuals at 21 DPI revealed two infection phenotypes [lower (L-SRS) and higher (H-SRS) infection level]. Five fish from each group (Control, L-SRS, and H-SRS) were selected for transcriptome profiling using a 44K salmonid microarray platform. We identified 1,636 and 3,076 differentially expressed probes (DEPs) in the L-SRS and H-SRS groups compared with the control group, respectively (FDR = 1%). Gene ontology term enrichment analyses of SRS-responsive genes revealed the activation of a large number of innate (e.g. “phagocytosis”, “defense response to bacterium”, “inflammatory response”) and adaptive (e.g. “regulation of T cell activation”, “antigen processing and presentation of exogenous antigen”) immune processes, while a small number of general physiological processes (e.g. “apoptotic process”, development and metabolism relevant) was enriched. Transcriptome results were confirmed by qPCR analyses of 42 microarray-identified transcripts. Furthermore, the comparison of individuals with differing levels of infection (H-SRS vs. L-SRS) generated insights into the biological processes possibly involved in disease resistance or susceptibility. This study demonstrated a low mortality (~30%) EM-90-like infection model and broadened the current understanding of molecular pathways underlying P. salmonis-triggered responses of Atlantic salmon, identifying biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eva Jakob
- Cargill Innovation Centre - Colaco, Colaco, Chile
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
21
|
Isla A, Martinez-Hernandez JE, Levipan HA, Haussmann D, Figueroa J, Rauch MC, Maracaja-Coutinho V, Yañez A. Development of a Multiplex PCR Assay for Genotyping the Fish Pathogen Piscirickettsia salmonis Through Comparative Genomics. Front Microbiol 2021; 12:673216. [PMID: 34177855 PMCID: PMC8226252 DOI: 10.3389/fmicb.2021.673216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
Piscirickettsia salmonis is a bacterial pathogen that severely impact the aquaculture in several countries as Canada, Scotland, Ireland, Norway, and Chile. It provokes Piscirickettsiosis outbreaks in the marine phase of salmonid farming, resulting in economic losses. The monophyletic genogroup LF-89 and a divergent genogroup EM-90 are responsible for the most severe Piscirickettsiosis outbreaks in Chile. Therefore, the development of methods for quick genotyping of P. salmonis genogroups in field samples is vital for veterinary diagnoses and understanding the population structure of this pathogen. The present study reports the development of a multiplex PCR for genotyping LF-89 and EM-90 genogroups based on comparative genomics of 73 fully sequenced P. salmonis genomes. The results revealed 2,322 sequences shared between 35 LF-89 genomes, 2,280 sequences in the core-genome of 38 EM-90 genomes, and 331 and 534 accessory coding sequences each genogroup, respectively. A total of 1,801 clusters of coding sequences were shared among all tested genomes of P. salmonis (LF-89 and EM-90), with 253 and 291 unique sequences for LF-89 and EM-90 genogroups, respectively. The Multiplex-1 prototype was chosen for reliable genotyping because of differences in annealing temperatures and respective reaction efficiencies. This method also identified the pathogen in field samples infected with LF-89 or EM-90 strains, which is not possible with other methods currently available. Finally, the genome-based multiplex PCR protocol presented in this study is a rapid and affordable alternative to classical sequencing of PCR products and analyzing the length of restriction fragment polymorphisms.
Collapse
Affiliation(s)
- Adolfo Isla
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepcion, Concepción, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - J Eduardo Martinez-Hernandez
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile.,Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Héctor A Levipan
- Laboratorio de Ecopatología y Nanobiomateriales, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaiso, Chile
| | - Denise Haussmann
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepcion, Concepción, Chile
| | - Maria Cecilia Rauch
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Vinicius Maracaja-Coutinho
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Instituto Vandique, João Pessoa, Brazil.,Beagle Bioinformatics, Santiago, Chile
| | - Alejandro Yañez
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepcion, Concepción, Chile.,Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
22
|
Aravena P, Pulgar R, Ortiz-Severín J, Maza F, Gaete A, Martínez S, Serón E, González M, Cambiazo V. PCR-RFLP Detection and Genogroup Identification of Piscirickettsia salmonis in Field Samples. Pathogens 2020; 9:pathogens9050358. [PMID: 32397152 PMCID: PMC7281544 DOI: 10.3390/pathogens9050358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/01/2023] Open
Abstract
Piscirickettsia salmons, the causative agent of piscirickettsiosis, is genetically divided into two genomic groups, named after the reference strains as LF-89-like or EM-90-like. Phenotypic differences have been detected between the P. salmonis genogroups, including antibiotic susceptibilities, host specificities and pathogenicity. In this study, we aimed to develop a rapid, sensitive and cost-effective assay for the differentiation of the P. salmonis genogroups. Using an in silico analysis of the P. salmonis 16S rDNA digestion patterns, we have designed a genogroup-specific assay based on PCR-restriction fragment length polymorphism (RFLP). An experimental validation was carried out by comparing the restriction patterns of 13 P. salmonis strains and 57 field samples obtained from the tissues of dead or moribund fish. When the bacterial composition of a set of field samples, for which we detected mixtures of bacterial DNA, was analyzed by a high-throughput sequencing of the 16S rRNA gene amplicons, a diversity of taxa could be identified, including pathogenic and commensal bacteria. Despite the presence of mixtures of bacterial DNA, the characteristic digestion pattern of the P. salmonis genogroups could be detected in the field samples without the need of a microbiological culture and bacterial isolation.
Collapse
Affiliation(s)
- Pamela Aravena
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
| | - Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
| | - Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
| | - Felipe Maza
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
| | - Alexis Gaete
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
| | - Sebastián Martínez
- Laboratorio Especialidades Técnicas Marinas (ETECMA), Puerto Montt 5500001, Chile; (S.M.); (E.S.)
| | - Ervin Serón
- Laboratorio Especialidades Técnicas Marinas (ETECMA), Puerto Montt 5500001, Chile; (S.M.); (E.S.)
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
- Correspondence:
| |
Collapse
|
23
|
Flores-Kossack C, Montero R, Köllner B, Maisey K. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. FISH & SHELLFISH IMMUNOLOGY 2020; 98:52-67. [PMID: 31899356 DOI: 10.1016/j.fsi.2019.12.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
In Chile, the salmon and trout farmed fishing industries have rapidly grown during the last years, becoming one of the most important economic sources for the country. However, infectious diseases caused by bacteria, virus, mycoses and parasites, result in losses of up to 700 million dollars per year for the Chilean aquaculture production with the consequent increase of antibiotic and antiparasitic usage. After 30 years of its first appearance, the main salmon health problem is still the salmonid rickettsial septicaemia (SRS), which together with other disease outbreaks, reveal that vaccines do not provide acceptable levels of long-lasting immune protection in the field. On the other hand, due to the large dependence of the industry on salmonids production, the Chilean government promoted the Aquaculture diversification program by 2009, which includes new species such as Merluccius australis, Cilus gilberti and Genypterus chilensis, however, specific research regarding the immune system and vaccine development are issues that still need to be addressed and must be considered as important as the farm production technologies for new fish species. Based on the experience acquired from the salmonid fish farming, should be mandatory an effort to study the immune system of the new species to develop knowledge for vaccination approaches, aiming to protect these aquaculture species before diseases outbreaks may occur. This review focuses on the current status of the Chilean aquaculture industry, the challenges related to emerging and re-emerging microbial pathogens on salmonid fish farming, and the resulting needs in the development of immune protection by rational designed vaccines. We also discussed about what we have learn from 25 years of salmonid researches and what can be applied to the new Chilean farmed species on immunology and vaccinology.
Collapse
Affiliation(s)
- C Flores-Kossack
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - R Montero
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - B Köllner
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - K Maisey
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
24
|
Meza K, Inami M, Dalum AS, Bjelland AM, Sørum H, Løvoll M. Development of piscirickettsiosis in Atlantic salmon (Salmo salar L.) smolts after intraperitoneal and cohabitant challenge using an EM90-like isolate: A comparative study. JOURNAL OF FISH DISEASES 2019; 42:1001-1011. [PMID: 30977526 DOI: 10.1111/jfd.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Piscirickettsiosis, caused by the intracellular Gram-negative bacteria Piscirickettsia salmonis, is at present the most devastating disease in the Chilean salmon industry. The aim of this study was to analyse disease development after challenge with a P. salmonis strain (EM90-like) under a controlled environment by comparing intraperitoneal challenge with cohabitation challenge. The P. salmonis EM90-like isolate was cultured in a liquid medium for the challenge of 400 Atlantic salmon (Salmo salar) smolts. Cumulative mortality was registered, necropsy was performed, and bacterial distribution in the tissues and histopathological changes were analysed. The results revealed a similar progression of the disease for the two different challenge models. Pathological and histopathological changes became more visible during the development of the clinical phase of the disease. Bacterial DNA was identified in all the analysed tissues indicating a systemic infection. Bacterial tropism to visceral organs was demonstrated by real-time quantitative PCR and immunohistochemistry. Better knowledge of disease development during P. salmonis infection may contribute to further development of challenge models that mimic the field situation during piscirickettsiosis outbreaks. The models can be used to develop and test future preventive measures against the disease.
Collapse
Affiliation(s)
- Karla Meza
- VESO Vikan, Namsos, Norway
- Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | | | - Ane M Bjelland
- Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Henning Sørum
- Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | |
Collapse
|
25
|
Isla A, Saldarriaga-Córdoba M, Fuentes DE, Albornoz R, Haussmann D, Mancilla-Schulz J, Martínez A, Figueroa J, Avendaño-Herrera R, Yáñez A. Multilocus sequence typing detects new Piscirickettsia salmonis hybrid genogroup in Chilean fish farms: Evidence for genetic diversity and population structure. JOURNAL OF FISH DISEASES 2019; 42:721-737. [PMID: 30851000 DOI: 10.1111/jfd.12976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Piscirickettsia salmonisis the causative bacterial pathogen of piscirickettsiosis, a salmonid disease that causes notable mortalities in the worldwide aquaculture industry. Published research describes the phenotypic traits, virulence factors, pathogenicity and antibiotic-resistance potential for various P. salmonisstrains. However, evolutionary and genetic information is scarce for P. salmonis. The present study used multilocus sequence typing (MLST) to gain insight into the population structure and evolution of P. salmonis. Forty-two Chilean P. salmonisisolates, as well as the type strain LF-89T , were recovered from diseased Salmo salar, Oncorhynchus kisutchand Oncorhynchus mykissfrom two Chilean Regions. MLST assessed the loci sequences of dnaK, efp, fumC, glyA, murG, rpoD and trpB. Bioinformatics analyses established the genetic diversity among P. salmonis isolates (H = 0.5810). A total of 23 sequence types (ST) were identified, 53.48% of which were represented by ST1, ST5 and ST2. Population structure analysis through polymorphism patterns showed few polymorphic sites (218 nucleotides from 4,010 bp), while dN/dS ratio analysis indicated purifying selection for dnaK, epf, fumC, murG, and rpoD but neutral selection for the trpB loci. The standardized index of association indicated strong linkage disequilibrium, suggesting clonal population structure. However, recombination events were detected in a group of seven isolates. Findings included genogroups homologous to the LF-89T and EM-90 strains, as well as a seven-isolate hybrid genogroup recovered from both assessed regions (three O. mykiss and four S. salar isolates). The presented MLST scheme has comparative potential, with promising applications in studying distinct P. salmonis isolates (e.g., from different hosts, farms, geographical areas) and in understanding the epidemiology of this pathogen.
Collapse
Affiliation(s)
- Adolfo Isla
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Derie E Fuentes
- Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile
| | - Romina Albornoz
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Denise Haussmann
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia, Chile
| | | | | | - Jaime Figueroa
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alejandro Yáñez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| |
Collapse
|
26
|
Brosnahan CL, Munday JS, Ha HJ, Preece M, Jones JB. New Zealand rickettsia-like organism (NZ-RLO) and Tenacibaculum maritimum: Distribution and phylogeny in farmed Chinook salmon (Oncorhynchus tshawytscha). JOURNAL OF FISH DISEASES 2019; 42:85-95. [PMID: 30411368 DOI: 10.1111/jfd.12909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
A total of 777 fish from three growing regions of New Zealand Chinook salmon farms comprising of five sites were tested. Quantitative PCR was used to determine the distribution of New Zealand rickettsia-like organism and Tenacibaculum maritimum. Genetic information from these bacteria were then compared with strains reported worldwide. Using this information, suggested associations of pathogens with clinically affected fish were made. NZ-RLO was detected in two of the three regions, and T. maritimum was detected in all regions. Three strains of NZ-RLO were identified during this study. Based on analysis of the ITS rRNA gene, NZ-RLO1 appears to be part of an Australasian grouping sharing high similarity with the Tasmanian RLO, NZ-RLO2 was shown to be the same as an Irish strain, and NZ-RLO3 was shown be closely related to two strains from Chile. Based on multi-locus sequence typing, the New Zealand T. maritimum was the same as Australian strains. NZ-RLOs were detected more frequently in fish with skin ulcers than fish without skin ulcers. While additional research is required to investigate the pathogenicity of these organisms, this is the first time that NZ-RLOs have been associated with the development of clinical infections in farmed Chinook salmon.
Collapse
Affiliation(s)
- Cara L Brosnahan
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - John S Munday
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Hye Jeong Ha
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Mark Preece
- New Zealand King Salmon, Picton, New Zealand
| | - John B Jones
- Murdoch University School of Veterinary and Life Sciences, Perth, WA, Australia
| |
Collapse
|
27
|
Miranda CD, Godoy FA, Lee MR. Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Front Microbiol 2018; 9:1284. [PMID: 29967597 PMCID: PMC6016283 DOI: 10.3389/fmicb.2018.01284] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
The Chilean salmon industry has undergone a rapid development making the country the world's second largest producer of farmed salmon, but this growth has been accompanied by an intensive use of antibiotics. This overuse has become so significant that Chilean salmon aquaculture currently has one of the highest rates of antibiotic consumption per ton of harvested fish in the world. This review has focused on discussing use of antibiotics and current status of scientific knowledge regarding to incidence of antimicrobial resistance and associated genes in the Chilean salmonid farms. Over recent years there has been a consistent increase in the amount of antimicrobials used by Chilean salmonid farms, from 143.2 tons in 2010 to 382.5 tons in 2016. During 2016, Chilean companies utilized approximately 0.53 kg of antibiotics per ton of harvested salmon, 363.4 tons (95%) were used in marine farms, and 19.1 tons (5%) in freshwater farms dedicated to smolt production. Florfenicol and oxytetracycline were by far the most frequently used antibiotics during 2016 (82.5 and 16.8%, respectively), mainly being used to treat Piscirickettsia salmonis, currently considered the main bacterial threat to this industry. However, the increasing development of this industry in Chile, as well as the intensive use of antimicrobials, has not been accompanied by the necessary scientific research needed to understand the impact of the intensive use of antibiotics in this industry. Over the last two decades several studies assessing antimicrobial resistance and the resistome in the freshwater and marine environment impacted by salmon farming have been conducted, but information on the ecological and environmental consequences of antibiotic use in fish farming is still scarce. In addition, studies reporting the antimicrobial susceptibility of bacterial pathogens, mainly P. salmonis, have been developed, but a high number of these studies were aimed at setting their epidemiological cut-off values. In conclusion, further studies are urgently required, mainly focused on understanding the evolution and epidemiology of resistance genes in Chilean salmonid farming, and to investigate the feasibility of a link between these genes among bacteria from salmonid farms and human and fish pathogens.
Collapse
Affiliation(s)
- Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Felix A Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Matthew R Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| |
Collapse
|
28
|
Gias E, Brosnahan CL, Orr D, Binney B, Ha HJ, Preece MA, Jones B. In vivo growth and genomic characterization of rickettsia-like organisms isolated from farmed Chinook salmon (Oncorhynchus tshawytscha) in New Zealand. JOURNAL OF FISH DISEASES 2018; 41:1235-1245. [PMID: 29806079 DOI: 10.1111/jfd.12817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
A rickettsia-like organism, designated NZ-RLO2, was isolated from Chinook salmon (Oncorhynchus tshawytscha) farmed in the South Island, New Zealand. In vivo growth showed NZ-RLO2 was able to grow in CHSE-214, EPC, BHK-21, C6/36 and Sf21 cell lines, while Piscirickettsia salmonis LF-89T grew in all but BHK-21 and Sf21. NZ-RLO2 grew optimally in EPC at 15°C, CHSE-214 and EPC at 18°C. The growth of LF-89 T was optimal at 15°C, 18°C and 22°C in CHSE-24, but appeared less efficient in EPC cells at all temperatures. Pan-genome comparison of predicted proteomes shows that available Chilean strains of P. salmonis grouped into two clusters (p-value = 94%). NZ-RLO2 was genetically different from previously described NZ-RLO1, and both strains grouped separately from the Chilean strains in one of the two clusters (p-value = 88%), but were closely related to each other. TaqMan and Sybr Green real-time PCR targeting RNA polymerase (rpoB) and DNA primase (dnaG), respectively, were developed to detect NZ-RLO2. This study indicates that the New Zealand strains showed a closer genetic relationship to one of the Chilean P. salmonis clusters; however, more Piscirickettsia genomes from wider geographical regions and diverse hosts are needed to better understand the classification within this genus.
Collapse
Affiliation(s)
- E Gias
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - C L Brosnahan
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - D Orr
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - B Binney
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - H J Ha
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - M A Preece
- New Zealand King Salmon, Picton, New Zealand
| | - B Jones
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
- Murdoch University School of Veterinary and Life Sciences, Perth, WA, Australia
| |
Collapse
|
29
|
Saavedra J, Grandón M, Villalobos-González J, Bohle H, Bustos P, Mancilla M. Isolation, Functional Characterization and Transmissibility of p3PS10, a Multidrug Resistance Plasmid of the Fish Pathogen Piscirickettsia salmonis. Front Microbiol 2018; 9:923. [PMID: 29867834 PMCID: PMC5952111 DOI: 10.3389/fmicb.2018.00923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance is a major public health concern due to its association with the loss of efficacy of antimicrobial therapies. Horizontal transfer events may play a significant role in the dissemination of resistant bacterial phenotypes, being mobilizable plasmids a well-known mechanism. In this study, we aimed to gain insights into the genetics underlying the development of antibiotic resistance by Piscirickettsia salmonis isolates, a bacterial fish pathogen and causative agent of salmonid piscirickettsiosis, and the main target of antibiotics used in Chilean salmon farming. We provide experimental evidence that the plasmid p3PS10, which harbors multidrug resistance genes for chloramphenicol (cat2), tetracyclines [tet(31)], aminoglycosides (sat1 and aadA1), and sulfonamides (sul2), is carried by a group of P. salmonis isolates exhibiting a markedly reduced susceptibility to oxytetracycline in vitro (128–256 μg/mL of minimal inhibitory concentration, MIC). Antibiotic susceptibility analysis extended to those antibiotics showed that MIC of chloramphenicol, streptomycin, and sulfamethoxazole/trimethoprim were high, but the MIC of florfenicol remained at the wild-type level. By means of molecular cloning, we demonstrate that those genes encoding putative resistance markers are indeed functional. Interestingly, mating assays clearly show that p3PS10 is able to be transferred into and replicate in different hosts, thereby conferring phenotypes similar to those found in the original host. According to epidemiological data, this strain is distributed across aquaculture settings in southern Chile and is likely to be responsible for oxytetracycline treatment failures. This work demonstrates that P. salmonis is more versatile than it was thought, capable of horizontally transferring DNA, and probably playing a role as a vector of resistance traits among the seawater bacterial population. However, the low transmission frequency of p3PS10 suggests a negligible chance of resistance markers being spread to human pathogens.
Collapse
Affiliation(s)
- José Saavedra
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile SpA, Puerto Montt, Chile
| | - Maritza Grandón
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile SpA, Puerto Montt, Chile
| | | | - Harry Bohle
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile SpA, Puerto Montt, Chile
| | - Patricio Bustos
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile SpA, Puerto Montt, Chile
| | - Marcos Mancilla
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile SpA, Puerto Montt, Chile
| |
Collapse
|
30
|
Mancilla M, Saavedra J, Grandón M, Tapia E, Navas E, Grothusen H, Bustos P. The mutagenesis of a type IV secretion system locus of Piscirickettsia salmonis leads to the attenuation of the pathogen in Atlantic salmon, Salmo salar. JOURNAL OF FISH DISEASES 2018; 41:625-634. [PMID: 29251345 DOI: 10.1111/jfd.12762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is a threatening infectious disease for the salmon industry, due to it being responsible for significant economic losses. The control of outbreaks also poses considerable environmental challenges. Despite Piscirickettsia salmonis having been discovered as the aetiological agent of the disease more than 25 years ago, its pathogenicity remains poorly understood. Among virulence factors identified so far, type four secretion systems (T4SS) seem to play a key role during the infection caused by the bacterium. We report here the genetic manipulation of P. salmonis by means of the transference of plasmid DNA in mating assays. An insertion cassette was engineered for targeting the icmB gene, which encodes a putative T4SS-ATPase and is carried by one of the chromosomal T4SS clusters found within the genome of P. salmonis PM15972A1, a virulent representative of the EM-90-like strain. The molecular characterization of the resulting mutant strain demonstrated that the insertion interrupted the target gene. Further in vitro testing of the icmB mutant showed a dramatic drop in infectivity as tested in CHSE-214 cells, which is in agreement with its attenuated behaviour observed in vivo. Altogether, our results demonstrate that, similar to other facultative intracellular pathogens, P. salmonis' virulence relies on an intact T4SS.
Collapse
Affiliation(s)
- M Mancilla
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - J Saavedra
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - M Grandón
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - E Tapia
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - E Navas
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - H Grothusen
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - P Bustos
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| |
Collapse
|
31
|
Mancilla M. Commentary: A Novel and Validated Protocol for Performing MIC Tests to Determine the Susceptibility of Piscirickettsia salmonis Isolates to Florfenicol and Oxytetracycline. Front Microbiol 2018; 9:483. [PMID: 29593705 PMCID: PMC5861184 DOI: 10.3389/fmicb.2018.00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/28/2018] [Indexed: 01/27/2023] Open
Affiliation(s)
- Marcos Mancilla
- Research and Development Laboratory, ADL Diagnostic Chile, Puerto Montt, Chile
| |
Collapse
|
32
|
Cortés MP, Mendoza SN, Travisany D, Gaete A, Siegel A, Cambiazo V, Maass A. Analysis of Piscirickettsia salmonis Metabolism Using Genome-Scale Reconstruction, Modeling, and Testing. Front Microbiol 2017; 8:2462. [PMID: 29321769 PMCID: PMC5732189 DOI: 10.3389/fmicb.2017.02462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/27/2017] [Indexed: 01/27/2023] Open
Abstract
Piscirickettsia salmonis is an intracellular bacterial fish pathogen that causes piscirickettsiosis, a disease with highly adverse impact in the Chilean salmon farming industry. The development of effective treatment and control methods for piscireckttsiosis is still a challenge. To meet it the number of studies on P. salmonis has grown in the last couple of years but many aspects of the pathogen's biology are still poorly understood. Studies on its metabolism are scarce and only recently a metabolic model for reference strain LF-89 was developed. We present a new genome-scale model for P. salmonis LF-89 with more than twice as many genes as in the previous model and incorporating specific elements of the fish pathogen metabolism. Comparative analysis with models of different bacterial pathogens revealed a lower flexibility in P. salmonis metabolic network. Through constraint-based analysis, we determined essential metabolites required for its growth and showed that it can benefit from different carbon sources tested experimentally in new defined media. We also built an additional model for strain A1-15972, and together with an analysis of P. salmonis pangenome, we identified metabolic features that differentiate two main species clades. Both models constitute a knowledge-base for P. salmonis metabolism and can be used to guide the efficient culture of the pathogen and the identification of specific drug targets.
Collapse
Affiliation(s)
- María P Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Fondap Center for Genome Regulation (CGR), Santiago, Chile
| | - Sebastián N Mendoza
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Fondap Center for Genome Regulation (CGR), Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Fondap Center for Genome Regulation (CGR), Santiago, Chile
| | - Alexis Gaete
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Anne Siegel
- DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France
| | - Verónica Cambiazo
- Fondap Center for Genome Regulation (CGR), Santiago, Chile.,Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Fondap Center for Genome Regulation (CGR), Santiago, Chile.,Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Isolation and Characterization of Serum Extracellular Vesicles (EVs) from Atlantic Salmon Infected with Piscirickettsia Salmonis. Proteomes 2017; 5:proteomes5040034. [PMID: 29194379 PMCID: PMC5748569 DOI: 10.3390/proteomes5040034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
Secretion of extracellular vesicles (EVs) is a common feature of both eukaryotic and prokaryotic cells. Isolated EVs have been shown to contain different types of molecules, including proteins and nucleic acids, and are reported to be key players in intercellular communication. Little is known, however, of EV secretion in fish, or the effect of infection on EV release and content. In the present study, EVs were isolated from the serum of healthy and Piscirickettsia salmonis infected Atlantic salmon in order to evaluate the effect of infection on EV secretion. P. salmonis is facultative intracellular bacterium that causes a systemic infection disease in farmed salmonids. EVs isolated from both infected and non-infected fish had an average diameter of 230–300 nm, as confirmed by transmission electron microscopy, nanoparticle tracking, and flow cytometry. Mass spectrometry identified 180 proteins in serum EVs from both groups of fish. Interestingly, 35 unique proteins were identified in serum EVs isolated from the fish infected with P. salmonis. These unique proteins included proteasomes subunits, granulins, and major histocompatibility class I and II. Our results suggest that EV release could be part of a mechanism in which host stimulatory molecules are released from infected cells to promote an immune response.
Collapse
|
34
|
Nourdin-Galindo G, Sánchez P, Molina CF, Espinoza-Rojas DA, Oliver C, Ruiz P, Vargas-Chacoff L, Cárcamo JG, Figueroa JE, Mancilla M, Maracaja-Coutinho V, Yañez AJ. Comparative Pan-Genome Analysis of Piscirickettsia salmonis Reveals Genomic Divergences within Genogroups. Front Cell Infect Microbiol 2017; 7:459. [PMID: 29164068 PMCID: PMC5671498 DOI: 10.3389/fcimb.2017.00459] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection.
Collapse
Affiliation(s)
- Guillermo Nourdin-Galindo
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - Patricio Sánchez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Cristian F Molina
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,AUSTRAL-omics, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela A Espinoza-Rojas
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - Cristian Oliver
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Pamela Ruiz
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Luis Vargas-Chacoff
- Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan G Cárcamo
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Jaime E Figueroa
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Marcos Mancilla
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile SpA., Puerto Montt, Chile
| | - Vinicius Maracaja-Coutinho
- Laboratory of Integrative Bioinformatics, Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile.,Laboratory of Integrative Bioinformatics, Instituto Vandique, João Pessoa, Brazil.,Beagle Bioinformatics, Santiago, Chile
| | - Alejandro J Yañez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,AUSTRAL-omics, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|